
gEDA gnetlist Users Guide

Ales Hvezda

This document is released under GFDL
(http://www.gnu.org/copyleft/fdl.html)

September 21st, 2003

1

http://www.gnu.org/copyleft/fdl.html

Contents

1 Introduction 3

2 Overview 3

3 Installation 4

4 Running gnetlist 5

5 Schematic / symbol requirements 5

5.1 Symbol requirements . 5

5.2 Schematic requirements . 6

5.3 Random notes . 6

6 Hierarchy Support 7

7 Specific backend info 7

8 Scheme backend API 7

8.1 Overview . 7

8.2 Entry Point . 7

8.3 Initialization of the Backend . 8

8.4 Net Name and Reference Designator Aliasing 10

8.5 Debugging Hints . 11

2

1 Introduction

This document describes how to use gnetlist. This document and gnetlist in
general are pretty ALPHA, so keep that in mind as you use it to generate netlists.
As all engineers know, it is very important that you do not blindly trust tools,
assuming that they will always create correct output. gnetlist is certainly no
exception to this rule. It is very important that you verify *every* netlists you
create. As with most programs (including all the programs in gEDA), gnetlist
comes with NO WARRANTY. Blah, I hate having to say that, but I’m hoping
that this warning will keep the user from assuming that gnetlist generates perfect
netlists. Though if you find a bug, please let ahvezda@geda.seul.org know.

This document is very rough, so please e-mail all corrections to ahvezda@geda.seul.org
or file a bug report on the gEDA homepage at http://www.geda.seul.org.
Thanks!

2 Overview

gnetlist is the gEDA netlister. It takes as input schematic files and produces
a netlist. A netlist is a textual representation of a schematic. This textual
representation has all of the connections between devices completely resolved.
This means that all the connections associated with a net are grouped together.
The netlister also handles hierarchies of schematics.

gnetlist has a very flexible architecture. The main program, which is written
in C, reads in a schematic (using routines from libgeda) and creates an inter-
nal representation of the schematic data. This internal representation is then
manipulated by a backend which is responsible for writing the various netlist
formats. The backend for each netlist format is written in scheme (specifically
Guile). This architecture not only allows for an infinite number of netlist for-
mats, but also allows the netlister to generate other reports (like bill of material
lists).

As of 20001006 gnetlist has scheme backends to support the following netlist
formats:

1. PCB & PCBboard - UNIX PCB netlist format.

2. Allegro netlist format

3. BAE netlist format

4. BOM & BOM2 - Bill of Material generators

5. DRC - Start of a design rule checker

6. gEDA - the native format of gEDA, mainly used for testing

7. Gossip netlist format

3

http://www.geda.seul.org

8. PADS netlist format

9. ProtelII netlist format

10. Spice compatible netlist format

11. Tango netlist format

12. Verilog code

13. VHDL code

14. VIPEC netlist format

15. VAMS - VHDL-AMS netlist format

This list is constantly growing. Several lacking features (as of 20001006) are: no
support for buses, error detection and reporting is fairly limited, and ... (many
more).

3 Installation

Hopefully by now you have already installed gnetlist on your machine. This
document does not cover installation. You can verify the installation by running:

libgeda-config --version

gesym-config --version

which gnetlist

ldd ‘which gnetlist‘

The first two should return the version of the installed tools (libgeda and the
symbol library) and the next command should return the path to the gnetlist
binary. The final command (only on Unix-like operating systems which include
the ldd utility for listing dynamic dependencies of executable files or shared
objects) will return which libraries are linked to gnetlist; all of the request
libraries must be found for gnetlist to run. If these commands do not return
the expected results, then most likely the gEDA tools are not installed properly.
Please see the appropriate INSTALL docs (which came with the distribution)
for more info on installing the gEDA tools.

4

4 Running gnetlist

It is very easy to run gnetlist. gnetlist is a pure command line interface so there
is no pesky GUI to get in the way :-) For a list of command line arguments
please run “gnetlist -h”.

You need to specify the following two parameters to run gnetlists:

• -g proc (this specifies which backend to run against the schematics)

• filename.sch (this specifies the schematic files)

You can specify multiple schematics on the command line. The default filename
for the generated netlist goes into ”output.net” You can change this default
location by using the -o filename option.

A few examples on running gnetlist:

gnetlist -g geda -o stack.net stack_1.sch

(output netlist (in stack.net) for stack 1.sch using the gEDA native format)

There are also a few debugging flags. The first one is the -v flag which enables
verbose mode. Verbose mode outputs a whole bunch of information on what
gnetlist is doing as well a dump of the internal representation. The -i flag
which puts gnetlist into a interactive mode is very useful in debugging scheme
backends and typically is not used by the end user.

For a detailed list of command line arguments please see the gnetlist man page.

