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Maxima is a computer algebra system, implemented in Lisp.

Maxima is derived from the Macsyma system, developed at MIT in the years 1968 through
1982 as part of Project MAC. MIT turned over a copy of the Macsyma source code to the
Department of Energy in 1982; that version is now known as DOE Macsyma. A copy of DOE
Macsyma was maintained by Professor William F. Schelter of the University of Texas from
1982 until his death in 2001. In 1998, Schelter obtained permission from the Department
of Energy to release the DOE Macsyma source code under the GNU Public License, and
in 2000 he initiated the Maxima project at SourceForge to maintain and develop DOE
Macsyma, now called Maxima.
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Chapter 1: Introduction to Maxima 1

1 Introduction to Maxima

Start Maxima with the command "maxima". Maxima will display version information
and a prompt. End each Maxima command with a semicolon. End the session with the
command "quit();". Here’s a sample session:

[wfs@chromium] $ maxima

Maxima 5.9.1 http://maxima.sourceforge.net

Using Lisp CMU Common Lisp 19a

Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.

This is a development version of Maxima. The function bug_report()
provides bug reporting information.

(%i1) factor(10!);

8 4 2

(%o1) 2 3 5 7
(%12) expand ((x + y)~6);

6 5 2 4 3 3 4 2 5 6

(Jo2) y +6xy +16x y +20x y +16x y +6x y+x
(%1i3) factor (x°6 - 1);

2 2

(%03) x-1) x+1) x -x+1) (x +x+1)
(hid) quitQ;
[wfs@chromium] $

Maxima can search the info pages. Use the describe command to show information
about the command or all the commands and variables containing a string. The question
mark ? (exact search) and double question mark 7?7 (inexact search) are abbreviations for

describe:

(%i1) 77 integ

0:
: Functions and Variables for Integration

O 00 ~NO O WN -

Functions and Variables for Elliptic Integrals

Introduction to Elliptic Functions and Integrals

Introduction to Integration

askinteger (Functions and Variables for Simplification)
integerp (Functions and Variables for Miscellaneous Options)
integer_partitions (Functions and Variables for Sets)

integrate (Functions and Variables for Integration)
integrate_use_rootsof (Functions and Variables for Integration)
integration_constant_counter (Functions and Variables for
Integration)

10: nonnegintegerp (Functions and Variables for linearalgebra)
Enter space-separated numbers, ‘all’ or ‘none’: 5 4

-- Function: integerp (<expr>)

Returns ‘true’ if <expr> is a literal numeric integer, otherwise
‘false’.

‘integerp’ returns false if its argument is a symbol, even if the
argument is declared integer.



-- Function:
-- Function:
-- Function:
—-- Function:

(%ho1)

Examples:

%i1)
(%o1)
(%i2)
(%02)
(%i3)
(%03)
(%i4)
(%o4)
(%i5)
(%05)
(%ié)
(%06)
%i7)
(%o7)
(%i8)
(%08)
(%i9)
(%09)

integerp
integerp
integerp
integerp
integerp
integerp

integerp

(0);
1;

Maxima Manual

true

true

(-17);

true

(0.0);

false

(1.0);

false

(%pi);

(n);

false

false

declare (n, integer);

integerp

askinteger
askinteger
askinteger
askinteger

(n);

done

false

(<expr>, integer)

(<expr>)

(<expr>, even)

(<expr>, odd)

‘askinteger (<expr>, integer)’ attempts to determine from the
‘assume’ database whether <expr> is an integer. ‘askinteger’
prompts the user if it cannot tell otherwise, and attempt to
install the information in the database if possible. ‘askinteger
(<expr>)’ is equivalent to ‘askinteger (<expr>, integer)’.

‘askinteger (<expr>, even)’ and ‘askinteger (<expr>, odd)’
likewise attempt to determine if <expr> is an even integer or odd
integer, respectively.

true

To use a result in later calculations, you can assign it to a variable or refer to it by its
automatically supplied label. In addition, 7 refers to the most recent calculated result:

(%i1)

(%ho1)
(hi2)

(%o2)
(%i3)

(%03)

u: expand ((x + y)~6);

6

5

2 4

y +6xy +16x vy
diff (u, x);

5

4

2

6y +30xy + 60x
factor (%02);

6

3 3 4 2 5 6
+20x y +16x y +6x y+x

3 3 2 4 5
y +60x y +30x y+6x

5
(y + %)
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Maxima knows about complex numbers and numerical constants:
(%i1) cos(%pi);

(%o1) -1
(%i2) exp(hi*%pi);
(%02) -1

Maxima can do differential and integral calculus:

(%i1) u: expand ((x + y)~6);
6 5 2 4 3 3 4 2 5 6
(Jol) y +6xy +16x y +20x y +16x y +6x y+x
(%i2) diff (%, x);
5 4 2 3 3 2 4 5
(02) 6y +30xy +60x y +60x y +30x y+6=x
(%13) integrate (1/(1 + x~3), x);

2x-1
2 atan(------- )
log(x - x + 1) sqrt (3) log(x + 1)
(%h03) - mmmmmm - + oo + -
6 sqrt (3) 3

Maxima can solve linear systems and cubic equations:
(%11) linsolve ([3*x + 4xy =7, 2xx + axy = 13], [x, y1);

7 a - 52 25

(%o1) [x = ———————- , § = —mm———- ]
3a-38 3a-38

(%1i2) solve (x°3 - 3*x"2 + b*x = 15, x);

(%02) [x = - sqrt(5) %i, x = sqrt(5) %i, x = 3]

Maxima can solve nonlinear sets of equations. Note that if you don’t want a result
printed, you can finish your command with $ instead of ;.
(%i1) eq_1: x"2 + 3*xxy + y~2 = 0%
(hi2) eq_2: 3*x + y = 1%
(%13) solve ([eq_1, eq_2]1);

3 sqrt(5) + 7 sqrt(5) + 3
(ho3) [ly = - ——==——=—————- B 1,
2 2
3 sqrt(s) - 7 sqrt(5) - 3
ly = -~ D S 1]
2 2

Maxima can generate plots of one or more functions:
(%1i1) eq_1: x"2 + 3*xxy + y"2 = 0%
(%12) eq_2: 3*x + y = 1%
(%13) solve ([eq_1, eq_2]1);

3 sqrt(5) + 7 sqrt(5) + 3
(hod) [y = - -~ y X = mmmm——————— 1,
2 2
3 sqrt(s) - 7 sqrt(5) - 3



(%id)
(%00)
(%i1)
(%o01)
(%i2)
(%02)
(%i3)

(%03)
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kill(labels);
done
plot2d (sin(x)/x, [x, -20, 20]);

plot2d ([atan(x), erf(x), tanh(x)], [x, -5, 5]);

plot3d (sin(sqrt(x”"2 + y~2))/sqrt(x"2 + y~2), [x, -12, 12],
[y, -12, 121);
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2 Bug Detection and Reporting

2.1 Functions and Variables for Bug Detection and

Reporting
run_testsuite () Function
run_testsuite (boolean) Function
run_testsuite (boolean, boolean) Function
run_testsuite (boolean, boolean, list) Function

Run the Maxima test suite. Tests producing the desired answer are considered
“passes,” as are tests that do not produce the desired answer, but are marked as
known bugs.

run_testsuite () displays only tests that do not pass.

run_testsuite (true) displays tests that are marked as known bugs, as well as
failures.

run_testsuite (true, true) displays all tests.

If the optional third argument is given, a subset of the tests is run. The subset of the
tests to run is given as a list of the names of the tests. The complete set of tests is
specified by testsuite_files.

run_testsuite changes the Maxima environment. Typically a test script executes
kill to establish a known environment (namely one without user-defined functions
and variables) and then defines functions and variables appropriate to the test.

run_testsuite returns done.

testsuite_files Option variable
testsuite_files is the set of tests to be run by run_testsuite. It is a list of names
of the files containing the tests to run. If some of the tests in a file are known to fail,
then instead of listing the name of the file, a list containing the file name and the test
numbers that fail is used.
For example, this is a part of the default set of tests:
["rtest13s", ["rtest14", 57, 63]]

This specifies the testsuite consists of the files "rtest13s" and "rtest14", but "rtest14"
contains two tests that are known to fail: 57 and 63.

bug_report () Function
Prints out Maxima and Lisp version numbers, and gives a link to the Maxima project
bug report web page. The version information is the same as reported by build_info.

When a bug is reported, it is helpful to copy the Maxima and Lisp version information
into the bug report.

bug_report returns an empty string "".

build_info () Function
Prints out a summary of the parameters of the Maxima build.

build_info returns an empty string "".
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3 Help

3.1 Lisp and Maxima

Maxima is written in Lisp, and it is easy to access Lisp functions and variables from Max-
ima and vice versa. Lisp and Maxima symbols are distinguished by a naming convention.
A Lisp symbol which begins with a dollar sign $ corresponds to a Maxima symbol without
the dollar sign. A Maxima symbol which begins with a question mark ? corresponds to a
Lisp symbol without the question mark. For example, the Maxima symbol foo corresponds
to the Lisp symbol $foo, while the Maxima symbol ?foo corresponds to the Lisp symbol
foo, Note that 7?foo is written without a space between 7 and foo; otherwise it might be
mistaken for describe ("foo").

Hyphen -, asterisk *, or other special characters in Lisp symbols must be escaped by
backslash \ where they appear in Maxima code. For example, the Lisp identifier *foo-bar*
is written ?\*foo\-bar\* in Maxima.

Lisp code may be executed from within a Maxima session. A single line of Lisp (con-
taining one or more forms) may be executed by the special command :1isp. For example,

(%i1) :lisp (foo $x $y)
calls the Lisp function foo with Maxima variables x and y as arguments. The :1lisp

construct can appear at the interactive prompt or in a file processed by batch or demo, but
not in a file processed by load, batchload, translate_file, or compile_file.

The function to_lisp() opens an interactive Lisp session. Entering (to-maxima) closes
the Lisp session and returns to Maxima.

Lisp functions and variables which are to be visible in Maxima as functions and variables
with ordinary names (no special punctuation) must have Lisp names beginning with the
dollar sign $.

Maxima is case-sensitive, distinguishing between lowercase and uppercase letters in iden-
tifiers, while Lisp is not. There are some rules governing the translation of names between
Lisp and Maxima.

1. A Lisp identifier not enclosed in vertical bars corresponds to a Maxima identifier in
lowercase. Whether the Lisp identifier is uppercase, lowercase, or mixed case, is ignored.
E.g., Lisp $foo, $F00, and $Foo all correspond to Maxima foo.

2. A Lisp identifier which is all uppercase or all lowercase and enclosed in vertical bars
corresponds to a Maxima identifier with case reversed. That is, uppercase is changed
to lowercase and lowercase to uppercase. E.g., Lisp |$F00| and |$fool correspond to
Maxima foo and F0O0, respectively.

3. A Lisp identifier which is mixed uppercase and lowercase and enclosed in vertical bars
corresponds to a Maxima identifier with the same case. E.g., Lisp |$Foo| corresponds
to Maxima Foo.

The #$ Lisp macro allows the use of Maxima expressions in Lisp code. #$expr$ expands
to a Lisp expression equivalent to the Maxima expression expr.
(msetq $foo #$[x, y1$)

This has the same effect as entering
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(%i1) foo: [x, yl;
The Lisp function displa prints an expression in Maxima format.
(%i1) :1lisp #$[x, y, z]$
((MLIST SIMP) $X $Y $Z)
(%i1) :1lisp (displa ’((MLIST SIMP) $X $Y $2))
[x, vy, z]
NIL
Functions defined in Maxima are not ordinary Lisp functions. The Lisp function
mfuncall calls a Maxima function. For example:
(%i1) foo(x,y) := x*y$
(%12) :lisp (mfuncall ’$foo ’a ’b)
((MTIMES SIMP) A B)
Some Lisp functions are shadowed in the Maxima package, namely the following.

complement, continue, //, float, functionp, array, exp, listen, signum, atan, asin,
acos, asinh, acosh, atanh, tanh, cosh, sinh, tan, break, and gcd.

3.2 Garbage Collection

Symbolic computation tends to create a good deal of garbage, and effective handling of
this can be crucial to successful completion of some programs.

Under GCL, on UNIX systems where the mprotect system call is available (including
SUN OS 4.0 and some variants of BSD) a stratified garbage collection is available. This
limits the collection to pages which have been recently written to. See the GCL documen-
tation under ALLOCATE and GBC. At the Lisp level doing (setq si::*notify-gbhc* t) will
help you determine which areas might need more space.

3.3 Documentation

The Maxima on-line user’s manual can be viewed in different forms. From the Maxima
interactive prompt, the user’s manual is viewed as plain text by the ? command (i.e., the
describe function). The user’s manual is viewed as info hypertext by the info viewer
program and as a web page by any ordinary web browser.
example displays examples for many Maxima functions. For example,
(%11) example (integrate);

yields
(%12) test(f):=block([u],u:integrate(f,x),ratsimp(f-diff(u,x)))
(%02) test(f) := block([ul, u : integrate(f, x),

ratsimp(f - diff(u, x)))
(%i3) test(sin(x))

(%03) 0
(%i4) test(1/(x+1))

(%04) 0
(%iB) test(1/(x"2+1))

(%05) 0

and additional output.
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3.4 Functions and Variables for Help

demo (filename) Function
Evaluates Maxima expressions in filename and displays the results. demo pauses after
evaluating each expression and continues after the user enters a carriage return. (If
running in Xmaxima, demo may need to see a semicolon ; followed by a carriage
return.)

demo searches the list of directories file_search_demo to find filename. If the file
has the suffix dem, the suffix may be omitted. See also file_search.

demo evaluates its argument. demo returns the name of the demonstration file.
Example:
(%i1) demo ("disol");

batching /home/wfs/maxima/share/simplification/disol.dem

At the _ prompt, type ’;’ followed by enter to get next demo
(hi2) load(disol)

(%i3) expl : a (e (g+ ) +b (d + c))

(%03) a(e(g+1f)+b(d+c))

E%i4) disolate(expl, a, b, e)

(ht4) d +c

(%t5) g+ f

(%05) a (4tb e + %t4 b)

(%i5) demo ("rncomb");

batching /home/wfs/maxima/share/simplification/rncomb.dem

At the _ prompt, type ’;’ followed by enter to get next demo
(%hi6) load (rncomb)
z X
(%hiT7) expl : --——- + —mmme
y+x 2 (y+x
z X
270 N e

(%618) combine (exp1)
z x
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(ho8  —m——= + ———_

(%19) rncombine (%)
2z + x

(o> mmmmee-
2 (y + %)

d c¢c b a
(%110) exp2 : — + - + - + -
3 3 2 2
d c b a
(%010) -+ -+ -+ -
3 3 2 2

(hil1) combine (exp2)
2d+2c+3(b+a
(hotl) e
6
2%112) rncombine (exp2)
2d+2c+3b+3a
(ho12) e
6
(%i13)
describe (string) Function
describe (string, exact) Function
describe (string, inexact) Function

describe(string) is equivalent to describe(string, exact).

describe (string, exact) finds an item with title equal (case-insensitive) to string, if
there is any such item.

describe(string, inexact) finds all documented items which contain string in their
titles. If there is more than one such item, Maxima asks the user to select an item or
items to display.

At the interactive prompt, ? foo (with a space between ? and foo) is equivalent to
describe("foo", exact), and 7?7 foo is equivalent to describe("foo", inexact).

describe("", inexact) yields a list of all topics documented in the on-line manual.

describe quotes its argument. describe returns true if some documentation is
found, otherwise false.

See also Section 3.3 [Documentation|, page 8.
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Example:

(%i1) 77 integ

0: Functions and Variables for Elliptic Integrals
Functions and Variables for Integration
Introduction to Elliptic Functions and Integrals
Introduction to Integration
askinteger (Functions and Variables for Simplification)
integerp (Functions and Variables for Miscellaneous Options)
integer_partitions (Functions and Variables for Sets)
integrate (Functions and Variables for Integration)
integrate_use_rootsof (Functions and Variables for
Integration)

9: integration_constant_counter (Functions and Variables for

Integration)

10: nonnegintegerp (Functions and Variables for linearalgebra)
Enter space-separated numbers, ‘all’ or ‘none’: 7 8

0 ~NO O WN -

-- Function: integrate (<expr>, <x>)

-- Function: integrate (<expr>, <x>, <a>, <b>)
Attempts to symbolically compute the integral of <expr> with
respect to <x>. ‘integrate (<expr>, <x>)’ is an indefinite
integral, while ‘integrate (<expr>, <x>, <a>, <b>)’ is a
definite integral, [...]

-- Option variable: integrate_use_rootsof
Default value: ‘false’

When ‘integrate_use_rootsof’ is ‘true’ and the denominator of
a rational function cannot be factored, ‘integrate’ returns
the integral in a form which is a sum over the roots (not yet
known) of the denominator.

[...]

In this example, items 7 and 8 were selected (output is shortened as indicated by
[...]. All or none of the items could have been selected by entering all or none,
which can be abbreviated a or n, respectively.

example (topic) Function

example () Function
example (topic) displays some examples of topic, which is a symbol (not a string).
Most topics are function names. example () returns the list of all recognized topics

The name of the file containing the examples is given by the global variable manual _
demo, which defaults to "manual .demo".

example quotes its argument. example returns done unless there is an error or there
is no argument, in which case example returns the list of all recognized topics.

Examples:

(%11) example (append);
(%12) append([x+y,0,-3.2],[2.5E+20,x])
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(%02) [y + x, 0, - 3.2, 2.5E+20, x]
(%02) done

(%13) example (coeff);

(%i4) coeff(b+tan(x)+2*a*tan(x) = 3+5*tan(x),tan(x))
(%hod) 2a+1=5

(%15) coeff (1+x*%e " x+y,x,0)

(%05) y o+ 1

(%05) done

Maxima Manual
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4 Command Line

4.1 Introduction to Command Line

Operator
The single quote operator ’> prevents evaluation.

Applied to a symbol, the single quote prevents evaluation of the symbol.

Applied to a function call, the single quote prevents evaluation of the function call, al-
though the arguments of the function are still evaluated (if evaluation is not otherwise
prevented). The result is the noun form of the function call.

Applied to a parenthesized expression, the single quote prevents evaluation of all
symbols and function calls in the expression. E.g., > (£(x)) means do not evaluate
the expression f (x). >f(x) (with the single quote applied to f instead of f (x)) means
return the noun form of £ applied to [x].

The single quote does not prevent simplification.

When the global flag noundisp is true, nouns display with a single quote. This switch
is always true when displaying function definitions.

See also the quote-quote operator ’’ and nouns.

Examples:

Applied to a symbol, the single quote prevents evaluation of the symbol.
(%i1) aa: 1024;

(%ho1) 1024
(%i2) aa~2;
(%ho2) 1048576
(%i3) ’aa"2;

2
(%03) aa
(%i4) *°%;
(%hod) 1048576

Applied to a function call, the single quote prevents evaluation of the function call.
The result is the noun form of the function call.

(%i1) x0: 5;

(%o01) 5
(hi2) x1: 7;
(%02) 7
(%13) integrate (x72, x, x0, x1);
218
(%03) -—=
3
(%1i4) ’integrate (x72, x, x0, x1);
7
/
[ 2

(%04) I x dx
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(%15) %, nouns;

(%05) ==

Applied to a parenthesized expression, the single quote prevents evaluation of all
symbols and function calls in the expression.

(%i1) aa: 1024;

(%o1) 1024
(%i2) bb: 19;

(%02) 19

(%i3) sqrt(aa) + bb;

(%03) 51

(%i4) ’(sqrt(aa) + bb);

(%ho4d) bb + sqrt(aa)
(%i8) > 7%;

(%05) 51

The single quote does not prevent simplification.
(%1i1) sin (17 * %pi) + cos (17 * %pi);

(%ho1) -1
(%i2) ’(sin (17 * %pi) + cos (17 * %pi));
(%ho2) -1
Operator
The quote-quote operator ’’ (two single quote marks) modifies evaluation in input
expressions.

Applied to a general expression expr, quote-quote causes the value of expr to be
substituted for expr in the input expression.

Applied to the operator of an expression, quote-quote changes the operator from a
noun to a verb (if it is not already a verb).

The quote-quote operator is applied by the input parser; it is not stored as part
of a parsed input expression. The quote-quote operator is always applied as soon
as it is parsed, and cannot be quoted. Thus quote-quote causes evaluation when
evaluation is otherwise suppressed, such as in function definitions, lambda expressions,
and expressions quoted by single quote .

Quote-quote is recognized by batch and load.
See also the single-quote operator > and nouns.
Examples:

Applied to a general expression expr, quote-quote causes the value of expr to be
substituted for expr in the input expression.
(%i1) expand ((a + b)"3);
3 2 2 3
(%ho1) b +3ab +3a b+a
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hi2) [, 7’15

3 3 2 2 3
(%ho2) [expand((b + a) ), b +3 ab +3a b+al
(%i3) [%hi1, >2%i1l;
3 3 2 2 3
(%03) [expand((b + a) ), b +3 ab +3a b+ al
(%i4) [aa : cc, bb : dd, cc : 17, dd : 29];
(%hod) [cc, dd, 17, 29]
(%i5) foo_1 (x) := aa - bb * x;
(%05) foo_1(x) := aa - bb x
(%i6) foo_1 (10);
(%06) cc - 10 dd
hi7) 2 %;
(%o7) - 273
(%i8) 7’ (foo_1 (10));
(%08) - 273
(%19) foo_2 (x) := ’’aa - ’’bb * x;
(%09) foo_2(x) := cc - dd x
(%i10) foo_2 (10);
(%o010) - 273
(%i11) [x0 : x1, x1 : x2, x2 : x3];
(%otl) [x1, x2, x3]
(%i12) x0;
(ho12) x1
(%113) ’°x0;
(%013) x2
(hi1d) > 2°x0;
(%o014) x3

Applied to the operator of an expression, quote-quote changes the operator from a
noun to a verb (if it is not already a verb).

(%i1) sin (1);

(%o1) sin(1)
(%i2) ’’sin (1);

(%ho2) 0.8414709848079
(%i3) declare (foo, noun);

(%03) done

(%i4) foo (x) := x - 1729;

(%04) »rfoo(x) := x - 1729
(%i5) foo (100);

(%05) f00(100)
(%i6) ’’foo (100);

(%06) - 1629

The quote-quote operator is applied by the input parser; it is not stored as part of a
parsed input expression.

(%i1) [aa : bb, cc : dd, bb : 1234, dd : 5678];
(hot) [bb, dd, 1234, 5678]
(%1i2) aa + cc;

(%02) dd + bb
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(%13) display (_, op (), args (_));
_=cc + aa

op(cc + aa) = +

args(cc + aa) = [cc, aal
(%03) done
(hi4) ’’(aa + cc);
(%04) 6912
(%1i5) display (_, op (_), args (_));

_ =dd + bb
op(dd + bb) = +

args(dd + bb) = [dd, bb]

(%05) done

Quote-quote causes evaluation when evaluation is otherwise suppressed, such as in
function definitions, lambda expressions, and expressions quoted by single quote ’.

(%1i1) foo_la (x) := ’’(integrate (log (x), x));
(%ho1) foo_la(x) := x log(x) - x
(%12) foo_1b (x) := integrate (log (x), x);

(%02) foo_1b(x) := integrate(log(x), x)
(%13) dispfun (foo_la, foo_1Db);

(%t3) foo_la(x) := x log(x) - x
(%td) foo_1b(x) := integrate(log(x), x)
(%o4) [%ht3, %t4]

(%14) integrate (log (x), x);

(Yhod) x log(x) - x

(%i5) foo_2a (x) := ’%;

(%05) foo_2a(x) := x log(x) - x
(%i6) foo_2b (x) := %;

(%06) foo_2b(x) := Y%

(%1i7) dispfun (foo_2a, foo_2b);

Cht7) foo_2a(x) := x log(x) - x
(%t8) foo_2b(x) := Y%

(%08) [%t7, %t8]

(%18) F : lambda ([u], diff (sin (u), uw));

(%08) lambda([u], diff(sin(u), u))
(%i9) G : lambda ([ul, ’’(diff (sin (u), w)));
(%09) lambda([u], cos(u))

(%i10) ’(sum (alkl, k, 1, 3) + sum (b[k], k, 1, 3));
(%010) sum(b , k, 1, 3) + sum(a , k, 1, 3)

k k
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(hi11) > C’(sum (alk], k, 1, 3)) + >’ (sum (b[k], k, 1, 3)));
(%o11) b +a +b +a +b +a
3 3 2 2 1 1

4.2 Functions and Variables for Command Line

alias (new_name_1, old_name_1, ..., new_name_n, old_name_n) Function
provides an alternate name for a (user or system) function, variable, array, etc. Any
even number of arguments may be used.

debugmode Option variable
Default value: false
When a Maxima error occurs, Maxima will start the debugger if debugmode is true.
The user may enter commands to examine the call stack, set breakpoints, step through
Maxima code, and so on. See debugging for a list of debugger commands.

Enabling debugmode will not catch Lisp errors.

ev (expr, arg_1, ..., arg-n) Function
Evaluates the expression expr in the environment specified by the arguments arg_1,
..., arg_n. The arguments are switches (Boolean flags), assignments, equations, and
functions. ev returns the result (another expression) of the evaluation.

The evaluation is carried out in steps, as follows.
1. First the environment is set up by scanning the arguments which may be any or
all of the following.

e simp causes expr to be simplified regardless of the setting of the switch simp
which inhibits simplification if false.

e noeval supresses the evaluation phase of ev (see step (4) below). This is
useful in conjunction with the other switches and in causing expr to be
resimplified without being reevaluated.

e nouns causes the evaluation of noun forms (typically unevaluated functions
such as ’integrate or ’diff) in expr.

e expand causes expansion.

e expand (m, n) causes expansion, setting the values of maxposex and
maxnegex to m and n respectively.

e detout causes any matrix inverses computed in expr to have their determi-
nant kept outside of the inverse rather than dividing through each element.

e diff causes all differentiations indicated in expr to be performed.

e derivlist (x, v, z, ...) causes only differentiations with respect to the
indicated variables.

e float causes non-integral rational numbers to be converted to floating point.

e numer causes some mathematical functions (including exponentiation) with
numerical arguments to be evaluated in floating point. It causes variables
in expr which have been given numervals to be replaced by their values. It
also sets the float switch on.
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e pred causes predicates (expressions which evaluate to true or false) to be
evaluated.

e eval causes an extra post-evaluation of expr to occur. (See step (5) below.)
eval may occur multiple times. For each instance of eval, the expression is
evaluated again.

e A where A is an atom declared to be an evaluation flag (see evflag) causes
A to be bound to true during the evaluation of expr.

e V: expression (or alternately V=expression) causes V to be bound to the
value of expression during the evaluation of expr. Note that if V is a
Maxima option, then expression is used for its value during the evaluation
of expr. If more than one argument to ev is of this type then the binding is
done in parallel. If V is a non-atomic expression then a substitution rather
than a binding is performed.

e F where F, a function name, has been declared to be an evaluation function
(see evfun) causes F to be applied to expr.

e Any other function names (e.g., sum) cause evaluation of occurrences of those
names in expr as though they were verbs.

e In addition a function occurring in expr (say F(x)) may be defined locally
for the purpose of this evaluation of expr by giving F(x) := expression as
an argument to ev.

e If an atom not mentioned above or a subscripted variable or subscripted
expression was given as an argument, it is evaluated and if the result is an
equation or assignment then the indicated binding or substitution is per-
formed. If the result is a list then the members of the list are treated as if
they were additional arguments given to ev. This permits a list of equations
to be given (e.g. [X=1, Y=A**2]) or a list of names of equations (e.g., [%t1,
%t2] where %t1 and %t2 are equations) such as that returned by solve.

The arguments of ev may be given in any order with the exception of substi-
tution equations which are handled in sequence, left to right, and evaluation
functions which are composed, e.g., ev (expr, ratsimp, realpart) is handled
as realpart (ratsimp (expr)).

The simp, numer, float, and pred switches may also be set locally in a block,
or globally in Maxima so that they will remain in effect until being reset.

If expr is a canonical rational expression (CRE), then the expression returned by
ev is also a CRE, provided the numer and float switches are not both true.

. During step (1), a list is made of the non-subscripted variables appearing on the

left side of equations in the arguments or in the value of some arguments if the
value is an equation. The variables (subscripted variables which do not have
associated array functions as well as non-subscripted variables) in the expression
expr are replaced by their global values, except for those appearing in this list.
Usually, expr is just a label or % (as in %i2 in the example below), so this step
simply retrieves the expression named by the label, so that ev may work on it.

3. If any substitutions are indicated by the arguments, they are carried out now.
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4. The resulting expression is then re-evaluated (unless one of the arguments was
noeval) and simplified according to the arguments. Note that any function
calls in expr will be carried out after the variables in it are evaluated and that
ev (F(x)) thus may behave like F(ev(x)).

5. For each instance of eval in the arguments, steps (3) and (4) are repeated.

Examples

(%11) sin(x) + cos(y) + (w+1)"2 + ’diff (sin(w), w);

d 2
(%o1) cos(y) + sin(x) + -—- (sin(w)) + (w + 1)

dw
(%i2) ev (%, sin, expand, diff, x=2, y=1);

2

(%ho2) cos(w) +w + 2w + cos(1) + 1.909297426825682

An alternate top level syntax has been provided for ev, whereby one may just type
in its arguments, without the ev(). That is, one may write simply

expr, arg-1, ..., arg.n
This is not permitted as part of another expression, e.g., in functions, blocks, etc.
Notice the parallel binding process in the following example.

(%13) programmode: false;

(%03) false
(%14) x+y, x: aty, y: 2;
(%ho4) y+a+?2

(%i5) 2%x - 3%y = 3%
(%i6) -3*x + 2xy = -4§
(%i7) solve ([%o5, %o061);

Solution

1
%t7) y=--

5

6
(%t8) X = -

5
(%08) CL%t7, %t8l]
(%18) %06, %08;
(%08) -4=-4

(%19) x + 1/x > gamma (1/2);

(%09) x +

> sqrt (%pi)

(%i10) %, numer, x=1/2;

(%o010) 2.5 > 1.772453850905516
(%i11) %, pred;

(%o11) true
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evilag Property
When a symbol x has the evflag property, the expressions ev(expr, x) and expr,
x (at the interactive prompt) are equivalent to ev(expr, x = true). That is, x is
bound to true while expr is evaluated.

The expression declare(x, evflag) gives the evflag property to the variable x.

The flags which have the evflag property by default are the following:
algebraic, cauchysum, demoivre, dotscrules, %emode, %enumer, exponentialize,
exptisolate, factorflag, float, halfangles, infeval, isolate_wrt_times,
keepfloat, letrat, listarith, logabs, logarc, logexpand, lognegint, lognumer,
mlpbranch, numer_pbranch, programmode, radexpand, ratalgdenom, ratfac,
ratmx, ratsimpexpons, simp, simpsum, sumexpand, and trigexpand.

Examples:
(%i1) sin (1/2);
1
(%hol) sin(-)
2
(%i2) sin (1/2), float;
(%ho2) 0.479425538604203
(%13) sin (1/2), float=true;
(%03) 0.479425538604203
(%i4) simp : false;
(%ho4) false
(%i5) 1 + 1;
(%05) 1+ 1
(%i6) 1 + 1, simp;
(%06) 2
(%i7) simp : true;
(%o7) true
(%i8) sum (1/k"2, k, 1, inf);
inf
\ 1
(%08) > -
/ 2
==== Kk
k=1
(%19) sum (1/k~2, k, 1, inf), simpsum;
2
%pi
(%09) -——=
6
(%110) declare (aa, evflag);
(%010) done
(%i11) if aa = true then YES else NO;
(%o011) NO

(%i12) if aa = true then YES else NO, aa;
(%ho12) YES
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evfun

21

Property

When a function F has the evfun property, the expressions ev(expr, F) and expr,
F (at the interactive prompt) are equivalent to F (ev(expr)).

If two or more evfun functions F, G, etc., are specified, the functions are applied in
the order that they are specified.

The expression declare(F, evfun) gives the evfun property to the function F.

The functions which have the evfun property by default are the following: bfloat,
factor, fullratsimp, logcontract, polarform, radcan, ratexpand, ratsimp,
rectform, rootscontract, trigexpand, and trigreduce.

Examples:

(%hi1)

(%ho1)
(%hi2)

(%o2)

(%i3)

(%03)

(%hi4)

(%04)

(%i5)

(%05)

(%16)

(%06)

ChiT)

(%o7)

(%i8)
(%08)
(%19)
(%09)

x"3 - 1;

x~3 - 1, factor;

x-1) x +x+ 1)
factor (x°3 - 1);
2
x-1) x +x+ 1)
cos(4 *x x) / sin(x)"4;

cos(4 x)
4
sin (x)
cos(4 * x) / sin(x)"4, trigexpand;
4 2 2 4

sin (x) - 6 cos (x) sin (x) + cos (x)

sin (x)
cos(4 * x) / sin(x)"4, trigexpand, ratexpand;
2 4
6 cos (x) cos (x)

sin (x) sin (x)
ratexpand (trigexpand (cos(4 * x) / sin(x)~4));
2 4
6 cos (x) cos (x)

sin (x) sin (x)
declare ([F, G], evfun);
done
(aa : bb, bb : cc, cc : dd);
dd

(%110) aa;

(%010)

bb



22 Maxima Manual
(hi1l) aa, F;
(%o11) F(cc)
(%i12) F (aa);
(%012) F(bb)
(%1i13) F (ev (aa));
(h013) F(cc)
(%i14) aa, F, G;
(%hol4) G(F(cc))
(%115) G (F (ev (aa)));
(%015) G(F(cc))
infeval Option variable
Enables "infinite evaluation" mode. ev repeatedly evaluates an expression until it
stops changing. To prevent a variable, say X, from being evaluated away in this
mode, simply include X="X as an argument to ev. Of course expressions such as ev
(X, X=X+1, infeval) will generate an infinite loop.
kill (a- a_n) Function
kill (Iabels) Function
kill (inlabels, outlabels, linelabels) Function
kill (n) Function
kill ([m, n]) Function
kill (values, functions, arrays, ...) Function
kill (all) Function
kill (allbut (a_1, ..., a_n)) Function
Removes all bindings (value, function, array, or rule) from the arguments a_1, ..., a_n.

An argument a_k may be a symbol or a single array element. When a_k is a single
array element, kill unbinds that element without affecting any other elements of the
array.

Several special arguments are recognized. Different kinds of arguments may be com-
bined, e.g., kill (inlabels, functions, allbut (foo, bar)).

kill (labels) unbinds all input, output, and intermediate expression labels created
so far. kill (inlabels) unbinds only input labels which begin with the current value
of inchar. Likewise, kill (outlabels) unbinds only output labels which begin with
the current value of outchar, and kill (linelabels) unbinds only intermediate
expression labels which begin with the current value of linechar.

kill (n), where n is an integer, unbinds the n most recent input and output labels.
kill ([m, n]) unbinds input and output labels m through n.

kill (infolist), where infolist is any item in infolists (such as values, functions,
or arrays) unbinds all items in infolist. See also infolists.

kill (all) unbinds all items on all infolists. ki1l (all) does not reset global vari-
ables to their default values; see reset on this point.

kill (allbut (a_l, ..., a_n)) unbinds all items on all infolists except for a_1, ...,
a_n. kill (allbut (infolist)) unbinds all items except for the ones on infolist, where
infolist is values, functions, arrays, etc.
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The memory taken up by a bound property is not released until all symbols are
unbound from it. In particular, to release the memory taken up by the value of
a symbol, one unbinds the output label which shows the bound value, as well as
unbinding the symbol itself.

kill quotes its arguments. The quote-quote operator ’>°’ defeats quotation.

kill (symbol) unbinds all properties of symbol. In contrast, remvalue,
remfunction, remarray, and remrule unbind a specific property.

kill always returns done, even if an argument has no binding.

labels (symbol) Function

labels System variable
Returns the list of input, output, or intermediate expression labels which begin with
symbol. Typically symbol is the value of inchar, outchar, or linechar. The label
character may be given with or without a percent sign, so, for example, i and %i
yield the same result.

If no labels begin with symbol, 1labels returns an empty list.

The function labels quotes its argument. The quote-quote operator ’>°’ defeats quo-
tation. For example, labels (’’inchar) returns the input labels which begin with
the current input label character.

The variable labels is the list of input, output, and intermediate expression labels,
including all previous labels if inchar, outchar, or linechar were redefined.

By default, Maxima displays the result of each user input expression, giving the result
an output label. The output display is suppressed by terminating the input with $
(dollar sign) instead of ; (semicolon). An output label is constructed and bound to
the result, but not displayed, and the label may be referenced in the same way as
displayed output labels. See also %, %%, and %th.

Intermediate expression labels can be generated by some functions. The flag
programmode controls whether solve and some other functions generate intermediate
expression labels instead of returning a list of expressions. Some other functions,
such as 1display, always generate intermediate expression labels.

See also inchar, outchar, linechar, and infolists.

linenum System variable
The line number of the current pair of input and output expressions.

myoptions System variable
Default value: []

myoptions is the list of all options ever reset by the user, whether or not they get
reset to their default value.

nolabels Option variable
Default value: false

When nolabels is true, input and output result labels (%1 and %o, respectively) are
displayed, but the labels are not bound to results, and the labels are not appended to
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the labels list. Since labels are not bound to results, garbage collection can recover
the memory taken up by the results.

Otherwise input and output result labels are bound to results, and the labels are
appended to the labels list.

Intermediate expression labels (%t) are not affected by nolabels; whether nolabels
is true or false, intermediate expression labels are bound and appended to the
labels list.

See also batch, load, and labels.

optionset Option variable
Default value: false
When optionset is true, Maxima prints out a message whenever a Maxima option
is reset. This is useful if the user is doubtful of the spelling of some option and wants
to make sure that the variable he assigned a value to was truly an option variable.

playback () Function

playback (n) Function
playback ([m, n]) Function
playback ([m]) Function
playback (input) Function
playback (slow) Function
playback (time) Function
playback (grind) Function

Displays input, output, and intermediate expressions, without recomputing them.
playback only displays the expressions bound to labels; any other output (such as
text printed by print or describe, or error messages) is not displayed. See also
labels.

playback quotes its arguments. The quote-quote operator ’’ defeats quotation.
playback always returns done.

playback () (with no arguments) displays all input, output, and intermediate expres-
sions generated so far. An output expression is displayed even if it was suppressed by
the $ terminator when it was originally computed.

playback (n) displays the most recent n expressions. Fach input, output, and inter-
mediate expression counts as one.

playback ([m, n]) displays input, output, and intermediate expressions with num-
bers from m through n, inclusive.

playback ([m]) is equivalent to playback ([m, m]); this usually prints one pair
of input and output expressions.

playback (input) displays all input expressions generated so far.

playback (slow) pauses between expressions and waits for the user to press enter.
This behavior is similar to demo. playback (slow) is useful in conjunction with
save or stringout when creating a secondary-storage file in order to pick out useful
expressions.

playback (time) displays the computation time for each expression.
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playback (grind) displays input expressions in the same format as the grind func-
tion. Output expressions are not affected by the grind option. See grind.

Arguments may be combined, e.g., playback ([5, 10], grind, time, slow).

printprops (a, i) Function
printprops ([a_1, ..., a_n], i) Function
printprops (all, i) Function

Displays the property with the indicator i associated with the atom a. a may also
be a list of atoms or the atom all in which case all of the atoms with the given
property will be used. For example, printprops ([f, g], atvalue). printprops
is for properties that cannot otherwise be displayed, i.e. for atvalue, atomgrad,
gradef, and matchdeclare.

prompt Option variable
Default value: _

prompt is the prompt symbol of the demo function, playback (slow) mode, and the
Maxima break loop (as invoked by break).

quit () Function
Terminates the Maxima session. Note that the function must be invoked as quit () ;
or quit()$, not quit by itself.
To stop a lengthy computation, type control-C. The default action is to return to the
Maxima prompt. If *debugger-hook* is nil, control-C opens the Lisp debugger.
See also debugging.

remfunction (£1, ..., fn) Function
remfunction (all) Function
Unbinds the function definitions of the symbols f_1, ..., fn. The arguments may be the
names of ordinary functions (created by := or define) or macro functions (created
by ::=).
remfunction (all) unbinds all function definitions.
remfunction quotes its arguments.

remfunction returns a list of the symbols for which the function definition was un-
bound. false is returned in place of any symbol for which there is no function
definition.

remfunction does not apply to array functions or subscripted functions. remarray
applies to those types of functions.

reset () Function
Resets many global variables and options, and some other variables, to their default
values.

reset processes the variables on the Lisp list *variable-initial-values*. The
Lisp macro defmvar puts variables on this list (among other actions). Many, but not
all, global variables and options are defined by defmvar, and some variables defined
by defmvar are not global variables or options.
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showtime Option variable
Default value: false

When showtime is true, the computation time and elapsed time is printed with each
output expression.

The computation time is always recorded, so time and playback can display the
computation time even when showtime is false.

See also timer.

sstatus (feature, package) Function
Sets the status of feature in package. After sstatus (feature, package) is executed,
status (feature, package) returns true. This can be useful for package writers, to
keep track of what features they have loaded in.

to_lisp () Function
Enters the Lisp system under Maxima. (to-maxima) returns to Maxima.

values System variable
Initial value: []

values is a list of all bound user variables (not Maxima options or switches). The
list comprises symbols bound by : , ::, or :=.
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5 Operators

5.1 nary

An nary operator is used to denote a function of any number of arguments, each of
which is separated by an occurrence of the operator, e.g. A+B or A+B+C. The nary("x")
function is a syntax extension function to declare x to be an nary operator. Functions may
be declared to be nary. If declare(j,nary); is done, this tells the simplifier to simplify,
e.g. j(j(a,b),j(c,d)) to j(a, b, c, ).

See also Syntax.

5.2 nofix

nofix operators are used to denote functions of no arguments. The mere presence of
such an operator in a command will cause the corresponding function to be evaluated. For
example, when one types "exit;" to exit from a Maxima break, "exit" is behaving similar to
a nofix operator. The function nofix("x") is a syntax extension function which declares
x to be a nofix operator.

See also Syntax.

5.3 postfix

postfix operators like the prefix variety denote functions of a single argument, but
in this case the argument immediately precedes an occurrence of the operator in the input
string, e.g. 3! . The postfix("x") function is a syntax extension function to declare x to
be a postfix operator.

See also Syntax.

5.4 prefix

A prefix operator is one which signifies a function of one argument, which argument
immediately follows an occurrence of the operator. prefix("x") is a syntax extension
function to declare x to be a prefix operator.

See also Syntax.

5.5 Arithmetic operators

+ Operator
- Operator
* Operator
/ Operator
- Operator

The symbols + * / and ~ represent addition, multiplication, division, and exponen-
tiation, respectively. The names of these operators are "+" "x" "/" and """ which
may appear where the name of a function or operator is required.
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The symbols + and - represent unary addition and negation, respectively, and the
names of these operators are "+" and "-", respectively.

Subtraction a - b is represented within Maxima as addition, a + (- b). Expressions
such as a + (- b) are displayed as subtraction. Maxima recognizes "-" only as the
name of the unary negation operator, and not as the name of the binary subtraction
operator.

Division a / b is represented within Maxima as multiplication, a * b~ (- 1). Expres-
sions such as a * b~ (- 1) are displayed as division. Maxima recognizes "/" as the
name of the division operator.

Addition and multiplication are n-ary, commutative operators. Division and expo-
nentiation are binary, noncommutative operators.

Maxima sorts the operands of commutative operators to construct a canonical rep-
resentation. For internal storage, the ordering is determined by orderlessp. For
display, the ordering for addition is determined by ordergreatp, and for multiplica-
tion, it is the same as the internal ordering.

Arithmetic computations are carried out on literal numbers (integers, rationals, or-
dinary floats, and bigfloats). Except for exponentiation, all arithmetic operations on
numbers are simplified to numbers. Exponentiation is simplified to a number if either
operand is an ordinary float or bigfloat or if the result is an exact integer or rational;
otherwise an exponentiation may be simplified to sqrt or another exponentiation or
left unchanged.

Floating-point contagion applies to arithmetic computations: if any operand is a
bigfloat, the result is a bigfloat; otherwise, if any operand is an ordinary float, the
result is an ordinary float; otherwise, the operands are rationals or integers and the
result is a rational or integer.

Arithmetic computations are a simplification, not an evaluation. Thus arithmetic is
carried out in quoted (but simplified) expressions.

Arithmetic operations are applied element-by-element to lists when the global flag
listarith is true, and always applied element-by-element to matrices. When one
operand is a list or matrix and another is an operand of some other type, the other
operand is combined with each of the elements of the list or matrix.

Examples:

Addition and multiplication are n-ary, commutative operators. Maxima sorts the
operands to construct a canonical representation. The names of these operators are
ll+" and ll*".

