background image
Code_Aster
®
Version
5.0
Titrate:
SSNV125 Test tensile shearing - polycrystalline Model
Date:
24/03/98
Author (S):
S. TAHERI, C. VOGEL
Key
:
V6.04.125-A
Page:
1/8
Manual of Validation
V6.04 booklet: Nonlinear statics of the voluminal structures
HI-75/01/010/A
Organization (S):
EDF/IMA/MN















Manual of Validation
V6.04 booklet: Nonlinear statics of the voluminal structures
V6.04.125 document



SSNV125 - Tensile test shearing
with polycrystalline model CFC




Summary:

Analyze response of an element of volume to a loading of traction-shearing which imposes a state of
uniform stress-strain.

One carries out two modelings to test the taking into account of the parameters constant or dependant on
temperature and integration with the elastic matrix (only available for explicit integration used).

This test validates the numerical integration of the model of polycrystalline behavior elastoviscoplastic for
cubic structural materials to centered faces.
background image
Code_Aster
®
Version
5.0
Titrate:
SSNV125 Test tensile shearing - polycrystalline Model
Date:
24/03/98
Author (S):
S. TAHERI, C. VOGEL
Key
:
V6.04.125-A
Page:
2/8
Manual of Validation
V6.04 booklet: Nonlinear statics of the voluminal structures
HI-75/01/010/A
1
Problem of reference
1.1 Geometry
6
5
8
7
4
3
2
1
Z, dz
D
D
y, Dy
X, dx
Face YZ: (3, 1, 7, 6)
Face XY: (4, 2, 1, 3)
Face 1YZ: (4, 2, 5, 8)
Face 1XY: (8, 5, 7, 6)

D
: imposed pressure
D
: imposed shearing
D
D
D
1.2
Material properties
Isotropic elasticity E = 192.500 MPa
= 0.3
Model viscoplasticity POLY_CFC (units: MPa, S)
DLL
149.67
DA
0.0268
NR
7.77
K
13.31 MPa.s
1/NR
TAU_0
86.5 MPa
Q1
7.29 MPa
B1
5.67
HL
2.43
Q2
­ 16.25 MPa
B2
20.04
C1
4000 MPa
D1
42.69
C2
73.26
1.3
Boundary conditions and loadings
N3
dx = Dy = dz = 0
Face YZ: FZ = ­
D
/4
N4
Dy = dz = 0
Face XY: FY = ­
D
/4
N1, N2
dz = 0
Face 1YZ: FZ =
D
/4
Face 1XY: FY =
D
/4, FZ =
D
1.4 Conditions
initial
Null stresses and deformations with T = 0.
D
P
0
D
Linear way of loading:
D
(T) and
D
(T), the point P being reached in 10 seconds with
D
(10) =
200 MPa and
D
(10) = 100 MPa
background image
Code_Aster
®
Version
5.0
Titrate:
SSNV125 Test tensile shearing - polycrystalline Model
Date:
24/03/98
Author (S):
S. TAHERI, C. VOGEL
Key
:
V6.04.125-A
Page:
3/8
Manual of Validation
V6.04 booklet: Nonlinear statics of the voluminal structures
HI-75/01/010/A
2
Reference solution
2.1
Method of calculation used for the reference solution
One uses to establish the reference solution the software SiDoLo [1] which allows simulation and
identification of relations of behavior.
The equations of the model are written by the user in FORTRAN in the form of a system of equations
first order differentials, solved by a method of Runge Kutta of command 2 with adaptive pitch.

2.2
Results of reference
zz
,
yz
,
zz
,
yz
at the moments (T = 10 S);
yz
and
zz
at the moments (T = 6 S, 8 S and 9,2 S).

2.3
Uncertainty on the solution
Uncertainty of SiDoLo [bib1].

2.4 References
bibliographical
[1]
SiDoLo, version 2.3, Note of use, École Nationale Supérieure of the Mines of Paris,
Center Materials, September 1995.
background image
Code_Aster
®
Version
5.0
Titrate:
SSNV125 Test tensile shearing - polycrystalline Model
Date:
24/03/98
Author (S):
S. TAHERI, C. VOGEL
Key
:
V6.04.125-A
Page:
4/8
Manual of Validation
V6.04 booklet: Nonlinear statics of the voluminal structures
HI-75/01/010/A
3 Modeling
With
3.1
Characteristics of modeling
Modeling 3D

6
5
8
7
4
3
2
1
Z
y
X

3.2
Characteristics of the mesh
1 HEXA8 (8 points of Gauss)

3.3 Functionalities
tested
Order Mot-clé
factor
Key word
simple
Key argument
DEFI_MATERIAU POLY_CFC
[U4.23.01]
STAT_NON_LINE COMP_INCR
NEWTON
CONVERGENCE
CONVERGENCE
CONVERGENCE
RELATION
STAMP
RESO_INTE
RESI_GLOB_RELA
RESI_INTE_RELA
“POLY_CFC”
“ELASTIC”
“RUNGE_KUTTA_2”
10-4
10-3
[U4.32.01]

background image
Code_Aster
®
Version
5.0
Titrate:
SSNV125 Test tensile shearing - polycrystalline Model
Date:
24/03/98
Author (S):
S. TAHERI, C. VOGEL
Key
:
V6.04.125-A
Page:
5/8
Manual of Validation
V6.04 booklet: Nonlinear statics of the voluminal structures
HI-75/01/010/A
4
Results of modeling A
4.1 Values
tested