5 Schematic / symbol requirements

This section describes what schematics/symbols need to have to be usable with
gnetlist. In order for gnetlist to work correctly, both the schematics and support-
ing symbols must be correct. Basically these requirements consist of attribute
specification. Attributes are used through out the gEDA system to represent
information. Attributes are the only way of adding information to components,
nets, pins, etc... For more detailed information about the attributes mentioned
in this document, please see the attributes.txt document (Master attribute
list).

5.1 Symbol requirements

• All symbols must have a device= attribute.

5

• All pins must have the pin#=# attribute. This attribute will eventually
change form, but for now it is required as pin#=#

• All pin should also have a pinlabel= attribute.

• For symbols which are slotted you also need the slot= attribute, for each
slot a slot#=# attribute, and the numslots=# attribute. Slotting will also
change in the near future, but for now it should be specified as above.

• For any power/gnd/arbitrary you need to put net= attributes inside the
symbol. See the netattrib.txt document for more info.

• You can supply default values for various parameters (this is dependent on
which backend you use) by taking advantage of the attribute ”promotion”
mechanism. See below for more info as well as the gschem documentation.

• For symbols which you want the netlister to completely ignore use the
graphical=1 attribute

• For more tips on symbols, please see the symbol creation document.

5.2 Schematic requirements

• Most importantly, every component you want to show up in a netlist must
have a refdes= attribute. This is *VERY* important. gnetlist should
warn you if you have a component which doesn’t have a refdes=, but
there have been bugs which do not cause this warning.

• You can label all nets using the label= attribute. You only need to attach
this label to one net segment (of an electrically connected net) for all the
net segments to inherit the label.

• You can have multiple schematics in a design (which is actually a confusing
term since it means many different things to people). To use multiple
schematics to create a single netlist, just specify them on the gnetlist
command line.

• If you name nets the same, then these nets will be electrically connected.
Same net names spawn all the specified schematics.

• There are quite a few issues that deal with hierarchy please see the hier-
archy section below.

5.3 Random notes

• Attributes which are not attached to anything and are inside a symbol are
”promoted” to the outside of the symbol when the symbol is placed inside
a schematic (in gschem). These promoted attributes are always looked

6

at/for first before going into the symbol. So, in other words, if there is
an attribute with the same name is inside a symbol and attached to the
outside of the instantiated component, then the outside attribute takes
precedence.

6 Hierarchy Support

TBA

7 Specific backend info

TBA

8 Scheme backend API

Please note that this section is still under construction. The information here
should be correct, but it is not complete.

8.1 Overview

gnetlist operates by loading the schematic database from the .sch files, building
an internal representation and then calling a function specific to the desired
output netlist type which performs the actual netlisting. Each gnetlist backend
is contained in a file called gnet-¡backend¿.scm. Where ¡backend¿ is the name of
the particular backend. For example, gnet-switcap.scm contains the code used
by “gnetlist -g switcap” and gnet-drc.scm contains the code used by “gnetlist
-g drc”. The backends are written in the Scheme programming language. The
particular implementation of scheme is guile which stands for GNU’s Ubiquitous
Intelligent Language for Extensions. More information about guile may be found
at http://www.gnu.org/software/guile/guile.html.

8.2 Entry Point

Each netlist backend is required to provide a function whose name matches the
netlist type. For example, the switcap backend contained in gnet-switcap.scm
must provide a function called “switcap”. That is the function which gnetlist
will call to initiate the netlisting. The entry point function is given a single
argument which is the filename for the output netlist. Typically the first thing
a netlister does is to open the output file for writing.

7

http://www.gnu.org/software/guile/guile.html

The following excerpt from the switcap backend shows the start of the entry
point function and shows the output file being opened. At the end of the
function, the output file is closed.

;; ---------------------------------------

;; Switcap netlist generation -- top level

;; ---------------------------------------

(define switcap

(lambda (output-filename)

(let ((port (open-output-file output-filename)))

;; rest of netlisting goes here

;; close the output file and return

(close-output-port port))))

8.3 Initialization of the Backend

After opening the output netlist, any specific initializations which must be done
for the particular netlist are done. In the switcap example, we must initialize
a net name and reference designator (refdes) aliasing database. This is because
switcap has more restrictive requirements on its net names than gschem does. In
addition, the reference designators in a switcap netlist have special requirements.
To deal with this situation, gnetlist provides some general purpose functions
which rename nets and reference designators to comply with the target netlist
requirements. More details on this later. For now, just note that the switcap
backend uses the following code:

;; initialize the net-name aliasing

(gnetlist:build-net-aliases switcap:map-net-names

all-unique-nets)

;; initialize the refdes aliasing

(gnetlist:build-refdes-aliases switcap:map-refdes

packages)

The other initialization which is typically done, although not required by all
netlist types, is to output some sort of header. This header may be explicitly
contained in the entry point function or it may be contained in its own function
for code clarity. In the switcap backend, the call is:

8

(switcap:write-top-header port)

Note that the convention is for any backend specific functions to have their
names prefixed by the backend name. For example all switcap specific func-
tions begin with “switcap:”. Functions which are available to all backends and
provided by gnetlist are prefixed by “gnetlist:”.