(Jil) c+ g+d+a+b+ e+ f;

(%01) g+f+e+d+c+b+a
(%i2) [op (K), args (W1;

(%02) [+, [g, £, e, d, c, b, al]
(5hi3) c *x gx d x a x b x e x f;

(%03) abcdefg

(%14) [op (%), args (%)];

(%o4) [*, [a, b, ¢, 4, e, £, g]]

(%1i5) apply ("+", [a, 8, x, 2, 9, x, x, al);
(%05) 3x+2a+ 19
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(%16) apply ("*", [a, 8, x, 2, 9, x, x, al);
2 3
(%06) 144 a x

Division and exponentiation are binary, noncommutative operators. The names of
these Operators are n/u and e

(%i1) [a / b, a ~ bl;

a b
(%o1) [-, a]
b
(%12) [map (op, %), map (args, %)]1;
(%02) [/, -1, [la, vl, [a, bl1]
(%13) [apply ("/", [a, b]), apply (""", [a, bI)];
a b
(%03) [-, a]
b

Subtraction and division are represented internally in terms of addition and multipli-
cation, respectively.

(%i1) [inpart (a - b, 0), inpart (a - b, 1), inpart (a - b, 2)];

(%01) [+’ a, — b]

(%1i2) [inpart (a / b, 0), inpart (a / b, 1), inpart (a / b, 2)];
1

(%ho2) [*, a, -]
b

Computations are carried out on literal numbers. Floating-point contagion applies.
(%i1) 17 + b - (1/2)%29 + 117(2/4);

5
(hol) b + sqrt(11) + -

2
(%i2) [17 + 29, 17 + 29.0, 17 + 29b0];
(%02) [46, 46.0, 4.6bil]

Arithmetic computations are a simplification, not an evaluation.
(%i1) simp : false;
(%ho1) false
(%12) > (17 + 29%11/7 - 573);

(ho2) 17 + ————— -5
(%i3) simp : true;

(%03) true
(%id) (17 + 29%11/7 - 5°3);

437
(%hod) - ==
7
Arithmetic is carried out element-by-element for lists (depending on listarith) and
matrices.

(%i1) matrix ([a, x], [h, ul) - matrix ([1, 2], [3, 4]1);
[a-1 x-21



30

k%

Maxima Manual

(%o1) L ]
[h-3 u-41]
(%i2) 5 * matrix ([a, x], [h, ul);
[65a 5x]
(%02) [ ]
[5h 5ul
(%i3) listarith : false;
(%03) false
(%i4) [a, ¢, m, t] / [1, 7, 2, 9];
[a, ¢, m, t]
(%o  mmmmm—
[1, 7, 2, 9]
(%i5) [a, c, m, t] ~ x;
(%05) [a, ¢, m, t]
(%i6) listarith : true;
(%06) true
(%i7) [a, ¢, m, t] / [1, 7, 2, 9];
c m t
(%0T) [a, -, -, -]
7T 2 9
(%i8) [a, c, m, t] ~ x;
X X X
(%08) [2a,c,m, t]

Exponentiation operator. Maxima recognizes ** as the same operator as
in 1-dimensional output, or by placing the exponent as a

and it is displayed as
superscript in 2-dimensional output.

Operator
in input,

~

The fortran function displays the exponentiation operator as **, whether it was

input as ** or ~

Examples:
(%i1)
(%o1)
(%12)

is (a*x*b = a"b);
X**xy + X"Z;

(%h02)
(%i3)
(%03)
(hi4d)

X**z+x**y

(%ho4)

5.6 Relational operators

string (x**y + x°z);

fortran (x**xy + x7z);

X z+x"y

done
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Operator

Operator

Operator

Operator
The symbols < <= >= and > represent less than, less than or equal, greater than or
equal, and greater than, respectively. The names of these operators are "<" "<=" ">="
and ">", which may appear where the name of a function or operator is required.

These relational operators are all binary operators; constructs such as a < b < c are
not recognized by Maxima.

Relational expressions are evaluated to Boolean values by the functions is and maybe,
and the programming constructs if, while, and unless. Relational expressions are
not otherwise evaluated or simplified to Boolean values, although the arguments of
relational expressions are evaluated (when evaluation is not otherwise prevented by
quotation).

When a relational expression cannot be evaluated to true or false, the behavior
of is and if are governed by the global flag prederror. When prederror is true,
is and if trigger an error. When prederror is false, is returns unknown, and if
returns a partially-evaluated conditional expression.

maybe always behaves as if prederror were false, and while and unless always
behave as if prederror were true.

Relational operators do not distribute over lists or other aggregates.
See also = # equal and notequal.
Examples:

Relational expressions are evaluated to Boolean values by some functions and pro-
gramming constructs.

(%i1) [x, y, z] : [123, 456, 789];

(%hol) [123, 456, 789]

(%12) is (x < y);

(%02) true

(%13) maybe (y > z);

(%03) false

(%i4) if x >= z then 1 else 0;

(%04) 0

(%i5) block ([S], S : 0, for i:1 while i <= 100 do S : S + i, return (S));l
(%05) 5050

Relational expressions are not otherwise evaluated or simplified to Boolean values,
although the arguments of relational expressions are evaluated.

(%hol) [123, 456, 789]

(%i2) [x <y, y<=2z, z> vy, y > z];

(%o2) [123 < 456, 456 <= 789, 789 >= 456, 456 > 789]
(%i3) map (is, %);

(%03) [true, true, true, false]
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5.7 General operators

Operator
Noncommutative exponentiation operator. is the exponentiation operator corre-
sponding to noncommutative multiplication ., just as the ordinary exponentiation
operator ~ corresponds to commutative multiplication *.

~a

Noncommutative exponentiation is displayed by ~~ in 1-dimensional output, and by
placing the exponent as a superscript within angle brackets < > in 2-dimensional
output.

Examples:

(#i1) a . a . b .b.b+a*xax*xax*xbx*x b;
3 2 <2> <3>

(o) a b +a . b
(%1i2) string (a . a . b . b .b+a*xax*a*xbxb);
(%02) a”3%b"2+a”"2 . b~"3
! Operator

The factorial operator. For any complex number x (including integer, rational, and
real numbers) except for negative integers, x! is defined as gamma (x+1).

For an integer x, x! simplifies to the product of the integers from 1 to x inclusive.
0! simplifies to 1. For a floating point number x, x! simplifies to the value of gamma
(x+1). For x equal to n/2 where n is an odd integer, x! simplifies to a rational factor
times sqrt (%pi) (since gamma (1/2) is equal to sqrt (%pi)). If x is anything else,
x! is not simplified.

The variables factlim, minfactorial, and factcomb control the simplification of
expressions containing factorials.

The functions gamma, bffac, and cbffac are varieties of the gamma function.
makegamma substitutes gamma for factorials and related functions.

See also binomial.

The factorial of an integer, half-integer, or floating point argument is simplified unless
the operand is greater than factlim.

(%i1) factlim : 10;
(%o1) 10
(%i2) [0!, (7/2)!, 4.77!, 8!, 20!1;
105 sqrt (%pi)
(%02) (1, ————————————- , 81.44668037931199, 40320, 20!']
16

The factorial of a complex number, known constant, or general expression is not
simplified. Even so it may be possible simplify the factorial after evaluating the

operand.
(i) [ + 1)1, Ypi!, %he!, (cos(1l) + sin(1))!'];
(%ho1) LA + )Y, Y%pit, %e!, (sin(1) + cos(1))!]

(%i2) ev (%, numer, %enumer);
(%02) [(%i + 1), 7.188082728976037, 4.260820476357,
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"

The factorial of an unbound symbol is not simplified.

(hi1)
(%hol)
(hi2)
(%o2)

kill (foo);

fool;

done

foo!

33

1.227580202486819]

Factorials are simplified, not evaluated. Thus x! may be replaced even in a quoted

expression.

(%i1)
(%o1)

(Lo, (r/2), 4.77', 8', 20!'1);
105 sqrt (%pi)
[1, —mmmmmmmmmmmm

The double factorial operator.

, 81.44668037931199, 40320,

2432902008176640000]

Operator

For an integer, float, or rational number n, n!! evaluates to the product n (n-2) (n-
4) (n-6) ... (n -2 (k-1)) where k is equal to entier (n/2), that is, the largest
integer less than or equal to n/2. Note that this definition does not coincide with
other published definitions for arguments which are not integers.

For an even (or odd) integer n, n!! evaluates to the product of all the consecutive

even (or odd) integers from 2 (or 1) through n inclusive.

For an argument n which is not an integer, float, or rational, n!! yields a noun form

genfact (n,

n/2, 2).

Represents the negation of syntactic equality =.

Operator

Note that because of the rules for evaluation of predicate expressions (in particular
because not expr causes evaluation of expr), not a = b is equivalent to is(a # b),
instead of a # b.

Examples:
(i)
(%o1)
(%hi2)
(%ho2)
(%13)
(%03)
(%14)
(%04)
(%15)
(%05)
(%16)
(%06)

a = b;
is (a = b);
a # b;
not a = b;
is (a # b);

is (not a =

b);

false

a#b

true

true

true
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Operator
The dot operator, for matrix (non-commutative) multiplication. When "." is used
in this way, spaces should be left on both sides of it, e.g. A . B. This distinguishes it
plainly from a decimal point in a floating point number.

See also dot, dotOnscsimp, dotOsimp, dotlsimp, dotassoc, dotconstrules,
dotdistrib, dotexptsimp, dotident, and dotscrules.

Operator
Assignment operator.

When the left-hand side is a simple variable (not subscripted), : evaluates its right-
hand side and associates that value with the left-hand side.

When the left-hand side is a subscripted element of a list, matrix, declared Maxima
array, or Lisp array, the right-hand side is assigned to that element. The subscript
must name an existing element; such objects cannot be extended by naming nonex-
istent elements.

When the left-hand side is a subscripted element of an undeclared Maxima array, the
right-hand side is assigned to that element, if it already exists, or a new element is
allocated, if it does not already exist.

When the left-hand side is a list of simple and /or subscripted variables, the right-hand
side must evaluate to a list, and the elements of the right-hand side are assigned to
the elements of the left-hand side, in parallel.

See also kill and remvalue, which undo the association between the left-hand side
and its value.

Examples:

Assignment to a simple variable.

(%1i1) a;

(%o1) a
(%i2) a : 123;

(%02) 123
(%i3) a;

(%03) 123

Assignment to an element of a list.
ki) b : [1, 2, 3];

(%ho1) [1, 2, 3]
(%i2) b[3] : 456;

(%ho2) 456
(%i3) b;

(%03) [1, 2, 456]

Assignment creates an undeclared array.
(%i1) c[99] : 789;

(%hot) 789
(%i2) c[99]1;

(%ho2) 789
(%13) «c;

(%03) c
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(%i4) arrayinfo (c);

(%o4) [hashed, 1, [99]]
(%15) listarray (c);
(%05) [789]

Multiple assignment.
(hi1) [a, b, cl : [45, 67, 89];

(%ho1) [45, 67, 89]
(%i2) a;

(%02) 45
(%i3) b;

(%03) 67
(%id) c;

(%hod) 89

Multiple assignment is carried out in parallel. The values of a and b are exchanged
in this example.

(%i1) [a, bl : [33, 55];

(%hot) [33, 55]
(%12) [a, bl : [b, al;

(%ho2) [65, 33]
(%13) a;

(%03) 55
(%i4) b;

(%04) 33

Operator
Assignment operator.

:: is the same as : (which see) except that :: evaluates its left-hand side as well as
its right-hand side.

Examples:

(%i1) x : ’foo;

(%o1) foo
(%i2) x :: 123;

(%ho2) 123
(%13) foo;

(%03) 123
(%id) x : ’[a, b, cl;

(%hod) [a, b, c]
(%i5) x :: [11, 22, 33];

(%05) [11, 22, 33]
(%i6) a;

(%06) 11
(%i7) b;

(%oT) 22
(%i8) c;

(%08) 33
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Operator

Macro function definition operator. ::= defines a function (called a "macro" for
historical reasons) which quotes its arguments, and the expression which it returns
(called the "macro expansion") is evaluated in the context from which the macro was
called. A macro function is otherwise the same as an ordinary function.

macroexpand returns a macro expansion (without evaluating it). macroexpand (foo
(x)) followed by ’’% is equivalent to foo (x) when foo is a macro function.
::= puts the name of the new macro function onto the global list macros. kill,

remove, and remfunction unbind macro function definitions and remove names from
macros.

fundef or dispfun return a macro function definition or assign it to a label, respec-
tively.

Macro functions commonly contain buildq and splice expressions to construct an
expression, which is then evaluated.

Examples

A macro function quotes its arguments, so message (1) shows y - z, not the value of
y = z. The macro expansion (the quoted expression ’ (print ("(2) x is equal to",
x)) is evaluated in the context from which the macro was called, printing message
(2).

(%i1) x: %pi;

(%o01) %pi
(%i2) y: 1234;

(%ho2) 1234
(%i3) z: 1729 * w;

(%03) 1729 w

(%14) printql (x) block (print ("(1) x is equal to", x),
>(print ("(2) x is equal to", x)));
(%04) printql(x) ::= block(print("(1) x is equal to", x),
>(print (" (2) x is equal to", x)))

(%15) printql (y - 2);

(1) x is equal toy - z

(2) x is equal to Ypi

(%05) %pi
An ordinary function evaluates is arguments, so message (1) shows the value of y -
z. The return value is not evaluated, so message (2) is not printed until the explicit
evaluation ’’9%.

(%i1) x: %pi;

(%ho1) %pi

(%i2) y: 1234;

(%02) 1234

(%i3) z: 1729 * w;

(%03) 1729 w

(%i4) printel (x) := block (print ("(1) x is equal to", x),
>(print ("(2) x is equal to", x)));
(%04) printel(x) := block(print("(1) x is equal to", x),
>(print("(2) x is equal to", x)))
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(%i5) printel (y - z);

(1) x is equal to 1234 - 1729 w

(%05) print((2) x is equal to, x)

Chi6) *’%;

(2) x is equal to %pi

(%06) %pi
macroexpand returns a macro expansion. macroexpand (foo (x)) followed by *’% is
equivalent to foo (x) when foo is a macro function.

(%1i1) x: %pi;

(%hol) %hpi

(hi2) y: 1234;

(%ho2) 1234

(%i3) z: 1729 * w;

(%03) 1729 w

(%14) g (x) ::= buildq ([x], print ("x is equal to", x));
(%hod) g(x) ::= buildq([x], print("x is equal to", x))
(%15) macroexpand (g (y - z));

(%05) print(x is equal to, y - z)

(%i6) *’%;

x is equal to 1234 - 1729 w

(%06) 1234 - 1729 w
hi7) g (y - 2);

x is equal to 1234 - 1729 w

(%oT) 1234 - 1729 w
= Operator
The function definition operator. f(x_1, ..., x.n) := expr defines a function named
f with arguments x_1, ..., x_n and function body expr. := never evaluates the function

body (unless explicitly evaluated by quote-quote > ?). The function so defined may be
an ordinary Maxima function (with arguments enclosed in parentheses) or an array
function (with arguments enclosed in square brackets).

When the last or only function argument x_n is a list of one element, the function
defined by := accepts a variable number of arguments. Actual arguments are assigned
one-to-one to formal arguments x_1, ..., x_(n - 1), and any further actual arguments,
if present, are assigned to x_n as a list.

All function definitions appear in the same namespace; defining a function £ within
another function g does not limit the scope of £ to g.

If some formal argument x_k is a quoted symbol, the function defined by := does
not evaluate the corresponding actual argument. Otherwise all actual arguments are
evaluated.

See also define and ::=.

Examples:

:= never evaluates the function body (unless explicitly evaluated by quote-quote).
(%11) expr : cos(y) - sin(x);

(hol) cos(y) - sin(x)
(%12) F1 (x, y) := expr;
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(%ho2) Fi(x, y) := expr
(%i3) F1 (a, b);

(%03) cos(y) - sin(x)

(hid) F2 (x, y) := ’’expr;

(%04) F2(x, y) := cos(y) - sin(x)
(%i5) F2 (a, b);

(%05) cos(b) - sin(a)

The function defined by := may be an ordinary Maxima function or an array function.
(5i1) G1 (x, y) := X.y - y.X;

(%ho1) Gi(x, y) :=x .y -y .x

(%hi2) G2 [x, yl = x.y - y.x;

(%o02) G2 =X .y-y.Xx
X, ¥

When the last or only function argument x_n is a list of one element, the function
defined by := accepts a variable number of arguments.

(%i1) H ([L]) := apply ("+", L);

(%ho1) H([L]) := apply("+", L)
(%i2) H (a, b, ©);
(%02) c+b+a

Operator

The equation operator.

An expression a = b, by itself, represents an unevaluated equation, which might or
might not hold. Unevaluated equations may appear as arguments to solve and
algsys or some other functions.

The function is evaluates = to a Boolean value. is(a = b) evaluates a = b to true
when a and b are identical. That is, a and b are atoms which are identical, or they
are not atoms and their operators are identical and their arguments are identical.
Otherwise, is(a = b) evaluates to false; it never evaluates to unknown. When is(a
= b) is true, a and b are said to be syntactically equal, in contrast to equivalent
expressions, for which is(equal(a, b)) is true. Expressions can be equivalent and
not syntactically equal.

The negation of = is represented by #. As with =, an expression a # b, by itself, is not
evaluated. is(a # b) evaluates a # b to true or false.

In addition to is, some other operators evaluate = and # to true or false, namely
if, and, or, and not.

Note that because of the rules for evaluation of predicate expressions (in particular
because not expr causes evaluation of expr), not a = b is equivalent to is(a # b),
instead of a # b.

rhs and 1lhs return the right-hand and left-hand sides, respectively, of an equation
or inequation.

See also equal and notequal.
Examples:

An expression a = b, by itself, represents an unevaluated equation, which might or
might not hold.
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(%i1) eq_1 : a * x = 5 x y = 17;

(%ho1) ax-5y=17
(%i2) eq_2 : b * x + 3 * y = 29;
(%02) 3y+bx=29
(%i3) solve ([eq_1, eq_2], [x, y1);
196 29 a - 17 b
(%03) [[x = ————————- R 1]
5b+ 3 a 5Eb+ 3 a
(%i4) subst (%, [eq_1, eq_21);
196 a 5 (29 a - 17 b)
(%04) [-——————= = ——— = 17,
5b+ 3a 5Eb+ 3 a
196 b 3 (29 a - 17 b)
--------- + ——————————————— = 29]
5b+ 3 a 5b+ 3 a

(%i5) ratsimp (%);

(%05) [17 = 17, 29 = 29]
is(a = b) evaluates a=b to true when a and b are syntactically equal (that is,
identical). Expressions can be equivalent and not syntactically equal.

(%i1) a : (x+ 1) * (x - 1);

(%ho1) (x - 1) (x+ 1)

(%i2) b : x"2 - 1;

2
(%02) x -1
(%i3) [is (a = b), is (a # b)];
(%03) [false, truel
(%14) [is (equal (a, b)), is (notequal (a, b))];
(%04) [true, false]

Some operators evaluate = and # to true or false.
(%i1) if expand ((x + y)72) = x"2 + 2 * x * y + y~2 then F00 else

BAR;
(%ho1) FOO
(%i2) eq_3 : 2 * x = 3 * x;
(%02) 2x=3x%x
(%1i3) eq_4 : exp (2) = %e”2;
2 2
(%03) he = ‘e
(%i4) [eq_3 and eq_4, eq_3 or eq_4, not eq_3];
(%ho4) [false, true, true]

Because not expr causes evaluation of expr, not a = b is equivalent to is(a # b).
(5i1) [2 * x # 3 * x, not (2 * x = 3 * x)];

(%ho1) [2 x # 3 x, true]
(%i2) is (2 *x x # 3 * x);
(%02) true
and Operator

The logical conjunction operator. and is an n-ary infix operator; its operands are
Boolean expressions, and its result is a Boolean value.
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and forces evaluation (like is) of one or more operands, and may force evaluation of
all operands.

Operands are evaluated in the order in which they appear. and evaluates only as
many of its operands as necessary to determine the result. If any operand is false,
the result is false and no further operands are evaluated.

The global flag prederror governs the behavior of and when an evaluated operand
cannot be determined to be true or false. and prints an error message when
prederror is true. Otherwise, operands which do not evaluate to true or false
are accepted, and the result is a Boolean expression.

and is not commutative: a and b might not be equal to b and a due to the treatment
of indeterminate operands.

Operator
The logical disjunction operator. or is an n-ary infix operator; its operands are
Boolean expressions, and its result is a Boolean value.

or forces evaluation (like is) of one or more operands, and may force evaluation of
all operands.

Operands are evaluated in the order in which they appear. or evaluates only as many
of its operands as necessary to determine the result. If any operand is true, the result
is true and no further operands are evaluated.

The global flag prederror governs the behavior of or when an evaluated operand can-
not be determined to be true or false. or prints an error message when prederror
is true. Otherwise, operands which do not evaluate to true or false are accepted,
and the result is a Boolean expression.

or is not commutative: a or b might not be equal to b or a due to the treatment of
indeterminate operands.

Operator
The logical negation operator. not is a prefix operator; its operand is a Boolean
expression, and its result is a Boolean value.

not forces evaluation (like is) of its operand.

The global flag prederror governs the behavior of not when its operand cannot be
determined to be true or false. not prints an error message when prederror is
true. Otherwise, operands which do not evaluate to true or false are accepted, and
the result is a Boolean expression.

abs (expr) Function

Returns the absolute value expr. If expr is complex, returns the complex modulus of
expr.

additive Keyword

If declare(f,additive) has been executed, then:

(1) If £ is univariate, whenever the simplifier encounters £ applied to a sum, £ will be
distributed over that sum. L.e. f(y+x) will simplify to £ (y)+£f(x).
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(2) If £ is a function of 2 or more arguments, additivity is defined as additivity in
the first argument to f, as in the case of sum or integrate, i.e. f(h(x)+g(x),x)
will simplify to £ (h(x),x)+f(g(x),x). This simplification does not occur when f is
applied to expressions of the form sum(x[i],i,lower-limit,upper-1limit).

allbut Keyword
works with the part commands (i.e. part, inpart, substpart, substinpart, dpart,
and lpart). For example,

(%i1) expr : e +d + c + b + a;

(%o1) e+d+c+b+a
(%i2) part (expr, [2, 51);
(%02) d + a

while

(%i1) expr : e +d + c + b + a;

(%o1) e+d+c+b+a
(%12) part (expr, allbut (2, 5));
(%02) e+c+b

allbut is also recognized by kill.
(%i1) [aa : 11, bb : 22, cc : 33, dd : 44, ee : 55];

(%01) [11, 22, 33, 44, 55]
(%i2) kill (allbut (cc, dd));

(%00) done

(%i1) [aa, bb, cc, ddl;

(%o1) [aa, bb, 33, 44]

kill(allbut(a_l, a_2, ...)) has the effect of kill(all) except that it does not
kill the symbols a_1, a_2, ... .

antisymmetric Declaration
If declare(h,antisymmetric) is done, this tells the simplifier that h is antisymmet-
ric. E.g. h(x,z,y) will simplify to - h(x, y, z). That is, it will give (-1)"n times the
result given by symmetric or commutative, where n is the number of interchanges of
two arguments necessary to convert it to that form.

cabs (expr) Function
Returns the complex absolute value (the complex modulus) of expr.

ceiling (x) Function
When x is a real number, return the least integer that is greater than or equal to x.

If x is a constant expression (10 * %pi, for example), ceiling evaluates x using
big floating point numbers, and applies ceiling to the resulting big float. Because
ceiling uses floating point evaluation, it’s possible, although unlikely, that ceiling
could return an erroneous value for constant inputs. To guard against errors, the
floating point evaluation is done using three values for fpprec.

For non-constant inputs, ceiling tries to return a simplified value. Here are examples
of the simplifications that ceiling knows about:
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(%ho1)
(%hi2)
(%ho2)
(%hi3)
(hid)
(%04)
(%i5)
(%i6)
(%06)
Chi7)
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ceiling (ceiling (x));
ceiling(x)
ceiling (floor (x));
floor(x)
declare (n, integer)$
[ceiling (n), ceiling (abs (n)), ceiling (max (n, 6))];
[n, abs(n), max(n, 6)]
assume (x > 0, x < 1)$
ceiling (x);

tex (ceiling (a));

$$\left \lceil a \right \rceil$$

(hoT)

false

The function ceiling does not automatically map over lists or matrices. Finally, for
all inputs that are manifestly complex, ceiling returns a noun form.

If the range of a function is a subset of the integers, it can be declared to be
integervalued. Both the ceiling and floor functions can use this information;

for example:

(hi1)
(%hi2)
(%o2)
(%i3)
(%03)

charfun (p)

declare (f, integervalued)$
floor (f(x));
£(x)
ceiling (f(x) - 1);
f(x) -1

Function

Return 0 when the predicate p evaluates to false; return 1 when the predicate
evaluates to true. When the predicate evaluates to something other than true or
false (unknown), return a noun form.

Examples:
(%i1)
(%o1)
(%i2)
(%02)
(%13)
(%14)
(%o4)

commutative

charfun (x < 1);
charfun(x < 1)
subst (x = -1, %);
1
e : charfun (’"and" (-1 < x, x < 1))$
[subst (x = -1, e), subst (x = 0, e), subst (x =1, e)];
[0, 1, 0]

Declaration

If declare(h,commutative) is done, this tells the simplifier that h is a commutative
function. E.g. h(x,z,y) will simplify to h(x, y, z). This is the same as symmetric.

compare (x, y)

Function

Return a comparison operator op (<, <=, >, >= =, or #) such that is (x op y) eval-
uates to true; when either x or y depends on %i and x # y, return notcomparable;
when there is no such operator or Maxima isn’t able to determine the operator, return

unknown.

Examples:
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(%i1) compare (1, 2);

(hol) <

(%1i2) compare (1, x);

(ho2) unknown

(%13) compare (%i, %i);

(%03) =

(%i4) compare (%i, %i + 1);

(%ho4d) notcomparable

(%15) compare (1/x, 0);

(%05) #

(%16) compare (x, abs(x));

(%06) <=
The function compare doesn’t try to determine whether the real domains of its argu-
ments are nonempty; thus

(%11) compare (acos (x72 + 1), acos (x72 + 1) + 1);

(%hol) <

The real domain of acos (x~2 + 1) is empty.

entier (x) Function
Returns the largest integer less than or equal to x where x is numeric. fix (as in
fixnum) is a synonym for this, so fix(x) is precisely the same.

equal (a, b) Function
Represents equivalence, that is, equal value.
By itself, equal does not evaluate or simplify. The function is attempts to evaluate
equal to a Boolean value. is(equal(a, b)) returns true (or false) if and only if a
and b are equal (or not equal) for all possible values of their variables, as determined by
evaluating ratsimp(a - b); if ratsimp returns 0, the two expressions are considered
equivalent. Two expressions may be equivalent even if they are not syntactically equal
(i.e., identical).
When is fails to reduce equal to true or false, the result is governed by the global
flag prederror. When prederror is true, is complains with an error message.
Otherwise, is returns unknown.

In addition to is, some other operators evaluate equal and notequal to true or
false, namely if, and, or, and not.

The negation of equal is notequal.
Examples:
By itself, equal does not evaluate or simplify.
(5i1) equal (x"2 - 1, (x + 1) * (x - 1));

2
(hol) equal(x -1, (x-1) (x + 1))
(%1i2) equal (x, x + 1);
(%ho2) equal(x, x + 1)

(%13) equal (x, y);
(%03) equal(x, y)
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The function is attempts to evaluate equal to a Boolean value. is(equal(a, b))
returns true when ratsimp(a - b) returns 0. Two expressions may be equivalent
even if they are not syntactically equal (i.e., identical).

(%i1)
(%01)
(%i2)
(%02)
(%i3)
(%03)
(%i4)
(%04)
(%i5)
(%05)
(%i6)
(%06)
%i7)
(%07)
(%i8)
(%08)
(%i9)
(%09)

ratsimp (x"2 - 1 - (x + 1) * (x - 1));

0
is (equal (x"2 - 1, (x + 1) * (x - 1)));
true
is (x"2-1=(x+1) *x (x - 1));
false
ratsimp (x - (x + 1));
-1
is (equal (x, x + 1));
false
is (x = x + 1);
false
ratsimp (x - y);
X~y
is (equal (x, y));
unknown
is (x = y);
false

When is fails to reduce equal to true or false, the result is governed by the global
flag prederror.

(%i1)

(%ho1)
(hi2)
(%o2)
(%i3)
(%03)
(%hi4)

[aa : x°2 + 2%x + 1, bb : x™2 - 2%x - 1];
2 2
[x +2x+1,x -2x- 1]

ratsimp (aa - bb);

4 x + 2
prederror : true;

true
is (equal (aa, bb));

Maxima was unable to evaluate the predicate:

2 2

equal(x +2x+1,x -2x-1)
-- an error. Quitting. To debug this try debugmode(true);

(%i5)
(%05)
(%hi6)
(%06)

prederror : false;
false
is (equal (aa, bb));
unknown

Some operators evaluate equal and notequal to true or false.

(hi1)
(%ho1)
(hi2)
(%o2)
(%i3)

(%03)
(%hi4)

if equal (y, y - 1) then FOO else BAR;
BAR
eq_1 : equal (x, x + 1);
equal(x, x + 1)
eq_2 : equal (y"2 + 2xy + 1, (y + 1)72);
2 2
equal(y + 2y +1, (y + 1))
[eq_1 and eq_2, eq_1 or eq_2, not eq_1];
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floor (x)

notequal (a, b)

(%o4) [false, true, true]

Because not expr causes evaluation of expr, not equal(a, b) is equivalent to
is(notequal(a, b)).
(%1i1) [notequal (2xz, 2%z - 1), not equal (2xz, 2%z - 1)];

(%hol) [notequal(2 z, 2 z - 1), truel
(%12) is (notequal (2*z, 2*xz - 1));
(%02) true

When x is a real number, return the largest integer that is less than or equal to x.

If x is a constant expression (10 * %pi, for example), floor evaluates x using big
floating point numbers, and applies floor to the resulting big float. Because floor
uses floating point evaluation, it’s possible, although unlikely, that floor could return
an erroneous value for constant inputs. To guard against errors, the floating point
evaluation is done using three values for fpprec.

For non-constant inputs, floor tries to return a simplified value. Here are examples
of the simplifications that floor knows about:

(%1i1) floor (ceiling (x));

(%ho1) ceiling(x)
(%i2) floor (floor (x));
(%02) floor(x)

(%13) declare (n, integer)$

(%1i4) [floor (n), floor (abs (n)), floor (min (n, 6))];
(%o4) [n, abs(n), min(n, 6)]

(%1i5) assume (x > 0, x < 1)$

(%i6) floor (x);

(%06) 0

(%i7) tex (floor (a));

$$\left \1floor a \right \rfloor$$

(%07T) false

The function floor does not automatically map over lists or matrices. Finally, for
all inputs that are manifestly complex, floor returns a noun form.

If the range of a function is a subset of the integers, it can be declared to be
integervalued. Both the ceiling and floor functions can use this information;
for example:

(%i1) declare (f, integervalued)$
(%i2) floor (f(x));

(%02) f(x)
(%i3) ceiling (£(x) - 1);
(%03) f(x) -1

Represents the negation of equal(a, b).
Examples:

(%1i1) equal (a, b);
(%o1) equal(a, b)

Function

Function
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(%12) maybe (equal (a, b));

(%ho2) unknown
(%13) notequal (a, b);
(%03) notequal(a, b)
(%14) not equal (a, b);
(%ho4) notequal(a, b)
(%15) maybe (notequal (a, b));
(%05) unknown
(%i6) assume (a > b);
(%06) [a > b]
(%i7) equal (a, b);
(%o7) equal(a, b)
(%18) maybe (equal (a, b));
(%08) false
(%19) notequal (a, b);
(%09) notequal(a, b)
(%110) maybe (notequal (a, b));
(%010) true
eval Operator
As an argument in a call to ev (expr), eval causes an extra evaluation of expr. See
ev.
evenp (expr) Function

Returns true if expr is an even integer. false is returned in all other cases.

fix (x) Function
A synonym for entier (x).

fullmap (f, expr_1, ...) Function
Similar to map, but fullmap keeps mapping down all subexpressions until the main
operators are no longer the same.

fullmap is used by the Maxima simplifier for certain matrix manipulations; thus,
Maxima sometimes generates an error message concerning fullmap even though
fullmap was not explicitly called by the user.
Examples:

(%i1) a + b * c;

(%o1) bc+a

(%i2) fullmap (g, %);

(%02) g®) glc) + g(a)

(%13) map (g, %th(2));

(%03) gl c) + g(a)

fullmapl (f, list_1, ...) Function
Similar to fullmap, but fullmapl only maps onto lists and matrices.
Example:

(%11) fullmapl ("+": [3, [4’ 5]]: [[a, 1]: [O, _1.5]]),
(%o1) [la + 3, 4], [4, 3.5]]
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is (expr) Function
Attempts to determine whether the predicate expr is provable from the facts in the
assume database.

If the predicate is provably true or false, is returns true or false, respectively.
Otherwise, the return value is governed by the global flag prederror. When
prederror is true, is complains with an error message. Otherwise, is returns
unknown.

ev(expr, pred) (which can be written expr, pred at the interactive prompt) is equiv-
alent to is(expr).

See also assume, facts, and maybe.
Examples:

is causes evaluation of predicates.
(%i1) %pi > %e;

(%o1) wpi > e
(%12) is (hpi > %e);
(%02) true

is attempts to derive predicates from the assume database.

(%i1) assume (a > b);

(%hol) [a > b]
(%i2) assume (b > c);

(%02) [b > c]
(%i3) is (a < b);

(%03) false
(%id) is (a > c);

(%04) true
(%15) is (equal (a, c));

(%05) false

If is can neither prove nor disprove a predicate from the assume database, the global
flag prederror governs the behavior of is.

(%i1) assume (a > b);
(o) [a > bl
(%1i2) prederror: true$
(%i3) is (a > 0);
Maxima was unable to evaluate the predicate:
a>o0
-- an error. Quitting. To debug this try debugmode(true);
(%14) prederror: false$
(%i5) is (a > 0);
(%05) unknown

maybe (expr) Function
Attempts to determine whether the predicate expr is provable from the facts in the
assume database.

If the predicate is provably true or false, maybe returns true or false, respectively.
Otherwise, maybe returns unknown.
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maybe is functionally equivalent to is with prederror: false, but the result is com-
puted without actually assigning a value to prederror.

See also assume, facts, and is.
Examples:

(%1i1) maybe (x > 0);

(%o1) unknown
(%1i2) assume (x > 1);

(%02) [x > 1]
(%13) maybe (x > 0);

(%03) true

isqrt (x) Function
Returns the "integer square root" of the absolute value of x, which is an integer.

Imax (L) Function
When L is a list or a set, return apply (’max, args (L)). When L isn’t a list or a
set, signal an error.

Imin (L) Function
When L is a list or a set, return apply (’min, args (L)). When L isn’t a list or a
set, signal an error.

max (x_1, ..., x_n) Function
Return a simplified value for the maximum of the expressions x_1 through x_.n. When
get (trylevel, maxmin), is 2 or greater, max uses the simplification max (e, -e)
--> |e|. When get (trylevel, maxmin) is 3 or greater, max tries to eliminate
expressions that are between two other arguments; for example, max (x, 2*x, 3*x) -
->max (x, 3*x). To set the value of trylevel to 2, use put (trylevel, 2, maxmin).

min (x_1, ..., x_n) Function
Return a simplified value for the minimum of the expressions x_1 through x_n. When
get (trylevel, maxmin), is 2 or greater, min uses the simplification min (e, -e)
--> -lel. When get (trylevel, maxmin) is 3 or greater, min tries to eliminate
expressions that are between two other arguments; for example, min (x, 2*x, 3*x) -
->min (x, 3*x). To set the value of trylevel to 2, use put (trylevel, 2, maxmin).

polymod (p) Function

polymod (p, m) Function
Converts the polynomial p to a modular representation with respect to the current
modulus which is the value of the variable modulus.

polymod (p, m) specifies a modulus m to be used instead of the current value of
modulus.

See modulus.
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mod (x, y) Function
If x and y are real numbers and y is nonzero, return x - y * floor(x / y). Further
for all real x, we have mod (x, 0) = x. For a discussion of the definition mod (x, 0)
= x, see Section 3.4, of "Concrete Mathematics," by Graham, Knuth, and Patashnik.
The function mod (x, 1) is a sawtooth function with period 1 with mod (1, 1) =0
and mod (0, 1) =0.

To find the principal argument (a number in the interval (-%pi, %pi]) of a complex
number, use the function x |-> %pi - mod (%pi - x, 2*%pi), where x is an argument.

When x and y are constant expressions (10 * %pi, for example), mod uses the same big
float evaluation scheme that floor and ceiling uses. Again, it’s possible, although
unlikely, that mod could return an erroneous value in such cases.

For nonnumerical arguments x or y, mod knows several simplification rules:

(%i1) mod (x, 0);

(%o1) X
(%hi2) mod (a*x, axy);
(%ho2) a mod(x, y)
(%i3) mod (0, x);
(%03) 0
oddp (expr) Function

is true if expr is an odd integer. false is returned in all other cases.

pred Operator
As an argument in a call to ev (expr), pred causes predicates (expressions which
evaluate to true or false) to be evaluated. See ev.

make_random _state (n) Function
make_random_state (s) Function
make_random_state (true) Function
make_random _state (false) Function

A random state object represents the state of the random number generator. The
state comprises 627 32-bit words.

make_random_state (n) returns a new random state object created from an integer
seed value equal to n modulo 2732. n may be negative.

make_random_state (s) returns a copy of the random state s.

make_random_state (true) returns a new random state object, using the current
computer clock time as the seed.

make_random_state (false) returns a copy of the current state of the random num-
ber generator.

set_random _state (s) Function
Copies s to the random number generator state.

set_random_state always returns done.
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random (x)
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Function

Returns a pseudorandom number. If x is an integer, random (x) returns an integer
from 0 through x - 1 inclusive. If x is a floating point number, random (x) returns
a nonnegative floating point number less than x. random complains with an error if

x is neither an integer nor a float, or if x is not positive.

The functions make_random_state and set_random_state maintain the state of the

random number generator.

The Maxima random number generator is an implementation of the Mersenne twister

MT 19937.
Examples:

(%i1) s1: make_random_state (654321)$%
(%1i2) set_random_state (sl1);

(%02) done
(%i3) random (1000);

(%03) 768
(%i4) random (9573684);

(%hod) 7657880

(%i5) random (2°75);

(%05) 11804491615036831636390

(%i6) s2: make_random_state (false)$
(%1i7) random (1.0);

(%oT) .2310127244107132
(%18) random (10.0);

(%08) 4.394553645870825
(%19) random (100.0);

(%09) 32.28666704056853
(%110) set_random_state (s2);

(%010) done

(%i11) random (1.0);

(%hot1) .2310127244107132
(%i12) random (10.0);

(%ho12) 4.394553645870825
(%i13) random (100.0);

(%ho13) 32.28666704056853

rationalize (expr)

Function

Convert all double floats and big floats in the Maxima expression expr to their exact
rational equivalents. If you are not familiar with the binary representation of floating
point numbers, you might be surprised that rationalize (0.1) does not equal 1/10.
This behavior isn’t special to Maxima — the number 1/10 has a repeating, not a

terminating, binary representation.
(%i1) rationalize (0.5);

(%ho1) -
2

(%i2) rationalize (0.1);
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(%02) -
10
(%i3) fpprec : 5%
(%i4) rationalize (0.1b0);
209715
S
2097152

(%i5) fpprec : 20%
(%i6) rationalize (0.1Db0);
236118324143482260685
(%086)  mmmmmmmm—
2361183241434822606848
(%1i7) rationalize (sin (0.1*%x + 5.6));
X 28
(%hoT7) sin(-- + --)
10 5

Example use:

(%1i1) unitfrac(r) := block([uf : [], ql,
if not(ratnump(r)) then
error("The input to ’unitfrac’ must be a rational number"),
while r # 0 do (
uf : cons(q : 1/ceiling(1/r), uf),
r:r-q),
reverse(uf));
(%o1) unitfrac(r) := block([uf : [, ql,
if not ratnump(r) then
error("The input to ’unitfrac’ must be a rational number"),

1
while r # 0 do (uf : cons(q : —-————————- ,uf), r 1 r - ),
1
ceiling(-)
r
reverse (uf))
(%i2) unitfrac (9/10);
1 1 1
(%02) -, -, --1]
2 3 15
(%13) apply ("+", %);
9
(%03) .
10
(%i4) unitfrac (-9/10);
1
(%04) - 1, -]
10
(%i5) apply ("+", %);
9

(%05) - ==



52 Maxima Manual

(%i6) unitfrac (36/37);
1 1 1 1 1
(%06) -, -, -, —, —-1]
2 3 8 69 6808
(%1i7) apply ("+", %);
36
(%0T) -
37

round (x) Function
When x is a real number, returns the closest integer to x. Multiples of 1/2 are rounded
to the nearest even integer. Evaluation of x is similar to floor and ceiling.

sign (expr) Function
Attempts to determine the sign of expr on the basis of the facts in the current data
base. It returns one of the following answers: pos (positive), neg (negative), zero, pz
(positive or zero), nz (negative or zero), pn (positive or negative), or pnz (positive,
negative, or zero, i.e. nothing known).

signum (x) Function
For numeric x, returns 0 if x is 0, otherwise returns -1 or +1 as x is less than or greater
than 0, respectively.

If x is not numeric then a simplified but equivalent form is returned. For example,
signum(-x) gives -signum(x).

sort (L, P) Function
sort (L) Function
Sorts a list L according to a predicate P of two arguments, such that P (L[k], L[k
+ 1]) is true for any two successive elements. The predicate may be specified as the
name of a function or binary infix operator, or as a lambda expression. If specified as
the name of an operator, the name is enclosed in "double quotes".

The sorted list is returned as a new object; the argument L is not modified. To
construct the return value, sort makes a shallow copy of the elements of L.

If the predicate P is not a total order on the elements of L, then sort might run to
completion without error, but the result is undefined. sort complains if the predicate
evaluates to something other than true or false.

sort (L) is equivalent to sort (L, orderlessp). That is, the default sorting order
is ascending, as determined by orderlessp. All Maxima atoms and expressions are
comparable under orderlessp, although there are isolated examples of expressions
for which orderlessp is not transitive; this is a bug.

Examples:
(%i1) sort ([11, -17, 29b0, 7.55, 3, -5/2, b + a, 9 * c,
19 - 3 % x]);
5
(%o1) [- 17, - -, 3, 7.55, 11, 2.9b1, b + a, 9 c, 19 - 3 x]

2
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(%i2) sort ([11, -17, 29b0, 7.55, 3, -5/2, b + a, 9*c, 19 - 3*x],
ordergreatp) ;

5
(%02) [19 - 3 x, 9 c, b + a, 2.9b1, 11, 7.55, 3, - -, - 17]
2

(%1i3) sort ([%pi, 3, 4, %e, ’hgammal);

(%03) [3, 4, %e, %gamma, %pil
(%1i4) sort ([%pi, 3, 4, %e, %gamma], "<");
(%04) [Vgamma, %e, 3, %pi, 4]

(%i5) my_list: [[aa,hh,uul, [ee,cc]l, [zz,xx,mm,cc]l, [Vpi,%ell;

(%05) [[aa, hh, uul, [ee, ccl, [zz, xx, mm, ccl, [%pi, %ell

(%16) sort (my_list);

(%06) [[%pi, %el, [aa, hh, uul, [ee, ccl, [zz, xx, mm, cc]]

(%1i7) sort (my_list, lambda ([a, b], orderlessp (reverse (a),
reverse (b))));

(ho7) [L%pi, %el, [ee, ccl, [zz, xx, mm, cc], [aa, hh, uul]

sqrt (x) Function
The square root of x. It is represented internally by x~(1/2). See also
rootscontract.

radexpand if true will cause nth roots of factors of a product which are powers of
n to be pulled outside of the radical, e.g. sqrt(16*x~2) will become 4*x only if
radexpand is true.

sqrtdispflag Option variable
Default value: true
When sqrtdispflag is false, causes sqrt to display with exponent 1/2.

sublis (list, expr) Function
Makes multiple parallel substitutions into an expression.
The variable sublis_apply_lambda controls simplification after sublis.