Identification Reference Aster %
difference
zz
(10s)
200 199,986
- 0,007%
yz
(10s)
100 99,988
- 0,012%
zz
(6s)
6.233769 E4
6,233769 E4
- 0,000%
yz
(6s)
4,051949 E4
4,051951 E4
- 0,000%
zz
(8s)
9,222209 E4
9,205512 E4
- 0,191%
yz
(8s)
6,224790 E4
6,186647 E4
- 0,613%
zz
(9,2s)
1,402150 E3
1,387270 E3
- 1,061%
yz
(9,2s)
1,000010 E3
9,695271 E4
- 3,048%
zz
(10s)
1,841500 E3
1,845873 E3
0,238%
yz
(10s)
1,347820 E3
1,326605 E3
- 1,574%

4.2 Remarks
The moment 6s corresponds to a loading where there was not plasticization yet.
One uses 11 increments of time in Aster, and the pitch of time is redécoupé in manner
adaptive on the level of the local integration of the equations of the model (explicit cf Integration
[R5.03.14]).
SiDoLo uses several hundreds of pitch of times, calculated automatically.

4.3 Parameters
of execution
Version: 4.00.09
Machine: CRAY C90
System:
UNICOS 8.0
Overall dimension memory:
8 MW
Time CPU To use:
179 seconds
background image
Code_Aster
®
Version
5.0
Titrate:
SSNV125 Test tensile shearing - polycrystalline Model
Date:
24/03/98
Author (S):
S. TAHERI, C. VOGEL
Key
:
V6.04.125-A
Page:
6/8
Manual of Validation
V6.04 booklet: Nonlinear statics of the voluminal structures
HI-75/01/010/A
5 Modeling
B
5.1
Characteristics of modeling
Modeling 3D
6
5
8
7
4
3
2
1
Z
y
X

5.2
Characteristics of the mesh
1 HEXA8 (8 points of Gauss)

5.3 Functionalities
tested
Order Mot-clé
factor
Key word
simple
Key argument
DEFI_MATERIAU POLY_CFC_FO
[U4.23.01]
STAT_NON_LINE COMP_INCR
NEWTON
CONVERGENCE
CONVERGENCE
CONVERGENCE
RELATION
STAMP
RESO_INTE
RESI_GLOB_RELA
RESI_INTE_RELA
“POLY_CFC_FO”
“ELASTIC”
“RUNGE_KUTTA_2”
10-3
10-3
[U4.32.01]
background image
Code_Aster
®
Version
5.0
Titrate:
SSNV125 Test tensile shearing - polycrystalline Model
Date:
24/03/98
Author (S):
S. TAHERI, C. VOGEL
Key
:
V6.04.125-A
Page:
7/8
Manual of Validation
V6.04 booklet: Nonlinear statics of the voluminal structures
HI-75/01/010/A
6
Results of modeling B
6.1 Values
tested

Identification Reference Aster %
difference
zz
(10s)
200 199,850
- 0,075%
yz
(10s)
100 99,872
- 0,127%
zz
(6s)
6.233769 E4
6,233769 E4
- 0,000%
yz
(6s)
4,051949 E4
4,051951 E4
- 0,000%
zz
(8s)
9,222209 E4
9,197502 E4
- 0,278%
yz
(8s)
6,224790 E4
6,179939 E4
- 0,721%
zz
(9,2s)
1,402150 E3
1,384319 E3
- 1,272%
yz
(9,2s)
1,000010 E3
9,671650 E4
- 3,284%
zz
(10s)
1,841500 E3
1,840552 E3
- 0,051%
yz
(10s)
1,347820 E3
1,322064 E3
- 1,911%

6.2 Remarks
Modeling B uses the key word factor
POLY_CFC_FO
with a constant evolution of
parameters.
The criterion of total convergence (
RESI_GLOB_RELA
) is higher of a factor 10 compared to
modeling A (saving of time of calculation but loss of a factor approximately 10 on the results of
stress); it is noted that the answers in deformation remain of an order of magnitude close to those
modeling A. Moreover, with an accuracy of 10
­ 2
on balance there is an error of 6% on
deformation
yz
.

6.3 Parameters
of execution
Version: 4.00.09
Machine: CRAY C90
System:
UNICOS 8.0
Overall dimension memory:
8 MW
Time CPU To use:
105 seconds
background image
Code_Aster
®
Version
5.0
Titrate:
SSNV125 Test tensile shearing - polycrystalline Model
Date:
24/03/98
Author (S):
S. TAHERI, C. VOGEL
Key
:
V6.04.125-A
Page:
8/8
Manual of Validation
V6.04 booklet: Nonlinear statics of the voluminal structures
HI-75/01/010/A
7
Summary of the results
The matrix of tangent behavior is the elastic matrix for the explicit resolution used, it is
necessary to consider increments of small times to have convergence, even if
method of integration comprises an adaptive pitch division of local time.