The definition of “switcap:write-top-header” is

;;

;; Switcap netlist header

;;

(define switcap:write-top-header

(lambda (port)

(display

"/* Switcap netlist produced by gnetlist (part of gEDA) */\n"

port)

(display

"/* See http://www.geda.seul.org for more information. */\n"

port)

(display

"/* Switcap backend written by Dan McMahill */\n"

port)

(display "\n\n" port)

)

)

The entry point function continues by calling functions for each section in the
output netlist. The variable “packages” is predefined by gnetlist to be a list
of all components in the design and “all-unique-nets” is a list of all the nets
in the design. The various functions used by the backend for each section in
the netlist will use these variables. For example, the main part of the switcap
netlist which contains the components and their connectivity is written to the
output file with

(switcap:write-netlist port packages)

9

8.4 Net Name and Reference Designator Aliasing

It is common for a target netlist type to have a more restrictive requirement
for the net names than gschem does. For example, there may be restrictions
on length, allowed characters, or case. To address this issue, gnetlist provides a
net name aliasing feature. To use this feature, the function “gnetlist:build-net-
aliases” is called as part of the initialization section of the entry point function.
For example in the switcap backend,

;; initialize the net-name aliasing

(gnetlist:build-net-aliases switcap:map-net-names

all-unique-nets)

The function “switcap:map-net-names” is a backend specific (switcap in this
case) function which accepts a gschem net name as an argument and returns a
modified net name which meets the requirements for the output netlist format.
In the case of switcap, the requirement is ground must be called “0”, nets may
have no more than 7 characters, and the netlist is not case sensitive.

;; This procedure takes a net name as determined by

;; gnetlist and modifies it to be a valid SWITCAP net name.

;;

(define switcap:map-net-names

(lambda (net-name)

(let ((rx (make-regexp "^unnamed_net"))

(net-alias net-name)

)

;; XXX we should use a dynamic regexp based on the

;; current value for the unnamed net base string.

(cond

;; Change "GND" to "0"

((string=? net-name "GND") (set! net-alias "0"))

;; remove the ’unnamed_net’ part

((regexp-exec rx net-name)

(set! net-alias (substring net-name 11)))

(else net-name)

)

;; Truncate to 7 characters

(if (> (string-length net-alias) 7)

(set! net-alias (substring net-alias 0 7))

)

10

;; Convert to all upper case

(string-upcase net-alias)

)

)

)

The function “gnetlist:build-net-aliases” creates a database which later on lets
you look up the output net name from the gschem net name or the gschem
net name from the output net name. In addition it does the very important
task of ensuring that no shorts are created by modifying the net names. As an
example suppose you had a net called “MyNet” and another called “mynet” in
the schematic. Those are unique but after converting both to upper case they
become a single net. “gnetlist:build-net-aliases” will detect this condition and
issue an error and stop netlisting.

Now that the database has been initialized, the netlister simply uses

(gnetlist:alias-net somenet)

to retrive the netlist net name from the gschem net name.

A similar set of functions are provided for reference designator aliasing.

8.5 Debugging Hints

A useful debugging tool is to run gnetlist in interactive mode. This is done by
using the “-i” option to gnetlist. This will give you a shell where you may enter
scheme commands. This provides a simple way to examine various variables
and try out various functions.

An example of running gnetlist in interactive mode is shown below.

% gnetlist -i ../../gnetlist/examples/switcap/*.sch

gEDA/gnetlist version 20041228

gEDA/gnetlist comes with ABSOLUTELY NO WARRANTY; see COPYING for more details.

This is free software, and you are welcome to redistribute it under certain

conditions; please see the COPYING file for more details.

Loading schematic [../../gnetlist/examples/switcap/analysis.sch]

Loading schematic [../../gnetlist/examples/switcap/ckt.sch]

Loading schematic [../../gnetlist/examples/switcap/clocks.sch]

gnetlist> all-unique-nets

11

("unnamed_net6" "unnamed_net5" "unnamed_net4" "OUT" "unnamed_net3"

"unnamed_net2" "unnamed_net1" "GND")

gnetlist> packages

("TIMING" "CLK1" "S7" "S8" "S6" "S5" "C3" "S4" "C2" "C1" "E1" "S3"

"S1" "V1" "S2" "OPTIONS" "TITLE" "ANA1")

gnetlist> (quit)

%

12

	Introduction
	Overview
	Installation
	Running gnetlist
	Schematic / symbol requirements
	Symbol requirements
	Schematic requirements
	Random notes

	Hierarchy Support
	Specific backend info
	Scheme backend API
	Overview
	Entry Point
	Initialization of the Backend
	Net Name and Reference Designator Aliasing
	Debugging Hints