Example:
(%i1) sublis ([a=b, b=al], sin(a) + cos(b));
(hol) sin(b) + cos(a)
sublist (list, p) Function
Returns the list of elements of list for which the predicate p returns true.
Example:
(%hi1) L: [1, 2, 3, 4, 5, 6];
(hol) (1, 2, 3, 4, 5, 6]
(%12) sublist (L, evenp);
(%02) [2, 4, 6]
sublis_apply_lambda Option variable

Default value: true

Controls whether lambda’s substituted are applied in simplification after sublis is
used or whether you have to do an ev to get things to apply. true means do the
application.
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subst (a, b, ¢) Function

Substitutes a for b in ¢. b must be an atom or a complete subexpression of c.
For example, x+y+z is a complete subexpression of 2*(x+y+z)/w while x+y is not.
When b does not have these characteristics, one may sometimes use substpart or
ratsubst (see below). Alternatively, if b is of the form e/f then one could use subst
(axf, e, c) while if b is of the form e~ (1/f) then one could use subst (a"f, e,
c). The subst command also discerns the x"y in x~~-y so that subst (a, sqrt(x),
1/sqrt(x)) yields 1/a. a and b may also be operators of an expression enclosed in
double-quotes " or they may be function names. If one wishes to substitute for the
independent variable in derivative forms then the at function (see below) should be
used.

subst is an alias for substitute.

subst (eq_1, expr) or subst ([eq.1, ..., eq.k], expr) are other permissible
forms. The eq.i are equations indicating substitutions to be made. For each
equation, the right side will be substituted for the left in the expression expr.

exptsubst if true permits substitutions like y for %e"x in %e~ (a*x) to take place.

When opsubst is false, subst will not attempt to substitute into the operator of an
expression. E.g. (opsubst: false, subst (x°2, r, r+r[0])) will work.

Examples:
(%i1) subst (a, x+y, x + (x+y)"2 + y);
2
(hol) y+x+a
(%i2) subst (-%i, %i, a + bx%i);
(%ho2) a-%b
For further examples, do example (subst).
substinpart (x, expr, n_1, ..., n_k) Function
Similar to substpart, but substinpart works on the internal representation of expr.
Examples:
(%hi1) x . ’diff (£ (x), x, 2);
2
d
(%o01) x . (-— (£(x)))
2
dx
(%12) substinpart (472, %, 2);
2
(%02) x . d
(%13) substinpart (f1, f[1]1(x + 1), 0);
(%03) fi(x + 1)

If the last argument to a part function is a list of indices then several subexpressions
are picked out, each one corresponding to an index of the list. Thus

(hi1l) part (x +y + z, [1, 31);
(%o01) z + X
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piece holds the value of the last expression selected when using the part functions. It
is set during the execution of the function and thus may be referred to in the function
itself as shown below. If partswitch is set to true then end is returned when a
selected part of an expression doesn’t exist, otherwise an error message is given.

(hi1)

(%hol)
(%hi2)
(%o2)
(%i3)
(%03)
(%hi4)

(%ho4)
(%i5)

(%05)
(%i6)
(%06)

expr: 27xy~3 + Bdxxxy~2 + 36%x"2%y + y + 8%x"3 + x + 1;
3 2 2 3
27Ty +564xy +36x y+y+8x +x+1
part (expr, 2, [1, 31);

2
54 y
sqrt (piece/54);
abs (y)
substpart (factor (piece), expr, [1, 2, 3, 5]);

3
By+2x) +y+x+1
expr: 1/x + y/x - 1/z;
1 vy 1
z X X
substpart (xthru (piece), expr, [2, 3]);
y+1 1

X Z

Also, setting the option inflag to true and calling part or substpart is the same
as calling inpart or substinpart.

substpart (x, expr, n_1, ..., n_k) Function
Substitutes x for the subexpression picked out by the rest of the arguments as in
part. It returns the new value of expr. x may be some operator to be substituted
for an operator of expr. In some cases x needs to be enclosed in double-quotes " (e.g.
substpart ("+", a*b, 0) yields b + a).

(hi1)
(%ho1)

(%o2)

(%i3)
(%03)
(hid)
(%ho4)

1/(x"2 + 2);
1
2
x + 2
substpart (3/2, %, 2, 1, 2);
1
3/2
X + 2

axx + f(b, y);
ax + £(b, y)
substpart ("+", %, 1, 0);
x + f(b, y) + a

Also, setting the option inflag to true and calling part or substpart is the same
as calling inpart or substinpart.
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subvarp (expr) Function
Returns true if expr is a subscripted variable, for example a[i].

symbolp (expr) Function
Returns true if expr is a symbol, else false. In effect, symbolp(x) is equivalent to
the predicate atom(x) and not numberp (x).

See also Section 6.4 [Identifiers|, page 61.

unorder () Function
Disables the aliasing created by the last use of the ordering commands ordergreat
and orderless. ordergreat and orderless may not be used more than one time
each without calling unorder. See also ordergreat and orderless.

Examples:

(%i1) unorder();
(%o1) (]
(%1i2) b*xx + a"2;

(%02) bx+a
(%13) ordergreat (a);

(%03) done
(%i4) b*xx + a"2;

hth(1) - %th(3);

(%04) a +bx
(%15) unorder();

(%05) a - a

vectorpotential (givencurl) Function
Returns the vector potential of a given curl vector, in the current coordinate system.
potentialzeroloc has a similar role as for potential, but the order of the left-hand
sides of the equations must be a cyclic permutation of the coordinate variables.

xthru (expr) Function
Combines all terms of expr (which should be a sum) over a common denominator
without expanding products and exponentiated sums as ratsimp does. xthru cancels
common factors in the numerator and denominator of rational expressions but only
if the factors are explicit.

Sometimes it is better to use xthru before ratsimping an expression in order to
cause explicit factors of the gcd of the numerator and denominator to be canceled
thus simplifying the expression to be ratsimped.
(%1i1) ((x+2)720 - 2*y)/(x+y)~20 + (x+y)~(-19) - x/(x+y)~20;
20

(Ghot)  —mmmmmm Fommmmmmmmmmeees o e
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(y + %) (y + %) (y + %)
(%i2) xthru (%) ;

20

(x+2) -y

Go2)  mmmmmmmmmee

20
(y + %)
zeroequiv (expr, v) Function

Tests whether the expression expr in the variable v is equivalent to zero, returning
true, false, or dontknow.

zeroequiv has these restrictions:

1. Do not use functions that Maxima does not know how to differentiate and eval-
uate.

2. If the expression has poles on the real line, there may be errors in the result (but
this is unlikely to occur).

3. If the expression contains functions which are not solutions to first order differ-
ential equations (e.g. Bessel functions) there may be incorrect results.

4. The algorithm uses evaluation at randomly chosen points for carefully selected
subexpressions. This is always a somewhat hazardous business, although the
algorithm tries to minimize the potential for error.

For example zeroequiv (sin(2*x) - 2*sin(x)*cos(x), x) returns true and
zeroequiv (%e"x + x, x) returns false. On the other hand zeroequiv (log(a*b)
- log(a) - log(b), a) returns dontknow because of the presence of an extra
parameter b.
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6 Expressions

6.1 Introduction to Expressions

There are a number of reserved words which cannot be used as variable names. Their
use would cause a possibly cryptic syntax error.

integrate next from diff
in at limit sum
for and elseif then
else do or if
unless product while thru
step

Most things in Maxima are expressions. A sequence of expressions can be made into an
expression by separating them by commas and putting parentheses around them. This is
similar to the C comma expression.

(%i1) x: 3%
(Fi2) (x: x+1, x: x°2);

(%ho2) 16
(%i3) (if (x > 17) then 2 else 4);
(%03) 4
(%i4) (if (x > 17) then x: 2 else y: 4, y+x);
(ho4) 20

Even loops in Maxima are expressions, although the value they return is the not too
useful done.

(%i1) y: (x: 1, for i from 1 thru 10 do (x: x*i))$
(%12) vy;
(%o2) done

whereas what you really want is probably to include a third term in the comma expression
which actually gives back the value.

(%i3) y: (x: 1, for i from 1 thru 10 do (x: x*i), x)$
(%id) y;
(%od) 3628800

6.2 Complex

A complex expression is specified in Maxima by adding the real part of the expression
to %i times the imaginary part. Thus the roots of the equation x"2 - 4*x + 13 = 0 are 2
+ 3%%1i and 2 - 3*%i. Note that simplification of products of complex expressions can be
effected by expanding the product. Simplification of quotients, roots, and other functions
of complex expressions can usually be accomplished by using the realpart, imagpart,
rectform, polarform, abs, carg functions.
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6.3 Nouns and Verbs

Maxima distinguishes between operators which are "nouns" and operators which are
"verbs". A verb is an operator which can be executed. A noun is an operator which
appears as a symbol in an expression, without being executed. By default, function names
are verbs. A verb can be changed into a noun by quoting the function name or applying the
nounify function. A noun can be changed into a verb by applying the verbify function.
The evaluation flag nouns causes ev to evaluate nouns in an expression.

The verb form is distinguished by a leading dollar sign $ on the corresponding Lisp
symbol. In contrast, the noun form is distinguished by a leading percent sign % on the
corresponding Lisp symbol. Some nouns have special display properties, such as ’integrate
and ’derivative (returned by diff), but most do not. By default, the noun and verb
forms of a function are identical when displayed. The global flag noundisp causes Maxima
to display nouns with a leading quote mark ’.

See also noun, nouns, nounify, and verbify.

Examples:
(%i1) foo (x) := x72;
2
(%o1) foo(x) := x
(%1i2) foo (42);
(%ho2) 1764
(%13) ’foo (42);
(%03) foo(42)
(%i4) ’foo (42), nouns;
(%04) 1764
(%i5) declare (bar, noun);
(%05) done
(%i6) bar (x) := x/17;
X
(%06) Vbar(x) = --
17

(%1i7) bar (52);
(%oT) bar (52)
(%i8) bar (52), nouns;

52
(%08) -
17
(%19) integrate (1/x, x, 1, 42);
(%09) log(42)
(%110) ’integrate (1/x, x, 1, 42);
42
/
[ 1
(%010) I - dx
] X
/
1

(%i11) ev (%, nouns);
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(%holl) log(42)

6.4 Identifiers
Maxima identifiers may comprise alphabetic characters, plus the numerals 0 through 9,
plus any special character preceded by the backslash \ character.

A numeral may be the first character of an identifier if it is preceded by a backslash.
Numerals which are the second or later characters need not be preceded by a backslash.

Characters may be declared alphabetic by the declare function. If so declared, they
need not be preceded by a backslash in an identifier. The alphabetic characters are initially
A through Z, a through z, %, and _.

Maxima is case-sensitive. The identifiers foo, FOO, and Foo are distinct. See Section 3.1
[Lisp and Maxima|, page 7 for more on this point.

A Maxima identifier is a Lisp symbol which begins with a dollar sign $. Any other Lisp
symbol is preceded by a question mark ? when it appears in Maxima. See Section 3.1 [Lisp
and Maximal, page 7 for more on this point.

Examples:

(%i1) %an_ordinary_identifier42;

(%hol) %han_ordinary_identifier4?2
(%12) embedded\ spaces\ in\ an\ identifier;
(%ho2) embedded spaces in an identifier
(%13) symbolp (%);

(%03) true

(%i4) [foo+bar, fool+bar];

(%04) [foo + bar, foo+bar]

(%i5) [1729, \1729]1;

(%05) [1729, 1729]

(%16) [symbolp (fool+bar), symbolp (\1729)];
(%06) [true, truel

(%i7) [is (foo\+bar = foot+bar), is (\1729 = 1729)];
(%0T) [false, falsel

(%18) baz\~"quux;

(%08) baz~quux

(%19) declare ("~", alphabetic);

(%h09) done

(%110) baz~quux;

(%010) baz~quux

(%i11) [is (foo = F00), is (FOO = Foo), is (Foo = foo)]l;
(%hot1) [false, false, false]

(%112) :1lisp (defvar *my-lisp-variable* ’$foo)
*MY-LISP-VARIABLE*

(%112) ?\*my\-lisp\-variable\*;

(%ho12) foo
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6.5 Strings

Strings (quoted character sequences) are enclosed in double quote marks " for input, and
displayed with or without the quote marks, depending on the global variable stringdisp.

Strings may contain any characters, including embedded tab, newline, and carriage re-
turn characters. The sequence \" is recognized as a literal double quote, and \\ as a literal
backslash. When backslash appears at the end of a line, the backslash and the line termina-
tion (either newline or carriage return and newline) are ignored, so that the string continues
with the next line. No other special combinations of backslash with another character are
recognized; when backslash appears before any character other than ", \, or a line termi-
nation, the backslash is ignored. There is no way to represent a special character (such as
tab, newline, or carriage return) except by embedding the literal character in the string.

There is no character type in Maxima; a single character is represented as a one-character
string.
The stringproc add-on package contains many functions for working with strings.
Examples:
(%i1) s_1 : "This is a string.";
(%o1) This is a string.
(%12) s_2 : "Embedded \"double quotes\" and backslash \\ characters.";
(%02) Embedded "double quotes" and backslash \ characters.
(%13) s_3 : "Embedded line termination
in this string.";
(%03) Embedded line termination
in this string.
(%i4) s_4 : "Ignore the \
line termination \
characters in \
this string.";
(%04) Ignore the line termination characters in this string.
(%i5) stringdisp : false;

(%05) false

(%i6) s_1;

(%06) This is a string.
(%1i7) stringdisp : true;

(hoT) true

(%18) s_1;

(%08) "This is a string."

6.6 Inequality

Maxima has the inequality operators <, <=, >= > #, and notequal. See if for a
description of conditional expressions.

6.7 Syntax

It is possible to define new operators with specified precedence, to undefine existing
operators, or to redefine the precedence of existing operators. An operator may be unary
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prefix or unary postfix, binary infix, n-ary infix, matchfix, or nofix. "Matchfix" means a
pair of symbols which enclose their argument or arguments, and "nofix" means an operator
which takes no arguments. As examples of the different types of operators, there are the
following.

unary prefix
negation - a

unary postfix
factorial a!

binary infix
exponentiation a”b

n-ary infix addition a + b
matchfix  list construction [a, b]

(There are no built-in nofix operators; for an example of such an operator, see nofix.)

The mechanism to define a new operator is straightforward. It is only necessary to
declare a function as an operator; the operator function might or might not be defined.

An example of user-defined operators is the following. Note that the explicit function
call "dd" (a) is equivalent to dd a, likewise "<-" (a, b) is equivalent to a <= b. Note also
that the functions "dd" and "<-" are undefined in this example.

(%i1) prefix ("dd");

(%o1) dd
(%i2) dd a;

(%02) dd a
(%i3) "dd" (a);

(%03) dd a
(%i4) infix ("<-");

(%o4) <=
(%i5) a <- dd b;

(%05) a <-dd b
(%i6) "<=" (a, "dd" (b));

(%06) a<-ddb

The Maxima functions which define new operators are summarized in this table, stating
the default left and right binding powers (Ibp and rbp, respectively). (Binding power
determines operator precedence. However, since left and right binding powers can differ,
binding power is somewhat more complicated than precedence.) Some of the operation
definition functions take additional arguments; see the function descriptions for details.

prefix rbp=180

postfix  1lbp=180

infix Ibp=180, rbp=180

nary Ibp=180, rbp=180

matchfix (binding power not applicable)

nofix (binding power not applicable)
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For comparison, here are some built-in operators and their left and right binding powers.

Operator  1bp rbp

180 20

1 180 20

1= 180 20

1= 180 20

! 160

N 160

- 140 139
130 129

* 120

/ 120 120

+ 100 100

- 100 134

= 80 80

# 80 80

> 80 80

>= 80 80

< 80 80

<= 80 80

not 70

and 65

or 60

R 10

$ -1

; -1

remove and kill remove operator properties from an atom. remove ("a", op) removes
only the operator properties of a. kill ("a") removes all properties of a, including the
operator properties. Note that the name of the operator must be enclosed in quotation
marks.
(%i1) infix ("##");
(%ho1) ##
(%i2) "##" (a, b) := a’b;

b
(%02) a## b :=a
(%1i3) 5 ## 3;
(%o3) 125
(%14) remove ("##", op);
(%hod) done

(%15) 5 ## 3;
Incorrect syntax: # is not a prefix operator
5 ##

(%i5) "##" (5, 3);
(%05) 125
(%i6) infix ("##");
(%06) #i
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(%i7) 5 ## 3;

(%hoT) 125
(%18) kill ("##");
(%08) done

(%19) 5 ## 3;
Incorrect syntax: # is not a prefix operator
5 ##

(%19) "##" (5, 3);
(%09) ##(5, 3)

6.8 Functions and Variables for Expressions

at (expr, [eqn_1, ..., eqn_n]) Function

at (expr, eqn) Function
Evaluates the expression expr with the variables assuming the values as specified for
them in the list of equations [eqn_1, ..., eqn_n] or the single equation eqn.

If a subexpression depends on any of the variables for which a value is specified but
there is no atvalue specified and it can’t be otherwise evaluated, then a noun form of
the at is returned which displays in a two-dimensional form.

at carries out multiple substitutions in series, not parallel.

See also atvalue. For other functions which carry out substitutions, see also subst

and ev.
Examples:
(%i1) atvalue (f(x,y), [x =0, y = 1], a~2);
2
(%o1) a
(%12) atvalue (’diff (f(x,y), x), x =0, 1 + y);
(%ho2) 2 + 1
(%13) printprops (all, atvalue);
!
d !
--- (f(e1, @2))! =02 + 1
do1 !
161 = 0
2
£f(0, 1) = a
(%03) done
(hid) diff (4*f(x, y)~2 - ulx, y)~2, x);
d d
(hod) 8 f(x, y) (-—— (£(x, y))) - 2 ulx, y) (- (ulx, y)))
dx dx

(%i5) at (%, [x =0, y = 11);
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(%05)

box (expr)
box (expr, a)

2

d |

16 a - 2 u(0, 1) (— (u(x, y))i

dx !
Ix

0, y

Maxima Manual

1

Function
Function

Returns expr enclosed in a box. The return value is an expression with box as the
operator and expr as the argument. A box is drawn on the display when display2d

is true.

box (expr, a) encloses expr in a box labelled by the symbol a. The label is truncated
if it is longer than the width of the box.

box evaluates its argument. However, a boxed expression does not evaluate to its

content, so boxed expressions are effectively excluded from computations.

boxchar is the character used to draw the box in box and in the dpart and lpart

functions.

Examples:
(%i1)
(%o1)
(%i2)
(%02)
(%13)
(%03)
(%14)
(%04)
(%15)

(%05)
(hi6)
(%06)
ChiT)
(hoT)
(%18)
(%08)

box (a2 + b~2);

box (a2 + b~2);

box (a2 + b"2,

nonnnnnnnn

n 2 2"
Hb + a n

mwmwmwmwmnnn

1234
c - d

o

n 2 "
"(c - d) + 1522756"
term_1);

term_l“"""""““"""""“
n 2 "
"(c - d) + 1522756"

o

1729 - box (1729);

boxchar: "-";

1729 - "1729"

box (sin(x) + cos(y));
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boxchar Option variable
Default value: "

boxchar is the character used to draw the box in the box and in the dpart and lpart
functions.

All boxes in an expression are drawn with the current value of boxchar; the drawing
character is not stored with the box expression.

carg (z) Function
Returns the complex argument of z. The complex argument is an angle theta in
(=%pi, %pil such that r exp (theta %i) = z where r is the magnitude of z.

carg is a computational function, not a simplifying function.

carg ignores the declaration declare (x, complex), and treats x as a real variable.
This is a bug.

See also abs (complex magnitude), polarform, rectform, realpart, and imagpart.

Examples:
(%i1) carg (1);
(%ho1) 0
(%12) carg (1 + %i);
%pi
(%ho2) -—=
4
(%13) carg (exp (%hi));
(%03) 1
(%i4) carg (exp (%pi * %i));
(%ho4d) hpi
(%1i5) carg (exp (3/2 * %pi * %i));
%pi
(%05) - -
2
(hi6) carg (17 * exp (2 * %i));
(%06) 2
constant Special operator

declare (a, constant) declares a to be a constant. See declare.

constantp (expr) Function
Returns true if expr is a constant expression, otherwise returns false.

An expression is considered a constant expression if its arguments are numbers (in-
cluding rational numbers, as displayed with /R/), symbolic constants such as %pi, %e,
and %1, variables bound to a constant or declared constant by declare, or functions
whose arguments are constant.

constantp evaluates its arguments.

Examples:
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(%i1) constantp (7 * sin(2));

(ho1) true
(%1i2) constantp (rat (17/29));
(ho2) true
(%13) constantp (%pi * sin(%e));
(%03) true
(%14) constantp (exp (x));
(%hod) false
(%i5) declare (x, constant);
(%h05) done
(%16) constantp (exp (x));
(%h086) true
(%17) constantp (foo (x) + bar (%e) + baz (2));
(hoT) false
(%18)
declare (a_1, p-1, a_2, p_2, ...) Function

Assigns the atom or list of atoms a_i the property or list of properties p_i. When a_i
and/or p_i are lists, each of the atoms gets all of the properties.

declare quotes its arguments. declare always returns done.

As noted in the description for each declaration flag, for some flags featurep (object,
feature) returns true if object has been declared to have feature. However, featurep
does not recognize some flags; this is a bug.

See also features.
declare recognizes the following properties:

evfun Makes a_i known to ev so that the function named by a_i is applied when
a_i appears as a flag argument of ev. See evfun.

evflag Makes a_i known to the ev function so that a_i is bound to true during the
execution of ev when a_i appears as a flag argument of ev. See evflag.

bindtest Tells Maxima to trigger an error when a_i is evaluated unbound.

noun Tells Maxima to parse a_-i as a noun. The effect of this is to replace
instances of a_i with ’a_i or nounify(a-i), depending on the context.

constant Tells Maxima to consider a_i a symbolic constant.
scalar Tells Maxima to consider a_i a scalar variable.

nonscalar
Tells Maxima to consider a_i a nonscalar variable. The usual application
is to declare a variable as a symbolic vector or matrix.

mainvar  Tells Maxima to consider a_i a "main variable". A main variable succeeds
all other constants and variables in the canonical ordering of Maxima
expressions, as determined by ordergreatp.

alphabetic
Tells Maxima to recognize all characters in a_i (which must be a string)
as alphabetic characters.
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feature

Tells Maxima to recognize a_i as the name of a feature. Other atoms may
then be declared to have the a_i property.

rassociative, lassociative

nary

Tells Maxima to recognize a_i as a right-associative or left-associative
function.

Tells Maxima to recognize a_i as an n-ary function.

The nary declaration is not the same as calling the nary function. The
sole effect of declare(foo, nary) is to instruct the Maxima simplifier to
flatten nested expressions, for example, to simplify foo(x, foo(y, z))
to foo(x, y, 2).

symmetric, antisymmetric, commutative

Tells Maxima to recognize a_i as a symmetric or antisymmetric function.
commutative is the same as symmetric.

oddfun, evenfun

outative

Tells Maxima to recognize a_i as an odd or even function.

Tells Maxima to simplify a_i expressions by pulling constant factors out
of the first argument.

When a_i has one argument, a factor is considered constant if it is a literal
or declared constant.

When a_i has two or more arguments, a factor is considered constant
if the second argument is a symbol and the factor is free of the second
argument.

multiplicative

additive

linear

Tells Maxima to simplify a_i expressions by the substitution a_i(x * y *
zx*x ...) —=>a.i(x) * a.i(y) * a_i(z) * .... The substitution is carried
out on the first argument only.

Tells Maxima to simplify a_i expressions by the substitution a_i(x + y +
z+ ...) ——>ali(x) +ai(y) +a.i(z) + .... The substitution is carried
out on the first argument only.

Equivalent to declaring a_i both outative and additive.

integer, noninteger

Tells Maxima to recognize a_i as an integer or noninteger variable.

even, odd Tells Maxima to recognize a_i as an even or odd integer variable.

rational, irrational

Tells Maxima to recognize a_i as a rational or irrational real variable.

real, imaginary, complex

Tells Maxima to recognize a_i as a real, pure imaginary, or complex vari-

able.

increasing, decreasing

Tells Maxima to recognize a_i as an increasing or decreasing function.
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posfun Tells Maxima to recognize a_i as a positive function.

integervalued

Tells Maxima to recognize a_i as an integer-valued function.
Examples:
evfun and evflag declarations

(%i1) declare (expand, evfun);
(%o1) done
(%12) (a + b)~3;

3
(%ho2) (b + a)
(%i3) (a + b)"3, expand;
3 2 2 3
(%03) b +3ab +3a b+a
(%i4) declare (demoivre, evflag);
(%04) done
(%15) exp (a + bxi);
%1 b+ a
(%05) e
(%16) exp (a + bx*%i), demoivre;
a
(%06) %e (%i sin(b) + cos(b))
bindtest declaration.
(%i1) aa + bb;
(%o1) bb + aa
(%1i2) declare (aa, bindtest);
(%02) done

(%13) aa + bb;

aa unbound variable

-- an error. Quitting. To debug this try debugmode(true);
(%i4) aa : 1234;

(%hod) 1234
(%i5) aa + bb;
(%05) bb + 1234

noun declaration.
(%i1) factor (12345678);

2
(%o1) 2 3 47 14593
(%i2) declare (factor, noun);
(%02) done
(%i3) factor (12345678);
(%03) factor (12345678)
(%14) ’’%, nouns;
2
(%ho4d) 2 3 47 14593

constant, scalar, nonscalar, and mainvar declarations.

alphabetic declaration.
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(5i1) xx\"yy\‘\@ : 1729;

(%o1) 1729

(%12) declare ("~ ‘@", alphabetic);

(%02) done

(%i3) xx"yy‘@ + Q@yy‘xx + ‘xx00yy~;

(%03) ‘xxQ@0yy~ + Q@yy‘xx + 1729
(%i4) listofvars (%);

(%ho4d) [Oyy‘xx, ‘xx0Qyy~]

feature declaration.
(%i1) declare (F0O, feature);

(%hol) done
(%i2) declare (x, F00);
(%02) done
(%13) featurep (x, F00);
(%03) true

rassociative and lassociative declarations

nary declaration.
(%i1) H (H (a, b), H (c, H (d, e)));

(%o1) H(H(a, b), H(c, H(@, e)))
(%i2) declare (H, nary);

(%02) done

(%i3) H (H (a, b), H (c, H (4, e)));

(%03) H(a, b, c, d, e)

symmetric and antisymmetric declarations.
(5i1) S (b, a);

(%o1) S(b, a)
(%12) declare (S, symmetric);

(%02) done

(%i3) S (b, a);

(%03) S(a, b)
(%i4) s (a, c, e, d, b);

(%ho4d) S(a, b, c, 4, e)
(%i5) T (b, a);

(%05) T(b, a)
(%i6) declare (T, antisymmetric);

(%06) done

%i7) T (b, a);

(%oT) - T(a, b)
(%i8) T (a, c, e, d, b);

(%08) T(a, b, c, d, e)

oddfun and evenfun declarations.
(%i1) o (= u) + o (w;

(%o1) o(w) + o(- w
(%i2) declare (o, oddfun);
(%02) done

(%13) o (- w) + o (w;
(%03) 0
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(%id) e (1) - e (W;

(%o4) e(-uw) - e(w
(%15) declare (e, evenfun);

(%05) done
(%1i6) e (- w) - e (W;

(%06) 0

outative declaration.
(%i1) F1 (100 * x);

(%ho1) F1(100 x)
(%1i2) declare (F1, outative);

(%02) done
(%i3) F1 (100 * x);

(%03) 100 F1(x)
(%i4) declare (zz, constant);

(%04) done
(%15) F1 (zz * y);

(%05) zz F1(y)

multiplicative declaration.
(%i1) F2 (a * b * c);

(%ho1) F2(a b c)
(%12) declare (F2, multiplicative);

(%02) done

(%13) F2 (a * b * c);

(%03) F2(a) F2(b) F2(c)

additive declaration.
(%i1) F3 (a + b + ¢);

(%o1) F3(c + b + a)
(%i2) declare (F3, additive);

(%02) done

(%i3) F3 (a + b + ¢);

(%03) F3(c) + F3(b) + F3(a)

linear declaration.
(%i1) ’sum (F(k) + G(k), k, 1, inf);

inf
\
(%o1) > (Gk) + Fk))
/
k=1
(%i2) declare (nounify (sum), linear);
(%02) done
(%1i3) ’sum (F(k) + G(k), k, 1, inf);
inf inf
\ \

(%03) > Gk) + > F(k)
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T [N

disolate (expr, x_1, ..., x_n) Function
is similar to isolate (expr, x) except that it enables the user to isolate more than
one variable simultaneously. This might be useful, for example, if one were at-
tempting to change variables in a multiple integration, and that variable change
involved two or more of the integration variables. This function is autoloaded from
‘simplification/disol.mac’. A demo is available by demo("disol")$.

dispform (expr) Function

Returns the external representation of expr with respect to its main operator. This
should be useful in conjunction with part which also deals with the external repre-
sentation. Suppose expr is -A . Then the internal representation of expr is "*"(-1,A),
while the external representation is "-"(A). dispform (expr, all) converts the en-
tire expression (not just the top-level) to external format. For example, if expr: sin
(sqrt (x)), then freeof (sqrt, expr) and freeof (sqrt, dispform (expr)) give
true, while freeof (sqrt, dispform (expr, all)) gives false.

distrib (expr) Function
Distributes sums over products. It differs from expand in that it works at only the
top level of an expression, i.e., it doesn’t recurse and it is faster than expand. It
differs from multthru in that it expands all sums at that level.

Examples:
(%i1) distrib ((a+b) * (c+d));
(%o01) bd+ad+bc+ac
(%i2) multthru ((a+b) * (c+d));
(%02) (b+a)d+ (b+a)c
(%13) distrib (1/((a+b) * (c+d)));
1
(%03)  mmmmmme— e

(b +a) (d+ ¢
(%14) expand (1/((a+b) * (c+d)), 1, 0);

(hod) e

bd+ad+bc+ac

dpart (expr, n_1, ..., n_k) Function

Selects the same subexpression as part, but instead of just returning that subex-
pression as its value, it returns the whole expression with the selected subexpression
displayed inside a box. The box is actually part of the expression.

(%i1l) dpart (x+y/z"2, 1, 2, 1);

y
(%o1) ———— + X
2



74 Maxima Manual

Ilzll
nnn

exp (x) Function
Represents the exponential function. Instances of exp (x) in input are simplified to
%he”x; exp does not appear in simplified expressions.

demoivre if true causes %e” (a + b %1i) to simplify to %e” (a (cos(b) + %i sin(b)))
if b is free of %i. See demoivre.

%hemode, when true, causes %e” (%pi %i x) to be simplified. See %emode.

%henumer, when true causes %e to be replaced by 2.718... whenever numer is true.
See %enumer.

Y%emode Option variable
Default value: true

When %emode is true, %e” (%pi %i x) is simplified as follows.
%he” (hpi %i x) simplifies to cos (%pi x) + %i sin (%pi x) if x is a floating point
number, an integer, or a multiple of 1/2, 1/3, 1/4, or 1/6, and then further simplified.

For other numerical x, %e” (%pi %i x) simplifies to %e”~ (%pi %i y) whereyisx - 2k
for some integer k such that abs(y) < 1.

When %emode is false, no special simplification of %e~ (%pi %1 x) is carried out.

Yenumer Option variable
Default value: false

When %enumer is true, %e is replaced by its numeric value 2.718... whenever numer
is true.

When %enumer is false, this substitution is carried out only if the exponent in %e"x
evaluates to a number.

See also ev and numer.

exptisolate Option variable
Default value: false

exptisolate, when true, causes isolate (expr, var) to examine exponents of
atoms (such as %e) which contain var.

exptsubst Option variable
Default value: false

exptsubst, when true, permits substitutions such as y for %e"x in %e~(a x).

freeof (x_1, ..., x_n, expr) Function
freeof (x_1, expr) Returns true if no subexpression of expr is equal to x_1 or if x_1
occurs only as a dummy variable in expr, or if x_1 is neither the noun nor verb form
of any operator in expr, and returns false otherwise.

freeof (x_1, ..., x_.n, expr) is equivalent to freeof (x_1, expr) and ... and
freeof (x_n, expr).
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The arguments x_1, ..., x_-n may be names of functions and variables, subscripted
names, operators (enclosed in double quotes), or general expressions. freeof evalu-
ates its arguments.

freeof operates only on expr as it stands (after simplification and evaluation) and
does not attempt to determine if some equivalent expression would give a different
result. In particular, simplification may yield an equivalent but different expression
which comprises some different elements than the original form of expr.

A variable is a dummy variable in an expression if it has no binding outside of the
expression. Dummy variables recognized by freeof are the index of a sum or product,
the limit variable in 1imit, the integration variable in the definite integral form of
integrate, the original variable in laplace, formal variables in at expressions, and
arguments in lambda expressions. Local variables in block are not recognized by
freeof as dummy variables; this is a bug.

The indefinite form of integrate is not free of its variable of integration.

e Arguments are names of functions, variables, subscripted names, operators,
and expressions. freeof (a, b, expr) is equivalent to freeof (a, expr) and
freeof (b, expr).

(%1i1) expr: z"3 * cos (a[l1]) * b~ (c+d);

d+c 3
(%o1) cos(a ) b z
1
(%i2) freeof (z, expr);
(%02) false
(%13) freeof (cos, expr);
(%03) false
(%14) freeof (al[l]l, expr);
(%ho4) false
(%15) freeof (cos (alll), expr);
(%05) false
(%i6) freeof (b~ (c+d), expr);
(%06) false
(%17) freeof (""", expr);
(%07T) false
(%18) freeof (w, sin, al[2], sin (al[2]), b*(c+d), expr);
(%08) true

e freeof evaluates its arguments.

(%i1) expr: (a+b)"5$
(%i2) c: a$
(%13) freeof (c, expr);
(%03) false
e freeof does not consider equivalent expressions. Simplification may yield an
equivalent but different expression.
(5i1l) expr: (a+b)"5$
(%12) expand (expr);
5 4 2 3 3 2 4 5
(%02) b +5ab +10a b +10a b +5a b+ a
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(%i3) freeof (a+b, %);

(%03) true
(%i4) freeof (atb, expr);
(%hod) false
(%i5) exp (x);

X
(%05) %e
(%i6) freeof (exp, exp (x));
(%06) true

e A summation or definite integral is free of its dummy variable. An indefinite
integral is not free of its variable of integration.

(%i1) freeof (i, ’sum (f(i), i, 0, n));

(%o1) true
(%i2) freeof (x, ’integrate (x°2, x, 0, 1));
(%02) true
(%13) freeof (x, ’integrate (x72, x));
(%03) false
genfact (x, y, z) Function
Returns the generalized factorial, defined as x (x-z) (x-22) ... (x- (y - 1) 2z).

Thus, for integral x, genfact (x, x, 1) = x! and genfact (x, x/2, 2) =x!!.

imagpart (expr) Function
Returns the imaginary part of the expression expr.
imagpart is a computational function, not a simplifying function.

See also abs, carg, polarform, rectform, and realpart.

infix (op) Function
infix (op, Ibp, rbp) Function
infix (op, Ibp, rbp, Ipos, rpos, pos) Function

Declares op to be an infix operator. An infix operator is a function of two arguments,
with the name of the function written between the arguments. For example, the
subtraction operator - is an infix operator.

infix (op) declares op to be an infix operator with default binding powers (left and
right both equal to 180) and parts of speech (left and right both equal to any).

infix (op, Ibp, rbp) declares op to be an infix operator with stated left and right
binding powers and default parts of speech (left and right both equal to any).

infix (op, lbp, rbp, Ipos, rpos, pos) declares op to be an infix operator with
stated left and right binding powers and parts of speech Ipos, rpos, and pos for the
left operand, the right operand, and the operator result, respectively.

"Part of speech", in reference to operator declarations, means expression type. Three
types are recognized: expr, clause, and any, indicating an algebraic expression, a
Boolean expression, or any kind of expression, respectively. Maxima can detect some
syntax errors by comparing the declared part of speech to an actual expression.

The precedence of op with respect to other operators derives from the left and right
binding powers of the operators in question. If the left and right binding powers of
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op are both greater the left and right binding powers of some other operator, then op
takes precedence over the other operator. If the binding powers are not both greater
or less, some more complicated relation holds.

The associativity of op depends on its binding powers. Greater left binding power
(Ibp) implies an instance of op is evaluated before other operators to its left in an
expression, while greater right binding power (rbp) implies an instance of op is eval-
uated before other operators to its right in an expression. Thus greater Ibp makes op
right-associative, while greater rbp makes op left-associative. If Ibp is equal to rbp,
op is left-associative.

See also Syntax.
Examples:

If the left and right binding powers of op are both greater the left and right binding
powers of some other operator, then op takes precedence over the other operator.

(%i1) :lisp (get ’$+ ’1bp)

100

(%1i1) :lisp (get ’$+ ’rbp)

100

(%i1) infix ("##", 101, 101);

(%o1) ##

(%i2) "##"(a, b) := sconcat("(", a, ",", b, ")");
(%02) (a ## b) := sconcat("(", a, ",", b, ")")
(%i3) 1 + a ## b + 2;

(%03) (a,b) + 3

(%i4) infix ("##", 99, 99);

(%ho4d) ##

(%iB) 1 + a ## b + 2;

(%05) (a+1,b+2)

Greater Ibp makes op right-associative, while greater rbp makes op left-associative.

(%i1) infix ("##", 100, 99);

(%o1) #Ht

(%12) u##n(a’ b) c= sconcat(“(", a, u,n’ b, u)n)$
(%13) foo ## bar ## baz;

(%03) (foo, (bar,baz))
(%i4) infix ("##", 100, 101);

(%hod) #H#

(%i5) foo ## bar ## baz;

(%05) ((foo,bar) ,baz)

Maxima can detect some syntax errors by comparing the declared part of speech to
an actual expression.
(%i1) infix ("##", 100, 99, expr, expr, expr);
(%hol) ##
(%i2) if x ## y then 1 else 0;
Incorrect syntax: Found algebraic expression where logical expression expected
if x ## y then

(%12) infix ("##", 100, 99, expr, expr, clause);
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(%02) ##t
(%13) if x ## y then 1 else 0;
(%03) if x ## y then 1 else 0
inflag Option variable

Default value: false
When inflag is true, functions for part extraction inspect the internal form of expr.

Note that the simplifier re-orders expressions. Thus first (x + y) returns x if inflag
is true and y if inflag is false. (first (y + x) gives the same results.)

Also, setting inflag to true and calling part or substpart is the same as calling
inpart or substinpart.

Functions affected by the setting of inflag are: part, substpart, first, rest, last,
length, the for ... in construct, map, fullmap, maplist, reveal and pickapart.

inpart (expr, n_1, ..., n_k) Function
is similar to part but works on the internal representation of the expression rather
than the displayed form and thus may be faster since no formatting is done. Care
should be taken with respect to the order of subexpressions in sums and products
(since the order of variables in the internal form is often different from that in the
displayed form) and in dealing with unary minus, subtraction, and division (since
these operators are removed from the expression). part (x+y, 0) or inpart (x+y,
0) yield +, though in order to refer to the operator it must be enclosed in "s. For

example ... if inpart (%09,0) = "+" then ....
Examples:

(5i1) x + y + wkz;

(%o1) Wwz+y+x

(%i2) inpart (%, 3, 2);

(%02) z

(%i3) part (%th (2), 1, 2);

(%03) z

(%i4) ’limit (£ (x)"g(x+1), x, 0, minus);

glx + 1)
(%04) limit f(x)
x => 0-
(%15) inpart (%, 1, 2);
(%05) glx + 1)
isolate (expr, x) Function

Returns expr with subexpressions which are sums and which do not contain var
replaced by intermediate expression labels (these being atomic symbols like %t1, %t2,
...). This is often useful to avoid unnecessary expansion of subexpressions which
don’t contain the variable of interest. Since the intermediate labels are bound to the
subexpressions they can all be substituted back by evaluating the expression in which
they occur.

exptisolate (default value: false) if true will cause isolate to examine exponents
of atoms (like %e) which contain var.
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isolate_wrt_times if true, then isolate will also isolate with respect to products.
See isolate_wrt_times.

Do example (isolate) for examples.

isolate_wrt_times Option variable
Default value: false

When isolate_wrt_times is true, isolate will also isolate with respect to products.
E.g. compare both settings of the switch on

(%i1) isolate_wrt_times: true$
(%i2) isolate (expand ((at+b+c)"2), c);

(%ht2) 2 a
(%t3) 2 b
2 2
(%t4) b +2ab+a
2
(%o4) c + %t3 c + 4t2 c + Yt4d

(%i4) isolate_wrt_times: false$
(%15) isolate (expand ((at+b+c)”2), c);
2
(%05) c +2bc+2ac+ Y%td

listconstvars Option variable
Default value: false

When listconstvars is true, it will cause listofvars to include %e, %pi, %1, and
any variables declared constant in the list it returns if they appear in the expression
listofvars is called on. The default is to omit these.

listdummyvars Option variable
Default value: true

When listdummyvars is false, "dummy variables" in the expression will not be
included in the list returned by listofvars. (The meaning of "dummy variables" is
as given in freeof. "Dummy variables" are mathematical things like the index of a
sum or product, the limit variable, and the definite integration variable.) Example:

(%i1) listdummyvars: true$

(%i2) listofvars (’sum(f(i), i, 0, n));
(%02) [i, n]
(%13) listdummyvars: false$

(%i4) listofvars (’sum(f(i), i, 0, n));
(%04) [n]
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listofvars (expr) Function
Returns a list of the variables in expr.

listconstvars if true causes listofvars to include %e, %pi, %1, and any variables
declared constant in the list it returns if they appear in expr. The default is to omit

these.
(%i1) listofvars (f (x[1]1+y) / g~ (2+a));
(%o1) g, a, x , y]
1
lfreeof (list, expr) Function

For each member m of list, calls freeof (m, expr). It returns false if any call to
freeof does and true otherwise.

lopow (expr, x) Function
Returns the lowest exponent of x which explicitly appears in expr. Thus
(%11) lopow ((x+y)~2 + (x+y)~a, x+y);
(%hol) min(a, 2)

Ipart (label, expr, n_1, ..., n_k) Function
is similar to dpart but uses a labelled box. A labelled box is similar to the one
produced by dpart but it has a name in the top line.

multthru (expr) Function

multthru (expr_1, expr_2) Function
Multiplies a factor (which should be a sum) of expr by the other factors of expr. That
is, expr is .1 £2 ... fn where at least one factor, say f.i, is a sum of terms. Each
term in that sum is multiplied by the other factors in the product. (Namely all the
factors except f_i). multthru does not expand exponentiated sums. This function is
the fastest way to distribute products (commutative or noncommutative) over sums.
Since quotients are represented as products multthru can be used to divide sums by
products as well.

multthru (expr_1, expr-2) multiplies each term in expr-2 (which should be a sum
or an equation) by expr_1. If expr_1 is not itself a sum then this form is equivalent
to multthru (expr_1*expr_2).
(%i1) x/(x-y)"2 - 1/(x-y) - £(x)/(x-y)~3;
1 X f(x)
(%o1) - - + oo -

(x - y) -y
(%12) multthru ((x-y)~3, %);

2
(%02) - x-y) +x -y - £
(%i3) ratexpand (%);

2
(%03) -y +xy-£fx

(%i4) ((a+b)~10%*s"2 + 2xaxbxs + (axb)~2)/(axbxs~2);
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10 2 2 2
b+a) s +2abs+a b
(hod)  mmmmmmmmmmmm oo
2
abs
(%15) multthru (%); /* note that this does not expand (b+a)~10 */
10
2 ab (b+a)
(%05) i
s 2 ab
s
(%16) multthru (a.(b+c.(d+e)+f));
(%06) a.f+a.c.((e+d +a.b
(%1i7) expand (a.(b+c.(d+e)+f));
(%07) a.f+a.c.e+a.c.d+a.b
nounify (f) Function

Returns the noun form of the function name f. This is needed if one wishes to refer
to the name of a verb function as if it were a noun. Note that some verb functions
will return their noun forms if they can’t be evaluated for certain arguments. This is
also the form returned if a function call is preceded by a quote.

nterms (expr) Function
Returns the number of terms that expr would have if it were fully expanded out
and no cancellations or combination of terms occurred. Note that expressions like
sin (expr), sqrt (expr), exp (expr), etc. count as just one term regardless of how
many terms expr has (if it is a sum).

op (expr) Function
Returns the main operator of the expression expr. op (expr) is equivalent to part
(expr, 0).

op returns a string if the main operator is a built-in or user-defined prefix, binary or
n-ary infix, postfix, matchfix, or nofix operator. Otherwise, if expr is a subscripted
function expression, op returns the subscripted function; in this case the return value
is not an atom. Otherwise, expr is an array function or ordinary function expression,
and op returns a symbol.

op observes the value of the global flag inflag.
op evaluates it argument.

See also args.

Examples:

(%i1) stringdisp: true$
(%12) op (a * b * c);

(%02) II*II
(%13) op (a * b + c);
(%03) ll+||

(%1i4) op (’sin (a + b));
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(%ho4) sin
(%i5) op (al);
(%05) npn
(%i6) op (-a);
(%06) n_n
(%17) op ([a, b, c1);
(%07) n[n
(%18) op (’(if a > b then c else d));
(%08) nifn
(%19) op (’foo (a));
(%09) foo
(%i10) prefix (foo);
(%010) "foo"
(%i11) op (foo a);
(%o11) "foo"
(%i12) op (F [x, y] (a, b, c));
(%012) F

X, ¥
(%113) op (G [u, v, wl);
(%013) G

operatorp (expr, op) Function
operatorp (expr, [op-1, ..., op_n]) Function
operatorp (expr, op) returns true if op is equal to the operator of expr.

operatorp (expr, [op_1, ..., op_n]) returns true if some element op_1, ..., op_n
is equal to the operator of expr.

optimize (expr) Function
Returns an expression that produces the same value and side effects as expr but
does so more efficiently by avoiding the recomputation of common subexpressions.
optimize also has the side effect of "collapsing" its argument so that all common
subexpressions are shared. Do example (optimize) for examples.

optimprefix Option variable
Default value: %

optimprefix is the prefix used for generated symbols by the optimize command.

ordergreat (v_1, ..., v_n) Function
orderless (v_1, ..., v_n) Function
ordergreat changes the canonical ordering of Maxima expressions such that v_1 suc-
ceeds v_2 succeeds ... succeeds v_n, and v_n succeeds any other symbol not mentioned
as an argument.

orderless changes the canonical ordering of Maxima expressions such that v_1 pre-
cedes v_2 precedes ... precedes v_n, and v_n precedes any other variable not mentioned
as an argument.



Chapter 6: Expressions 83

The order established by ordergreat and orderless is dissolved by unorder.
ordergreat and orderless can be called only once each, unless unorder is called;
only the last call to ordergreat and orderless has any effect.

See also ordergreatp.

ordergreatp (expr_1, expr.2) Function

orderlessp (expr_1, expr.2) Function
ordergreatp returns true if expr_1 succeeds expr_2 in the canonical ordering of
Maxima expressions, and false otherwise.

orderlessp returns true if expr_1 precedes expr_2 in the canonical ordering of Max-
ima expressions, and false otherwise.

All Maxima atoms and expressions are comparable under ordergreatp and
orderlessp, although there are isolated examples of expressions for which these
predicates are not transitive; that is a bug.

The canonical ordering of atoms (symbols, literal numbers, and strings) is the follow-
ing.

(integers and floats) precede (bigfloats) precede (declared constants) precede (strings)
precede (declared scalars) precede (first argument to orderless) precedes ... precedes
(last argument to orderless) precedes (other symbols) precede (last argument to
ordergreat) precedes ... precedes (first argument to ordergreat) precedes (declared
main variables)

For non-atomic expressions, the canonical ordering is derived from the ordering for
atoms. For the built-in + * and ~ operators, the ordering is not easily summarized.
For other built-in operators and all other functions and operators, expressions are
ordered by their arguments (beginning with the first argument), then by the name
of the operator or function. In the case of subscripted expressions, the subscripted
symbol is considered the operator and the subscript is considered an argument.

The canonical ordering of expressions is modified by the functions ordergreat and
orderless, and the mainvar, constant, and scalar declarations.

See also sort.
Examples:

Ordering ordinary symbols and constants. Note that %pi is not ordered according to
its numerical value.
(%i1) stringdisp : true;
(ho1) true
(%i2) sort ([%pi, 3bO, 3.0, x, X, "foo", 3, a, 4, "bar", 4.0, 4b0]1);]J}
(%02) [3, 3.0, 4, 4.0, 3.0b0, 4.0b0, %pi, "bar", "foo", a, x, X]
Effect of ordergreat and orderless functions.
(%i1) sort ([M, H, K, T, E, W, G, A, P, J, S]);

(%o1) [A, E, G, H, J, K, M, P, S, T, W]
(%12) ordergreat (S, J);
(%02) done

(%13) orderless (M, H);
(%03) done
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(%i4) sort ([M, H, K, T, E, W, G, A, P, J, S1);
(%hod) [M, H, A, E, G, K, P, T, W, J, S]
Effect of mainvar, constant, and scalar declarations.
(%i1) sort ([aa, foo, bar, bb, baz, quux, cc, dd, Al, B1l, Ci]);
(%ho1) [aa, bar, baz, bb, cc, dd, foo, quux, Al, B1l, C1i]
(%i2) declare (aa, mainvar);

(%02) done
(%13) declare ([baz, quux], constant);
(%03) done
(%i4) declare ([A1l, B1], scalar);
(%ho4) done

(%15) sort ([aa, foo, bar, bb, baz, quux, cc, dd, Al, B1l, Ci]);
(%05) [baz, quux, Al, B1l, bar, bb, cc, dd, foo, C1l, aal
Ordering non-atomic expressions.
(%i1) sort ([1, 2, n, £(1), £(2), £(2, 1), g1, g1, 2), gn), £, 11N
(hol) [1, 2, £(1), g(1), g1, 2), £(2), £(2, 1), n, gn),

f(n, 1]
(%i2) sort ([foo(1), X[1], X[kl, foo(k), 1, kl);
(%02) [1, foo(1), X , k, foo(k), X ]
1 k
part (expr, n_1, ..., n_k) Function

Returns parts of the displayed form of expr. It obtains the part of expr as specified
by the indices n_1, ..., n_k. First part n_1 of expr is obtained, then part n_2 of that,
etc. The result is part n_k of ... part n_2 of part n_1 of expr.

part can be used to obtain an element of a list, a row of a matrix, etc.

If the last argument to a part function is a list of indices then several subexpressions
are picked out, each one corresponding to an index of the list. Thus part (x +y +
z, [1, 3]) is z+x.

piece holds the last expression selected when using the part functions. It is set
during the execution of the function and thus may be referred to in the function itself
as shown below.

If partswitch is set to true then end is returned when a selected part of an expression
doesn’t exist, otherwise an error message is given.

Example: part (z+2*y, 2, 1) yields 2.

example (part) displays additional examples.

partition (expr, x) Function
Returns a list of two expressions. They are (1) the factors of expr (if it is a product),
the terms of expr (if it is a sum), or the list (if it is a list) which don’t contain x and,
(2) the factors, terms, or list which do.
(%11) partition (2*a*x*f(x), x);

(%o1) [2 a, x £(x)]
(%1i2) partition (a+b, x);
(ho2) [b + a, 0]

(%i3) partition ([a, b, f(a), cl, a);
(%03) (b, c], [a, £(a)]]
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partswitch Option variable
Default value: false

When partswitch is true, end is returned when a selected part of an expression
doesn’t exist, otherwise an error message is given.

pickapart (expr, n) Function
Assigns intermediate expression labels to subexpressions of expr at depth n, an in-
teger. Subexpressions at greater or lesser depths are not assigned labels. pickapart
returns an expression in terms of intermediate expressions equivalent to the original
expression expr

See also part, dpart, lpart, inpart, and reveal.

Examples:
(%1i1) expr: (a+b)/2 + sin (x72)/3 - log (1 + sqrt(x+1));
2
sin(x ) b+ a
(%ho1) - log(sqrt(x + 1) + 1) + ——————- + ————
3 2
(%1i2) pickapart (expr, 0);
2
sin(x ) b+ a
(%t2) - log(sqrt(x + 1) + 1) + —————— + ————
3 2
(%ho2) ht2
(%13) pickapart (expr, 1);
(%t3) - log(sqrt(x + 1) + 1)
2
sin(x )
€2
3
b+ a
15
2
(%05) w5 + t4 + Ut3
(%15) pickapart (expr, 2);
(%t6) log(sqrt(x + 1) + 1)
2

(%t7) sin(x )
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(%t8) b+ a
w8 Ut7
(%08) -—= + ——= - /t6
2 3
(%18) pickapart (expr, 3);
(%ht9) sqrt(x + 1) + 1
2
(%t10) p'
b+ a sin(%t10)
(hoto) - - log(%t9) + —-——-—-—-
2 3
(%110) pickapart (expr, 4);
(ht11) sqrt(x + 1)
2
sin(x ) b+ a
(hott) —=mm——- + ————- - log(%t11l + 1)
3 2
(%111) pickapart (expr, 5);
(%t12) x + 1
2
sin(x ) b+ a
(ho12)  ——————- + - - log(sqrt(%t12) + 1)
3 2
(%112) pickapart (expr, 6);
2
sin(x ) b+ a
(hot2)  ——=———- + === - log(sqrt(x + 1) + 1)
3 2
piece System variable
Holds the last expression selected when using the part functions. It is set during the
execution of the function and thus may be referred to in the function itself.
polarform (expr) Function

Returns an expression r %e” (%i theta) equivalent to expr, such that r and theta
are purely real.



Chapter 6: Expressions

powers (expr, x)

87

Function

Gives the powers of x occuring in expr.

load (powers) loads this function.

product (expr, i, i_0, i_1)
Represents a product of the values of expr as the index i varies from i_0 to i_1. The
noun form ’product is displayed as an uppercase letter pi.

Function

product evaluates expr and lower and upper limits i_0 and i_1, product quotes (does
not evaluate) the index i.

If the upper and lower limits differ by an integer, expr is evaluated for each value of
the index i, and the result is an explicit product.

Otherwise, the range of the index is indefinite. Some rules are applied to simplify the
product. When the global variable simpproduct is true, additional rules are applied.
In some cases, simplification yields a result which is not a product; otherwise, the
result is a noun form ’product.

See also nouns and evflag.

Examples:
(i)
(%o1)
(%12)
(%02)
(%13)
(%03)

(hid)
(%ho4)
(%15)

(%05)

(%hi6)

(%06)

ChiT)

(%hoT)
(%i8)

(%08)

product
product

product

product

product

product

product

product

(x + ix(i+1)/2, i, 1, 4);
x+1) (x+3) (x+6) (x+ 10
(i~2, i, 1, 7);
25401600
(alil, i, 1, 7);
a a a a a a a
1 2 3 4 5 6 7
(a(i), i, 1, 7);
a(1) a(2) a(3) a(4) a(5) a(6) a(?)
(a(i), i, 1, n);

n
/===\
o
Froadd)
LI
i=1
(k, k, 1, n);
n
/===\
Lo
ok
Lo
k= 1
(k, k, 1, n), simpproduct;
n!
(integrate (x°k, x, 0, 1), k, 1, n);
n
/===
I 1
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ok + 1
k=1
(%19) product (if k <= 5 then a"k else b7k, k, 1, 10);
15 40
(%09) a b
realpart (expr) Function

Returns the real part of expr. realpart and imagpart will work on expressions
involving trigonometic and hyperbolic functions, as well as square root, logarithm,
and exponentiation.

rectform (expr) Function
Returns an expression a + b %i equivalent to expr, such that a and b are purely real.

rembox (expr, unlabelled) Function
rembox (expr, label) Function
rembox (expr) Function

Removes boxes from expr.

rembox (expr, unlabelled) removes all unlabelled boxes from expr.
rembox (expr, label) removes only boxes bearing label.

rembox (expr) removes all boxes, labelled and unlabelled.

Boxes are drawn by the box, dpart, and lpart functions.

Examples:
(%i1) expr: (a*d - b*c)/h"2 + sin(Y%pix*x);
ad-bec
(ko) sin(%pi x) + ———-————--
2
h
(%12) dpart (dpart (expr, 1, 1), 2, 2);
nmuwmnonnn a d - b C
(ho2) sin("%pi x") + —===-----
n 2"
Ill1 n

nwnn

(%13) expr2: lpart (BAR, lpart (F00, %, 1), 2);
FoQ"mmunmmnmmnnn BAR" "
n nunnunn N "ad-Dbc"

(%03) "sin("%pi Xll)ll + M n

n nonnwnnen N n nnnn n
nunwnnnnnn n n 2|| n
n Hh n n
n nnnn n

munnmnnonnnn

(%1i4) rembox (expr2, unlabelled);
BARII mnmmnonnn
FDD""II"“““"" ||a d —_ b C"
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(%04) "Sil’l(%pi X) LI | n
muuwmmmmnnnn n 2 n
n h n
(%15) rembox (expr2, FO0);
BAR" mnmmnnnn
nuwmnuownnn ||a d — b C"
(%05) Sln("%pl X") + L, n
nuwmnuwnnn n nuwnn n
n n 2“ n
n Ilh n n
(%16) rembox (expr2, BAR);
FOU muwmmmnnnnnn
n nuwnmnonnn n a d — b c
(%06) “Sin("%pi Xll)" 4+ ——————
n nuwmnonnn n nuwnn
muwwmmmnnnnnn n 2"
llh n
(%1i7) rembox (expr2);
ad-Dbc
(%hoT) sin(Ypi x) + -———————-
2
h
sum (expr, i, 1.0, i_1) Function

Represents a summation of the values of expr as the index i varies from i_0 to i_1.
The noun form ’sum is displayed as an uppercase letter sigma.

sum evaluates its summand expr and lower and upper limits i_0 and i_1, sum quotes
(does not evaluate) the index i.

If the upper and lower limits differ by an integer, the summand expr is evaluated for
each value of the summation index i, and the result is an explicit sum.

Otherwise, the range of the index is indefinite. Some rules are applied to simplify the
summation. When the global variable simpsum is true, additional rules are applied.
In some cases, simplification yields a result which is not a summation; otherwise, the
result is a noun form ’sum.

When the evflag (evaluation flag) cauchysum is true, a product of summations
is expressed as a Cauchy product, in which the index of the inner summation is a
function of the index of the outer one, rather than varying independently.

The global variable genindex is the alphabetic prefix used to generate the next index
of summation, when an automatically generated index is needed.

gensumnum is the numeric suffix used to generate the next index of summation,
when an automatically generated index is needed. When gensumnum is false, an
automatically-generated index is only genindex with no numeric suffix.
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See also sumcontract, intosum, bashindices, niceindices, nouns, evflag, and

zeilberger.

Examples:
(ki)
(%hol)
(%12)
(%02)
(%13)
(%03)
(%id)

(%ho4)

(%15)

(%05)

(%hi6)

(%06)
ChiT)

(hoT)

(%18)

(%08)

(%i9)

(%09)

sum (i~2, i, 1, 7);
140

sum (alil, i, 1, 7);

a +a +a +a +a +a +a

7 6 5 4 3 2 1
sum (a(i), i, 1, 7);

a(7) + a(6) + a(b) + a(4) + a(3) + a(2) + a(1)

sum (a(i), i, 1, n);

n
\
> a(i)
/
i=1
sum (271 + i"2, i, 0, n);
n
\ i 2
> (2 +1)
/
i=0
sum (271 + i72, i, 0, n), simpsum;
3 2
n+1 2n +3n +n
2 e -1
6
sum (1/3°1i, i, 1, inf);
inf
\ 1
> —_—
/ i
==== 3
i=1
sum (1/37i, i, 1, inf), simpsum;
1
2
sum (i~2, i, 1, 4) * sum (1/i°2, i, 1, inf);
inf
\ 1
30 > -
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==== 1
i=1
(%110) sum (i"2, i, 1, 4) * sum (1/i"2, i, 1, inf), simpsum;
2
(%010) 5 %pi
(%i11) sum (integrate (x°k, x, 0, 1), k, 1, n);
n
\ 1
(%o11) > ————-
/ k+1
k=1

(%i12) sum (if k <= 5 then a"k else b"k, k, 1, 10);
10 9 8 7 6 5 4 3 2
(%o12) b +b +b +b +b +a +a +a +a +a

Isum (expr, x, L) Function
Represents the sum of expr for each element x in L.

A noun form ’1lsum is returned if the argument L does not evaluate to a list.

Examples:
(%i1) 1sum (x~i, i, [1, 2, 71);
7 2
(%o1) X + X + X

(%i2) lsum (i"2, i, rootsof (x°3 - 1));

\ 2
(%02) > i
/
3
i in rootsof(x - 1)
verbify (f) Function

Returns the verb form of the function name f.
See also verb, noun, and nounify.
Examples:

(%i1) verbify (°foo);

(%ho1) foo
(hi2) :lisp $%

$F00

(%12) nounify (foo);

(%02) foo
(%i3) :1lisp $%

#F00



92

Maxima Manual



Chapter 7: Simplification 93

7 Simplification

7.1 Functions and Variables for Simplification

askexp System variable
When asksign is called, askexp is the expression asksign is testing.

At one time, it was possible for a user to inspect askexp by entering a Maxima break
with control-A.

askinteger (expr, integer) Function
askinteger (expr) Function
askinteger (expr, even) Function
askinteger (expr, odd) Function

askinteger (expr, integer) attempts to determine from the assume database
whether expr is an integer. askinteger prompts the user if it cannot tell otherwise,
and attempt to install the information in the database if possible. askinteger
(expr) is equivalent to askinteger (expr, integer).

askinteger (expr, even) and askinteger (expr, odd) likewise attempt to deter-
mine if expr is an even integer or odd integer, respectively.

asksign (expr) Function
First attempts to determine whether the specified expression is positive, negative, or
zero. If it cannot, it asks the user the necessary questions to complete its deduc-
tion. The user’s answer is recorded in the data base for the duration of the current
computation. The return value of asksign is one of pos, neg, or zero.

demoivre (expr) Function

demoivre Option variable
The function demoivre (expr) converts one expression without setting the global
variable demoivre.

When the variable demoivre is true, complex exponentials are converted into equiv-
alent expressions in terms of circular functions: exp (a + b*%i) simplifies to %e~a *
(cos(b) + %i*sin(b)) if b is free of %i. a and b are not expanded.

The default value of demoivre is false.

exponentialize converts circular and hyperbolic functions to exponential form.
demoivre and exponentialize cannot both be true at the same time.

domain Option variable
Default value: real

When domain is set to complex, sqrt (x"2) will remain sqrt (x72) instead of re-
turning abs(x).
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expand (expr) Function

expand (expr, p, n) Function
FExpand expression expr. Products of sums and exponentiated sums are multiplied
out, numerators of rational expressions which are sums are split into their respective
terms, and multiplication (commutative and non-commutative) are distributed over
addition at all levels of expr.

For polynomials one should usually use ratexpand which uses a more efficient algo-
rithm.

maxnegex and maxposex control the maximum negative and positive exponents, re-
spectively, which will expand.

expand (expr, p, n) expands expr, using p for maxposex and n for maxnegex. This
is useful in order to expand part but not all of an expression.

expon - the exponent of the largest negative power which is automatically expanded
(independent of calls to expand). For example if expon is 4 then (x+1)~(-5) will not
be automatically expanded.

expop - the highest positive exponent which is automatically expanded. Thus
(x+1) "3, when typed, will be automatically expanded only if expop is greater than
or equal to 3. If it is desired to have (x+1)"n expanded where n is greater than
expop then executing expand ((x+1) "n) will work only if maxposex is not less than
n.

The expand flag used with ev causes expansion.

The file ‘simplification/facexp.mac’ contains several related functions (in
particular facsum, factorfacsum and collectterms, which are autoloaded) and
variables (nextlayerfactor and facsum_combine) that provide the user with the
ability to structure expressions by controlled expansion. Brief function descriptions
are available in ‘simplification/facexp.usg’. A demo is available by doing
demo ("facexp").

expandwrt (expr, x_1, ..., x_n) Function
Expands expression expr with respect to the variables x_1, ..., x_n. All products
involving the variables appear explicitly. The form returned will be free of products
of sums of expressions that are not free of the variables. x_1, ..., x_.n may be variables,

operators, or expressions.

By default, denominators are not expanded, but this can be controlled by means of
the switch expandwrt_denom.

This function is autoloaded from ‘simplification/stopex.mac’.

expandwrt_denom Option variable
Default value: false

expandwrt_denom controls the treatment of rational expressions by expandwrt. If
true, then both the numerator and denominator of the expression will be expanded
according to the arguments of expandwrt, but if expandwrt_denom is false, then
only the numerator will be expanded in that way.
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expandwrt_factored (expr, x_1, ..., x_n) Function
is similar to expandwrt, but treats expressions that are products somewhat differently.
expandwrt_factored expands only on those factors of expr that contain the variables
x_1, ..., x.n.

This function is autoloaded from ‘simplification/stopex.mac’.

expon Option variable
Default value: 0

expon is the exponent of the largest negative power which is automatically expanded
(independent of calls to expand). For example, if expon is 4 then (x+1)~(-5) will
not be automatically expanded.

exponentialize (expr) Function

exponentialize Option variable
The function exponentialize (expr) converts circular and hyperbolic functions in
expr to exponentials, without setting the global variable exponentialize.

When the variable exponentialize is true, all circular and hyperbolic functions are
converted to exponential form. The default value is false.

demoivre converts complex exponentials into circular functions. exponentialize
and demoivre cannot both be true at the same time.

expop Option variable
Default value: 0

expop is the highest positive exponent which is automatically expanded. Thus (x +
1) 73, when typed, will be automatically expanded only if expop is greater than or
equal to 3. If it is desired to have (x + 1) “n expanded where n is greater than expop
then executing expand ((x + 1) "n) will work only if maxposex is not less than n.

factlim Option variable
Default value: -1

factlim specifies the highest factorial which is automatically expanded. If it is -1
then all integers are expanded.

intosum (expr) Function
Moves multiplicative factors outside a summation to inside. If the index is used in the
outside expression, then the function tries to find a reasonable index, the same as it
does for sumcontract. This is essentially the reverse idea of the outative property
of summations, but note that it does not remove this property, it only bypasses it.

In some cases, a scanmap (multthru, expr) may be necessary before the intosum.

lassociative Declaration
declare (g, lassociative) tells the Maxima simplifier that g is left-associative.
E.g.,g (g (a, b), g (c, 4)) will simplify to g (g (g (a, b), c), d).
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linear Declaration
One of Maxima’s operator properties. For univariate f so declared, "expansion" f(x
+y) yields £(x) + £(y), £(a*x) yields a*f (x) takes place where a is a "constant".
For functions of two or more arguments, "linearity" is defined to be as in the case of
sum or integrate, i.e., f (a*x + b, x) yields a*f (x,x) + b*f(1,x) for a and b free
of x.

linear is equivalent to additive and outative. See also opproperties.

mainvar Declaration

You may declare variables to be mainvar. The ordering scale for atoms is essentially:
numbers < constants (e.g., %e, %pi) < scalars < other variables < mainvars. E.g., com-
pare expand ((X+Y)"4) with (declare (x, mainvar), expand ((x+y)~4)). (Note:
Care should be taken if you elect to use the above feature. E.g., if you subtract an
expression in which x is a mainvar from one in which x isn’t a mainvar, resimplifica-
tion e.g. with ev (expr, simp) may be necessary if cancellation is to occur. Also, if
you save an expression in which x is a mainvar, you probably should also save x.)

maxapplydepth Option variable
Default value: 10000

maxapplydepth is the maximum depth to which applyl and apply2 will delve.

maxapplyheight Option variable
Default value: 10000
maxapplyheight is the maximum height to which applybl will reach before giving
up.

maxnegex Option variable
Default value: 1000

maxnegex is the largest negative exponent which will be expanded by the expand
command (see also maxposex).

maxposex Option variable
Default value: 1000

maxposex is the largest exponent which will be expanded with the expand command
(see also maxnegex).

multiplicative Declaration
declare (f, multiplicative) tells the Maxima simplifier that £ is multiplicative.
1. If £ is univariate, whenever the simplifier encounters f applied to a product, f
distributes over that product. E.g., f (x*xy) simplifies to £ (x)*f (y).
2. If £ is a function of 2 or more arguments, multiplicativity is defined as multiplica-
tivity in the first argument to £, e.g., £ (g(x) * h(x), x) simplifies to £ (g(x)
,x) * £ (h(x), x).

This simplification does not occur when £ is applied to expressions of the form product
(x[i]l, i, m, n).
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negdistrib Option variable
Default value: true

When negdistrib is true, -1 distributes over an expression. E.g., -(x + y) becomes
-y - x. Setting it to false will allow - (x + y) to be displayed like that. This is
sometimes useful but be very careful: like the simp flag, this is one flag you do not
want to set to false as a matter of course or necessarily for other than local use in
your Maxima.

negsumdispflag Option variable
Default value: true

When negsumdispflag is true, x - y displays as x - y instead of as - y + x. Setting
it to false causes the special check in display for the difference of two expressions
to not be done. One application is that thus a + %i*b and a - %i*b may both be
displayed the same way.

noeval Special symbol
noeval suppresses the evaluation phase of ev. This is useful in conjunction with other
switches and in causing expressions to be resimplified without being reevaluated.

noun Declaration
noun is one of the options of the declare command. It makes a function so declared
a "noun", meaning that it won’t be evaluated automatically.

noundisp Option variable
Default value: false

When noundisp is true, nouns display with a single quote. This switch is always
true when displaying function definitions.

nouns Special symbol
nouns is an evflag. When used as an option to the ev command, nouns converts all
"noun" forms occurring in the expression being ev’d to "verbs", i.e., evaluates them.
See also noun, nounify, verb, and verbify.

numer Special symbol
numer causes some mathematical functions (including exponentiation) with numerical
arguments to be evaluated in floating point. It causes variables in expr which have
been given numerals to be replaced by their values. It also sets the float switch on.

numerval (x_1, expr_1, ..., var_n, expr_n) Function
Declares the variables x_1, ..., x_n to have numeric values equal to expr_1, ..., expr_
n. The numeric value is evaluated and substituted for the variable in any expressions
in which the variable occurs if the numer flag is true. See also ev.

The expressions expr_1, ..., expr_n can be any expressions, not necessarily numeric.
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opproperties System variable
opproperties is the list of the special operator properties recognized by the Max-
ima simplifier: linear, additive, multiplicative, outative, evenfun, oddfun,
commutative, symmetric, antisymmetric, nary, lassociative, rassociative.

opsubst Option variable
Default value: true

When opsubst is false, subst does not attempt to substitute into the operator of
an expression. E.g., (opsubst: false, subst (x"2, r, r+r[0])) will work.

outative Declaration
declare (f, outative) tells the Maxima simplifier that constant factors in the ar-
gument of £ can be pulled out.

1. If £ is univariate, whenever the simplifier encounters £ applied to a product, that
product will be partitioned into factors that are constant and factors that are not
and the constant factors will be pulled out. E.g., £ (a*x) will simplify to a*f (x)
where a is a constant. Non-atomic constant factors will not be pulled out.

2. If f is a function of 2 or more arguments, outativity is defined as in the case of
sum or integrate, i.e., f (a*xg(x), x) will simplify to a * £(g(x), x) for a free
of x.

sum, integrate, and limit are all outative.

posfun Declaration
declare (f, posfun) declares £ to be a positive function. is (£(x) > 0) yields true.

radcan (expr) Function
Simplifies expr, which can contain logs, exponentials, and radicals, by converting it
into a form which is canonical over a large class of expressions and a given ordering
of variables; that is, all functionally equivalent forms are mapped into a unique form.
For a somewhat larger class of expressions, radcan produces a regular form. Two
equivalent expressions in this class do not necessarily have the same appearance, but
their difference can be simplified by radcan to zero.
For some expressions radcan is quite time consuming. This is the cost of exploring
certain relationships among the components of the expression for simplifications based
on factoring and partial-fraction expansions of exponents.
When %e_to_numlog is true, %e” (r*log(expr)) simplifies to expr r if r is a rational
number.
When radexpand is false, certain transformations are inhibited. radcan (sqrt (1-
x)) remains sqrt (1-x) and is not simplified to %i sqrt (x-1). radcan (sqrt (x"2
- 2*x + 11)) remains sqrt (x"2 - 2*x + 1) and is not simplified to x - 1.

example (radcan) displays some examples.

radexpand Option variable
Default value: true
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radexpand controls some simplifications of radicals.

When radexpand is all, causes nth roots of factors of a product which are powers
of n to be pulled outside of the radical. E.g. if radexpand is all, sqrt (16*x~2)
simplifies to 4*x.
More particularly, consider sqrt (x~2).
e [f radexpand is all or assume (x > 0) has been executed, sqrt (x~2) simplifies
to x.
e If radexpand is true and domain is real (its default), sqrt(x~2) simplifies to
abs (x).
e If radexpand is false, or radexpand is true and domain is complex, sqrt(x~2)
is not simplified.

Note that domain only matters when radexpand is true.

radsubstflag Option variable
Default value: false
radsubstflag, if true, permits ratsubst to make substitutions such as u for sqrt
(x) in x.

rassociative Declaration
declare (g, rassociative) tells the Maxima simplifier that g is right-associative.
E.g., g(g(a, b), glc, 4)) simplifies to g(a, glb, glc, d))).

scsimp (expr, rule_1, ..., rule_n) Function
Sequential Comparative Simplification (method due to Stoute). scsimp attempts
to simplify expr according to the rules rule_1, ..., rule_n. If a smaller expression is

obtained, the process repeats. Otherwise after all simplifications are tried, it returns
the original answer.

example (scsimp) displays some examples.

simpsum Option variable
Default value: false

When simpsum is true, the result of a sum is simplified. This simplification may
sometimes be able to produce a closed form. If simpsum is false or if the quoted
form ’sum is used, the value is a sum noun form which is a representation of the sigma
notation used in mathematics.

sumcontract (expr) Function
Combines all sums of an addition that have upper and lower bounds that differ by
constants. The result is an expression containing one summation for each set of such
summations added to all appropriate extra terms that had to be extracted to form
this sum. sumcontract combines all compatible sums and uses one of the indices
from one of the sums if it can, and then try to form a reasonable index if it cannot
use any supplied.

It may be necessary to do an intosum (expr) before the sumcontract.
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sumexpand Option variable
Default value: false

When sumexpand is true, products of sums and exponentiated sums simplify to nested
sums.

See also cauchysum.
Examples:

(%1i1) sumexpand: true$
(%i2) sum (£ (i), i, 0, m) * sum (g (j), j, O, n);

m n
\ \
(%ho2) > > f(i1) g(@i2)
/ /
il =012 =0
(%13) sum (f (i), i, 0, m)~2;
m m
\ \
(%03) > > £(i3) f(i4)

sumsplitfact Option variable
Default value: true

When sumsplitfact is false, minfactorial is applied after a factcomb.

symmetric Declaration
declare (h, symmetric) tells the Maxima simplifier that h is a symmetric function.
E.g..,h (x, z, y) simplifies toh (x, y, z).

commutative is synonymous with symmetric.

unknown (expr) Function
Returns true if and only if expr contains an operator or function not recognized by
the Maxima simplifier.
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8 Plotting

8.1 Functions and Variables for Plotting

contour_plot (expr, x_range, y_range, options, ...) Function
Plots the contours (curves of equal value) of expr over the region x_range by y_range.
Any additional arguments are treated the same as in plot3d.

contour_plot only works when the plot format is gnuplot or gnuplot_pipes.

See also implicit_plot.

Examples:
(%i1) contour_plot (x°2 + y~2, [x, -4, 41, [y, -4, 41);
(%o1)
(%12) contour_plot (sin(y) * cos(x)~2, [x, -4, 41, [y, -4, 41);
(%02)
(%13) F(x, y) :=x"3 + y~2;
3 2
(%03) F(x, y) :(=x +y
(%i4) contour_plot (F, [u, -4, 4], [v, -4, 41);

(%o4)
(%15) contour_plot (F, [u, -4, 4], [v, -4, 4], [gnuplot_preamble,
"set size ratio -1"]);
(%05)
(%16) set_plot_option ([gnuplot_preamble,
"set cntrparam levels 12"]1)$

(%i7) contour_plot (F, [u, -4, 4], [v, -4, 4]1);

in_netmath Option variable
Default value: false

When in_netmath is true, plot3d prints OpenMath output to the console if plot_
format is openmath; otherwise in_netmath (even if true) has no effect. in_netmath
has no effect on plot2d.

plot2d (expr, x_range, ..., options, ...) Function
plot2d ([expr_1, ..., expr_n], ..., options, ...) Function
plot2d ([expr_1, ..., expr_n|, x_range,..., options, ...) Function

Where expr, expr_1, ..., expr_n can be either expressions, or Maxima or Lisp functions

or operators, or a list with the any of the forms: [discrete, [xI, ..., xn], [yl,

., ynll, [discrete, [[xI, y1], ..., [xn, ..., ynl] or [parametric, x_expr,

y_expr, t_range].
Displays a plot of one or more expressions as a function of one variable.

plot2d plots one expression expr or several expressions [name_1, ..., name_n].
The expressions that are not of the parametic or discrete types should all depend
only on one variable var and it will be mandatory the use of x_range to name that
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variable and gives its minimum and maximum values, using the syntax: [variable,
min, max]. The plot will show the horizontal axis bound by the values of min and
max.

A expression to be plotted can also be given in the discrete or parametric forms.
Namely, as a list starting with the word “discrete” or “parametric”. The keyword
discrete must be followed by two lists of values, both with the same length, which are
the horizontal and vertical coordinates of a set of points; alternatively, the coordinates
of each point can be put into a list with two values, and all the coordinates of the
points should be inside another list. The keyword parametric must be followed by
two expressions x_expr and y_expr, and a range of the form [param, min, max].
The two expressions must depend only on the parameter param, and the plot will
show the path traced out by the point with coordinates (x_expr, y_expr) as param
increases from min to max.

The range of the vertical axis is not mandatory. It is one more of the options for the
command, with the syntax: [y, min, max]. If that option is used, the plot will show
that entire range, even if the expressions do not reach all that range. Otherwise, if
a vertical range is not specified by set_plot_option, the boundaries of the vertical
axis will be set up automatically.

All other options should also be lists, starting with the name of the option. The
option xlabel can be used to give a label for the horizontal axis; if that option is not
used, the horizontal axis will be labeled with the name of the variable specified in
x_range, or with the expression x_expr in the case of just one parametric expression,
or it will be left blank otherwise.

A label for the vertical axis can be given with the ylabel option. If there is only one
expression to be plotted and the ylabel option was not used, the vertical axis will
be labeled with that expression, unless it is too large, or with the expression y_expr
if the expression is parametric, or with the text “discrete data” if the expression is
discrete.

The options [logx] and [logy] do not need any parameters. They will make the
horizontal and vertical axes be scaled logarithmically.

If there are several expressions to be plotted, a legend will be written to identiy each
of the expressions. The labels that should be used in that legend can be given with
the option legend. If that option is not used, Maxima will create labels from the
expressions.

By default, the expressions are plotted as a set of line segments joining adjacent
points within a set of points which is either given in the discrete form, or calculated
automatically from the expression given, using an algorithm that automatically adapts
the steps among points using as an initial estimate of the total number of points the
value set with the nticks option. The option style can be used to make one of the
expressions to be represented as a set of isolated points, or as points and line segments.

There are several global options stored in the list plot_options which can be modified
with the function set_plot_option; any of those global options can be overriden
with options given in the plot2d command.
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A function to be plotted may be specified as the name of a Maxima or Lisp function or
operator, a Maxima lambda expression, or a general Maxima expression. If specified
as a name or a lambda expression, the function must be a function of one argument.

Examples:

Plots of common functions.
(%1i1) plot2d (sin(x), [x, -5, 51)8

(%12) plot2d (sec(x), [x, -2, 2], [y, -20, 20], [nticks, 200])$

1
0.8
0.6
0.4
0.2
0.2
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X

sin(x)
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10

sec(x)
o

-10

-15

-20

Plotting functions by name.
(5i3) F(x) :=x"2 §

(%i4) :lisp (defun [$gl| (x) (m* x x x))

$g
(%i5) H(x) := if x < 0 then x°4 - 1 else 1 - x5 $

(%i6) plot2d (F, [u, -1, 11D$
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(%i7) plot2d ([F, G, H], [u, -1, 1], [y, -1.5, 1.51)$

0.8

0.6

0.4

0.2

1.5
E
G —

05t

05 ¢

-1.5

We can plot a circle using a parametric plot with a parameter t. It is not necessary to
give a range for the horizontal range, since the range of the parameter t determines
the domain. However, since the graph’s horizontal and vertical axes lengths are in
the 4 to 3 proportion, we will use the xrange option to obtain the same scaling in
both axes:

(%18) plot2d ([parametric, cos(t), sin(t), [t,-%pi,%pil,
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[nticks,8011, [x, -4/3, 4/31)$%

0.8
0.6
0.4
0.2

sin(t)
o

-0.2
-0.4
-0.6
-0.8

-1 -0.5 0 0.5 1
cos(t)

If we repeat that plot with only 8 points and extending the range of the parameter
to give two turns, we will obtain the plot of a star:

(%19) plot2d ([parametric, cos(t), sin(t), [t, -%pix*2, %pix2],
[nticks, 811, [x, -2, 2], [y, -1.5, 1.561)$

15

0.5

sin(t)
o

-0.5

-15 : : : : : : :
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
cos(t)

Combination of an ordinary plot of a cubic polynomial with a parametric plot of a
circle:

(%110) plot2d ([x"3+2, [parametric, cos(t), sin(t), [t, -5, 5],
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[nticks, 80111, [x, -3, 31D$

30

X"3+2
cos(t), sin(t) ——

-30

Example of a logarithmic plot:

(%i11) plot2d (exp(3*s), [s, -2, 2], [logyl)$

1000
100 |
~ 10 }
P
()
2 1
<
g
- 01 L
0.01 }
0.001
2 15 -1 05 0 05 1 15 2

To show some examples of discrete plots, we will start by entering the coordinates of
5 points, in the two different ways that can be used:

(%i12) =xx:[10, 20, 30, 40, 50]%
(%i13) yy:[.6, .9, 1.1, 1.3, 1.41$
(%i14) Xy:[[lO,.G], [20,.9], [30,1.1], [40,1.3], [50,1.4]11%

To plot those data points, joined with line segments, we use:
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(%i15) plot2d([discrete,xx,yyl)$
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We will now show the plot with only points, and illustrating the use of the second
way of giving the points coordinates:

(%116) plot2d([discrete, xy], [style, points])$
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The plot of the data points can be shown together with a plot of the theoretical
function that predicts the data:

(%117) plot2d([[discrete,xyl, 2*)pi*sqrt(1/980)], [1,0,50],
[style, [points,5,2,6], [lines,1,1]],
[legend, "experiment","theory"],
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[xlabel, "pendulum’s length (cm)"], [ylabel,"period (s)"1)$

1.6

' experimer'mt u
1.4 theory

period (s)

0 10 20 30 40 50
pendulum’s length (cm)

The meaning of the three numbers after the “points” style option are as follows;
5: radius of the points, 2: index of color used (red), 6: type of objects used (solid
squares). The two numbers after the “lines” style option give the thickness of the line
(1 point) and the color (1 corresponds to blue).

See also plot_options, which describes plotting options and has more examples.

xgraph_curves (list) Function
graphs the list of ‘point sets’ given in list by using xgraph. If the program xgraph is
not installed, this command will fail.

A point set may be of the form
[x0, yO, x1, yi, x2, y2, ...]

or
[[x0, yOl, [x1, yil, ...]

A point set may also contain symbols which give labels or other information.
xgraph_curves ([pt_setl, pt_set2, pt_set3]);

graph the three point sets as three curves.

pt_set: append (["NoLines: True", "LargePixels: true"],
[x0, yO, x1, y1, ...1);

would make the point set (and subsequent ones), have no lines between points, and
to use large pixels. See the man page on xgraph for more options to specify.

pt_set: append ([concat ("\"", "x"2+y")], [x0, yO, x1, y1, ...1);

would make there be a "label" of "x~2+y" for this particular point set. The " at the
beginning is what tells xgraph this is a label.

pt_set: append ([concat ("TitleText: Sample Data")], [x0, ...1)$
would make the main title of the plot be "Sample Data" instead of "Maxima Plot".

To make a bar graph with bars which are 0.2 units wide, and to plot two possibly
different such bar graphs:
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(%i1) xgraph_curves ([append (["BarGraph: true", "NoLines: true",
"BarWidth: .2"], create_list ([i - .2, i°2], i, 1, 3)),
append (["BarGraph: true", "NoLines: true", "BarWidth: .2"],
create_list ([i1i + .2, .7xi"2], i, 1, 3))1);

Maxima Plot
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A temporary file ‘xgraph-out’ is used.

plot_options System variable
FElements of this list state the default options for plotting. If an option is present in a
plot2d or plot3d call, that value takes precedence over the default option. Otherwise,
the value in plot_options is used. Default options are assigned by set_plot_option.

Each element of plot_options is a list of two or more items. The first item is the
name of an option, and the remainder comprises the value or values assigned to the
option. In some cases the, the assigned value is a list, which may comprise several
items.

The plot options which are recognized by plot2d and plot3d are the following:
e Option: plot_format
Determines which graphic interface is used by plot2d and plot3d.
e Value: gnuplot default on Windows

Gnuplot is the most advanced plotting package among the packages available
in Maxima. It requires an external gnuplot installation.

e Value: gnuplot_pipes default on non-Windows platforms

Similar to the gnuplot format except that communication with gnuplot is
done through a pipe. It should be used to plot on screen, for plotting to files
it is better to use the gnuplot format.
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e Value: mgnuplot

Mgnuplot is a Tk-based wrapper around gnuplot. It is included in the Max-
ima distribution. Mgnuplot offers a rudimentary GUI for gnuplot, but has
fewer overall features than the plain gnuplot interface. Mgnuplot requires
an external gnuplot installation and Tcl/Tk.

e Value: openmath

Openmath is a Tcl/Tk GUI plotting program. This format is provided by
Xmaxima, which is distributed together with Maxima; in order to use this
format you should install the package Xmaxima, and it will work not only
from Xmaxima itself, but also from the command line and other GUI’s for
Maxima.

e Option: run_viewer

Controls whether or not the appropriate viewer for the plot format should be
run.

e Default value: true
Execute the viewer program.
e Value: false

Do not execute the viewer program.

Option: y
The vertical range of the plot.
Example:

[y, - 3, 3]

Sets the vertical range to [-3, 3].
Option: plot_realpart

When plot_realpart is true, the real part of a complex value x is plotted; this
is equivalent to plotting realpart (x) instead of x. Otherwise, only values with
imaginary part equal to 0 are plotted, and complex values are ignored.

Example:

plot2d (log(x), [x, -5, 5], [plot_realpart, false]);
plot2d (log(x), [x, -5, 5], [plot_realpart, truel);

The default value is false.
Option: nticks
In plot2d, it is gives the initial number of points used by the adaptive plotting

routine for plotting functions. It is also the number of points that will be shown
in a parametric plot.

Example:
[nticks, 20]
The default for nticks is 10.
Option: adapt_depth
The maximum number of splittings used by the adaptive plotting routine.

FExample:
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[adapt_depth, 5]
The default for adapt_depth is 10.
e Option: xlabel
The label for the horizontal axis in a 2d plot.
Example:
[x1label, "Time in seconds"]
e Option: ylabel
The label of the vertical axis in a 2d plot.
Example:
[ylabel, "Temperature"]
e Option: logx
It makes the horizontal axis of a 2d plot to be rendered in a logarithmic scale. It
does not need any aditional parameters.
e Option: logy
It makes the vertical axis of a 2d plot to be rendered in a logarithmic scale. It
does not need any aditional parameters.
e Option: legend
The labels for the various expressions in a 2d plot with several expressions. If
there are more expressions than the number of labels given, they will be repeated.
If legend is followed by the word false, no legend will be shown. By default,

the names of the expressions or functions will be used, or the words discretel,
discrete2, ..., for discrete sets of points.

Example:
[legend, "Set 1", "Set 2", "Set 3"]
e Option: box
Currently, this option can only be followed by the word false, and it will be used
to supress the box around the plot.
Example:
[box, falsel
e Option: style
The styles that will be used for the various functions or sets of data in a 2d
plot. The word style must be followed by one or more styles. If there are more
functions and data sets than the styles given, the styles will be repeated. Each
style can be either lines for line segments, points for isolated points, linespoints
for segments and points, or dots for small isolated dots. Gnuplot accepts also an
impulses style.

Fach of the styles can be enclosed inside a list with some aditional parameters.
lines accepts one or two numbers: the width of the line and an integer that
identifies a color. The default color codes are: 1: blue, 2: red, 3: magenta, 4:
orange, 5: brown, 6: lime and 7: aqua. If you use Gnuplot with a terminal
different than X11, those colors might be different; for example, if you use the
option [gnuplot_term,ps], color index 4 will correspond to black, instead of orange.
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points accepts one two or three parameters; the first parameter is the radius
of the points, the second parameter is an integer that selects the color, using
the same code used for lines and the third parameter is currently used only by

Gnuplot and it corresponds to several objects instead of points. The default

types of objects are: 1: filled circles, 2: open circles, 3: plus signs, 4: x, 5: *,

6: filled squares, 7: open squares, 8: filled triangles, 9: open triangles, 10: filled
inverted triangles, 11: open inverted triangles, 12: filled lozenges and 13: open
lozenges.

linesdots accepts up to four parameters: line width, points radius, color and type
of object to replace the points.

Example:
[style, [lines,2,3], [points,1,4,3]]
This will plot the first (and third, fifth, etc) expression with magenta line seg-

ments of width 2, and the second (and fourth, sixth, etc) expression with orange
plus signs of size 1 (orange circles in the case of Openmath).

The default for the style option is lines with a width of 1, and different colors.
Option: grid
Sets the number of grid points to use in the x- and y-directions for three-
dimensional plotting.
Example:
[grid, 50, 50]
sets the grid to 50 by 50 points. The default grid is 30 by 30.
Option: transform_xy
Allows transformations to be applied to three-dimensional plots.
Example:
[transform_xy, falsel

The default transform_xy is false. If it is not false, it should be the output
of

make_transform([x,y,z], f1(x,y,z), f2(x,y,z), £3(x,y,2z))$
The polar_xy transformation is built in. It gives the same transformation as
make_transform ([r, th, z], r*cos(th), r*sin(th), z)$

Gnuplot options:

There are several plot options specific to gnuplot. Some of these options are raw
gnuplot commands, specified as strings. Refer to the gnuplot documentation for
more details.

e Option: gnuplot_term

Sets the output terminal type for gnuplot.
e Default value: default
Gnuplot output is displayed in a separate graphical window.
e Value: dumb

Gnuplot output is displayed in the Maxima console by an "ASCII art" ap-
proximation to graphics.
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e Value: ps
Gnuplot generates commands in the PostScript page description language.
If the option gnuplot_out_file is set to filename, gnuplot writes the
PostScript commands to filename. Otherwise, it is saved as maxplot.ps
file.
e Value: any other valid gnuplot term specification
Gnuplot can generate output in many other graphical formats such as png,
jpeg, svg etc. To create plot in all these formats the gnuplot_term can
be set to any supported gnuplot term name (symbol) or even full gnuplot
term specification with any valid options (string). For example [gnuplot_
term,png] creates output in PNG (Portable Network Graphics) format while
[gnuplot_term, "png size 1000,1000"] creates PNG of 1000x1000 pixels
size. If the option gnuplot_out_file is set to filename, gnuplot writes the
output to filename. Otherwise, it is saved as maxplot.term file, where term
is gnuplot terminal name.
e Option: gnuplot_out_file
Write gnuplot output to a file.
e Default value: false
No output file specified.
e Value: filename
Example: [gnuplot_out_file, "myplot.ps"] This example sends
PostScript output to the file myplot.ps when used in conjunction with the
PostScript gnuplot terminal.
e Option: gnuplot_pm3d
Controls the usage PM3D mode, which has advanced 3D features. PM3D is only
available in gnuplot versions after 3.7. The default value for gnuplot_pm3d is
false.
Example:
[gnuplot_pm3d, truel
e Option: gnuplot_preamble
Inserts gnuplot commands before the plot is drawn. Any valid gnuplot commands
may be used. Multiple commands should be separated with a semi-colon. The ex-
ample shown produces a log scale plot. The default value for gnuplot_preamble
is the empty string "".
Example:
[gnuplot_preamble, "set log y"]
e Option: gnuplot_curve_titles
Controls the titles given in the plot key. The default value is [default],
which automatically sets the title of each curve to the function plotted. If not
[default], gnuplot_curve_titles should contain a list of strings, each of
which is "title ’title_string’". (To disable the plot key, add "set nokey" to
gnuplot_preamble.)

Example:
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[gnuplot_curve_titles,
["title ’My first function’", "title ’My second function’"]]

e Option: gnuplot_curve_styles

A list of strings controlling the appearance of curves, i.e., color, width, dashing,
etc., to be sent to the gnuplot plot command. The default value is ["with
lines 3", "with lines 1", "with lines 2", "with lines 5", "with lines
4", "with lines 6", "with lines 7"], which cycles through different colors.
See the gnuplot documentation for plot for more information.
Example:

[gnuplot_curve_styles, ["with lines 7", "with lines 2"]]
Option: gnuplot_default_term_command

The gnuplot command to set the terminal type for the default terminal. The
default value is set term windows "Verdana" 15 in Windows systems, and set
term x11 font "Helvetica,16" in X11 windows systems.

Example:
[gnuplot_default_term_command, "set term x11"]
Option: gnuplot_dumb_term_command

The gnuplot command to set the terminal type for the dumb terminal. The de-
fault value is "set term dumb 79 22", which makes the text output 79 characters
by 22 characters.

Example:
[gnuplot_dumb_term_command, "set term dumb 132 50"]
Option: gnuplot_ps_term_command

The gnuplot command to set the terminal type for the PostScript terminal.
The default value is "set size 1.5, 1.5;set term postscript eps enhanced
color solid 24", which sets the size to 1.5 times gnuplot’s default, and the font
size to 24, among other things. See the gnuplot documentation for set term
postscript for more information.

Example:

All the figures in the examples for the plot2d function in this manual were ob-
tained from Postscript files that were generated after setting gnuplot_ps_term_
command as:

[gnuplot_ps_term_command, "set size 1.3, 1.3; \
set term postscript eps color solid lw 2.5 30"]

Examples:

e Saves a plot of sin(x) to the file sin.eps.

(%1i1) plot2d (sin(x), [x, 0, 2*Ypil, [gnuplot_term, ps],
[gnuplot_out_file, "sin.eps"])$

e Uses the y option to chop off singularities and the gnuplot_preamble option to

put the key at the bottom of the plot instead of the top.
(%12) plot2d ([gamma(x), 1/gamma(x)], [x, -4.5, 5], [y, -10, 10],
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[gnuplot_preamble, "set key bottom"])$

gamma(x)

. | I ) ) _ llgamma(x) —
-4 -3 -2 -1 0 1 2 3 4 5
X

e Uses a very complicated gnuplot_preamble to produce fancy x-axis labels. (Note
that the gnuplot_preamble string must be entered without any line breaks.)
(%13) my_preamble: "set xzeroaxis; set xtics (’-2pi’ -6.283, \
’-3pi/2’ -4.712, ’-pi’ -3.1415, ’-pi/2’ -1.5708, ’0’ 0, \
’pi/2’ 1.5708, ’pi’ 3.1415,°3pi/2’ 4.712, ’2pi’ 6.283)"$

(%14) plot2d([cos(x), sin(x), tan(x), cot(x)],
[x, -2x%pi, 2.1%%pil, [y, -2, 21,
[gnuplot_preamble, my_preamble]);

-2pi -3pil2  -pi  -pil2 0 pi/l2 pi  3pi/2 2pi

e Uses a very complicated gnuplot_preamble to produce fancy x-axis labels, and
produces PostScript output that takes advantage of the advanced text formatting
available in gnuplot. (Note that the gnuplot_preamble string must be entered
without any line breaks.)

(%15) my_preamble: "set xzeroaxis; set xtics (°-2{/Symbol p}’ \
-6.283, ’-3{/Symbol p}/2’ -4.712, ’-{/Symbol p}’ -3.1415, \
»~{/Symbol p}/2’ -1.5708, ’0’ 0,’{/Symbol p}/2’ 1.5708, \
’{/Symbol p}’ 3.1415,°3{/Symbol p}/2’ 4.712, ’2{/Symbol p}’ \
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6.283)"$

(%i6) plot2d ([cos(x), sin(x), tan(x)], [x, -2x%pi, 2*%pil,
[y, -2, 2], [gnuplot_preamble, my_preamble],
[gnuplot_term, ps], [gnuplot_out_file, "trig.eps"]);
e A three-dimensional plot using the gnuplot pm3d terminal.

(%i7) plot3d (atan (-x"2 + y~3/4), [x, -4, 41, [y, -4, 41,
[grid, 50, 50], [gnuplot_pm3d, truel)$

atan(y3/4-x2) —

e A three-dimensional plot without a mesh and with contours projected on the
bottom plane.

(%18) my_preamble: "set pm3d at s;unset surface;set contour;\
set cntrparam levels 20;unset key"$
(%i9) plot3d(atan(-x"2 + y~3/4), [x, -4, 4], [y, -4, 41,
[grid, 50, 50], [gnuplot_pm3d, true],
[gnuplot_preamble, my_preamble])$

e A plot where the z-axis is represented by color only. (Note that the gnuplot_
preamble string must be entered without any line breaks.)
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(%110) plot3d (cos (-x"2 + y~3/4), [x, -4, 41, [y, -4, 41,
[gnuplot_preamble, "set view map; unset surface"],

[gnuplot_pm3d, truel, [grid, 150, 150])$

LOOO6O0000+
OOAN N3O0

plot3d ([expr_1, expr_2, expr_3|, x_range, y_range, ..., options, ...) Function
plot3d (expr, x_range, y_range, ..., options, ...) Function
plot3d (name, x_range, y_range, ..., options, ...) Function
plot3d ([expr_1, expr_2, expr_3], x_rge, y_rge) Function
plot3d ([name_1, name_2, name_3], x_range, y_range, ..., options, ...) Function

Displays a plot of one or three expressions as functions of two variables.
(%1i1) plot3d (2°(-u"2 + v~2), [u, -3, 3], [v, -2, 2]);

2(v2-u2) —

AN NN
277 Q.....
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plots z = 27 (~u"2+v"2) with u and v varying in [-3,3] and [-2,2] respectively, and

with u on the x axis, and v on the y axis.

The same graph can be plotted using openmath (if Xmaxima is installed):

(%12) plot3d (2°(-u"2 + v~2), [u, -3, 3], [v, -2, 2],
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[plot_format, openmath]);

in this case the mouse can be used to rotate the plot to look at the surface from
different sides.

An example of the third pattern of arguments is

(%13) plot3d ([cos(x)*(3 + y*cos(x/2)), sin(x)*(3 + y*cos(x/2)),
yxsin(x/2)], [x, -%pi, %pil, [y, -1, 11, [’grid, 50, 15]);

Function —

which plots a Moebius band, parametrized by the three expressions given as the first
argument to plot3d. An additional optional argument [’grid, 50, 15] gives the
grid number of rectangles in the x direction and y direction.
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The function to be plotted may be specified as the name of a Maxima or Lisp function
or operator, a Maxima lambda expression, or a general Maxima expression. In the

form plot3d (f, ...) where f is the name of a function or a lambda expression,
the function must be a function of two arguments. In the form plot3d ([f1, f2,
31, ...) where f.1, {2, and f.3 are names of functions or lambda expressions, each

function must be a function of three arguments.
This example shows a plot of the real part of z~1/3.

(%i4) plot3d (r~.33*cos(th/3), [r, 0, 11, [th, 0, 6%%pil,
[’grid, 12, 80], [’transform_xy, polar_to_xyl);

r°.33*cos(th/3) ——

Other examples are the Klein bottle:

(%15) expr_1: bxcos(x)*(cos(x/2)*cos(y) + sin(x/2)*sin(2xy)
+ 3.0) - 10.0%

(%16) expr_2: -b*sin(x)*(cos(x/2)*cos(y) + sin(x/2)*sin(2x*y)
+3.008

(%i7) expr_3: 5x(-sin(x/2)*cos(y) + cos(x/2)*sin(2*y))$

(%18) plot3d ([expr_1, expr_2, expr_3], [x, -%pi, %pil,
[y, -%pi, %pil, [’grid, 40, 401);

Function ——

OHADONRO®
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and a torus:
(%19) expr_1: cos(y)*(10.0+6*cos(x))$
(%110) expr_2: sin(y)*(10.0+6%cos(x))$
(%1i11) expr_3: -6*sin(x)$
(%112) plot3d ([expr_1, expr_2, expr_3], [x, 0, 2*}pil,
[y, 0, 2+%pil, [’grid, 40, 40]1);

Function ——

S hPDond A~

Sometimes it is necessary to define a function to plot the expression. All the arguments
to plot3d are evaluated before being passed to plot3d, and so trying to make an
expression which does just what is needed may be difficult, and it is just easier to
make a function.

(%113) M: matrix([1, 2, 3, 41, [1, 2, 3, 2], [1, 2, 3, 4],

[1, 2, 3, 31$
(%i14) f(x, y) := float (M [?round(x), ?round(y)]1)$
(%115) plot3d (f, [x, 1, 41, [y, 1, 4], [’grid, 4, 41D$

See plot_options for more examples.

make_transform (vars, fx, fy, fz) Function
Returns a function suitable for the transform function in plot3d. Use with the plot
option transform_xy.
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make_transform ([r, th, z], r*cos(th), r*sin(th), z)$

is a transformation to polar coordinates.

set_plot_option (option) Function
Assigns one of the global variables for plotting. option is specified as a list of two or
more elements, in which the first element is one of the keywords on the plot_options
list.

set_plot_option evaluates its argument and returns the complete list plot_options
(after modifying one of its elements).

See also plot_options, plot2d, and plot3d.
Examples:

Modify the grid and x values. When a plot_options keyword has an assigned value,
quote it to prevent evaluation.

(%i1) set_plot_option ([grid, 30, 40]);

(%o1) [[x, - 1.755559702014E+305, 1.755559702014E+305],

[y, - 1.755559702014E+305, 1.755559702014E+305], [t, - 3, 3],
[grid, 30, 40], [transform_xy, false], [run_viewer, true],
[plot_format, gnuplot], [gnuplot_term, default],
[gnuplot_out_file, false], [nticks, 10], [adapt_depth, 10],
[gnuplot_pm3d, false], [gnuplot_preamble, 1],
[gnuplot_curve_titles, [default]],

[gnuplot_curve_styles, [with lines 3, with lines 1,

with lines 2, with lines 5, with lines 4, with lines 6,

with lines 7]], [gnuplot_default_term_command, ],
[gnuplot_dumb_term_command, set term dumb 79 22],
[gnuplot_ps_term_command, set size 1.5, 1.5;set term postscript #
eps enhanced color solid 24]]

(%i2) x: 42;

(%02) 42

(%13) set_plot_option ([’x, -100, 100]);

(%03) [[x, - 100.0, 100.0], [y, - 1.755559702014E+305,
1.75565569702014E+305], [t, - 3, 3], [grid, 30, 40],
[transform_xy, false]l, [run_viewer, truel,

[plot_format, gnuplot], [gnuplot_term, default],
[gnuplot_out_file, false], [nticks, 10], [adapt_depth, 10],
[gnuplot_pm3d, falsel, [gnuplot_preamble, ],
[gnuplot_curve_titles, [default]],

[gnuplot_curve_styles, [with lines 3, with lines 1,

with lines 2, with lines 5, with lines 4, with lines 6,

with lines 7]], [gnuplot_default_term_command, ],
[gnuplot_dumb_term_command, set term dumb 79 22],
[gnuplot_ps_term_command, set size 1.5, 1.5;set term postscript #
eps enhanced color solid 24]]

8.1.1 Functions for working with the gnuplot_pipes format
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gnuplot_start () Function
Opens the pipe to gnuplot used for plotting with the gnuplot_pipes format. Is not
necessary to manually open the pipe before plotting.

gnuplot_close () Function
Closes the pipe to gnuplot which is used with the gnuplot_pipes format.

gnuplot_restart () Function
Closes the pipe to gnuplot which is used with the gnuplot_pipes format and opens
a new pipe.
gnuplot_replot () Function
gnuplot_replot (s) Function

Updates the gnuplot window. If gnuplot_replot is called with a gnuplot command
in a string s, then s is sent to gnuplot before reploting the window.

gnuplot_reset () Function
Resets the state of gnuplot used with the gnuplot_pipes format. To update the
gnuplot window call gnuplot_replot after gnuplot_reset.
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9 Input and Output

9.1 Comments

A comment in Maxima input is any text between /* and */.

The Maxima parser treats a comment as whitespace for the purpose of finding tokens
in the input stream; a token always ends at a comment. An input such as a/* foo */b
contains two tokens, a and b, and not a single token ab. Comments are otherwise ignored
by Maxima; neither the content nor the location of comments is stored in parsed input
expressions.

Comments can be nested to arbitrary depth. The /* and */ delimiters form matching
pairs. There must be the same number of /* as there are */.

Examples:

(%i1) /* aa is a variable of interest */ aa : 1234;
(%o1) 1234
(%1i2) /* Value of bb depends on aa */ bb : aa”2;
(%02) 1522756
(%13) /* User-defined infix operator */ infix ("b");
(%03) b
(%i4) /* Parses same as a b c, not abc */ a/* foo */b/* bar */c;
(%ho4d) abc
(%15) /* Comments /* can be nested /* to any depth */ */ *x/ 1 + xyz;
(%05) xyz + 1

9.2 Files

A file is simply an area on a particular storage device which contains data or text. Files
on the disks are figuratively grouped into "directories". A directory is just a list of files.
Commands which deal with files are: save, load,

loadfile, stringout, batch, demo, writefile, closefile, and appendfile.

9.3 Functions and Variables for Input and Output

— System variable
__ is the input expression currently being evaluated. That is, while an input expres-
sion expr is being evaluated is expr.

9 ——

__ is assigned the input expression before the input is simplified or evaluated. How-
ever, the value of __ is simplified (but not evaluated) when it is displayed.

_ is recognized by batch and load. In a file processed by batch, __ has the same
meaning as at the interactive prompt. In a file processed by load, __ is bound to the
input expression most recently entered at the interactive prompt or in a batch file;
__ is not bound to the input expressions in the file being processed. In particular,
when load (filename) is called from the interactive prompt is bound to load
(filename) while the file is being processed.

[
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See also _ and %.

Examples:
(ki)
I was
(%ho1)
(%i2)
(%ho2)
(%1i3)
(%03)
(hid)
(%ho4d)
(%i5)

print ("I was called as", __);
called as print(I was called as, __)

print(I was called as, __)
foo (__);
foo(foo(__))
g (x) := (print ("Current input expression =", __), 0);
g(x) := (print("Current input expression =", __), 0)
[aa : 1, bb : 2, cc : 3];

(1, 2, 3]
(aa + bb + cc)/(dd + ee + g(x));
cc + bb + aa

Current input expression = -————————-—-----

(%05)

g(x) + ee + dd

System variable

_ is the most recent input expression (e.g., %i1, %i2, %i3, ...).

_ is assigned the input expression before the input is simplified or evaluated. However,

the value of

_ is simplified (but not evaluated) when it is displayed.

_ is recognized by batch and load. In a file processed by batch, _ has the same
meaning as at the interactive prompt. In a file processed by load, _ is bound to the
input expression most recently evaluated at the interactive prompt or in a batch file;
_ is not bound to the input expressions in the file being processed.

See also __ and %.

Examples:
(%i1) 13 + 29;
(%o1) 42
(%i2) :lisp $_
((MPLUS) 13 29)
(hi2) _;
(%02) 42
(%13) sin (%pi/2);
(%03) 1
(%i4) :lisp $_
((%SIN) ((MQUOTIENT) $%PI 2))
(hid) _;
(%04) 1
(%i5) a: 133
(%i6) b: 29%
(%1i7) a + b;
(%oT) 42
(%i8) :lisp $_

((MPLUS) $A $B)
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(%18) _;
(%08) b+ a
(%19) a + b;
(%09) 42
(%110) ev (1);
(%010) 42
% System variable

% is the output expression (e.g., %ol, %02, %03, ...) most recently computed by
Maxima, whether or not it was displayed.

% is recognized by batch and load. In a file processed by batch, % has the same
meaning as at the interactive prompt. In a file processed by load, % is bound to the
output expression most recently computed at the interactive prompt or in a batch
file; % is not bound to output expressions in the file being processed.

See also _, %h, and %th.

%% System variable
In compound statements, namely block, lambda, or (s_1, ..., s.n), %% is the value
of the previous statement. For example,

block (integrate (x°5, x), ev (%h, x=2) - ev (%%, x=1));
block ([prev], prev: integrate (x°5, x),
ev (prev, x=2) - ev (prev, x=1));

yield the same result, namely 21/2.

A compound statement may comprise other compound statements. Whether a state-
ment be simple or compound, %% is the value of the previous statement. For example,

block (block (a"n, %%A*42), %%/6)
yields 7*a"n.

Within a compound statement, the value of %% may be inspected at a break prompt,
which is opened by executing the break function. For example, at the break prompt
opened by

block (a: 42, break ())$
entering %%; yields 42.

At the first statement in a compound statement, or outside of a compound statement,
%% is undefined.

%% is recognized by batch and load, and it has the same meaning as at the interactive
prompt.

See also %.

%edispflag Option variable
Default value: false

When %edispflag is true, Maxima displays %e to a negative exponent as a quotient.
For example, %e~-x is displayed as 1/%e"x.
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%th (i) Function

The value of the i’th previous output expression. That is, if the next expression to
be computed is the n’th output, %th (m) is the (n - m)’th output.

%th is useful in batch files or for referring to a group of output expressions. For
example,

block (s: 0, for i:1 thru 10 do s: s + %th (i))$
sets s to the sum of the last ten output expressions.

%th is recognized by batch and load. In a file processed by batch, %th has the same
meaning as at the interactive prompt. In a file processed by load, %th refers to output
expressions most recently computed at the interactive prompt or in a batch file; %th
does not refer to output expressions in the file being processed.

See also %.

? Special symbol
As prefix to a function or variable name, ? signifies that the name is a Lisp name,
not a Maxima name. For example, ?round signifies the Lisp function ROUND. See
Section 3.1 [Lisp and Maxima|, page 7 for more on this point.

The notation ? word (a question mark followed a word, separated by whitespace) is
equivalent to describe ("word"). The question mark must occur at the beginning of
an input line; otherwise it is not recognized as a request for documentation.

77 Special symbol
The notation ?? word (7?7 followed a word, separated by whitespace) is equivalent to
describe ("word", inexact). The question mark must occur at the beginning of an
input line; otherwise it is not recognized as a request for documentation.

absboxchar Option variable
Default value: !

absboxchar is the character used to draw absolute value signs around expressions
which are more than one line tall.

file_output_append Option variable
Default value: false

file_output_append governs whether file output functions append or truncate their
output file. When file_output_append is true, such functions append to their
output file. Otherwise, the output file is truncated.

save, stringout, and with_stdout respect file_output_append. Other functions
which write output files do not respect file_output_append. In particular, plotting
and translation functions always truncate their output file, and tex and appendfile
always append.

appendfile (filename) Function
Appends a console transcript to filename. appendfile is the same as writefile,
except that the transcript file, if it exists, is always appended.

closefile closes the transcript file opened by appendfile or writefile.
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batch (filename) Function
Reads Maxima expressions from filename and evaluates them. batch searches for
filename in the list file_search_maxima. See file_search.

filename comprises a sequence of Maxima expressions, each terminated with ; or $.
The special variable % and the function %th refer to previous results within the file.
The file may include :1lisp constructs. Spaces, tabs, and newlines in the file are
ignored. A suitable input file may be created by a text editor or by the stringout
function.

batch reads each input expression from filename, displays the input to the console,
computes the corresponding output expression, and displays the output expression.
Input labels are assigned to the input expressions and output labels are assigned to
the output expressions. batch evaluates every input expression in the file unless there
is an error. If user input is requested (by asksign or askinteger, for example) batch
pauses to collect the requisite input and then continue.

It may be possible to halt batch by typing control-C at the console. The effect of
control-C depends on the underlying Lisp implementation.

batch has several uses, such as to provide a reservoir for working command lines, to
give error-free demonstrations, or to help organize one’s thinking in solving complex
problems.

batch evaluates its argument. batch has no return value.

See also load, batchload, and demo.

batchload (filename) Function
Reads Maxima expressions from filename and evaluates them, without displaying
the input or output expressions and without assigning labels to output expressions.
Printed output (such as produced by print or describe) is displayed, however.

The special variable % and the function %th refer to previous results from the interac-
tive interpreter, not results within the file. The file cannot include :1isp constructs.

batchload returns the path of filename, as a string. batchload evaluates its argu-
ment.

See also batch and load.

closefile () Function
Closes the transcript file opened by writefile or appendfile.

collapse (expr) Function
Collapses expr by causing all of its common (i.e., equal) subexpressions to share (i.e.,
use the same cells), thereby saving space. (collapse is a subroutine used by the
optimize command.) Thus, calling collapse may be useful after loading in a save
file. You can collapse several expressions together by using collapse ([expr_1, ...,
expr_n] ). Similarly, you can collapse the elements of the array A by doing collapse
(listarray (’A)).
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concat (arg_1, arg_2, ...) Function
Concatenates its arguments. The arguments must evaluate to atoms. The return
value is a symbol if the first argument is a symbol and a string otherwise.
concat evaluates its arguments. The single quote ’ prevents evaluation.
(%i1) y: 7%
(%i2) z: 88%
(%13) concat (y, z/2);

(%03) 744
(%i4) concat (’y, z/2);
(%ho4) y44

A symbol constructed by concat may be assigned a value and appear in expressions.
The :: (double colon) assignment operator evaluates its left-hand side.

(%i5) a: concat (’y, z/2);

(%05) a4
(%i6) a:: 123;
(%o6) 123
(%hi7) yé4;
(%hoT) 123
(%18) b~a;

y44
(%08) b
(%19) %, numer;

123
(%09) b

Note that although concat (1, 2) looks like a number, it is a string.

(%110) concat (1, 2) + 3;
(%010) 12 + 3

sconcat (arg_1, arg 2, ...) Function
Concatenates its arguments into a string. Unlike concat, the arguments do not need
to be atoms.
(%i1) sconcat ("xx[", 3, "]:", expand ((x+y)~3));
(%o1) xx [3] 1 77 3+3*x*y " 2+3%x " 2%y+x "3

disp (expr_1, expr_2, ...) Function
is like display but only the value of the arguments are displayed rather than equa-
tions. This is useful for complicated arguments which don’t have names or where only
the value of the argument is of interest and not the name.

dispcon (tensor_1, tensor.2, ...) Function

dispcon (all) Function
Displays the contraction properties of its arguments as were given to defcon. dispcon
(all) displays all the contraction properties which were defined.

display (expr_1, expr_2, ...) Function
Displays equations whose left side is expr_i unevaluated, and whose right side is the
value of the expression centered on the line. This function is useful in blocks and
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for statements in order to have intermediate results displayed. The arguments to
display are usually atoms, subscripted variables, or function calls. See also disp.

(%i1) display(B[1,21);

(%o1) done

display2d Option variable
Default value: true
When display2d is false, the console display is a string (1-dimensional) form rather
than a display (2-dimensional) form.

display_format_internal Option variable
Default value: false
When display_format_internal is true, expressions are displayed without being
transformed in ways that hide the internal mathematical representation. The display
then corresponds to what inpart returns rather than part.

Examples:
User part inpart
a-b; a-b a+ (-1)b
a -1
a/b; - ab
b
1/2
sqrt(x);  sqrt(x) X
4 X 4
X*4/3; - - X
3
dispterms (expr) Function

Displays expr in parts one below the other. That is, first the operator of expr is
displayed, then each term in a sum, or factor in a product, or part of a more general
expression is displayed separately. This is useful if expr is too large to be otherwise
displayed. For example if P1, P2, ... are very large expressions then the display
program may run out of storage space in trying to display P1 + P2 + ... all at once.
However, dispterms (P1 + P2 + ...) displays P1, then below it P2, etc. When not
using dispterms, if an exponential expression is too wide to be displayed as A"B it
appears as expt (A, B) (or as ncexpt (A, B) in the case of A~"B).

error_size Option variable
Default value: 10

error_size modifies error messages according to the size of expressions which appear
in them. If the size of an expression (as determined by the Lisp function ERROR-SIZE)
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is greater than error_size, the expression is replaced in the message by a symbol,
and the symbol is assigned the expression. The symbols are taken from the list
error_syms.
Otherwise, the expression is smaller than error_size, and the expression is displayed
in the message.
See also error and error_syms.
Example:
The size of U, as determined by ERROR-SIZE, is 24.

(%i1) U: (C°DE + B + A)/(cos(X-1) + 1)$

(%i2) error_size: 20$
(%13) error ("Example expression is", U);

Example expression is errexpl
-- an error. Quitting. To debug this try debugmode(true);
(%i4) errexpil;

(%04 e
cos(X - 1) + 1
(%1i5) error_size: 30%

(%16) error ("Example expression is", U);

Example expression is ————-————-————-
cos(X - 1) +1
-- an error. Quitting. To debug this try debugmode(true);

error_syms Option variable
Default value: [errexpl, errexp2, errexp3]

In error messages, expressions larger than error_size are replaced by symbols, and
the symbols are set to the expressions. The symbols are taken from the list error_
syms. The first too-large expression is replaced by error_syms[1], the second by
error_syms [2], and so on.

If there are more too-large expressions than there are elements of error_syms,
symbols are constructed automatically, with the n-th symbol equivalent to concat
(’errexp, n).

See also error and error_size.

expt (a, b) Function
If an exponential expression is too wide to be displayed as a™b it appears as expt (a,
b) (or as ncexpt (a, b) in the case of a~~b).
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expt and ncexpt are not recognized in input.

exptdispflag Option variable
Default value: true

When exptdispflag is true, Maxima displays expressions with negative exponents
using quotients, e.g., X~ (-1) as 1/X.

filename_merge (path, filename) Function
Constructs a modified path from path and filename. If the final component of path
is of the form ###.something, the component is replaced with filename.something.
Otherwise, the final component is simply replaced by filename.

The result is a Lisp pathname object.

file_search (filename) Function
file_search (filename, pathlist) Function
file_search searches for the file filename and returns the path to the file (as a string)
if it can be found; otherwise file_search returns false. file_search (filename)
searches in the default search directories, which are specified by the file_search_
maxima, file_search_lisp, and file_search_demo variables.

file_search first checks if the actual name passed exists, before attempting to match
it to “wildcard” file search patterns. See file_search_maxima concerning file search
patterns.

The argument filename can be a path and file name, or just a file name, or, if a file
search directory includes a file search pattern, just the base of the file name (without
an extension). For example,

file_search ("/home/wfs/special/zeta.mac");

file_search ("zeta.mac");

file_search ("zeta");

all find the same file, assuming the file exists and /home/wfs/special/###.mac is in
file_search_maxima.

file_search (filename, pathlist) searches only in the directories specified by path-
list, which is a list of strings. The argument pathlist supersedes the default search
directories, so if the path list is given, file_search searches only the ones specified,
and not any of the default search directories. Even if there is only one directory in
pathlist, it must still be given as a one-element list.

The user may modify the default search directories. See file_search_maxima.

file_search is invoked by load with file_search_maxima and file_search_lisp
as the search directories.

file_search_maxima Option variable
file_search_lisp Option variable
file_search_demo Option variable

These variables specify lists of directories to be searched by load, demo, and some
other Maxima functions. The default values of these variables name various directories
in the Maxima installation.
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file_type (filename)

grind (expr)
grind

Maxima Manual

The user can modify these variables, either to replace the default values or to append
additional directories. For example,

file_search_maxima: ["/usr/local/foo/##i#.mac",
"/usr/local/bar/### .mac"]$

replaces the default value of file_search_maxima, while

file_search_maxima: append (file_search_maxima,
["/usr/local/foo/#i##.mac", "/usr/local/bar/###.mac"])$

appends two additional directories. It may be convenient to put such an expression in
the file maxima-init.mac so that the file search path is assigned automatically when
Maxima starts.

Multiple filename extensions and multiple paths can be specified by special “wildcard”
constructions. The string ### expands into the sought-after name, while a comma-
separated list enclosed in curly braces {foo,bar,baz} expands into multiple strings.
For example, supposing the sought-after name is neumann,

"/home/{wfs,gcj}/###.{lisp,mac}"

expands into /home/wfs/neumann.lisp, /home/gcj/neumann.lisp,
/home/wfs/neumann.mac, and /home/gcj/neumann.mac.

Returns a guess about the content of filename, based on the filename extension.
filename need not refer to an actual file; no attempt is made to open the file and
inspect the content.

The return value is a symbol, either object, 1isp, or maxima. If the extension starts
with m or d, file_type returns maxima. If the extension starts with 1, file_type
returns lisp. If none of the above, file_type returns object.

The function grind prints expr to the console in a form suitable for input to Maxima.
grind always returns done.

When expr is the name of a function or macro, grind prints the function or macro
definition instead of just the name.

See also string, which returns a string instead of printing its output. grind attempts
to print the expression in a manner which makes it slightly easier to read than the
output of string.

When the variable grind is true, the output of string and stringout has the same
format as that of grind; otherwise no attempt is made to specially format the output
of those functions. The default value of the variable grind is false.

grind can also be specified as an argument of playback. When grind is present,
playback prints input expressions in the same format as the grind function. Other-
wise, no attempt is made to specially format input expressions.

grind evaluates its argument.

Examples:

Function

Function
Option variable
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(%i1) aa + 1729;

(%o1) aa + 1729

(%12) grind (%) ;

aa+1729%

(%02) done

(%13) [aa, 1729, aa + 1729];

(%03) [aa, 1729, aa + 1729]

(%i4) grind (b ;
[aa,1729,aa+1729]$

(%04) done
(%i5) matrix ([aa, 171, [29, bbl);
[ aa 17 ]
(%05) [ ]
[ 29 bb ]

(%i6) grind (%);
matrix([aa,17],[29,bb]l)$

(%06) done
(%i7) set (aa, 17, 29, bb);
(%oT) {17, 29, aa, bb}

(%i8) grind (%);

{17,29,aa,bb}$

(%08) done
(%19) exp (aa / (bb + 17)729);

aa
29
(bb + 17)

(%09) %he
(%i10) grind (h);
%e” (aa/(bb+17)"29)$
(%010) done
(%i11) expr: expand ((aa + bb)~10);

10 9 2 8 3 7 4 6
(%011) bb + 10 aa bb + 45 aa bb + 120 aa bb + 210 aa bb

5 5 6 4 7 3 8 2
+ 252 aa bb + 210 aa bb + 120 aa bb + 45 aa bb

9 10
+ 10 aa bb + aa
(%112) grind (expr);
bb~10+10*aa*bb~9+45*%aa”~2*xbb~8+120*%aa~3*bb~7+210%aa"~4*bb~6
+252*%aa”~5xbb"5+210*%aa”6*xbb~4+120*aa” 7*bb~3+45%aa”~8xbb~2
+10*aa”~9*bb+aa~10$
(%012) done
(%113) string (expr);
(%013) bb~10+10*aa*bb~9+45%aa”~2*xbb~8+120*%aa~3*bb~7+210*aa"~4*bb~6\
+252*aa”5*%bb~5+210%aa”~6*bb~4+120*aa”~7*bb~3+45*%aa~8*bb~2+10*aa”~ 9%\
bb+aa~10
(%114) cholesky (A):= block ([n : length (A), L : copymatrix (&),
p : makelist (0, i, 1, length (A))], for i thru n do
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for j : i thru n do
(x : L[i, jl, x + x - sum (L[j, k] = L[i, k], k, 1, i - 1),
if i = j then pl[i]l : 1 / sqrt(x) else L[j, il : x * pl[il),
for i thru n do L[i, i] : 1 / pli],
for i thru n do for j : i + 1 thru n do L[i, j] : O, L)$
(%115) grind (cholesky);
cholesky(A) :=block(
[n:length(A),L:copymatrix(A),
p:makelist(0,i,1,length(A))],
for i thru n do
(for j from i thru n do
(x:L[4,j],x:x-sum(L[j,k]*L[4i,k],k,1,i-1),
if i = j then p[i]:1/sqrt(x)
else L[j,i]:x*p[i])),
for i thru n do L[i,i]:1/pli],
for i thru n do (for j from i+l thru n do L[i,j]l:0),L)$
(%015) done
(%116) string (fundef (cholesky));
(%016) cholesky(A) :=block([n:length(A),L:copymatrix(A),p:makelis\
t(0,1i,1,1length(A))],for i thru n do (for j from i thru n do (x:L\
[i,j],x:x-sum(L[j,k]*L[i,k],k,1,i-1),if i = j then p[il:1/sqrt(x\
) else L[j,i]l:x*p[i])),for i thru n do L[i,i]:1/p[il,for i thru \
n do (for j from i+1 thru n do L[i,j]:0),L)

ibase Option variable
Default value: 10

Integers entered into Maxima are interpreted with respect to the base ibase.

ibase may be assigned any integer between 2 and 35 (decimal), inclusive. When
ibase is greater than 10, the numerals comprise the decimal numerals 0 through 9
plus capital letters of the alphabet A, B, C, ..., as needed. The numerals for base 35,
the largest acceptable base, comprise 0 through 9 and A through Y.

See also obase.

inchar Option variable
Default value: %i

inchar is the prefix of the labels of expressions entered by the user. Maxima auto-
matically constructs a label for each input expression by concatenating inchar and
linenum. inchar may be assigned any string or symbol, not necessarily a single
character.

(%i1) inchar: "input";

(hol) input

(inputl) expand ((a+b)"3);

3 2 2 3
(ho1) b +3ab +3a b+a
(input?2)

See also labels.
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Idisp (expr_1, ..., expr_n) Function
Displays expressions expr_1, ..., expr_n to the console as printed output. 1disp assigns
an intermediate expression label to each argument and returns the list of labels.
See also disp.
(5i1) e: (atb)"3;

3
(%o1) (b + a)
(%12) f: expand (e);
3 2 2 3
(%ho2) b +3ab +3a b+a
(%13) 1ldisp (e, £);
3
(ht3) (b + a)
3 2 2 3
(ht4) b +3ab +3a b+a
(%ho4) [%t3, %t4]
(hid) %t3;
3
(%hod) (b + a)
(i) ht4;
3 2 2 3
(%05) b +3ab +3a b+a
Idisplay (expr_1, ..., expr_n) Function
Displays expressions expr_1, ..., expr-n to the console as printed output. Each ex-

pression is printed as an equation of the form 1hs = rhs in which 1lhs is one of the
arguments of 1display and rhs is its value. Typically each argument is a variable.
1disp assigns an intermediate expression label to each equation and returns the list

of labels.
See also display.
(%i1) e: (a+b)"3;

3
(%o1) (b + a)
(%1i2) f: expand (e);
3 2 2 3
(%02) b +3ab +3a b+a
(%13) ldisplay (e, f);
3
(%t3) e = (b + a)
3 2 2 3
(%t4d) f=b +3ab +3a b+a
(%04) [%t3, %t4]

(hid) ht3;
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(%ho4) e = (b + a)
(%i5) %t4;
3 2 2 3
(%05) f=b +3ab +3a b+a
linechar Option variable

Default value: %t

linechar is the prefix of the labels of intermediate expressions generated by Maxima.
Maxima constructs a label for each intermediate expression (if displayed) by concate-
nating linechar and linenum. linechar may be assigned any string or symbol, not
necessarily a single character.

Intermediate expressions might or might not be displayed. See programmode and
labels.

linel Option variable
Default value: 79

linel is the assumed width (in characters) of the console display for the purpose
of displaying expressions. linel may be assigned any value by the user, although
very small or very large values may be impractical. Text printed by built-in Maxima
functions, such as error messages and the output of describe, is not affected by
linel.

lispdisp Option variable
Default value: false

When 1lispdisp is true, Lisp symbols are displayed with a leading question mark 7.
Otherwise, Lisp symbols are displayed with no leading mark.
Examples:

(%i1) lispdisp: false$

(%i2) ?foo + ?bar;

(%ho2) foo + bar

(%13) lispdisp: true$

(%i4) 7?foo + 7bar;

(Yho4d) ?foo + 7bar

load (filename) Function
Evaluates expressions in filename, thus bringing variables, functions, and other objects
into Maxima. The binding of any existing object is clobbered by the binding recovered
from filename. To find the file, 1load calls file_search with file_search_maxima
and file_search_lisp as the search directories. If load succeeds, it returns the
name of the file. Otherwise load prints an error message.

load works equally well for Lisp code and Maxima code. Files created by save,
translate_file, and compile_file, which create Lisp code, and stringout, which
creates Maxima code, can all be processed by load. load calls loadfile to load Lisp
files and batchload to load Maxima files.
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load does not recognize :1lisp constructs in Maxima files, and while processing file-
name, the global variables _, %, and %th have whatever bindings they had when
load was called.

-

See also loadfile, batch, batchload, and demo. loadfile processes Lisp files;
batch, batchload, and demo process Maxima files.

See file_search for more detail about the file search mechanism.

load evaluates its argument.

loadfile (filename) Function
Evaluates Lisp expressions in filename. loadfile does not invoke file_search, so
filename must include the file extension and as much of the path as needed to find
the file.

loadfile can process files created by save, translate_file, and compile_file.
The user may find it more convenient to use load instead of loadfile.

loadprint Option variable
Default value: true

loadprint tells whether to print a message when a file is loaded.
e When loadprint is true, always print a message.

e When loadprint is ’loadfile, print a message only if a file is loaded by the
function loadfile.

e When loadprint is ’autoload, print a message only if a file is automatically
loaded. See setup_autoload.

e When loadprint is false, never print a message.

obase Option variable
Default value: 10

obase is the base for integers displayed by Maxima.

obase may be assigned any integer between 2 and 35 (decimal), inclusive. When
obase is greater than 10, the numerals comprise the decimal numerals 0 through 9
plus capital letters of the alphabet A, B, C, ..., as needed. The numerals for base 35,
the largest acceptable base, comprise 0 through 9, and A through Y.

See also ibase.

outchar Option variable
Default value: %o

outchar is the prefix of the labels of expressions computed by Maxima. Maxima auto-
matically constructs a label for each computed expression by concatenating outchar
and linenum. outchar may be assigned any string or symbol, not necessarily a single
character.

(%i1) outchar: "output";

(outputl) output

(%i2) expand ((a+b)~3);
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3 2 2 3
(output2) b +3ab +3a b+a
(%13)

See also labels.

packagefile Option variable
Default value: false

Package designers who use save or translate to create packages (files) for others to
use may want to set packagefile: true to prevent information from being added to
Maxima’s information-lists (e.g. values, functions) except where necessary when
the file is loaded in. In this way, the contents of the package will not get in the user’s
way when he adds his own data. Note that this will not solve the problem of possible
name conflicts. Also note that the flag simply affects what is output to the package
file. Setting the flag to true is also useful for creating Maxima init files.

pfeformat Option variable
Default value: false

When pfeformat is true, a ratio of integers is displayed with the solidus (forward
slash) character, and an integer denominator n is displayed as a leading multiplicative
term 1/n.

(%i1) pfeformat: false$
(%i2) 2°16/7°3;

65536

(ho2> ==
343

(%i3) (at+b)/8;

b + a
(o3> ==

8
(%14) pfeformat: true$
(%i5) 2°16/7°3;
(%05) 65536/343
(%i6) (at+b)/8;
(%06) 1/8 (b + a)
print (expr_1, ..., expr_n) Function
Evaluates and displays expr_1, ..., expr_n one after another, from left to right, starting

at the left edge of the console display.
The value returned by print is the value of its last argument. print does not generate
intermediate expression labels.
See also display, disp, 1display, and 1disp. Those functions display one expression
per line, while print attempts to display two or more expressions per line.
To display the contents of a file, see printfile.

(%i1) r: print ("(a+b)~3 is", expand ((atb)~3), "log (a~10/b) is",

radcan (log (a"10/b)))$
3 2 2 3
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(a+b)"3 is b +3 ab +3a b+ a log (2°10/b) is

10 log(a) - log(b)
(5hi2) r;
(%02) 10 log(a) - log(b)
(%13) disp ("(a+b)~3 is", expand ((at+b)~3), "log (a~10/b) is",
radcan (log (a~10/b)))$
(a+b) "3 is

3 2 2 3
b +3ab +3a b+ a

log (a”10/b) is

10 log(a) - log(b)

printfile (path) Function
Prints the file named by path to the console. path may be a string or a symbol; if it
is a symbol, it is converted to a string.

If path names a file which is accessible from the current working directory, that file is
printed to the console. Otherwise, printfile attempts to locate the file by appending
path to each of the elements of file_search_usage via filename_merge.

printfile returns path if it names an existing file, or otherwise the result of a
successful filename merge.

tcl_output (list, i0, skip) Function
tcl_output (list, i0) Function
tcl_output ([list_1, ..., list_n], i) Function

Prints elements of a list enclosed by curly braces { }, suitable as part of a program
in the Tcl/Tk language.

tcl_output (list, i0, skip) prints list, beginning with element i0 and printing ele-
ments i0 + skip, i0 + 2 skip, etc.

tcl_output (list, i0) is equivalent to tcl_output (list, i0, 2).
tcl_output ([list_1, ..., list_n], i) prints the i’th elements of list_1, ..., list_n.
Examples:

(%i1) tcl_output ([1, 2, 3, 4, 5, 6], 1, 3)$

{1.000000000 4.000000000
}
(%12) tcl_output ([1, 2, 3, 4, 5, 61, 2, 3)$
{2.000000000 5.000000000
}

(%i3) tcl_output ([3/7, 5/9, 11/13, 13/17]1, 1)$

{((RAT SIMP) 3 7) ((RAT SIMP) 11 13)
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}
(%i4) tcl_output ([x1, yi, x2, y2, x3, y3], 2)$

{$v1 $Y2 $Yv3
}
(%i5) tcl_output ([[1, 2, 3], [11, 22, 3311, 1S

{SIMP 1.000000000 11.00000000
}
read (expr_1, ..., expr_n) Function
Prints expr_1, ..., expr_n, then reads one expression from the console and returns the
evaluated expression. The expression is terminated with a semicolon ; or dollar sign

$.
See also readonly.
(%1i1) foo: 42%

(%i2) foo: read ("foo is", foo, " -- enter new value.")$
foo is 42 -- enter new value.
(a+b) " 3;
(%1i3) foo;
3
(%03) (b + a)
readonly (expr_1, ..., expr_n) Function
Prints expr_1, ..., expr_n, then reads one expression from the console and returns the

expression (without evaluation). The expression is terminated with a ; (semicolon)
or $ (dollar sign).

(%i1) aa: 7%

(%12) foo: readonly ("Enter an expression:");

Enter an expression:

27aa;

aa

(%ho2) 2

(%13) foo: read ("Enter an expression:");

Enter an expression:

27aa;

(%03) 128

See also read.

reveal (expr, depth) Function
Replaces parts of expr at the specified integer depth with descriptive summaries.

e Sums and differences are replaced by Sum(n) where n is the number of operands
of the sum.

e Products are replaced by Product (n) where n is the number of operands of the
product.

e FExponentials are replaced by Expt.
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e Quotients are replaced by Quotient.

e Unary negation is replaced by Negterm.
When depth is greater than or equal to the maximum depth of expr, reveal (expr,
depth) returns expr unmodified.

reveal evaluates its arguments. reveal returns the summarized expression.

Example:
(%11) e: expand ((a - b)"2)/expand ((exp(a) + exp(b))~2);
2 2
b -2ab+a
(%ol)  mmmmmmm e
b+ a 2Db 2 a
2 e + e + e

(%1i2) reveal (e, 1);
(%02) Quotient
(%i3) reveal (e, 2);

o3 =

(%i4) reveal (e, 3);
Expt + Negterm + Expt
(%od) 0 e
Product(2) + Expt + Expt
(%i5) reveal (e, 4);

2 2
b - Product(3) + a
(h05)  mmmmmmmm e
Product (2) Product (2)
2 Expt + %e + e
(%i6) reveal (e, 5);
2 2
b -2ab+a
(h06)  mmmmmmmm e
Sum(2) 2b 2 a
2 e + e + he
(%i7) reveal (e, 6);
2 2
b -2ab+a
(€1
b + a 2D 2 a
2 e + he + he
rmxchar Option variable

Default value: ]
rmxchar is the character drawn on the right-hand side of a matrix.

See also 1lmxchar.
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(filename, name_1, name_2, name_3, ...) Function
(filename, values, functions, labels, ...) Function
(filename, [m, n]) Function
(filename, name_1=expr_1, ...) Function
(filename, all) Function
(filename, name_1=expr_1, name_2=expr_2, ...) Function
Stores the current values of name_1, name_2, name_3, ..., in filename. The arguments
are the names of variables, functions, or other objects. If a name has no value or
function associated with it, it is ignored. save returns filename.

save stores data in the form of Lisp expressions. The data stored by save may be
recovered by load (filename).

The global flag file_output_append governs whether save appends or truncates the
output file. When file_output_append is true, save appends to the output file.
Otherwise, save truncates the output file. In either case, save creates the file if it
does not yet exist.

The special form save (filename, values, functions, labels, ...) stores the
items named by values, functions, labels, etc. The names may be any specified
by the variable infolists. values comprises all user-defined variables.

The special form save (filename, [m, n]) stores the values of input and output la-
bels m through n. Note that m and n must be literal integers. Input and output labels
may also be stored one by one, e.g., save ("foo.1", %142, %042). save (filename,
labels) stores all input and output labels. When the stored labels are recovered,
they clobber existing labels.

The special form save (filename, name_l=expr_1, name_2=expr_2, ...) stores the
values of expr_1, expr_2, ..., with names name_1, name_2, .... It is useful to apply this
form to input and output labels, e.g., save ("foo.1", aa=%088). The right-hand
side of the equality in this form may be any expression, which is evaluated. This form
does not introduce the new names into the current Maxima environment, but only
stores them in filename.

These special forms and the general form of save may be mixed at will. For example,
save (filename, aa, bb, cc=42, functions, [11, 17]).

The special form save (filename, all) stores the current state of Maxima. This
includes all user-defined variables, functions, arrays, etc., as well as some auto-
matically defined items. The saved items include system variables, such as file_
search_maxima or showtime, if they have been assigned new values by the user; see
myoptions.

save evaluates filename and quotes all other arguments.

savedef Option variable

Default value: true

When savedef is true, the Maxima version of a user function is preserved when the
function is translated. This permits the definition to be displayed by dispfun and
allows the function to be edited.

When savedef is false, the names of translated functions are removed from the
functions list.



Chapter 9: Input and Output 143

show (expr) Function
Displays expr with the indexed objects in it shown having covariant indices as sub-
scripts, contravariant indices as superscripts. The derivative indices are displayed as
subscripts, separated from the covariant indices by a comma.

showratvars (expr) Function
Returns a list of the canonical rational expression (CRE) variables in expression expr.

See also ratvars.

stardisp Option variable
Default value: false

When stardisp is true, multiplication is displayed with an asterisk * between
operands.

string (expr) Function
Converts expr to Maxima’s linear notation just as if it had been typed in.

The return value of string is a string, and thus it cannot be used in a computation.

stringdisp Option variable
Default value: false

When stringdisp is true, strings are displayed enclosed in double quote marks.
Otherwise, quote marks are not displayed.
stringdisp is always true when displaying a function definition.
Examples:

(%1i1) stringdisp: false$

(%i2) "This is an example string.";

(%02) This is an example string.

(%13) foo () :=

print ("This is a string in a function definition.");
(%h03) foo() :=
print("This is a string in a function definition.")
(%14) stringdisp: true$
(%15) "This is an example string.";

(%05) "This is an example string."
stringout (filename, expr_1, expr_2, expr.3, ...) Function
stringout (filename, [m, n]) Function
stringout (filename, input) Function
stringout (filename, functions) Function
stringout (filename, values) Function

stringout writes expressions to a file in the same form the expressions would be
typed for input. The file can then be used as input for the batch or demo commands,
and it may be edited for any purpose. stringout can be executed while writefile
is in progress.
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The global flag file_output_append governs whether stringout appends or trun-
cates the output file. When file_output_append is true, stringout appends to
the output file. Otherwise, stringout truncates the output file. In either case,
stringout creates the file if it does not yet exist.

The general form of stringout writes the values of one or more expressions to the
output file. Note that if an expression is a variable, only the value of the variable is
written and not the name of the variable. As a useful special case, the expressions
may be input labels (%i1, %i2, %13, ...) or output labels (%o1, %02, %03, ...).

If grind is true, stringout formats the output using the grind format. Otherwise
the string format is used. See grind and string.

The special form stringout (filename, [m, nl) writes the values of input labels m
through n, inclusive.

The special form stringout (filename, input) writes all input labels to the file.

The special form stringout (filename, functions) writes all user-defined functions
(named by the global list functions) to the file.

The special form stringout (filename, values) writes all user-assigned variables
(named by the global list values) to the file. Each variable is printed as an assignment
statement, with the name of the variable, a colon, and its value. Note that the general
form of stringout does not print variables as assignment statements.

expr) Function
expr, destination) Function
expr, false) Function
label) Function
label, destination) Function
label, false) Function
Prints a representation of an expression suitable for the TeX document preparation
system. The result is a fragment of a document, which can be copied into a larger
document but not processed by itself.

tex (expr) prints a TeX representation of expr on the console.

tex (label) prints a TeX representation of the expression named by label and assigns
it an equation label (to be displayed to the left of the expression). The TeX equation
label is the same as the Maxima label.

destination may be an output stream or file name. When destination is a file name,
tex appends its output to the file. The functions openw and opena create output
streams.

tex (expr, false) and tex (label, false) return their TeX output as a string.

tex evaluates its first argument after testing it to see if it is a label. Quote-quote
2 forces evaluation of the argument, thereby defeating the test and preventing the
label.

See also texput.

Examples:
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(%i1) integrate (1/(1+x73), x);

2x-1
2 atan(------- )
log(x - x + 1) sqrt (3) log(x + 1)
(%hol) - e + mmmmmm e + —mmmmm
6 sqrt (3) 3

(hi2) tex (%hol);

$$-{{\log \left(x"2-x+1\right)\over{6}}+{{\arctan \left({{2\,x-1
HNover{\sqrt{3}}}\right) F\over{\sqrt{3}}}+{{\log \left(x+1\right)
Rover{3}}\legno{\tt (\%o1)1}3$$

(%02) (\%o1)
(%13) tex (integrate (sin(x), x));
$$-\cos x3$$

(%03) false
(%i4) tex (Yhol, "foo.tex");

(%04) (\%o1)

tex (expr, false) returns its TeX output as a string.

(%1i1) S : tex (x * y * z, false);
(%01) $$x\,y\,z$$

(%i2) S;

(h02) $3x\,y\,z$$

texput (a, s) Function
texput (a, s, operator_type) Function
texput (a, [s-1, s_2], matchfix) Function
texput (a, [s_1, s_2, s_3], matchfix) Function

Assign the TeX output for the atom a, which can be a symbol or the name of an
operator.

texput (a, s) causes the tex function to interpolate the string s into the TeX output
in place of a.

texput (a, s, operator_type), where operator_type is prefix, infix, postfix,
nary, or nofix, causes the tex function to interpolate s into the TeX output in place
of a, and to place the interpolated text in the appropriate position.

texput (a, [s_1, s-2], matchfix) causes the tex function to interpolate s_1 and s_2
into the TeX output on either side of the arguments of a. The arguments (if more
than one) are separated by commas.

texput (a, [s_1, s_2, s-3], matchfix) causes the tex function to interpolate s_1
and s_2 into the TeX output on either side of the arguments of a, with s_3 separating
the arguments.

Examples:

Assign TeX output for a variable.

(%1i1) texput (me,"\\mu_e");

(%o1) \mu_e
(%i2) tex (me);

$$\mu_e$$

(%02) false
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Assign TeX output for an ordinary function (not an operator).
(%1i1) texput (lcm, "\\mathrm{lcm}");
(%o1) \mathrm{lcm}
(%1i2) tex (lcm (a, b));
$$\mathrm{lcm}\left(a , b\right)$$
(%o2) false

Assign TeX output for a prefix operator.
(%1i1) prefix ("grad");

(%hol) grad
(%12) texput ("grad", " \\nabla ", prefix);
(%h02) \nabla

(%13) tex (grad f);

$$ \nabla f3$$

(%03) false
Assign TeX output for an infix operator.

(%i1) infix (""");

(%o1) -
(%12) texput ("7", " \\times ", infix);
(%02) \times

(%i3) tex (a ~ b);

$$a \times b$$

(%03) false
Assign TeX output for a postfix operator.

(%i1) postfix ("##");

(%o1) #H
(%12) texput ("##", "!I", postfix);
(%02) 1
(%13) tex (x ##);

$$x ! 183

(%03) false

Assign TeX output for a nary operator.
(%i1) nary ("@Q@");

(%o1) Q@
(%12) texput ("@@", " \\circ ", nary);
(%02) \circ

(%i3) tex (a @@ b @@ c @@ d);

$$a \circ b \circ c \circ d3$$

(%03) false
Assign TeX output for a nofix operator.

(%i1) nofix ("foo");

(%ho1) foo

(%12) texput ("foo", "\\mathsc{fool}", nofix);
(%02) \mathsc{foo}

(%13) tex (foo);

$$\mathsc{foo}$$

(%03) false

Assign TeX output for a matchfix operator.
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(%i1) matchfix ("<<", ">>");

(%o1) <<
(%12) texput ("<<", [" \\langle ", " \\rangle "], matchfix);
(%02) [ \langle , \rangle ]

(%i3) tex (<<a>>);

$$ \langle a \rangle $$

(%03) false
(%id) tex (<<a, b>>);

$$ \langle a , b \rangle $$

(%04) false

(%15) texput ("<<", [" \\langle ", " \\rangle ", " \\, | \\,"],
matchfix) ;

(%05) [ \langle , \rangle , \, | \,]

(%i6) tex (<<a>>);

$$ \langle a \rangle $$

(%06) false
(5i7) tex (<<a, b>>);

$$ \langle a \, | \,b \rangle $$

(hoT) false
get_tex_environment (op) Function
set_tex_environment (op, before, after) Function

Customize the TeX environment output by tex. As maintained by these functions,
the TeX environment comprises two strings: one is printed before any other TeX
output, and the other is printed after.

Only the TeX environment of the top-level operator in an expression is output; TeX
environments associated with other operators are ignored.

get_tex_environment returns the TeX enviroment which is applied to the operator
op; returns the default if no other environment has been assigned.

set_tex_environment assigns the TeX environment for the operator op.
Examples:

(%i1) get_tex_environment (":=");
(ho1) [

\begin{verbatim}

ieﬁd{verbatim}

]

(%i2) tex (f (x) :=1 - x);

\begin{verbatim}
f(x):=1-x;
\end{verbatim}

(%02) false

(%1i3) set_tex_environment (":=", "$$", "$$");
(%03) [$$, $8]

(%id) tex (f (x) :=1 - x);
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$$f (x) :=1-x$$

(hod) false
get_tex_environment_default () Function
set_tex_environment_default (before, after) Function

Customize the TeX environment output by tex. As maintained by these functions,
the TeX environment comprises two strings: one is printed before any other TeX
output, and the other is printed after.

get_tex_environment_default returns the TeX environment which is applied to
expressions for which the top-level operator has no specific TeX environment (as
assigned by set_tex_environment).

set_tex_environment_default assigns the default TeX environment.
Examples:

(%1i1) get_tex_environment_default ();

(%hol) [$8, $3]

(%i2) tex (£(x) + g(x));

$$g\left (x\right)+f\left (x\right)$$

(%ho2) false

(%13) set_tex_environment_default ("\\begin{equation}

n n

\iend{equation}");
(%03) [\begin{equation}

\end{equation}]

(%id) tex (£(x) + g(x));
\begin{equation}

g\left (x\right)+f\left (x\right)
\end{equation}

(hod) false

system (command) Function

Executes command as a separate process. The command is passed to the default shell
for execution. system is not supported by all operating systems, but generally exists
in Unix and Unix-like environments.
Supposing _hist.out is a list of frequencies which you wish to plot as a bar graph
using xgraph.

(%i1) (with_stdout("_hist.out",

for i:1 thru length(hist) do (
print(i,hist[il))),
system("xgraph -bar -brw .7 -nl < _hist.out"));

In order to make the plot be done in the background (returning control to Maxima)
and remove the temporary file after it is done do:

system(" (xgraph -bar -brw .7 -nl < _hist.out; rm -f _hist.out)&")

ttyoff Option variable
Default value: false
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When ttyoff is true, output expressions are not displayed. Output expressions are
still computed and assigned labels. See labels.

Text printed by built-in Maxima functions, such as error messages and the output of
describe, is not affected by ttyoff.

with_stdout (f, expr_1, expr_2, expr_3, ...) Function
with_stdout (s, expr_1, expr_2, expr.3, ...) Function
Evaluates expr_1, expr_2, expr_3, ... and writes any output thus generated to a file f

or output stream s. The evaluated expressions are not written to the output. Output
may be generated by print, display, grind, among other functions.

The global flag file_output_append governs whether with_stdout appends or trun-
cates the output file £ When file_output_append is true, with_stdout appends
to the output file. Otherwise, with_stdout truncates the output file. In either case,
with_stdout creates the file if it does not yet exist
with_stdout returns the value of its final argument.
See also writefile.

(%i1) with_stdout ("tmp.out", for i:5 thru 10 do

print (i, "! yields", i!))$

(%12) printfile ("tmp.out")$

5 ! yields 120

6 ! yields 720

7 1 yields 5040

8 ! yields 40320

9 ! yields 362880

10 ! yields 3628800

writefile (filename) Function
Begins writing a transcript of the Maxima session to filename. All interaction between
the user and Maxima is then recorded in this file, just as it appears on the console.

As the transcript is printed in the console output format, it cannot be reloaded into
Maxima. To make a file containing expressions which can be reloaded, see save and
stringout. save stores expressions in Lisp form, while stringout stores expressions
in Maxima form.

The effect of executing writefile when filename already exists depends on the un-
derlying Lisp implementation; the transcript file may be clobbered, or the file may be
appended. appendfile always appends to the transcript file.

It may be convenient to execute playback after writefile to save the display of
previous interactions. As playback displays only the input and output variables
(%i1, %o1, etc.), any output generated by a print statement in a function (as opposed
to a return value) is not displayed by playback.

closefile closes the transcript file opened by writefile or appendfile.
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10 Floating Point

10.1 Functions and Variables for Floating Point

bffac (expr, n) Function
Bigfloat version of the factorial (shifted gamma) function. The second argument is
how many digits to retain and return, it’s a good idea to request a couple of extra.

algepsilon Option variable
Default value: 1078

algepsilon is used by algsys.

bfloat (expr) Function
Converts all numbers and functions of numbers in expr to bigfloat numbers. The
number of significant digits in the resulting bigfloats is specified by the global variable
fpprec.

When float2bf is false a warning message is printed when a floating point number
is converted into a bigfloat number (since this may lead to loss of precision).

bfloatp (expr) Function
Returns true if expr is a bigfloat number, otherwise false.

bfpsi (n, z, fpprec) Function

bfpsi0 (z, fpprec) Function
bfpsi is the polygamma function of real argument z and integer order n. bfpsioO is
the digamma function. bfpsiO (z, fpprec) is equivalent to bfpsi (0, z, fpprec).

These functions return bigfloat values. fpprec is the bigfloat precision of the return
value.

bftorat Option variable
Default value: false

bftorat controls the conversion of bfloats to rational numbers. When bftorat is
false, ratepsilon will be used to control the conversion (this results in relatively
small rational numbers). When bftorat is true, the rational number generated will
accurately represent the bfloat.

bftrunc Option variable
Default value: true

bftrunc causes trailing zeroes in non-zero bigfloat numbers not to be displayed. Thus,
if bftrunc is false, bfloat (1) displays as 1.000000000000000B0. Otherwise, this
is displayed as 1.0BO.
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cbffac (z, fpprec) Function
Complex bigfloat factorial.

load ("bffac") loads this function.

float (expr) Function
Converts integers, rational numbers and bigfloats in expr to floating point numbers.
It is also an evflag, float causes non-integral rational numbers and bigfloat numbers
to be converted to floating point.

float2bf Option variable
Default value: false

When float2bf is false, a warning message is printed when a floating point number
is converted into a bigfloat number (since this may lead to loss of precision).

floatnump (expr) Function
Returns true if expr is a floating point number, otherwise false.

fpprec Option variable
Default value: 16
fpprec is the number of significant digits for arithmetic on bigfloat numbers. fpprec
does not affect computations on ordinary floating point numbers.

See also bfloat and fpprintprec.

fpprintprec Option variable
Default value: 0
fpprintprec is the number of digits to print when printing an ordinary float or
bigfloat number.
For ordinary floating point numbers, when fpprintprec has a value between 2 and
16 (inclusive), the number of digits printed is equal to fpprintprec. Otherwise,
fpprintprec is 0, or greater than 16, and the number of digits printed is 16.

For bigfloat numbers, when fpprintprec has a value between 2 and fpprec (inclu-
sive), the number of digits printed is equal to fpprintprec. Otherwise, fpprintprec
is 0, or greater than fpprec, and the number of digits printed is equal to fpprec.

fpprintprec cannot be 1.



Chapter 11: Contexts 153

11 Contexts

11.1 Functions and Variables for Contexts

activate (context_1, ..., context_n) Function
Activates the contexts context_1, ..., context_n. The facts in these contexts are then
available to make deductions and retrieve information. The facts in these contexts
are not listed by facts ().

The variable activecontexts is the list of contexts which are active by way of the
activate function.

activecontexts System variable
Default value: []

activecontexts is a list of the contexts which are active by way of the activate
function, as opposed to being active because they are subcontexts of the current

context.
assume (pred_1, ..., pred_n) Function
Adds predicates pred_1, ..., pred_n to the current context. If a predicate is inconsistent

or redundant with the predicates in the current context, it is not added to the context.
The context accumulates predicates from each call to assume.

assume returns a list whose elements are the predicates added to the context or the
atoms redundant or inconsistent where applicable.

The predicates pred_1, ..., pred_n can only be expressions with the relational operators
< <= equal notequal >= and >. Predicates cannot be literal equality = or literal
inequality # expressions, nor can they be predicate functions such as integerp.

Compound predicates of the form pred_1 and ... and pred_n are recognized, but not
pred_1 or ... or pred_n. not pred_k is recognized if pred_k is a relational predicate.
Expressions of the form not (pred_1 and pred_2) and not (pred_1 or pred.2) are
not recognized.

Maxima’s deduction mechanism is not very strong; there are many obvious conse-
quences which cannot be determined by is. This is a known weakness.

assume evaluates its arguments.

See also is, facts, forget, context, and declare.

Examples:
(%i1) assume (xx > 0, yy < -1, zz >= 0);
(%o1) [xx > 0, yy < - 1, zz >= 0]
(%i2) assume (aa < bb and bb < cc);
(%02) [bb > aa, cc > bb]
(%i3) facts ();
(%03) [xx >0, - 1> yy, zz > 0, bb > aa, cc > bb]

(%i4) is (xx > yy);
(%04) true



154 Maxima Manual

(%15) is (yy < -yy);

(%05) true

(%i6) is (sinh (bb - aa) > 0);

(%h06) true

(%i7) forget (bb > aa);

(%07) [bb > aa]

(%18) prederror : false;

(%08) false

(%i9) is (sinh (bb - aa) > 0);

(%h09) unknown

(%1i10) is (bb"2 < cc~2);

(%010) unknown
assumescalar Option variable

Default value: true

assumescalar helps govern whether expressions expr for which nonscalarp (expr)
is false are assumed to behave like scalars for certain transformations.

Let expr represent any expression other than a list or a matrix, and let [1, 2, 3]
represent any list or matrix. Then expr . [1, 2, 3] yields [expr, 2 expr, 3 expr]
if assumescalar is true, or scalarp (expr) is true, or constantp (expr) is true.

If assumescalar is true, such expressions will behave like scalars only for commuta-
tive operators, but not for noncommutative multiplication ..

When assumescalar is false, such expressions will behave like non-scalars.

When assumescalar is all, such expressions will behave like scalars for all the op-
erators listed above.

assume_pos Option variable
Default value: false

When assume_pos is true and the sign of a parameter x cannot be determined from
the current context or other considerations, sign and asksign (x) return true. This
may forestall some automatically-generated asksign queries, such as may arise from
integrate or other computations.

By default, a parameter is x such that symbolp (x) or subvarp (x). The class of
expressions considered parameters can be modified to some extent via the variable
assume_pos_pred.

sign and asksign attempt to deduce the sign of expressions from the sign of operands
within the expression. For example, if a and b are both positive, then a + b is also
positive.

However, there is no way to bypass all asksign queries. In particular, when the
asksign argument is a difference x - y or a logarithm log(x), asksign always re-
quests an input from the user, even when assume_pos is true and assume_pos_pred
is a function which returns true for all arguments.

assume_pos_pred Option variable
Default value: false
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When assume_pos_pred is assigned the name of a function or a lambda expression
of one argument x, that function is called to determine whether x is considered a
parameter for the purpose of assume_pos. assume_pos_pred is ignored when assume_
pos is false.

The assume_pos_pred function is called by sign and asksign with an argument x
which is either an atom, a subscripted variable, or a function call expression. If the
assume_pos_pred function returns true, x is considered a parameter for the purpose
of assume_pos.
By default, a parameter is x such that symbolp (x) or subvarp (x).
See also assume and assume_pos.
Examples:

(%11) assume_pos: true$

(%12) assume_pos_pred: symbolp$

(%13) sign (a);

(%03) pos
(%i4) sign (al1l);
(%ho4d) pnz

(%15) assume_pos_pred: lambda ([x], display (x), true)$
(%16) asksign (a);

X = a
(%06) pos
(%i7) asksign (al1l);
X = a
1
(%oT) pos

(%18) asksign (foo (a));
x = foo(a)

(%08) pos
(%19) asksign (foo (a) + bar (b));
x = foo(a)

x = bar(b)
(%09) pos
(%110) asksign (log (a));
X =a

Is a -1 positive, negative, or zero?

P
(%010) pos
(%111) asksign (a - b);
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x=D>
Is b - a positive, negative, or zero?

p;
(%ho11) neg

context Option variable
Default value: initial

context names the collection of facts maintained by assume and forget. assume
adds facts to the collection named by context, while forget removes facts.

Binding context to a name foo changes the current context to foo. If the specified
context foo does not yet exist, it is created automatically by a call to newcontext.
The specified context is activated automatically.

See contexts for a general description of the context mechanism.

contexts Option variable
Default value: [initial, globall

contexts is a list of the contexts which currently exist, including the currently active
context.

The context mechanism makes it possible for a user to bind together and name a
collection of facts, called a context. Once this is done, the user can have Maxima
assume or forget large numbers of facts merely by activating or deactivating their
context.

Any symbolic atom can be a context, and the facts contained in that context will be
retained in storage until destroyed one by one by calling forget or destroyed as a
whole by calling kill to destroy the context to which they belong.

Contexts exist in a hierarchy, with the root always being the context global, which
contains information about Maxima that some functions need. When in a given
context, all the facts in that context are "active" (meaning that they are used in
deductions and retrievals) as are all the facts in any context which is a subcontext of
the active context.

When a fresh Maxima, is started up, the user is in a context called initial, which
has global as a subcontext.

See also facts, newcontext, supcontext, killcontext, activate, deactivate,
assume, and forget.

deactivate (context_1, ..., context_n) Function
Deactivates the specified contexts context_1, ..., context_n.
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facts (item) Function

facts () Function
If item is the name of a context, facts (item) returns a list of the facts in the specified
context.

If item is not the name of a context, facts (item) returns a list of the facts known
about item in the current context. Facts that are active, but in a different context,
are not listed.

facts () (i.e., without an argument) lists the current context.

features Declaration
Maxima recognizes certain mathematical properties of functions and variables. These
are called "features".

declare (x, foo) gives the property foo to the function or variable x.

declare (foo, feature) declares a new feature foo. For example, declare ([red,
green, blue], feature) declares three new features, red, green, and blue.

The predicate featurep (x, foo) returns true if x has the foo property, and false
otherwise.

The infolist features is a list of known features. These are integer, noninteger,
even, odd, rational, irrational, real, imaginary, complex, analytic,
increasing, decreasing, oddfun, evenfun, posfun, commutative, lassociative,
rassociative, symmetric, and antisymmetric, plus any user-defined features.

features is a list of mathematical features. There is also a list of non-mathematical,
system-dependent features. See status.

forget (pred_1, ..., pred_n) Function

forget (L) Function
Removes predicates established by assume. The predicates may be expressions equiv-
alent to (but not necessarily identical to) those previously assumed.

forget (L), where L is a list of predicates, forgets each item on the list.

killcontext (context_1, ..., context_n) Function
Kills the contexts context_1, ..., context_n.

If one of the contexts is the current context, the new current context will become the
first available subcontext of the current context which has not been killed. If the first
available unkilled context is global then initial is used instead. If the initial
context is killed, a new, empty initial context is created.

killcontext refuses to kill a context which is currently active, either because it is a
subcontext of the current context, or by use of the function activate.

killcontext evaluates its arguments. killcontext returns done.

newcontext (name) Function
Creates a new, empty context, called name, which has global as its only subcontext.
The newly-created context becomes the currently active context.

newcontext evaluates its argument. newcontext returns name.
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supcontext (name, context) Function

supcontext (name) Function
Creates a new context, called name, which has context as a subcontext. context must
exist,.

If context is not specified, the current context is assumed.
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12 Polynomials

12.1 Introduction to Polynomials

Polynomials are stored in Maxima either in General Form or as Cannonical Rational
Expressions (CRE) form. The latter is a standard form, and is used internally by operations
such as factor, ratsimp, and so on.

Canonical Rational Expressions constitute a kind of representation which is especially
suitable for expanded polynomials and rational functions (as well as for partially factored
polynomials and rational functions when RATFAC is set to true). In this CRE form an
ordering of variables (from most to least main) is assumed for each expression. Polynomials
are represented recursively by a list consisting of the main variable followed by a series of
pairs of expressions, one for each term of the polynomial. The first member of each pair is
the exponent of the main variable in that term and the second member is the coefficient of
that term which could be a number or a polynomial in another variable again represented
in this form. Thus the principal part of the CRE form of 3*X~2-1is (X 2 3 0 -1) and that of
2*X*Y+X-3is (Y1 (X12)0(X110-3)) assuming Y is the main variable, and is (X 1 (Y 1
20 1) 0-3) assuming X is the main variable. "Main"-ness is usually determined by reverse
alphabetical order. The "variables" of a CRE expression needn’t be atomic. In fact any
subexpression whose main operator is not + - * / or ~ with integer power will be considered
a "variable" of the expression (in CRE form) in which it occurs. For example the CRE
variables of the expression X+SIN(X+1)+2*SQRT(X)+1 are X, SQRT(X), and SIN(X+1). If
the user does not specify an ordering of variables by using the RATVARS function Maxima
will choose an alphabetic one. In general, CRE’s represent rational expressions, that is,
ratios of polynomials, where the numerator and denominator have no common factors,
and the denominator is positive. The internal form is essentially a pair of polynomials
(the numerator and denominator) preceded by the variable ordering list. If an expression
to be displayed is in CRE form or if it contains any subexpressions in CRE form, the
symbol /R/ will follow the line label. See the RAT function for converting an expression
to CRE form. An extended CRE form is used for the representation of Taylor series. The
notion of a rational expression is extended so that the exponents of the variables can be
positive or negative rational numbers rather than just positive integers and the coefficients
can themselves be rational expressions as described above rather than just polynomials.
These are represented internally by a recursive polynomial form which is similar to and
is a generalization of CRE form, but carries additional information such as the degree of
truncation. As with CRE form, the symbol /T/ follows the line label of such expressions.

12.2 Functions and Variables for Polynomials

algebraic Option variable
Default value: false

algebraic must be set to true in order for the simplification of algebraic integers to
take effect.
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berlefact Option variable
Default value: true

When berlefact is false then the Kronecker factoring algorithm will be used oth-
erwise the Berlekamp algorithm, which is the default, will be used.

bezout (pl, p2, x) Function
an alternative to the resultant command. It returns a matrix. determinant of this
matrix is the desired resultant.

bothcoef (expr, x) Function
Returns a list whose first member is the coefficient of x in expr (as found by ratcoef if
expr is in CRE form otherwise by coeff) and whose second member is the remaining
part of expr. That is, [A, B] where expr = Axx + B.
Example:
(%i1) islinear (expr, x) := block ([c],
c: bothcoef (rat (expr, x), x),
is (freeof (x, c¢) and c[1] # 0))$
(%i2) islinear ((r"2 - (x - r)~"2)/x, x);
(ho2) true

coeff (expr, x, n) Function
Returns the coefficient of x"n in expr. n may be omitted if it is 1. x may be an
atom, or complete subexpression of expr e.g., sin(x), a[i+1], x + y, etc. (In the last
case the expression (x + y) should occur in expr). Sometimes it may be necessary to
expand or factor expr in order to make x~n explicit. This is not done automatically
by coeff.
Examples:
(%i1) coeff (2*axtan(x) + tan(x) +
(ho1) 2a+1
(%12) coeff (y + xxle"x + 1, x, 0);
(%02) y+1

= bxtan(x) + 3, tan(x));
5

combine (expr) Function
Simplifies the sum expr by combining terms with the same denominator into a single
term.

content (p_1, x_1, ..., x_n) Function
Returns a list whose first element is the greatest common divisor of the coefficients
of the terms of the polynomial p_I in the variable x_n (this is the content) and whose
second element is the polynomial p_1 divided by the content.

Examples:

(%11) content (2*x*xy + 4*x72xy~2, y);
2
(%o1) 2 x, 2xy +y]
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denom (expr) Function
Returns the denominator of the rational expression expr.

divide (p_1, p-2, x_1, ..., x_n) Function
computes the quotient and remainder of the polynomial p_1 divided by the polynomial
p-2, in a main polynomial variable, x_-n. The other variables are as in the ratvars
function. The result is a list whose first element is the quotient and whose second
element is the remainder.

Examples:
(%i1) divide (x + y, x -y, X);
(%o1) [1, 2 vyl
(i2) divide (x + y, x - y);
(%02) [-1, 2 x]

Note that y is the main variable in the second example.

eliminate ([eqn_1, ..., eqn_n|, [x_1, ..., x_k]) Function
Eliminates variables from equations (or expressions assumed equal to zero) by taking
successive resultants. This returns a list of n - k expressions with the k variables

x_1, ..., x_k eliminated. First x_1 is eliminated yielding n - 1 expressions, then x_2
is eliminated, etc. If k = n then a single expression in a list is returned free of the
variables x_1, ..., x_k. In this case solve is called to solve the last resultant for the
last variable.
Example:

(%i1) exprl: 2%x"2 + y*x + z;

2

(%ho1) Z+xXy+2x

(%12) expr2: 3*x + b*xy - z - 1;

(%02) -z+5y+3x-1

(%13) expr3: z°2 + x - y°2 + 5;

2 2
(%o3) z -y +x+5
(%14) eliminate ([expr3, expr2, exprll, [y, zl);
8 7 6 5 4

(%o4) [7425 x - 1170 x + 1299 x + 12076 x + 22887 x

3 2
- 5164 x - 1291 x + 7688 x + 15376]

ezged (p-1, p-2, p-3, ...) Function
Returns a list whose first element is the g.c.d of the polynomials p_1, p_2, p_3, ... and
whose remaining elements are the polynomials divided by the g.c.d. This always uses
the ezgcd algorithm.

facexpand Option variable
Default value: true
facexpand controls whether the irreducible factors returned by factor are in ex-
panded (the default) or recursive (normal CRE) form.
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factcomb (expr) Function
Tries to combine the coefficients of factorials in expr with the factorials themselves
by converting, for example, (n + 1)*n! into (n + 1)!.

sumsplitfact if set to false will cause minfactorial to be applied after a factcomb.

factor (expr) Function

factor (expr, p) Function
Factors the expression expr, containing any number of variables or functions, into
factors irreducible over the integers. factor (expr, p) factors expr over the field of
integers with an element adjoined whose minimum polynomial is p.

factor uses ifactors function for factoring integers.
factorflag if false suppresses the factoring of integer factors of rational expressions.

dontfactor may be set to a list of variables with respect to which factoring is not
to occur. (It is initially empty). Factoring also will not take place with respect to
any variables which are less important (using the variable ordering assumed for CRE
form) than those on the dontfactor list.

savefactors if true causes the factors of an expression which is a product of factors
to be saved by certain functions in order to speed up later factorizations of expressions
containing some of the same factors.

berlefact if false then the Kronecker factoring algorithm will be used otherwise
the Berlekamp algorithm, which is the default, will be used.

intfaclim if true maxima will give up factorization of integers if no factor is found
after trial divisions and Pollard’s rho method. If set to false (this is the case when the
user calls factor explicitly), complete factorization of the integer will be attempted.
The user’s setting of intfaclim is used for internal calls to factor. Thus, intfaclim
may be reset to prevent Maxima from taking an inordinately long time factoring large

integers.
Examples:
(%i1) factor (2763 - 1);
2
(%o1) 7 73 127 337 92737 649657
(%12) factor (-8xy - 4*x + z"2*%(2*y + x));
(%02) Qy+x) (z-2) (z+2)
(%13) -1 - 2%x - X72 + y~2 + 2*x*ky~2 + x"2%y~2;
2 2 2 2 2
(%03) X y +2xy +y -x -2x-1
(%14) block ([dontfactor: [x]], factor (%/36/(1 + 2xy + y~2)));
2
x +2x+1) (y-1)
(J0d) 0 emmmemmmmmmemeeee e
36 (y + 1)
(%15) factor (1 + %e”(3*x));
X 2 x X
(%05) (he + 1) (%e - he + 1)

(%i6) factor (1 + x74, a2 - 2);
2 2
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(%06) (x —ax+1) (x +ax+1)
(%17) factor (-y~2*z"2 - x*z"2 + x"2%xy"2 + x73);
2
(%oT) - (y +x) (z-%x) (z+x

(%i8) (2 + x)/(B + x)/(b + x)/(c + x)72;
x + 2

(ho8) e

(x+3) (x+b) (x+c¢)
(%19) ratsimp (%);
4 3
(%09) (x+2)/(x + (2c+Db+ 3) x

2 2 2 2
+(c +2b+6) c+3b)x +((b+3)c +6bc)x+3bc)
(%110) partfrac (%, x);

2 4 3

(%010) (c =4c-bp+6)/((c +(-2Db-26)c

2 2 2 2
+ (M +12b+9)c +(-6Db -18b) c+9Db ) (x+ ¢c))

(b-3)c +(18-6Db)c+9Db-27) (x+ 3)
(%111) map (’factor, %);
2
c -4c-b+6 c -2
(holl) = ———mmmmm e
2 2 2

(-3 (c-b) x+b) (-3 (c-3 (x+3)
(%1i12) ratsimp ((x°5 - 1)/(x - 1));
4 3 2
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(%012) X +x +x +x+1
(%i13) subst (a, x, %);

4 3 2
(%013) a +a +a +a+1
(%i14) factor (%th(2), %);

2 3 3 2

(%ho14) (x-a) (x-a) (x-a) x+a +a +a+1)
(%i15) factor (1 + x~12);
4 8 4
(%o015) x +1) x - x +1)
(%i16) factor (1 + x799);
2 6 3
(%o16) (x + 1) (x -x+1) x -x + 1)

10 9 8 7 6 5 4 3 2
x -x +x -x +x -x +x -x +x -x+1)

20 19 17 16 14 13 11 10 9 7 6
(x + x - x - x + x + x - x - x -x +x +x

4 3 60 57 51 48 42 39 33
-x -x +x+1) (x + x - x - x + x + x - x

30 27 21 18 12 9 3
- x - X + x + x - x -x +x + 1)

factorflag Option variable
Default value: false

When factorflag is false, suppresses the factoring of integer factors of rational

expressions.
factorout (expr, x_1, x_2, ...) Function
Rearranges the sum expr into a sum of terms of the form £ (x_1, x_.2, ...)*g where

g is a product of expressions not containing any x_i and f is factored.

factorsum (expr) Function
Tries to group terms in factors of expr which are sums into groups of terms such that
their sum is factorable. factorsum can recover the result of expand ((x +y)"2 + (=
+w)~2) but it can’t recover expand ((x + 1)"2 + (x + y) ~2) because the terms have
variables in common.

Example:

(%i1) expand ((x + 1)*x((u + v)"2 + a*x(w + z)72));
2 2 2 2
(hol) axz +az +2awxz+22awz+aw Xx+V X

2 2 2 2
+2uvx+u x+aw +v +2uv+au
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(%i2) factorsum (%);
2 2
(%02) x+1) (a(z+w) + (v +uw)
fasttimes (p_1, p-2) Function

Returns the product of the polynomials p_1 and p_2 by using a special algorithm for
multiplication of polynomials. p_1 and p_2 should be multivariate, dense, and nearly
the same size. Classical multiplication is of order n_1 n_2 where n_1 is the degree of
p_1 and n_2 is the degree of p_2. fasttimes is of order max (n_1, n_2)~1.585.

fullratsimp (expr) Function
fullratsimp repeatedly applies ratsimp followed by non-rational simplification to
an expression until no further change occurs, and returns the result.

When non-rational expressions are involved, one call to ratsimp followed as is usual
by non-rational ("general") simplification may not be sufficient to return a simplified
result. Sometimes, more than one such call may be necessary. fullratsimp makes
this process convenient.

fullratsimp (expr, x_1, ..., x_n) takes one or more arguments similar to ratsimp
and rat.
Example:
(%11) expr: (x"(a/2) + 1) "2*x(x"(a/2) - 1)"2/(x"a - 1);
a/2 2 a/2 2
(x - & + 1)
(hot)  mmmmmmmmmmm————— o
a
x -1
(%12) ratsimp (expr);
2 a a
X -2x +1
(%ho2>  mmmmmm e
a
x -1
(%13) fullratsimp (expr);
a
(%03) x -1
(%14) rat (expr);
a/2 4 a/2 2
x ) -2 ) +1
(%04)/R/  mmmmmmmmmmm—mm
a
x -1
fullratsubst (a, b, c) Function

is the same as ratsubst except that it calls itself recursively on its result until that
result stops changing. This function is useful when the replacement expression and
the replaced expression have one or more variables in common.
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fullratsubst will also accept its arguments in the format of lratsubst. That is,
the first argument may be a single substitution equation or a list of such equations,
while the second argument is the expression being processed.

load ("1lrats") loads fullratsubst and lratsubst.
Examples:
(%1i1) load ("lrats")$
e subst can carry out multiple substitutions. lratsubst is analogous to subst.
(%i2) subst ([a =Db, c =d], a + c);

(%o2) d+b
(%13) lratsubst ([a"2 = b, c"2 =d], (a + e)xcx(a + c));
(%03) (d+ac)e+ad+bc
e If only one substitution is desired, then a single equation may be given as first
argument.
(%i4) lratsubst (a"2 = b, a"3);
(%04) ab

e fullratsubst is equivalent to ratsubst except that it recurses until its result
stops changing.
(%15) ratsubst (b*xa, a"2, a"3);

2

(%05) a b
(%i6) fullratsubst (b*a, a~2, a~3);

2
(%06) ab

e fullratsubst also accepts a list of equations or a single equation as first argu-
ment.

(%17) fullratsubst ([2a"2 = Db, b™2 = ¢, c"2 = a], a"3x*b*xc);
(%07) b
(%i8) fullratsubst (a2 = b*a, a~3);

2
(%08) ab

e fullratsubst may cause an indefinite recursion.
(%19) errcatch (fullratsubst (b*xa~2, a2, a~3));

**x* — Lisp stack overflow. RESET

ged (p-1, p-2, x_1, ...) Function

Returns the greatest common divisor of p_1 and p_2. The flag gcd determines which
algorithm is employed. Setting gcd to ez, subres, red, or spmod selects the ezged,
subresultant prs, reduced, or modular algorithm, respectively. If gcd false then gcd
(p-1, p-2, x) always returns 1 for all x. Many functions (e.g. ratsimp, factor, etc.)
cause gcd’s to be taken implicitly. For homogeneous polynomials it is recommended
that gcd equal to subres be used. To take the gcd when an algebraic is present,
e.g.,gcd (x72 - 2*%sqrt(2)*x + 2, x - sqrt(2)), algebraic must be true and gcd
must not be ez.
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The gcd flag, default: spmod, if false will also prevent the greatest common divisor
from being taken when expressions are converted to canonical rational expression
(CRE) form. This will sometimes speed the calculation if geds are not required.

gcdex (f, g) Function
gcdex (f, g, x) Function
Returns a list [a, b, ul where u is the greatest common divisor (ged) of f and g, and
u is equal to a f + b g. The arguments f and g should be univariate polynomials,
or else polynomials in x a supplied main variable since we need to be in a principal
ideal domain for this to work. The gcd means the ged regarding f and g as univariate
polynomials with coefficients being rational functions in the other variables.
gcdex implements the Euclidean algorithm, where we have a sequence of L[i]:
[alil, b[il, r[il] which are all perpendicular to [f, g, -1] and the next one
is built as if q = quotient (r[i]/r[i+1]) then L[i+2]: L[i] - q L[i+1], and it ter-
minates at L[i+1] when the remainder r [1+2] is zero.

(%i1l) gedex (x72 + 1, x°3 + 4);

2
x +4x-1 x+4
(%o1) /R/ [- ——-mmmmm - , ——m- , 1]
17 17
Fi2) % . [x"2 + 1, x°3 + 4, -1];
(%02) /R/ 0

Note that the ged in the following is 1 since we work in k(y) [x], not the y+1 we
would expect in k[y, x].

(%i1) gedex (xx(y + 1), y°2 - 1, x);

(%ho1) /R/ (o, --——-- , 1]

gcfactor (n) Function
Factors the Gaussian integer n over the Gaussian integers, i.e., numbers of the form
a+ b %i where a and b are rational integers (i.e., ordinary integers). Factors are
normalized by making a and b non-negative.

gfactor (expr) Function
Factors the polynomial expr over the Gaussian integers (that is, the integers with the
imaginary unit %i adjoined). This is like factor (expr, a~2+1) where a is %i.

Example:
(%i1) gfactor (x74 - 1);
(%ho1) (x - 1) (x+ 1) (x - %) (x+ %i)
gfactorsum (expr) Function

is similar to factorsum but applies gfactor instead of factor.
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hipow (expr, x) Function
Returns the highest explicit exponent of x in expr. x may be a variable or a general
expression. If x does not appear in expr, hipow returns O.

hipow does not consider expressions equivalent to expr. In particular, hipow does not
expand expr, so hipow (expr, x) and hipow (expand (expr, x)) may yield different

results.
Examples:
(%i1) hipow (y°3 * x"2 + x * y~4, x);
(%ho1) 2
(%12) hipow ((x + y)~5, x);
(%ho2) 1
(%13) hipow (expand ((x + y)~5), x);
(%03) 5
(%i4) hipow ((x + y)°5, x + y);
(%ho4) 5
(%15) hipow (expand ((x + y)°5), x + y);
(%05) 0
intfaclim Option variable

Default value: true

If true, maxima will give up factorization of integers if no factor is found after trial
divisions and Pollard’s rho method and factorization will not be complete.

When intfaclim is false (this is the case when the user calls factor explicitly),
complete factorization will be attempted. intfaclim is set to false when factors are
computed in divisors, divsum and totient.

Internal calls to factor respect the user-specified value of intfaclim. Setting
intfaclim to true may reduce the time spent factoring large integers.

keepfloat Option variable
Default value: false

When keepfloat is true, prevents floating point numbers from being rationalized
when expressions which contain them are converted to canonical rational expression

(CRE) form.

Iratsubst (L, expr) Function
is analogous to subst (L, expr) except that it uses ratsubst instead of subst.

The first argument of lratsubst is an equation or a list of equations identical in
format to that accepted by subst. The substitutions are made in the order given by
the list of equations, that is, from left to right.

load ("lrats") loads fullratsubst and lratsubst.
Examples:
(%i1) load ("lrats™)$

e subst can carry out multiple substitutions. lratsubst is analogous to subst.
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(%i2) subst ([a =Db, c =d], a + c);

(ho2) d+b
(%1i3) lratsubst ([a"2 = Db, c"2 =d], (a + e)xcx(a + c));
(%03) (d+ac)e+ad+bc
e If only one substitution is desired, then a single equation may be given as first
argument.
(%i4) lratsubst (a"2 = b, a”3);
(hod) ab
modulus Option variable

Default value: false

When modulus is a positive number p, operations on rational numbers (as returned by
rat and related functions) are carried out modulo p, using the so-called "balanced"
modulus system in which n modulo p is defined as an integer k in [-(p-1)/2, ...,
0, ..., (p~1)/2] when pis odd, or [-(p/2-1), ..., 0, ...., p/2] when p is
even, such that a p + k equals n for some integer a.

If expr is already in canonical rational expression (CRE) form when modulus is reset,

then you may need to re-rat expr, e.g., expr: rat (ratdisrep (expr)), in order to
get correct results.

Typically modulus is set to a prime number. If modulus is set to a positive non-prime
integer, this setting is accepted, but a warning message is displayed. Maxima will
allow zero or a negative integer to be assigned to modulus, although it is not clear if
that has any useful consequences.

num (expr) Function
Returns the numerator of expr if it is a ratio. If expr is not a ratio, expr is returned.

num evaluates its argument.

polydecomp (p, x) Function
Decomposes the polynomial p in the variable x into the functional composition of
polynomials in x. polydecomp returns a list [p_1, ..., p_n] such that
lambda ([x], p_1) (lambda ([x], p_2) (... (lambda ([x], p_n) (x))
o))

is equal to p. The degree of p_i is greater than 1 for i less than n.
Such a decomposition is not unique.
Examples:

(%i1) polydecomp (x7210, x);
7T &5 3 2

(%o1) x , x,x, x]

(%i2) p : expand (subst (x"3 - x - 1, x, x"2 - a));
6 4 3 2

(%ho2) X - 2x -2x +x +2x-a+1

(%13) polydecomp (p, x);
2 3
(%03) x -a, x -x-1]
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The following function composes L = [e_1, ..., e_n] as functions in x; it is the
inverse of polydecomp:

compose (L, x) :=
block ([r : x], for e in L do r : subst (e, x, ), r) $

Re-express above example using compose:

(%13) polydecomp (compose ([x"2 - a, x"3 - x - 1], x), x);

2 3
(%03) [x -a, x -x-1]
Note that though compose (polydecomp (p, x), x) always returns p (unexpanded),
polydecomp (compose ([p_1, ..., p-n], x), x) does not necessarily return [p_1,
., p_nl:
(%14) polydecomp (compose ([x"2 + 2*x + 3, x72], %), x);
2 2
(%o4) x +2, x + 1]
(%15) polydecomp (compose ([x"2 + x + 1, x"2 + x + 1], x), x);
2 2
x +3 x +5
(%05) [-———- , —————= , 2 x + 1]
4 2
quotient (p_1, p_2) Function
quotient (p_1, p_2, x_1, ..., x_n) Function

Returns the polynomial p_1 divided by the polynomial p_2. The arguments x_1, ...,
x_n are interpreted as in ratvars.

quotient returns the first element of the two-element list returned by divide.

rat (expr) Function

rat (expr, x_1, ..., x_n) Function
Converts expr to canonical rational expression (CRE) form by expanding and com-
bining all terms over a common denominator and cancelling out the greatest common
divisor of the numerator and denominator, as well as converting floating point num-
bers to rational numbers within a tolerance of ratepsilon. The variables are ordered
according to the x_1, ..., x_n, if specified, as in ratvars.

rat does not generally simplify functions other than addition +, subtraction -, mul-
tiplication *, division /, and exponentiation to an integer power, whereas ratsimp
does handle those cases. Note that atoms (numbers and variables) in CRE form are
not the same as they are in the general form. For example, rat (x)- x yields rat (0)
which has a different internal representation than 0.

When ratfac is true, rat yields a partially factored form for CRE. During ratio-
nal operations the expression is maintained as fully factored as possible without an
actual call to the factor package. This should always save space and may save some
time in some computations. The numerator and denominator are still made rela-
tively prime (e.g. rat ((x"2-1)"4/(x + 1)"2) yields (x - 1)"4 (x + 1)°2), but
the factors within each part may not be relatively prime.

ratprint if false suppresses the printout of the message informing the user of the
conversion of floating point numbers to rational numbers.
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keepfloat if true prevents floating point numbers from being converted to rational
numbers.

See also ratexpand and ratsimp.
Examples:

(5i1) ((x = 2xy)~4/(x"2 - 4*xy~2)"2 + 1)*(y + a)*x(2xy + x) /
(4xy~2 + x°2);

4
x-27y)
(y+a) Qy+x) (-=—————==——- + 1)
2 22
x -47y)
(hol)  mmmmmmmmmmme
2 2
4y +x
(%1i2) rat (%, y, a, x);
2a+2y
(ho2>/R/ mmmmm—-
x+ 2y
ratalgdenom Option variable

Default value: true

When ratalgdenom is true, allows rationalization of denominators with respect to
radicals to take effect. ratalgdenom has an effect only when canonical rational ex-
pressions (CRE) are used in algebraic mode.

ratcoef (expr, x, n) Function

ratcoef (expr, x) Function
Returns the coefficient of the expression x"n in the expression expr. If omitted, n is
assumed to be 1.

The return value is free (except possibly in a non-rational sense) of the variables in
x. If no coefficient of this type exists, 0 is returned.

ratcoef expands and rationally simplifies its first argument and thus it may produce
answers different from those of coeff which is purely syntactic. Thus ratcoef ((x +
1)/y + x, x) returns (y + 1) /y whereas coeff returns 1.

ratcoef (expr, x, 0), viewing expr as a sum, returns a sum of those terms which
do not contain x. Therefore if x occurs to any negative powers, ratcoef should not
be used.

Since expr is rationally simplified before it is examined, coefficients may not appear
quite the way they were envisioned.

Example:

(%i1) s: a*x + b*x + 5%
(%1i2) ratcoef (s, a + b);
(%ho2) b
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ratdenom (expr) Function
Returns the denominator of expr, after coercing expr to a canonical rational expres-
sion (CRE). The return value is a CRE.

expr is coerced to a CRE by rat if it is not already a CRE. This conversion may
change the form of expr by putting all terms over a common denominator.

denom is similar, but returns an ordinary expression instead of a CRE. Also, denom
does not attempt to place all terms over a common denominator, and thus some
expressions which are considered ratios by ratdenom are not considered ratios by
denom.

ratdenomdivide Option variable
Default value: true

When ratdenomdivide is true, ratexpand expands a ratio in which the numerator is
a sum into a sum of ratios, all having a common denominator. Otherwise, ratexpand
collapses a sum of ratios into a single ratio, the numerator of which is the sum of the
numerators of each ratio.

Examples:
(hi1) expr: (x"2 + x + 1)/(y"2 + 7);
2
x +x+1
&2 R —
2
y +7
(%i2) ratdenomdivide: true$
(%13) ratexpand (expr);
2
X X 1
(%03 === A 4+ o—mm
2 2 2

y +7 y +7 y +7
(%i4) ratdenomdivide: false$
(%i5) ratexpand (expr);

2
x +x +1
(%o5)  mmmmeeeee
2
y +7
(%i6) expr2: a"2/(b"2 + 3) + b/(b"2 + 3);
2
b a
(%o  —m——— + ——
2 2

(%1i7) ratexpand (expr2);

o T
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ratdiff (expr, x) Function
Differentiates the rational expression expr with respect to x. expr must be a ra-
tio of polynomials or a polynomial in x. The argument x may be a variable or a
subexpression of expr.

The result is equivalent to diff, although perhaps in a different form. ratdiff may
be faster than diff, for rational expressions.

ratdiff returns a canonical rational expression (CRE) if expr is a CRE. Otherwise,
ratdiff returns a general expression.

ratdiff considers only the dependence of expr on x, and ignores any dependencies
established by depends.

Example:
(%1i1) expr: (4xx"3 + 10*x - 11)/(x"5 + 5);
3
4x +10x - 11
(o)  mmmmmm—m——
5
x +5

(%i2) ratdiff (expr, x);

(%h02) s

x +10x + 25
(%i3) expr: £(x)73 - £(x)°2 + 7;

3 2
(%03) f & -f ® +7
(%i4) ratdiff (expr, f(x));
2
(%04) 3f (x) -2 f(x)
(%15) expr: (a + b)"3 + (a + b)"2;
3 2
(%05) (b +a) + (b + a)
(%16) ratdiff (expr, a + b);
2 2
(%06) 3b +(6a+2)b+3a +2a
ratdisrep (expr) Function

Returns its argument as a general expression. If expr is a general expression, it is
returned unchanged.

Typically ratdisrep is called to convert a canonical rational expression (CRE) into
a general expression. This is sometimes convenient if one wishes to stop the "conta-
gion", or use rational functions in non-rational contexts.

See also totaldisrep.
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ratepsilon Option variable
Default value: 2.0e-8

ratepsilon is the tolerance used in the conversion of floating point numbers to ra-
tional numbers.

ratexpand (expr) Function
ratexpand Option variable
Expands expr by multiplying out products of sums and exponentiated sums, com-
bining fractions over a common denominator, cancelling the greatest common divisor
of the numerator and denominator, then splitting the numerator (if a sum) into its
respective terms divided by the denominator.

The return value of ratexpand is a general expression, even if expr is a canonical
rational expression (CRE).

The switch ratexpand if true will cause CRE expressions to be fully expanded when
they are converted back to general form or displayed, while if it is false then they
will be put into a recursive form. See also ratsimp.

When ratdenomdivide is true, ratexpand expands a ratio in which the numerator is
a sum into a sum of ratios, all having a common denominator. Otherwise, ratexpand
collapses a sum of ratios into a single ratio, the numerator of which is the sum of the
numerators of each ratio.

When keepfloat is true, prevents floating point numbers from being rationalized
when expressions which contain them are converted to canonical rational expression

(CRE) form.
Examples:
(%1i1) ratexpand ((2*xx - 3xy)~3);
3 2 2 3
(ho1) - 27Ty +5B4xy -36x y+8x
(%12) expr: (x - 1)/(x + 1)"2 + 1/(x - 1);
x -1 1
(o2  mmmmm—- + ==
2 x-1
(x + 1)
(%13) expand (expr);
X 1 1
(ho3)  mmmmmmmmmmmm o e + ————-
2 2 x -1

x +2x+1 x +2x+1
(%14) ratexpand (expr);

(hod)  mmmmmmmmmmmmeo e

ratfac Option variable
Default value: false
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When ratfac is true, canonical rational expressions (CRE) are manipulated in a
partially factored form.

During rational operations the expression is maintained as fully factored as possi-
ble without calling factor. This should always save space and may save time in
some computations. The numerator and denominator are made relatively prime, for
example rat ((x"2 - 1)74/(x + 1)72) yields (x - 1)°4 (x + 1)~2), but the factors
within each part may not be relatively prime.

In the ctensr (Component Tensor Manipulation) package, Ricci, Einstein, Riemann,
and Weyl tensors and the scalar curvature are factored automatically when ratfac is
true. ratfac should only be set for cases where the tensorial components are known
to consist of few terms.

The ratfac and ratweight schemes are incompatible and may not both be used at
the same time.

ratnumer (expr) Function
Returns the numerator of expr, after coercing expr to a canonical rational expression

(CRE). The return value is a CRE.

expr is coerced to a CRE by rat if it is not already a CRE. This conversion may
change the form of expr by putting all terms over a common denominator.

num is similar, but returns an ordinary expression instead of a CRE. Also, num does not
attempt to place all terms over a common denominator, and thus some expressions
which are considered ratios by ratnumer are not considered ratios by num.

ratnump (expr) Function
Returns true if expr is a literal integer or ratio of literal integers, otherwise false.

ratp (expr) Function
Returns true if expr is a canonical rational expression (CRE) or extended CRE,
otherwise false.

CRE are created by rat and related functions. Extended CRE are created by taylor
and related functions.

ratprint Option variable
Default value: true

When ratprint is true, a message informing the user of the conversion of floating
point numbers to rational numbers is displayed.

ratsimp (expr) Function
ratsimp (expr, x_1, ..., x_n) Function
Simplifies the expression expr and all of its subexpressions, including the arguments
to non-rational functions. The result is returned as the quotient of two polynomials
in a recursive form, that is, the coefficients of the main variable are polynomials in
the other variables. Variables may include non-rational functions (e.g., sin (x"2 +
1)) and the arguments to any such functions are also rationally simplified.
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ratsimp (expr, x_1, ..., x.n) enables rational simplification with the specification
of variable ordering as in ratvars.

When ratsimpexpons is true, ratsimp is applied to the exponents of expressions
during simplification.

See also ratexpand. Note that ratsimp is affected by some of the flags which affect

ratexpand.
Examples:
(%1i1) sin (x/(x"2 + x)) = exp ((log(x) + 1)°2 - log(x)~2);
2 2
X (log(x) + 1) - log (%)
(%hol) sin(------ ) = he
2
X o+ X
(%12) ratsimp (%);
1 2

(%ho2) sin(----- ) = %e x

x+1
(5i3) ((x - 1)7(3/2) - (x + D*sqrt(x - 1))/sqrt((x - D*(x + 1));

3/2
x -1 - sqrt(x - 1) (x + 1)
(%03) e
sqre((x - 1) (x + 1))

(%i4) ratsimp (%);

2 sqrt(x - 1)
(%o4) -

2

sqrt(x - 1)

(%i5) x~(a + 1/a), ratsimpexpons: true;
2
a +1
a
(%05) X
ratsimpexpons Option variable

Default value: false

When ratsimpexpons is true, ratsimp is applied to the exponents of expressions
during simplification.

ratsubst (a, b, ¢) Function
Substitutes a for b in ¢ and returns the resulting expression. b may be a sum, product,
power, etc.

ratsubst knows something of the meaning of expressions whereas subst does a purely
syntactic substitution. Thus subst (a, x +y, x + y + z) returns x + y + z whereas
ratsubst returns z + a.

When radsubstflag is true, ratsubst makes substitutions for radicals in expressions
which don’t explicitly contain them.
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Examples:

(%11) ratsubst (a, x*y~2, x"4*y~3 + x"4*y~8);
3 4

(%o1) ax y+a

(%i2) cos(x)”"4 + cos(x)"3 + cos(x)”"2 + cos(x) + 1;

4 3 2
(%ho2) cos (x) + cos (x) + cos (x) + cos(x) + 1
(%i3) ratsubst (1 - sin(x)"2, cos(x)"2, %);
4 2 2

(%03) sin (x) - 3 sin (x) + cos(x) (2 - sin (x)) + 3
(%i4) ratsubst (1 - cos(x)"2, sin(x)"2, sin(x)"4);
4 2
(%04) cos (x) - 2 cos (x) + 1
(%15) radsubstflag: false$
(%16) ratsubst (u, sqrt(x), x);
(%06) X
(%1i7) radsubstflag: true$
(%18) ratsubst (u, sqrt(x), x);

2
(%08) u
ratvars (x_1, ..., x_n) Function
ratvars () Function
ratvars System variable
Declares main variables x_1, ..., x_n for rational expressions. x_n, if present in a

rational expression, is considered the main variable. Otherwise, x_[n-1] is considered
the main variable if present, and so on through the preceding variables to x_1, which
is considered the main variable only if none of the succeeding variables are present.

If a variable in a rational expression is not present in the ratvars list, it is given a
lower priority than x_1.

The arguments to ratvars can be either variables or non-rational functions such as
sin(x).

The variable ratvars is a list of the arguments of the function ratvars when it was
called most recently. Each call to the function ratvars resets the list. ratvars ()
clears the list.

ratweight (x_1, w_1, ..., x_n, w_n) Function

ratweight () Function
Assigns a weight w_i to the variable x_i. This causes a term to be replaced by 0 if
its weight exceeds the value of the variable ratwtlvl (default yields no truncation).
The weight of a term is the sum of the products of the weight of a variable in the
term times its power. For example, the weight of 3 x_1"2 x_2is 2 w_1 + w_2. Trun-
cation according to ratwtlvl is carried out only when multiplying or exponentiating
canonical rational expressions (CRE).

ratweight () returns the cumulative list of weight assignments.

Note: The ratfac and ratweight schemes are incompatible and may not both be
used at the same time.
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Examples:
(%i1) ratweight (a, 1, b, 1);
(%o1) [a, 1, b, 1]

(%12) exprl: rat(a + b + 1)$
(%hi3) expri~2;

2 2
(ho3) /R/ b +(2a+2)b+a +2a+1
(%i4) ratwtlvl: 1$
(%15) exprl~2;
(%05) /R/ 2b+2a+1
ratweights System variable

Default value: []

ratweights is the list of weights assigned by ratweight. The list is cumulative: each
call to ratweight places additional items in the list.

kill (ratweights) and save (ratweights) both work as expected.

ratwtlvl Option variable
Default value: false

ratwtlvl is used in combination with the ratweight function to control the trun-
cation of canonical rational expressions (CRE). For the default value of false, no
truncation occurs.

remainder (p_1, p_2) Function

remainder (p_1, p_-2, x_1, ..., x_n) Function
Returns the remainder of the polynomial p_1 divided by the polynomial p_2. The
arguments x_1, ..., x_n are interpreted as in ratvars.

remainder returns the second element of the two-element list returned by divide.

resultant (p.1, p_2, x) Function
resultant Variable
Computes the resultant of the two polynomials p_1 and p_2, eliminating the variable
x. The resultant is a determinant of the coefficients of x in p_1 and p_2, which equals
zero if and only if p_1 and p_2 have a non-constant factor in common.

If p_.1 or p_2 can be factored, it may be desirable to call factor before calling
resultant.

The variable resultant controls which algorithm will be used to compute the re-
sultant. subres for subresultant prs, mod for modular resultant algorithm, and red
for reduced prs. On most problems subres should be best. On some large degree
univariate or bivariate problems mod may be better.

The function bezout takes the same arguments as resultant and returns a matrix.
The determinant of the return value is the desired resultant.

savefactors Option variable
Default value: false
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When savefactors is true, causes the factors of an expression which is a product
of factors to be saved by certain functions in order to speed up later factorizations of
expressions containing some of the same factors.

sqfr (expr) Function
is similar to factor except that the polynomial factors are "square-free." That is,
they have factors only of degree one. This algorithm, which is also used by the first
stage of factor, utilizes the fact that a polynomial has in common with its n’th
derivative all its factors of degree greater than n. Thus by taking greatest common
divisors with the polynomial of the derivatives with respect to each variable in the
polynomial, all factors of degree greater than 1 can be found.

Example:
(%1i1) sqfr (4*x"4 + 4%x°3 - 3%x72 - 4*x - 1);
2 2
(%hol) Q2x+1) (x -1)
tellrat (p-1, ..., p-n) Function
tellrat () Function
Adds to the ring of algebraic integers known to Maxima the elements which are the
solutions of the polynomials p_1, ..., p-n. Each argument p_i is a polynomial with

integer coefficients.
tellrat (x) effectively means substitute 0 for x in rational functions.
tellrat () returns a list of the current substitutions.

algebraic must be set to true in order for the simplification of algebraic integers to
take effect.

Maxima initially knows about the imaginary unit %i and all roots of integers.
There is a command untellrat which takes kernels and removes tellrat properties.

When tellrat’ing a multivariate polynomial, e.g., tellrat (x"2 - y~2), there would
be an ambiguity as to whether to substitute y~2 for x~2 or vice versa. Maxima picks
a particular ordering, but if the user wants to specify which, e.g. tellrat (y~°2 =
x~2) provides a syntax which says replace y~2 by x~2.

Examples:

(%1i1) 10x(%i + 1)/ (%1 + 37(1/3));
10 (%i + 1)
(%ot)  mmmmm———

i+ 3

(%i2) ev (ratdisrep (rat(%)), algebraic);
2/3 1/3 2/3 1/3

(%02) (4 3 - 23 -4) i +23 + 4 3 -2
(%13) tellrat (1 + a + a~2);

2
(%03) [a +a+ 1]
(%1i4) 1/(axsqrt(2) - 1) + a/(sqrt(3) + sqrt(2));

1 a
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(hod)  mmmmmmm———m—- + mmmmm e
sqrt(2) a - 1 sqrt(3) + sqrt(2)
(%15) ev (ratdisrep (rat(%)), algebraic);
(7 sqrt(3) - 10 sqrt(2) + 2) a - 2 sqrt(2) - 1

(hoB)  mmmmmmm e
7
(%16) tellrat (y~°2 = x72);
2 2 2
(%06) [y - x,a +a+1]
totaldisrep (expr) Function

Converts every subexpression of expr from canonical rational expressions (CRE) to
general form and returns the result. If expr is itself in CRE form then totaldisrep
is identical to ratdisrep.

totaldisrep may be useful for ratdisrepping expressions such as equations, lists,
matrices, etc., which have some subexpressions in CRE form.

untellrat (x_1, ..., x_n) Function
Removes tellrat properties from x_1, ..., x_n.
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13 Constants

13.1 Functions and Variables for Constants

%e Constant
%e represents the base of the natural logarithm, also known as FEuler’s number. The
numeric value of %e is the double-precision floating-point value 2.718281828459045d0.

%i Constant
%1 represents the imaginary unit, sqrt(—1).

false Constant
false represents the Boolean constant of the same name. Maxima implements false
by the value NIL in Lisp.

ind Constant
ind represents a bounded, indefinite result.

See also 1limit.

Example:

(%i1) limit (sin(1/x), x, 0);
(%o1) ind

inf Constant
inf represents real positive infinity.

infinity Constant
infinity represents complex infinity.

minf Constant
minf represents real minus (i.e., negative) infinity.

% phi Constant
J%iphi represents the so-called golden mean, (14 sqrt(5))/2. The numeric value of %phi
is the double-precision floating-point value 1.618033988749895d0.

fibtophi expresses Fibonacci numbers fib(n) in terms of %phi.

By default, Maxima does not know the algebraic properties of %phi. After evaluat-
ing tellrat (%phi~2 - %phi - 1) and algebraic: true, ratsimp can simplify some
expressions containing %phi.

Examples:

fibtophi expresses Fibonacci numbers £ib(n) in terms of %phi.
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(%i1) fibtophi (fib (n));

n n
%phi - (1 - %phi)
%ol) e
2 %phi - 1
(%i2) fib (n-1) + fib (n) - fib (n+1);
(%02) - fib(n + 1) + fib(n) + fib(n - 1)
(%i3) fibtophi (%) ;
n+1 n+ 1 n n
%phi - (1 - %phi) %phi - (1 - %phi)
(%03) = —mmmmmmmmmmmm - + o
2 %phi - 1 2 %phi - 1
n-1 n-1
%phi - (1 - %phi)
+ ___________________________
2 %phi - 1

(%hi4) ratsimp (%);

(%ho4d) 0
By default, Maxima does not know the algebraic properties of %phi. After evaluat-
ing tellrat (%phi~2 - %phi - 1) and algebraic: true, ratsimp can simplify some
expressions containing %phi.

(%i1) e : expand ((%phi~2 - %phi - 1) * (A + 1));

2 2
(%o1) Yphi A - %phi A - A + %phi - %phi - 1
(%12) ratsimp (e);

2 2
(%02) (%phi - %phi - 1) A + %phi - %phi - 1
(%13) tellrat (%phi~2 - %phi - 1);

2
(%03) [(Yphi - %phi - 1]
(%14) algebraic : true;
(%o4) true
(%15) ratsimp (e);
(%05) 0
Y%pi Constant

%pi represents the ratio of the perimeter of a circle to its diameter. The numeric
value of %pi is the double-precision floating-point value 3.141592653589793d0.

true Constant
true represents the Boolean constant of the same name. Maxima implements true
by the value T in Lisp.

und Constant
und represents an undefined result.

See also 1imit.

Example:
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(%i1) limit (1/x, x, 0);
(%o1) und
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14 Logarithms

14.1 Functions and Variables for Logarithms

%e_to_numlog Option variable
Default value: false

When true, r some rational number, and x some expression, %e~ (r*log(x)) will
be simplified into x"r . It should be noted that the radcan command also does
this transformation, and more complicated transformations of this ilk as well. The
logcontract command "contracts" expressions containing log.

li [s] (2) Function
Represents the polylogarithm function of order s and argument z, defined by the
infinite series

inf
==== k
\ z
Li (z) = > -
s / s
==== k
k=1

1i [1] is - log (1 - z). 1i [2] and 1i [3] are the dilogarithm and trilogarithm
functions, respectively.

When the order is 1, the polylogarithm simplifies to - log (1 - z), which in turn
simplifies to a numerical value if z is a real or complex floating point number or the
numer evaluation flag is present.

When the order is 2 or 3, the polylogarithm simplifies to a numerical value if z is a
real floating point number or the numer evaluation flag is present.

Examples:
(%i1) assume (x > 0);
(%o1) [x > 0]
(%i2) integrate ((log (1 - t)) / t, t, 0, x);
(%02) - 1i (%)
2
(%13) 1i [2] (7);
(%03) 1i (7)
2
(%i4) 1i [2] (7), numer;
(%04) 1.24827317833392 - 6.113257021832577 %i
(%i5) 1i [3] (7);
(%05) 1i (7)
3

(%i6) 1i [2] (7), numer;
(%06) 1.24827317833392 - 6.113257021832577 %i
(%i7) L : makelist (i / 4.0, i, 0, 8);
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(%07) [0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0]
(%18) map (lambda ([x], 1i [2] (x)), L);

(%08) [0, .2676526384986274, .5822405249432515,
.9784693966661848, 1.64493407, 2.190177004178597
- .7010261407036192 %i, 2.374395264042415

- 1.273806203464065 %i, 2.448686757245154

- 1.758084846201883 %i, 2.467401098097648

- 2.177586087815347 %il

(%19) map (lambda ([x], 1i [3] (x)), L);

(%09) [0, .2584613953442624, 0.537213192678042,
.8444258046482203, 1.2020569, 1.642866878950322
- .07821473130035025 %i, 2.060877505514697

- .2582419849982037 %i, 2.433418896388322

- .4919260182322965 %i, 2.762071904015935

- .7546938285978846 %il

log (x) Function
Represents the natural (base e) logarithm of x.

Maxima does not have a built-in function for the base 10 logarithm or other bases.
logl0(x) :=log(x) / log(10) is a useful definition.

Simplification and evaluation of logarithms is governed by several global flags:

logexpand - causes log(a~b) to become bxlog(a). If it is set to all, log(a*b) will
also simplify to log(a)+log(b). If it is set to super, then log(a/b) will also simplify
to log(a)-log(b) for rational numbers a/b, a#1. (log(1/b), for b integer, always
simplifies.) If it is set to false, all of these simplifications will be turned off.

logsimp - if false then no simplification of %e to a power containing log’s is done.

lognumer - if true then negative floating point arguments to log will always be
converted to their absolute value before the log is taken. If numer is also true, then
negative integer arguments to log will also be converted to their absolute value.

lognegint - if true implements the rule log(-n) -> log(n)+%ix*%pi for n a positive
integer.

%e_to_numlog - when true, r some rational number, and x some expression,
he” (rxlog(x)) will be simplified into x"r . It should be noted that the radcan
command also does this transformation, and more complicated transformations of
this ilk as well. The logcontract command "contracts" expressions containing log.

logabs Option variable
Default value: false

When doing indefinite integration where logs are generated, e.g. integrate(1/x,x),
the answer is given in terms of log(abs(...)) if logabs is true, but in terms of
log(...) if logabs is false. For definite integration, the logabs:true setting is
used, because here "evaluation" of the indefinite integral at the endpoints is often
needed.
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logarc Option variable

logarc (expr) Function
When the global variable logarc is true, inverse circular and hyperbolic functions are
replaced by equivalent logarithmic functions. The default value of logarc is false.

The function logarc (expr) carries out that replacement for an expression expr with-
out setting the global variable logarc.

logconcoeffp Option variable
Default value: false

Controls which coefficients are contracted when using logcontract. It may be set to
the name of a predicate function of one argument. E.g. if you like to generate SQRT's,
you can do logconcoeffp:’logconfun$ logconfun(m) :=featurep(m,integer) or
ratnump(m)$ . Then logcontract(1/2*log(x)); will give log(sqrt(x)).

logcontract (expr) Function
Recursively scans the expression expr, transforming subexpressions of the form
alxlog(bl) + a2xlog(b2) + c into log(ratsimp(bl~al * b27a2)) + ¢
(%1i1) 2x(axlog(x) + 2xaxlog(y))$
(%i2) logcontract (%) ;
2 4
(%ho2) a log(x y)

If you do declare(n,integer); then logcontract(2*a*nxlog(x)); gives
axlog(x~(2*n)). The coefficients that "contract" in this manner are those such
as the 2 and the n here which satisfy featurep(coeff,integer). The user can
control which coefficients are contracted by setting the option logconcoeffp to the
name of a predicate function of one argument. E.g. if you like to generate SQRTS,
you can do logconcoeffp:’logconfun$ logconfun(m) :=featurep(m,integer) or
ratnump (m)$ . Then logcontract (1/2*log(x)); will give log(sqrt(x)).

logexpand Option variable
Default value: true
Causes log(a~b) to become bxlog(a). If it is set to all, log(axb) will also simplify
to log(a)+log(b). If it is set to super, then log(a/b) will also simplify to log(a)-
log(b) for rational numbers a/b, a#l. (log(1/b), for integer b, always simplifies.)
If it is set to false, all of these simplifications will be turned off.

lognegint Option variable
Default value: false

If true implements the rule log(-n) -> log(n)+%i*J%pi for n a positive integer.

lognumer Option variable
Default value: false

If true then negative floating point arguments to log will always be converted to
their absolute value before the log is taken. If numer is also true, then negative
integer arguments to log will also be converted to their absolute value.
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logsimp Option variable
Default value: true

If false then no simplification of %e to a power containing log’s is done.

plog (x) Function
Represents the principal branch of the complex-valued natural logarithm with -%pi
< carg(x) <= +¥pi .
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15 Trigonometric

15.1 Introduction to Trigonometric

Maxima has many trigonometric functions defined. Not all trigonometric identities are
programmed, but it is possible for the user to add many of them using the pattern matching
capabilities of the system. The trigonometric functions defined in Maxima are: acos,
acosh, acot, acoth, acsc, acsch, asec, asech, asin, asinh, atan, atanh, cos, cosh,
cot, coth, csc, csch, sec, sech, sin, sinh, tan, and tanh. There are a number of
commands especially for handling trigonometric functions, see trigexpand, trigreduce,
and the switch trigsign. Two share packages extend the simplification rules built into
Maxima, ntrig and atrigl. Do describe(command) for details.

15.2 Functions and Variables for Trigonometric

Y%piargs Option variable
Default value: true

When %piargs is true, trigonometric functions are simplified to algebraic constants
when the argument is an integer multiple of 7, 7/2, 7/3, /4, or 7/6.

Maxima knows some identities which can be applied when 7, etc., are multiplied by
an integer variable (that is, a symbol declared to be integer).

Examples:
(%1i1) Ypiargs : false;
(hol) false
(hi2) [sin (%pi), sin (%pi/2), sin (%pi/3)];
%pi %pi
(ho2) [sin(%pi), sin(---), sin(---)]
2 3
(%i3) [sin (%pi/4), sin (%pi/5), sin (%pi/6)];
hpi hpi hpi
(%h03) [sin(---), sin(---), sin(---)]
4 5 6
(%i4) Ypiargs : true;
(hod) true
(%i5) [sin (%pi), sin (%pi/2), sin (%pi/3)]1;
sqrt(3)
(%05) 0, 1, ————-——- ]
2
(%16) [sin (%pi/4), sin (%pi/5), sin (%pi/6)];
1 ypi 1
(%06) S , sin(--), -]
sqrt (2) 5 2
(%1i7) [cos (%pi/3), cos (10%%pi/3), tan (10%%pi/3), cos (sqrt(2)*%pi/3)]1;l
1 1 sqrt(2) Ypi

(hoT) [-, - -, sqrt(3), cos(~——————-——- )]
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2 2 3
Some identities are applied when 7 and 7/2 are multiplied by an integer variable.

(%i1) declare (n, integer, m, even);

(%ho1) done
(%12) [sin (%pi * n), cos (%pi * m), sin (%4pi/2 * m), cos (%pi/2 * m)];l}
m/2
(%ho2) o, 1, 0, (-1 1
Yiargs Option variable

Default value: true

When %iargs is true, trigonometric functions are simplified to hyperbolic functions
when the argument is apparently a multiple of the imaginary unit <.

Even when the argument is demonstrably real, the simplification is applied; Maxima
considers only whether the argument is a literal multiple of 4.

Examples:

(%1i1) %iargs : false;

(%hol) false

(%i2) [sin (i * x), cos (%i * x), tan (%i * x)];
(h02) [sin(%i x), cos(%i x), tan(%i x)]
(%i3) Y%iargs : true;

(%03) true

(%id) [sin (%i * x), cos (%i * x), tan (%i * x)];
(%04) [%i sinh(x), cosh(x), %i tanh(x)]

Even when the argument is demonstrably real, the simplification is applied.

(%1i1) declare (x, imaginary);

(%o1) done
(%12) [featurep (x, imaginary), featurep (x, real)];
(%02) [true, falsel
(%1i3) sin (%i * x);
(%03) %i sinh(x)
acos (x) Function
- Arc Cosine.
acosh (x) Function

- Hyperbolic Arc Cosine.

acot (x) Function
- Arc Cotangent.

acoth (x) Function
- Hyperbolic Arc Cotangent.

acsc (x) Function
- Arc Cosecant.
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acsch (x) Function
- Hyperbolic Arc Cosecant.

asec (x) Function
- Arc Secant.
asech (x) Function

- Hyperbolic Arc Secant.

asin (x) Function
- Arc Sine.
asinh (x) Function

- Hyperbolic Arc Sine.

atan (x) Function
- Arc Tangent.

atan2 (y, x) Function
- yields the value of atan(y/x) in the interval -%pi to %pi.

atanh (x) Function
- Hyperbolic Arc Tangent.

atrigl Package
The atrigl package contains several additional simplification rules for inverse trigono-
metric functions. Together with rules already known to Maxima, the following angles
are fully implemented: 0, %pi/6, %pi/4, %pi/3, and %pi/2. Corresponding angles in
the other three quadrants are also available. Do load(atrigl); to use them.

cos (x) Function
- Cosine.
cosh (x) Function

- Hyperbolic Cosine.

cot (x) Function
- Cotangent.
coth (x) Function

- Hyperbolic Cotangent.

csc (x) Function
- Cosecant.
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Function

Option variable

When halfangles is true, trigonometric functions of arguments expr/2 are simplified

Package

The ntrig package contains a set of simplification rules that are used to simplify
trigonometric function whose arguments are of the form f (n %pi/10) where f is any

192
csch (x)
- Hyperbolic Cosecant.
halfangles
Default value: false
to functions of expr.
Examples:
(%11) halfangles : false;
(hol)
(%i2) sin (x / 2);
(%ho2)
(%13) halfangles : true;
(%03)
(%1i4) sin (x / 2);
sqrt (1 - cos(x))
(hot)  mmmmmmm—m—————
ntrig
of the functions sin, cos, tan, csc, sec and cot.
sec (x)
- Secant.
sech (x)
- Hyperbolic Secant.
sin (x)
- Sine.
sinh (x)
- Hyperbolic Sine.
tan (x)
- Tangent.
tanh (x)

- Hyperbolic Tangent.

Function

Function

Function

Function

Function

Function



Chapter 15: Trigonometric 193

trigexpand (expr) Function
Expands trigonometric and hyperbolic functions of sums of angles and of multiple
angles occurring in expr. For best results, expr should be expanded. To enhance user
control of simplification, this function expands only one level at a time, expanding
sums of angles or multiple angles. To obtain full expansion into sines and cosines
immediately, set the switch trigexpand: true.

trigexpand is governed by the following global flags:

trigexpand
If true causes expansion of all expressions containing sin’s and cos’s oc-
curring subsequently.

halfangles
If true causes half-angles to be simplified away.

trigexpandplus
Controls the "sum" rule for trigexpand, expansion of sums (e.g. sin(x
+y)) will take place only if trigexpandplus is true.

trigexpandtimes
Controls the "product" rule for trigexpand, expansion of products (e.g.
sin(2 x)) will take place only if trigexpandtimes is true.

Examples:
(%11) x+sin(3*x)/sin(x),trigexpand=true,expand;
2 2
(%ho1) - sin (x) + 3 cos (x) + x
(%12) trigexpand(sin(10*x+y));
(%02) cos(10 x) sin(y) + sin(10 x) cos(y)
trigexpandplus Option variable

Default value: true

trigexpandplus controls the "sum" rule for trigexpand. Thus, when the
trigexpand command is used or the trigexpand switch set to true, expansion of
sums (e.g. sin(x+y)) will take place only if trigexpandplus is true.

trigexpandtimes Option variable
Default value: true

trigexpandtimes controls the "product" rule for trigexpand. Thus, when the
trigexpand command is used or the trigexpand switch set to true, expansion of
products (e.g. sin(2xx)) will take place only if trigexpandtimes is true.

triginverses Option variable
Default value: all

triginverses controls the simplification of the composition of trigonometric and
hyperbolic functions with their inverse functions.

If all, both e.g. atan(tan(x)) and tan(atan(x)) simplify to x.
If true, the arcfun(fun(x)) simplification is turned off.
If false, both the arcfun(fun(x)) and fun(arcfun(x)) simplifications are turned off.
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trigreduce (expr, x) Function
trigreduce (expr) Function
Combines products and powers of trigonometric and hyperbolic sin’s and cos’s of x
into those of multiples of x. It also tries to eliminate these functions when they occur
in denominators. If x is omitted then all variables in expr are used.

See also poissimp.

(%11) trigreduce(-sin(x) 2+3xcos(x) "2+x);
cos(2 x) cos(2 x) 1 1
(hot) - + 3 (===~ +-) +x - -

The trigonometric simplification routines will use declared information in some simple
cases. Declarations about variables are used as follows, e.g.

(%i1) declare(j, integer, e, even, o, odd)$
(%12) sin(x + (e + 1/2)x%pi);

(%ho2) cos (x)
(%hi3) sin(x + (o + 1/2)*%pi);
(%03) - cos(x)
trigsign Option variable

Default value: true

When trigsign is true, it permits simplification of negative arguments to trigono-
metric functions. E.g., sin(-x) will become -sin(x) only if trigsign is true.

trigsimp (expr) Function
Employs the identities sin(z)? + cos(z)? = 1 and cosh(x)? — sinh(z)* = 1 to simplify
expressions containing tan, sec, etc., to sin, cos, sinh, cosh.
trigreduce, ratsimp, and radcan may be able to further simplify the result.

demo ("trgsmp.dem") displays some examples of trigsimp.

trigrat (expr) Function

Gives a canonical simplifyed quasilinear form of a trigonometrical expression; expr is
a rational fraction of several sin, cos or tan, the arguments of them are linear forms
in some variables (or kernels) and %pi/n (n integer) with integer coefficients. The
result is a simplified fraction with numerator and denominator linear in sin and cos.
Thus trigrat linearize always when it is possible.

(%i1) trigrat(sin(3+*a)/sin(a+%pi/3));

(%hol) sqrt(3) sin(2 a) + cos(2 a) - 1

The following example is taken from Davenport, Siret, and Tournier, Calcul Formel,
Masson (or in English, Addison-Wesley), section 1.5.5, Morley theorem.
(%i1) c: %pi/3 - a - b;
hpi
(%o1) -b-a+ -——-
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3

(%1i2) bc: sin(a)*sin(3*c)/sin(a+b);

sin(a) sin(3 b + 3 a)
(ho2) e

sin(b + a)
(%1i3) ba: bc, c=a, a=c$
(%i4) ac2: ba"2 + bc~2 - 2xbc*baxcos(b);
2 2
sin (a) sin (3 b + 3 a)

(%od) ————————mmmmm e
2
sin (b + a)
%pi
2 sin(a) sin(3 a) cos(b) sin(b + a - -—-) sin(3 b + 3 a)
3
%pi
sin(a - ---) sin(b + a)
3
2 2 %pi
sin (3 a) sin (b + a - ——-)
3
+ ———————————————————————————
2 hpi
sin (a - ---)
3

(%15) trigrat (ac2);
(%05) - (sqrt(3) sin(4 b + 4 a) - cos(4 b + 4 a)

2 sqrt(3) sin(4 b + 2 a) + 2 cos(4 b + 2 a)

2 sqrt(3) sin(2 b + 4 a) + 2 cos(2 b + 4 a)

+ 4 sqrt(3) sin(2 b+ 2 a) -8 cos(2b +2a) -4cos(2b -2 a)
+ sqrt(3) sin(4 b) - cos(4 b) - 2 sqrt(3) sin(2 b) + 10 cos(2 b)
+ sqrt(3) sin(4 a) - cos(4 a) - 2 sqrt(3) sin(2 a) + 10 cos(2 a)

9)/4
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16.1 Introduction to Special Functions

Special function notation follows:

bessel_j (index, expr)
bessel_y (index, expr)
bessel_i (index, expr)
bessel_k (index, expr)

%he[n] (z)

assoc_legendre_pl[v,u] (z)
assoc_legendre_ql[v,u] (z)

hstruve[n] (z)
lstruvel[n] (=)

%flp,ql (01, [1, expr)

gamma ()
gammagreek(a,z)
gammaincomplete(a,z)
slommel

/mlu,k] (z)

hwlu, k] (2)

erfc (z)

ei (2)

kelliptic (z)

hd [n] (2)

Bessel function, 1st kind

Bessel function, 2nd kind

Modified Bessel function, 1st kind
Modified Bessel function, 2nd kind
Hermite polynomial (Nota bene: he,
not h. See A&S 22.5.18)

Legendre function of degree v and order u
Legendre function, 2nd kind

Struve H function

Struve L function

Generalized Hypergeometric function
Gamma function

Incomplete gamma function

Tail of incomplete gamma function

Whittaker function, 1st kind

Whittaker function, 2nd kind

Complement of the erf function
Exponential integral (7)

Complete elliptic integral of the first
kind (K)

Parabolic cylinder function

16.2 Functions and Variables for Special Functions

airy_ai (x)

Function

The Airy function Ai, as defined in Abramowitz and Stegun, Handbook of Mathemat-

ical Functions, Section 10.4.

The Airy equation diff (y(x), x, 2) - x y(x) = 0 has two linearly independent so-
lutions, y = Ai(x) and y = Bi(x). The derivative diff (airy_ai(x), x) is airy_

dai(x).

If the argument x is a real or complex floating point number, the numerical value of

airy_ai is returned when possible.

See also airy_bi, airy_dai, airy_dbi.

airy_dai (x)

Function

The derivative of the Airy function Ai airy_ai(x).

See airy_ai.
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airy_bi (x) Function
The Airy function Bi, as defined in Abramowitz and Stegun, Handbook of Mathemat-
ical Functions, Section 10.4, is the second solution of the Airy equation diff (y(x),
x, 2) —xy) =0.
If the argument x is a real or complex floating point number, the numerical value
of airy_bi is returned when possible. In other cases the unevaluated expression is
returned.
The derivative diff (airy_bi(x), x) is airy_dbi(x).

See airy_ai, airy_dbi.

airy_dbi (x) Function
The derivative of the Airy Bi function airy_bi(x).

See airy_ai and airy_bi.

asympa Function
asympa is a package for asymptotic analysis. The package contains simplification
functions for asymptotic analysis, including the “big O” and “little 0” functions that
are widely used in complexity analysis and numerical analysis.

load ("asympa") loads this package.

bessel (z, a) Function
The Bessel function of the first kind.

This function is deprecated. Write bessel_j (z, a) instead.

bessel_j (v, z) Function
The Bessel function of the first kind of order v and argument z.

bessel_j computes the array besselarray such that besselarray [i] = bessel_j
[i +v - int(v)] (z) for i from zero to int(v).
bessel_j is defined as

_1)k (%)U+2k

o
z::k:!F(v+k:+1)

k=0

although the infinite series is not used for computations.

bessel_y (v, z) Function
The Bessel function of the second kind of order v and argument z.

bessel_y computes the array besselarray such that besselarray [i] = bessel_y
[i + v - int(v)] (2) for i from zero to int(v).

bessel_y is defined as

cos (mv) J,(2) — J_p(2)
sin (7w v)

when v is not an integer. When v is an integer n, the limit as v approaches n is taken.
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bessel._i (v, z) Function
The modified Bessel function of the first kind of order v and argument z.

bessel_i computes the array besselarray such that besselarray [i] = bessel_i
[i + v - int(v)] (2) for i from zero to int(v).

bessel_i is defined as

%) 1 Py v+2k
Zi<;!r(v+l<:+1) (2)

k=0

although the infinite series is not used for computations.

bessel_k (v, z) Function
The modified Bessel function of the second kind of order v and argument z.

bessel_k computes the array besselarray such that besselarray [i] = bessel_k
[i + v - int(v)] (z) for i from zero to int (v).

bessel_k is defined as

mese(mv) (I_,(z) — I,(2))

2
when v is not an integer. If v is an integer n, then the limit as v approaches n is
taken.
besselexpand Option variable

Default value: false

Controls expansion of the Bessel functions when the order is half of an odd integer. In
this case, the Bessel functions can be expanded in terms of other elementary functions.
When besselexpand is true, the Bessel function is expanded.

(%1i1) besselexpand: false$
(%12) bessel_j (3/2, z);

3
(%ho2) bessel_j(-, z)

2
(%13) besselexpand: true$
(%14) bessel_j (3/2, z);

2 z sin(z) cos(z)

(%04) sqrt(---) (——--——- - —————- )

scaled_bessel_i (v, z) Function
The scaled modified Bessel function of the first kind of order v and argument z. That
is, scaledyessel;(v,z) = exp(—abs(z)) * bessel;(v,z). This function is particularly
useful for calculating bessel; for large z, which is large. However, maxima does not
otherwise know much about this function. For symbolic work, it is probably preferable
to work with the expression exp(-abs(z))*bessel_i(v, z).
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scaled_bessel_i0 (z) Function
Identical to scaled_bessel_i(0,z).

scaled_bessel_il (z) Function
Identical to scaled_bessel_i(1,z).

beta (x, y) Function
The beta function, defined as gamma(x) gamma (y)/gamma(x + y).

gamma (x) Function
The gamma function.

See also makegamma.
The variable gammalim controls simplification of the gamma function.

The Euler-Mascheroni constant is %gamma.

gammalim Option variable
Default value: 1000000
gammalim controls simplification of the gamma function for integral and rational num-
ber arguments. If the absolute value of the argument is not greater than gammalim,
then simplification will occur. Note that the factlim switch controls simplification
of the result of gamma of an integer argument as well.

intopois (a) Function
Converts a into a Poisson encoding.

makefact (expr) Function
Transforms instances of binomial, gamma, and beta functions in expr into factorials.

See also makegamma.

makegamma (expr) Function
Transforms instances of binomial, factorial, and beta functions in expr into gamma
functions.

See also makefact.

numfactor (expr) Function
Returns the numerical factor multiplying the expression expr, which should be a single
term.

content returns the greatest common divisor (ged) of all terms in a sum.
(%i1l) gamma (7/2);
15 sqrt(%pi)
Gol)  mmmemmeeeeee

(%i2) numfactor (%);

(%ho2) -=
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outofpois (a) Function
Converts a from Poisson encoding to general representation. If a is not in Pois-
son form, outofpois carries out the conversion, i.e., the return value is outofpois
(intopois (a)). This function is thus a canonical simplifier for sums of powers of
sine and cosine terms of a particular type.

poisdiff (a, b) Function
Differentiates a with respect to b. b must occur only in the trig arguments or only in
the coefficients.

poisexpt (a, b) Function
Functionally identical to intopois (a”~b). b must be a positive integer.

poisint (a, b) Function
Integrates in a similarly restricted sense (to poisdiff). Non-periodic terms in b are
dropped if b is in the trig arguments.

poislim Option variable
Default value: 5
poislim determines the domain of the coefficients in the arguments of the trig func-
tions. The initial value of 5 corresponds to the interval [-27(5-1)+1,2"(5-1)], or [-15,16],
but it can be set to [-27(n-1)+1, 27(n-1)].

poismap (series, sinfn, cosfn) Function
will map the functions sinfn on the sine terms and cosfn on the cosine terms of the
Poisson series given. sinfn and cosfn are functions of two arguments which are a
coefficient and a trigonometric part of a term in series respectively.

poisplus (a, b) Function
Is functionally identical to intopois (a + b).

poissimp (a) Function
Converts a into a Poisson series for a in general representation.

poisson Special symbol
The symbol /P/ follows the line label of Poisson series expressions.

poissubst (a, b, c) Function
Substitutes a for b in c. ¢ is a Poisson series.
(1) Where B is a variable u, v, w, x, y, or z, then a must be an expression linear in
those variables (e.g., 6xu + 4*v).
(2) Where b is other than those variables, then a must also be free of those variables,
and furthermore, free of sines or cosines.
poissubst (a, b, ¢, d, n) is a special type of substitution which operates on a and
b as in type (1) above, but where d is a Poisson series, expands cos(d) and sin(d)
to order n so as to provide the result of substituting a + d for b in ¢. The idea is
that d is an expansion in terms of a small parameter. For example, poissubst (u,
v, cos(v), %e, 3) yields cos(u)*(1 - %e~2/2) - sin(u)*(%e - %e~3/6).
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poistimes (a, b) Function
Is functionally identical to intopois (a*h).

poistrim () Function
is a reserved function name which (if the user has defined it) gets applied during Pois-
son multiplication. It is a predicate function of 6 arguments which are the coefficients
of the u, v, ..., z in a term. Terms for which poistrim is true (for the coefficients of
that term) are eliminated during multiplication.

printpois (a) Function
Prints a Poisson series in a readable format. In common with outofpois, it will
convert a into a Poisson encoding first, if necessary.

psi [n](x) Function
The derivative of log (gamma (x)) of order n+1. Thus, psi[0] (x) is the first deriva-
tive, psi[1] (x) is the second derivative, etc.

Maxima does not know how, in general, to compute a numerical value of psi, but
it can compute some exact values for rational args. Several variables control what
range of rational args psi will return an exact value, if possible. See maxpsiposint,
maxpsinegint, maxpsifracnum, and maxpsifracdenom. That is, x must lie between
maxpsinegint and maxpsiposint. If the absolute value of the fractional part of x is
rational and has a numerator less than maxpsifracnum and has a denominator less
than maxpsifracdenom, psi will return an exact value.

The function bfpsi in the bffac package can compute numerical values.

maxpsiposint Option variable
Default value: 20

maxpsiposint is the largest positive value for which psi[n] (x) will try to compute
an exact value.

maxpsinegint Option variable
Default value: -10

maxpsinegint is the most negative value for which psi[n] (x) will try to compute an
exact value. That is if x is less than maxnegint, psi[n] (x) will not return simplified
answer, even if it could.

maxpsifracnum Option variable
Default value: 6

Let x be a rational number less than one of the form p/q. If p is greater than
maxpsifracnum, then psi[n] (x) will not try to return a simplified value.

maxpsifracdenom Option variable
Default value: 6

Let x be a rational number less than one of the form p/q. If q is greater than
maxpsifracdenom, then psi[n] (x) will not try to return a simplified value.
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specint (exp(- s*t) * expr, t) Function
Compute the Laplace transform of expr with respect to the variable t. The integrand
expr may contain special functions.
If specint cannot compute the integral, the return value may contain various
Lisp  symbols, including  other-defint-to-follow-negtest, other-1t-
exponential-to-follow, product-of-y-with-nofract-indices, etc.; this is a

bug.
demo (hypgeo) displays several examples of Laplace transforms computed by specint.
Examples:
(%i1) assume (p > 0, a > 0);
(%ho1) [p >0, a>0]
(%12) specint (t~(1/2) * exp(-a*xt/4) * exp(-p*t), t);
sqrt (%pi)
(ho2>  mmmmmm—m——
a 3/2
2 (p +-)
4

(%13) specint (t~(1/2) * bessel_j(1, 2 * a~(1/2) * t~(1/2))
* exp(-pxt), t);
- a/p
sqrt(a) %e
(ho3)  mmmmmmmm——e——

hgfred (a, b, t) Function
Simplify the generalized hypergeometric function in terms of other, simpler, forms. a
is a list of numerator parameters and b is a list of the denominator parameters.

If hgfred cannot simplify the hypergeometric function, it returns an expression of
the form %f [p,q] ([a]l, [b]l, x) where p is the number of elements in a, and q is the
number of elements in b. This is the usual pFq generalized hypergeometric function.

(%i1) assume(not(equal(z,0)));

(%ho1) [notequal(z, 0)]

(%i2) hgfred([v+1/2], [2xv+1],2%}%ix*z);

v/2 hi oz
4 bessel_j(v, z) gamma(v + 1) %e
(ho2)  mmmmm e

(%i3) hgfred([1,1],[2]1,2);

log(l - z)
(%03) o

(%i4) hgfred([a,a+1/2],[3/2],272);
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(hod) e
2 (1 -2a)z

It can be beneficial to load orthopoly too as the following example shows. Note that
L is the generalized Laguerre polynomial.

(%15) load(orthopoly)$

(%i6) hgfred([-2],[al,z);

(a - 1)
2 L (z)
2
(o8  eeemme———————
a (a+ 1)
(%i7) ev(h);
2
Z 2 z
Chory  mmmmmmmmm = oo +1
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17 Elliptic Functions

17.1 Introduction to Elliptic Functions and Integrals

Maxima includes support for Jacobian elliptic functions and for complete and incomplete
elliptic integrals. This includes symbolic manipulation of these functions and numerical
evaluation as well. Definitions of these functions and many of their properties can by found
in Abramowitz and Stegun, Chapter 16-17. As much as possible, we use the definitions and
relationships given there.

In particular, all elliptic functions and integrals use the parameter m instead of the
modulus & or the modular angle «. This is one area where we differ from Abramowitz and
Stegun who use the modular angle for the elliptic functions. The following relationships are
true:

m = k?
and
k =sina

The elliptic functions and integrals are primarily intended to support symbolic compu-
tation. Therefore, most of derivatives of the functions and integrals are known. However,
if floating-point values are given, a floating-point result is returned.

Support for most of the other properties of elliptic functions and integrals other than
derivatives has not yet been written.

Some examples of elliptic functions:

(%i1) jacobi_sn (u, m);

(ho1) jacobi_sn(u, m)

(%i2) jacobi_sn (u, 1);

(%ho2) tanh (u)

(%13) jacobi_sn (u, 0);

(%03) sin(u)

(%14) diff (jacobi_sn (u, m), u);

(%04) jacobi_cn(u, m) jacobi_dn(u, m)

(%15) diff (jacobi_sn (u, m), m);
(%05) jacobi_cn(u, m) jacobi_dn(u, m)

elliptic_e(asin(jacobi_sn(u, m)), m)

(w - = )/ (2 m)
1 -m
2
jacobi_cn (u, m) jacobi_sn(u, m)
+ ________________________________
2 (1 -m

Some examples of elliptic integrals:

(%11) elliptic_f (phi, m);
(%ho1) elliptic_f(phi, m)
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(%i2) elliptic_f (phi, 0);
(%ho2) phi
(%i3) elliptic_f (phi, 1);

phi  Ypi
(%03) log(tan(-—- + ---))
2 4
(%i4) elliptic_e (phi, 1);
(%ho4d) sin(phi)
(%i5) elliptic_e (phi, 0);
(%05) phi
(%16) elliptic_kc (1/2);
1
(%06) elliptic_kc(-)
2
(%1i7) makegamma (%) ;
21
gamma (-)
4

(ot mmmmm————-
4 sqrt(%pi)
(%i8) diff (elliptic_f (phi, m), phi);

(%08)  mmmmmmmmm e

sqrt(1 - m sin (phi))
(%i9) diff (elliptic_f (phi, m), m);
elliptic_e(phi, m) - (1 - m) elliptic_f(phi, m)
(ho9) (--—-=—--——-——m

cos(phi) sin(phi)
e )/(2 (1 - m)
2

sqrt(1 - m sin (phi))
Support for elliptic functions and integrals was written by Raymond Toy. It is placed
under the terms of the General Public License (GPL) that governs the distribution of
Maxima.

17.2 Functions and Variables for Elliptic Functions

jacobi_sn (u, m) Function
The Jacobian elliptic function sn(u, m).

jacobi_cn (u, m) Function
The Jacobian elliptic function cn(u, m).

jacobi_dn (u, m) Function
The Jacobian elliptic function dn(u,m).
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jacobi_ns (u, m) Function
The Jacobian elliptic function ns(u, m) = 1/sn(u, m).

jacobi_sc (u, m) Function
The Jacobian elliptic function sc(u, m) = sn(u,m)/en(u, m).

jacobi_sd (u, m) Function
The Jacobian elliptic function sd(u, m) = sn(u, m)/dn(u,m).

jacobi_nc (u, m) Function
The Jacobian elliptic function nc(u, m) = 1/cen(u, m).

jacobi_cs (u, m) Function
The Jacobian elliptic function es(u, m) = cn(u, m)/sn(u, m).

jacobi_cd (u, m) Function
The Jacobian elliptic function cd(u, m) = en(u, m)/dn(u, m).

jacobi_nd (u, m) Function
The Jacobian elliptic function nc(u,m) = 1/cn(u, m).

jacobi_ds (u, m) Function
The Jacobian elliptic function ds(u, m) = dn(u, m)/sn(u,m).

jacobi_dc (u, m) Function
The Jacobian elliptic function de(u, m) = dn(u, m)/cn(u, m).

inverse_jacobi_sn (u, m) Function
The inverse of the Jacobian elliptic function sn(u,m).

inverse_jacobi_cn (u, m) Function
The inverse of the Jacobian elliptic function cn(u, m).

inverse_jacobi_dn (u, m) Function
The inverse of the Jacobian elliptic function dn(u, m).

inverse_jacobi_ns (u, m) Function
The inverse of the Jacobian elliptic function ns(u,m).

inverse_jacobi_sc (u, m) Function
The inverse of the Jacobian elliptic function sc(u,m).

inverse_jacobi_sd (u, m) Function
The inverse of the Jacobian elliptic function sd(u,m).
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inverse_jacobi_nc (u, m)
The inverse of the Jacobian elliptic function ne(u, m).

inverse_jacobi_cs (u, m)
The inverse of the Jacobian elliptic function cs(u, m).

inverse_jacobi_cd (u, m)
The inverse of the Jacobian elliptic function cd(u, m).

inverse_jacobi_nd (u, m)
The inverse of the Jacobian elliptic function ne(u, m).

inverse_jacobi_ds (u, m)
The inverse of the Jacobian elliptic function ds(u,m).

inverse_jacobi_dc (u, m)
The inverse of the Jacobian elliptic function de(u, m).

17.3 Functions and Variables for Elliptic Integrals

elliptic_f (phi, m)
The incomplete elliptic integral of the first kind, defined as

/¢ do
0 v/1—msin*@
See also [elliptic_e], page 208 and [elliptic_kc|, page 209.

elliptic_e (phi, m)
The incomplete elliptic integral of the second kind, defined as

¢
/ \/1 — msin® 6d0
0
See also [elliptic-e|, page 208 and [elliptic_ec|, page 209.

elliptic_eu (u, m)
The incomplete elliptic integral of the second kind, defined as

v T /1 —mt?
/0 dn(v,m)dvz/o \/ T dt
)

This is related to elliptic, by
E(u,m) = E(¢,m)

where 7 = sn(u, m

where ¢ = sin™" sn(u, m) See also [elliptic_e], page 208.

Maxima Manual

Function

Function

Function

Function

Function

Function

Function

Function

Function



Chapter 17: Elliptic Functions 209

elliptic_pi (n, phi, m) Function
The incomplete elliptic integral of the third kind, defined as

/¢ df
0 (1 —mnsin®f)v1—msin®6
Only the derivative with respect to phi is known by Maxima.

elliptic_kc (m) Function
The complete elliptic integral of the first kind, defined as

/’z’ do

0 V1—msin®6

For certain values of m, the value of the integral is known in terms of Gamma func-
tions. Use makegamma to evaluate them.

elliptic_ec (m) Function
The complete elliptic integral of the second kind, defined as

/E \/1 — msin® 6d6
0

For certain values of m, the value of the integral is known in terms of Gamma func-
tions. Use makegamma to evaluate them.
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18 Limits

18.1 Functions and Variables for Limits

lhospitallim Option variable
Default: 4

lhospitallim is the maximum number of times L’Hospital’s rule is used in limit.
This prevents infinite looping in cases like 1imit (cot(x)/csc(x), x, 0).

limit (expr, x, val, dir) Function
limit (expr, x, val) Function
limit (expr) Function

Computes the limit of expr as the real variable x approaches the value val from the
direction dir. dir may have the value plus for a limit from above, minus for a limit
from below, or may be omitted (implying a two-sided limit is to be computed).

limit uses the following special symbols: inf (positive infinity) and minf (negative
infinity). On output it may also use und (undefined), ind (indefinite but bounded)
and infinity (complex infinity).

lhospitallim is the maximum number of times L’Hospital’s rule is used in limit.
This prevents infinite looping in cases like 1imit (cot(x)/csc(x), x, 0).

tlimswitch when true will allow the 1imit command to use Taylor series expansion
when necessary.

limsubst prevents limit from attempting substitutions on unknown forms. This is
to avoid bugs like 1limit (£ (n)/f(n+1), n, inf) giving 1. Setting limsubst to true
will allow such substitutions.

limit with one argument is often called upon to simplify constant expressions, for
example, limit (inf-1).
example (1limit) displays some examples.

For the method see Wang, P., "Evaluation of Definite Integrals by Symbolic Manip-
ulation", Ph.D. thesis, MAC TR-92, October 1971.

limsubst Option variable
default value: false - prevents limit from attempting substitutions on unknown
forms. This is to avoid bugs like 1imit (f(n)/f(n+1), n, inf) giving 1. Setting
limsubst to true will allow such substitutions.

tlimit (expr, x, val, dir) Function
tlimit (expr, x, val) Function
tlimit (expr) Function

Take the limit of the Taylor series expansion of expr in x at val from direction dir.
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tlimswitch Option variable

Default value: true

When tlimswitch is true, the 1imit command will use a Taylor series expansion if
the limit of the input expression cannot be computed directly. This allows evaluation
of limits such as 1limit (x/(x-1)-1/log(x),x,1,plus). When tlimswitch is false
and the limit of input expression cannot be computed directly, 1imit will return an
unevaluated limit expression.
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19 Differentiation

19.1 Functions and Variables for Differentiation

antid (expr, x, u(x)) Function
Returns a two-element list, such that an antiderivative of expr with respect to x can
be constructed from the list. The expression expr may contain an unknown function
u and its derivatives.

Let L, a list of two elements, be the return value of antid. Then L[1] + ’integrate
(L[2], x) is an antiderivative of expr with respect to x.

When antid succeeds entirely, the second element of the return value is zero. Other-
wise, the second element is nonzero, and the first element is nonzero or zero. If antid
cannot make any progress, the first element is zero and the second nonzero.

load ("antid") loads this function. The antid package also defines the functions
nonzeroandfreeof and linear.

antid is related to antidiff as follows. Let L, a list of two elements, be the return
value of antid. Then the return value of antidiff is equal to L[1] + ’integrate
(L[2], x) where x is the variable of integration.

Examples:

(%1i1) load ("antid")$
(%i2) expr: exp (z(x)) * diff (z(x), x) * y(x);

z(x) d
(%02) y(x) %e (-- (zx)))
dx
(%13) al: antid (expr, x, z(x));
z(x) z(x) d
(%03) [y(x) %e , — he (- (yxN]
dx

(%14) a2: antidiff (expr, x, z(x));

/

z(x) [ z&x) d
I
]

(%04) y(x) %he -1 %e (- (y(x))) dx
dx
/
(%15) a2 - (first (al) + ’integrate (second (al), x));
(%05) 0
(%16) antid (expr, x, y(x));
z(x) d
(%06) [0, y(x) %e (- (zx)N1
dx
(%i7) antidiff (expr, x, y(x));
/
[ z(x) d
(%07) I y(x) %e (-- (z(x))) dx
] dx

/
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antidiff (expr, x, u(x))
Returns an antiderivative of expr with respect to x. The expression expr may contain
an unknown function u and its derivatives.

Function

When antidiff succeeds entirely, the resulting expression is free of integral signs
(that is, free of the integrate noun). Otherwise, antidiff returns an expression
which is partly or entirely within an integral sign. If antidiff cannot make any
progress, the return value is entirely within an integral sign.

load ("antid") loads this function. The antid package also defines the functions
nonzeroandfreeof and linear.

antidiff is related to antid as follows. Let L, a list of two elements, be the return
value of antid. Then the return value of antidiff is equal to L[1] + ’integrate
(L[2], x) where x is the variable of integration.

Examples:
(%i1)
(%12)
(%02)
(%13)
(%03)
(%14)

(%ho4)

(%15)
(%05)
(%hi6)
(%06)

ChiT)

(%hoT)

atomgrad

load ("antid")$
expr: exp (z(x)) * diff (z(x), x) * y(x);

z(x) d
y(x) %he (-- ()
dx
al: antid (expr, x, z(x));
z(x) z(x) d
[y(x) %e s — he (- (y&IN]
dx

a2: antidiff (expr, x, z(x));

/

z(x) [ zx) d
I
]

y(x) %he - I%e (—- (y(x))) dx
dx
/
a2 - (first (al) + ’integrate (second (al), x));
0
antid (expr, x, y(x));
z(x) d
[0, y(x) %e (—- (z&)NI]
dx
antidiff (expr, x, y(x));
/
[ z(x) d
I y(x) %e (-- (z(x))) dx
] dx
/

Property

atomgrad is the atomic gradient property of an expression. This property is assigned

by gradef.
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atvalue (expr, [x.1 = a_1, ..., xxm = a_m)], ¢) Function

atvalue (expr, x.1 = a_1, c) Function
Assigns the value ¢ to expr at the point x = a. Typically boundary values are estab-
lished by this mechanism.

expr is a function evaluation, f(x_1, ..., x.m), or a derivative, diff (f(x.1, ...,
x.m), x_1, n_1, ..., x.n, n_m) in which the function arguments explicitly appear.
n_i is the order of differentiation with respect to x_i.

The point at which the atvalue is established is given by the list of equations [x_I
=a.l, ..., xxm = a_m]. If there is a single variable x_I, the sole equation may be
given without enclosing it in a list.

printprops ([f1, 2, ...], atvalue) displays the atvalues of the functions f.1,
f2, ... as specified by calls to atvalue. printprops (f, atvalue) displays the
atvalues of one function f. printprops (all, atvalue) displays the atvalues of all
functions for which atvalues are defined.

The symbols @1, @2, ... represent the variables x_1, x_2, ... when atvalues are dis-
played.
atvalue evaluates its arguments. atvalue returns c, the atvalue.
Examples:
(%1i1) atvalue (f(x,y), [x =0, y =11, a~2);
2
(%hol) a
(%12) atvalue (’diff (f(x,y), x), x =0, 1 + y);
(%o2) @2 + 1
(%13) printprops (all, atvalue);
!
d !
-—— (f(e1, @2))! =02 + 1
de1 !
161 = 0
2
£f(0, 1) = a
(%03) done
(hid) diff (4*f(x,y)"2 - u(x,y)"2, x);
d d
(hod) 8 f(x, y) (—— (£f(x, y¥))) - 2 ulx, y) (- (ulx, y)))
dx dx
(%i8) at (%, [x =0, y = 11);
|
2 d !
(%05) 16 a - 2 u(0, 1) (= (ulx, y)! )
dx !

'x=0,y=1
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cartan - Function
The exterior calculus of differential forms is a basic tool of differential geometry
developed by Elie Cartan and has important applications in the theory of partial
differential equations. The cartan package implements the functions ext_diff and
lie_diff, along with the operators ~ (wedge product) and | (contraction of a form
with a vector.) Type demo (tensor) to see a brief description of these commands
along with examples.

cartan was implemented by F.B. Estabrook and H.D. Wahlquist.

del (x) Function
del (x) represents the differential of the variable x.

diff returns an expression containing del if an independent variable is not specified.
In this case, the return value is the so-called "total differential®.

Examples:

(hi1) diff (log (x));

del(x)
(hot) — mmm=

X
(%12) diff (exp (x*y));
Xy Yy
(%ho2) x %he del(y) + y %e del (x)
(%13) diff (x*y*z);
(%03) x y del(z) + x z del(y) + y z del(x)
delta (t) Function

The Dirac Delta function.
Currently only laplace knows about the delta function.

Example:

(%i1) laplace (delta (t - a) * sin(b*t), t, s);
Is a positive, negative, or zero?

p;
- as
(%o1) sin(a b) %e

dependencies System variable
Default value: []
dependencies is the list of atoms which have functional dependencies, assigned by
depends or gradef. The dependencies list is cumulative: each call to depends or
gradef appends additional items.

See depends and gradef.

depends (f_1, x_1, ..., fn, x_n) Function
Declares functional dependencies among variables for the purpose of computing
derivatives. In the absence of declared dependence, diff (f, x) yields zero. If
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depends (f, x) is declared, diff (f, x) yields a symbolic derivative (that is, a
diff noun).

Fach argument f_1, x_1, etc., can be the name of a variable or array, or a list of names.
Every element of fi (perhaps just a single element) is declared to depend on every
element of x_i (perhaps just a single element). If some £.i is the name of an array or
contains the name of an array, all elements of the array depend on x_i.

diff recognizes indirect dependencies established by depends and applies the chain
rule in these cases.

remove (f, dependency) removes all dependencies declared for f.

depends returns a list of the dependencies established. The dependencies are ap-
pended to the global variable dependencies. depends evaluates its arguments.

diff is the only Maxima command which recognizes dependencies established by
depends. Other functions (integrate, laplace, etc.) only recognize dependencies
explicitly represented by their arguments. For example, integrate does not recognize
the dependence of £ on x unless explicitly represented as integrate (f(x), x).

(%i1) depends ([f, gl, x);

(%o1) [f(x), g(x)]
(%1i2) depends ([r, s], [u, v, wl);
(%02) [r(u, v, w), sCu, v, w)l
(%13) depends (u, t);
(%03) [u(t)]
(%i4) dependencies;
(%o4) f(x), gx), rCu, v, w), sCu, v, w), u(t)]
(%i5) diff (r.s, u);
dr ds
(%05) -—- .s+r . -
du du
(%i6) diff (r.s, t);
dr du ds du
(%06) -— — . 841 . — —
du dt du dt
(%i7) remove (r, dependency);
(%0T) done
(%i8) diff (r.s, t);
ds du
(%08) r . —— -
du dt
derivabbrev Option variable

Default value: false

When derivabbrev is true, symbolic derivatives (that is, diff nouns) are displayed
as subscripts. Otherwise, derivatives are displayed in the Leibniz notation dy/dx.

derivdegree (expr, y, x) Function
Returns the highest degree of the derivative of the dependent variable y with respect
to the independent variable x occuring in expr.
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Example:
(%i1) °’diff (y, x, 2) + ’diff (y, z, 3) + ’diff (y, x) * x°2;
3 2
dy dy 2 dy
(%o1) -—— 4+ ——— +x -
3 2 dx
dz dx
(%i2) derivdegree (%, y, x);
(%02) 2
derivlist (var_1, ..., var_k) Function
Causes only differentiations with respect to the indicated variables, within the ev
command.
derivsubst Option variable

Default value: false

When derivsubst is true, a non-syntactic substitution such as subst (x, ’diff (y,
t), ’diff (y, t, 2)) yields ’diff (x, t).

diff (expr, x_1, n_1, ..., x_m, n_m) Function

diff (expr, x, n) Function

diff (expr, x) Function

diff (expr) Function
Returns the derivative or differential of expr with respect to some or all variables in
expr.

diff (expr, x, n) returns the n’th derivative of expr with respect to x.

diff (expr, x_1, n_1, ..., x.m, n_m) returns the mixed partial derivative of expr
with respect to x_1, ..., x_m. It is equivalent to diff (... (diff (expr, x.m, n_m)
..0), x21, n.1).

diff (expr, x) returns the first derivative of expr with respect to the variable x.

diff (expr) returns the total differential of expr, that is, the sum of the derivatives
of expr with respect to each its variables times the differential del of each variable.
No further simplification of del is offered.

The noun form of diff is required in some contexts, such as stating a differential
equation. In these cases, diff may be quoted (as ’diff) to yield the noun form
instead of carrying out the differentiation.

When derivabbrev is true, derivatives are displayed as subscripts. Otherwise,
derivatives are displayed in the Leibniz notation, dy/dx.

Examples:
(%1i1) diff (exp (£(x)), x, 2);
2
f(x) d f(x) d 2
(%o1) he (== (£(x))) + %e (= (£(x)))
2 dx

dx
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diff

(%12) derivabbrev: true$
(%13) ’integrate (f(x, y), y, g(x), h(x));

h(x)
/
[
(%03) I f(x, y) dy
]
/
g(x)
(%i4) diff (%, x);
h(x)
/
[
(%04) I f(x, y) dy + £(x, h(x)) h(x) - f(x, gx)) g)
] X X X
/

g(x)

For the tensor package, the following modifications have been incorporated:

(1) The derivatives of any indexed objects in expr will have the variables x_i appended
as additional arguments. Then all the derivative indices will be sorted.

(2) The x_i may be integers from 1 up to the value of the variable dimension [default
value: 4]. This will cause the differentiation to be carried out with respect to the
x_i'th member of the list coordinates which should be set to a list of the names of
the coordinates, e.g., [x, y, z, t]. If coordinates is bound to an atomic variable,
then that variable subscripted by x_i will be used for the variable of differentiation.
This permits an array of coordinate names or subscripted names like X[1], X[2], ...
to be used. If coordinates has not been assigned a value, then the variables will be
treated as in (1) above.

Special symbol

When diff is present as an evflag in call to ev, all differentiations indicated in expr
are carried out.

dscalar (f) Function

Applies the scalar d’Alembertian to the scalar function f.

load ("ctensor") loads this function.

express (expr) Function

Expands differential operator nouns into expressions in terms of partial derivatives.
express recognizes the operators grad, div, curl, laplacian. express also expands
the cross product ~.

Symbolic derivatives (that is, diff nouns) in the return value of express may be
evaluated by including diff in the ev function call or command line. In this context,
diff acts as an evfun.

load ("vect") loads this function.

Examples:
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(%i1) load ("vect")$
(hi2) grad (x°2 + y~2 + z72);
2 2 2
(%h02) grad (z +y + x)
(%13) express (%);
d 2 2 2 d 2 2 2 d 2 2 2

(ho3) [- (z +y +x), —(z +y +x), — (z +y +x)]
dx dy dz
(%i4) ev (%, diff);
(ho4d) [2x, 2y, 2z]
(%i5) div ([x"2, y~2, z"21);
2 2 2
(%05) div [x , vy, z ]

(%16) express (%);
d 2 d 2 d 2

(%06) —(z)+-—-(Gy)+-—- (x)
dz dy dx
(%i7) ev (%, diff);
(hoT) 2z+2y+2x
(%18) curl ([x"2, y~2, z"2]);
2 2 2
(%08) curl [x , v, z ]

(%19) express (%);
d 2 d 2 d 2 d 2 d 2 d 2

(%09) [- (z) - —- (@), - &) --—(z), — () --- ()]
dy dz dz dx dx dy
(%i10) ev (%, diff);
(%010) [0, 0, 0]
(%i11) laplacian (x72 * y~2 *x z72);
2 2 2
(%ho11) laplacian (x y z )
(%i12) express (%) ;
2 2 2
d 2 2 2 d 2 2 2 d 2 2 2
(ho12) -—— (x vy z)+-—(x y z)+-—(x y z)
2 2 2
dz dy dx
(%i13) ev (%, diff);
2 2 2 2 2 2
(%013) 2y z +2x z +2x 5
(%i14) [a, b, <] = [x, vy, z];
(%o14) [a, b, c] 7 [x, vy, z]
(%i15) express (%) ;
(%015) [bz-cy,cx-az,ay-bx]
gradef (f(x_1, ..., xn), g_1, ..., g_m) Function
gradef (a, x, expr) Function

Defines the partial derivatives (i.e., the components of the gradient) of the function f
or variable a.
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gradef (f(x_1, ..., xn), g-1, ..., g-m) defines df /dx_i as g_i, where g_i is an
expression; g_i may be a function call, but not the name of a function. The number
of partial derivatives m may be less than the number of arguments n, in which case
derivatives are defined with respect to x_1 through x_m only.

gradef (a, x, expr) defines the derivative of variable a with respect to x as expr.
This also establishes the dependence of a on x (via depends (a, x)).

The first argument f(x_1, ..., x.n) or a is quoted, but the remaining arguments
g_1, ..., g_m are evaluated. gradef returns the function or variable for which the
partial derivatives are defined.

gradef can redefine the derivatives of Maxima’s built-in functions. For example,
gradef (sin(x), sqrt (1 - sin(x)~2)) redefines the derivative of sin.

gradef cannot define partial derivatives for a subscripted function.

printprops ([f1, ..., fn], gradef) displays the partial derivatives of the func-
tions f_1, ..., fn, as defined by gradef.

printprops ([a.n, ..., a_n], atomgrad) displays the partial derivatives of the
variables a_n, ..., a_n, as defined by gradef.

gradefs is the list of the functions for which partial derivatives have been defined by
gradef. gradefs does not include any variables for which partial derivatives have
been defined by gradef.

Gradients are needed when, for example, a function is not known explicitly but its
first derivatives are and it is desired to obtain higher order derivatives.

gradefs System variable
Default value: []

gradefs is the list of the functions for which partial derivatives have been defined by
gradef. gradefs does not include any variables for which partial derivatives have
been defined by gradef.

laplace (expr, t, s) Function
Attempts to compute the Laplace transform of expr with respect to the variable ¢
and transform parameter s. If laplace cannot find a solution, a noun ’laplace is
returned.

laplace recognizes in expr the functions delta, exp, log, sin, cos, sinh, cosh, and
erf, as well as derivative, integrate, sum, and ilt. If some other functions are
present, laplace may not be able to compute the transform.

expr may also be a linear, constant coefficient differential equation in which case
atvalue of the dependent variable is used. The required atvalue may be supplied
either before or after the transform is computed. Since the initial conditions must
be specified at zero, if one has boundary conditions imposed elsewhere he can im-
pose these on the general solution and eliminate the constants by solving the general
solution for them and substituting their values back.

laplace recognizes convolution integrals of the form integrate (f(x) * g(t - x),
x, 0, t); other kinds of convolutions are not recognized.
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Functional relations must be explicitly represented in expr; implicit relations, estab-
lished by depends, are not recognized. That is, if f depends on x and y, £ (x, y)
must appear in expr.

See also ilt, the inverse Laplace transform.

Examples:
(%11) laplace (exp (2*t + a) * sin(t) * t, t, s);
a
%e (2s - 4)
Cho)  mmmmmmm

(s -4s+5)
(%i2) laplace (’diff (f (x), x), X, s);

(%02) s laplace(f(x), x, s) - £(0)
(%13) diff (diff (delta (t), t), t);
2
d
(%03) -—— (delta(t))
2
dt

(%i4) laplace (%, t, s);
!
d ! 2
(%o4) - —— (delta(t))! + s - delta(0) s
dt !
't =0
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20 Integration

20.1 Introduction to Integration

Maxima has several routines for handling integration. The integrate function makes
use of most of them. There is also the antid package, which handles an unspecified func-
tion (and its derivatives, of course). For numerical uses, there is a set of adaptive inte-
grators from QUADPACK, named quad_qgag, quad_qgags, etc., which are described under
the heading QUADPACK. Hypergeometric functions are being worked on, see specint for
details. Generally speaking, Maxima only handles integrals which are integrable in terms of
the "elementary functions" (rational functions, trigonometrics, logs, exponentials, radicals,
etc.) and a few extensions (error function, dilogarithm). It does not handle integrals in
terms of unknown functions such as g(x) and h(x).

20.2 Functions and Variables for Integration

changevar (expr, f{x,y), y, x) Function
Makes the change of variable given by f(x,y) = 0 in all integrals occurring in expr with
integration with respect to x. The new variable is y.

(%i1) assume(a > 0)$
(%12) ’integrate (Yex*sqrt(axy), y, 0, 4);

4
/
[ sqrt(a) sqrt(y)
(%02) I Ye dy
]
/
0
(%13) changevar (%, y-z"2/a, z, y);
0
/
[ abs(z)
21 z e dz
]
/
- 2 sqrt(a)
(%03) - e
a

An expression containing a noun form, such as the instances of ’integrate above,
may be evaluated by ev with the nouns flag. For example, the expression returned
by changevar above may be evaluated by ev (%03, nouns).

changevar may also be used to changes in the indices of a sum or product. However,
it must be realized that when a change is made in a sum or product, this change must
be a shift, i.e., i = j+ ..., not a higher degree function. E.g.,
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(%i4) sum (alil*x~(i-2), i, O, inf);

inf
\ i-2
(%04) > a x
/ i
i=0
(%1i5) changevar (%, i-2-n, n, i);
inf
\ n
(%05) > a X
/ n+ 2
n=-2
dblint (f, r, s, a, b) Function

A double-integral routine which was written in top-level Maxima and then translated
and compiled to machine code. Use load (dblint) to access this package. It uses
the Simpson’s rule method in both the x and y directions to calculate

/b /s(x)

[

[ f(x,y) dy dx
[

/a /r(x)

The function f must be a translated or compiled function of two variables, and r and
s must each be a translated or compiled function of one variable, while a and b must
be floating point numbers. The routine has two global variables which determine
the number of divisions of the x and y intervals: dblint_x and dblint_y, both of
which are initially 10, and can be changed independently to other integer values (there
are 2*dblint_x+1 points computed in the x direction, and 2*dblint_y+1 in the y
direction). The routine subdivides the X axis and then for each value of X it first
computes r(x) and s(x); then the Y axis between r(x) and s(x) is subdivided and
the integral along the Y axis is performed using Simpson’s rule; then the integral
along the X axis is done using Simpson’s rule with the function values being the Y-
integrals. This procedure may be numerically unstable for a great variety of reasons,
but is reasonably fast: avoid using it on highly oscillatory functions and functions
with singularities (poles or branch points in the region). The Y integrals depend on
how far apart r(x) and s(x) are, so if the distance s(x) - r(x) varies rapidly with
X, there may be substantial errors arising from truncation with different step-sizes
in the various Y integrals. One can increase dblint_x and dblint_y in an effort to
improve the coverage of the region, at the expense of computation time. The function
values are not saved, so if the function is very time-consuming, you will have to wait
for re-computation if you change anything (sorry). It is required that the functions
f, r, and s be either translated or compiled prior to calling dblint. This will result
in orders of magnitude speed improvement over interpreted code in many cases!
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demo (dblint) executes a demonstration of dblint applied to an example problem.

defint (expr, x, a, b) Function
Attempts to compute a definite integral. defint is called by integrate when limits
of integration are specified, i.e., when integrate is called as integrate (expr, x,
a, b). Thus from the user’s point of view, it is sufficient to call integrate.

defint returns a symbolic expression, either the computed integral or the noun form
of the integral. See quad_qgag and related functions for numerical approximation of
definite integrals.

erf (x) Function
Represents the error function, whose derivative is: 2*exp(-x~2)/sqrt (%pi).

erfllag Option variable
Default value: true

When erfflag is false, prevents risch from introducing the erf function in the
answer if there were none in the integrand to begin with.

ilt (expr, t, s) Function
Computes the inverse Laplace transform of expr with respect to t and parameter s.
expr must be a ratio of polynomials whose denominator has only linear and quadratic
factors. By using the functions laplace and ilt together with the solve or linsolve
functions the user can solve a single differential or convolution integral equation or a
set of them.
(%i1) ’integrate (sinh(a*x)*f(t-x), x, 0, t) + b*xf(t) = t**2;
t

2

(%o1) f(t - x) sinh(a x) dx + b f(t) = t

~N U H SN~

0
(%i2) laplace (%, t, s);
a laplace(f(t), t, s) 2
(%02) b laplace(f(t), t, 8) + ————————————————————- = ——

s - a s
(%13) linsolve ([%], [’laplace(£f(t), t, s)1);
(%03) [laplace(f(t), t, §) = —=——==——===—---——-—- ]
bs +(a-a b)s
(%i4) ilt (rhs (first (%)), s, t);

Is ab (ab-1) positive, negative, or zero?

pos;
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sqrt(a b (a b - 1)) t

a b -2a b+ a

integrate (expr, x) Function
integrate (expr, x, a, b) Function
Attempts to symbolically compute the integral of expr with respect to x. integrate
(expr, x) is an indefinite integral, while integrate (expr, x, a, b) is a definite
integral, with limits of integration a and b. The limits should not contain x, although
integrate does not enforce this restriction. a need not be less than b. If b is equal
to a, integrate returns zero.

See quad_qgag and related functions for numerical approximation of definite integrals.
See residue for computation of residues (complex integration). See antid for an
alternative means of computing indefinite integrals.

The integral (an expression free of integrate) is returned if integrate succeeds.
Otherwise the return value is the noun form of the integral (the quoted operator
’integrate) or an expression containing one or more noun forms. The noun form of
integrate is displayed with an integral sign.

In some circumstances it is useful to construct a noun form by hand, by quoting
integrate with a single quote, e.g., integrate (expr, x). For example, the integral
may depend on some parameters which are not yet computed. The noun may be
applied to its arguments by ev (i, nouns) where i is the noun form of interest.

integrate handles definite integrals separately from indefinite, and employs a range
of heuristics to handle each case. Special cases of definite integrals include limits of
integration equal to zero or infinity (inf or minf), trigonometric functions with limits
of integration equal to zero and %pi or 2 %pi, rational functions, integrals related to
the definitions of the beta and psi functions, and some logarithmic and trigonometric
integrals. Processing rational functions may include computation of residues. If an
applicable special case is not found, an attempt will be made to compute the indefinite
integral and evaluate it at the limits of integration. This may include taking a limit
as a limit of integration goes to infinity or negative infinity; see also 1defint.

Special cases of indefinite integrals include trigonometric functions, exponential and
logarithmic functions, and rational functions. integrate may also make use of a
short table of elementary integrals.

integrate may carry out a change of variable if the integrand has the form £ (g(x))
*x diff(g(x), x). integrate attempts to find a subexpression g(x) such that the
derivative of g(x) divides the integrand. This search may make use of derivatives
defined by the gradef function. See also changevar and antid.
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If none of the preceding heuristics find the indefinite integral, the Risch algorithm is
executed. The flag risch may be set as an evflag, in a call to ev or on the com-
mand line, e.g., ev (integrate (expr, x), risch) or integrate (expr, x), risch.
If risch is present, integrate calls the risch function without attempting heuristics
first. See also risch.

integrate works only with functional relations represented explicitly with the £ (x)
notation. integrate does not respect implicit dependencies established by the
depends function.

integrate may need to know some property of a parameter in the integrand.
integrate will first consult the assume database, and, if the variable of interest
is not there, integrate will ask the user. Depending on the question, suitable
responses are yes; Or no;, or pos;, Zero;, Or neg;.
integrate is not, by default, declared to be linear. See declare and linear.
integrate attempts integration by parts only in a few special cases.
Examples:

e Elementary indefinite and definite integrals.

(%i1) integrate (sin(x)~3, x);

3
cos (x)
(%ot === - cos(x)
3
(%12) integrate (x/ sqrt (b"2 - x72), x);
2 2
(ho2) - sqrt(b - x )
(%13) integrate (cos(x)"2 * exp(x), x, 0, %pi);
hpi
3 %e 3
(03> == - -
5 5
(%i4) integrate (x°2 * exp(-x"2), x, minf, inf);
sqrt (%pi)
(%04 ===
2

e Use of assume and interactive query.

(%i1) assume (a > 1)$

(%12) integrate (x**a/(x+1)*x(5/2), x, 0, inf);
2 a+ 2

Is —-———- an integer?

no;
Is 2 a - 3 positive, negative, or zero?

neg;
3
(%02) beta(a + 1, - - a)
2
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e Change of variable. There are two changes of variable in this example: one using
a derivative established by gradef, and one using the derivation diff (r(x)) of
an unspecified function r(x).

(%13) gradef (q(x), sin(x**2));

(%03) q(x)
(%i4) diff (log (q (r (x))), x);
d 2
(-- (r(x))) sin(r (x))
dx
(%hod) e
q(r(x))

(%i5) integrate (%, x);
(%05) log(q(r(x)))

e Return value contains the ’integrate noun form. In this example, Maxima can
extract one factor of the denominator of a rational function, but cannot factor the
remainder or otherwise find its integral. grind shows the noun form ’integrate
in the result. See also integrate_use_rootsof for more on integrals of rational

functions.
(%11) expand ((x-4) * (x"3+2xx+1));
4 3 2
(%o1) X -4x +2x -T7Tx-4
(%i2) integrate (1/%, x);
/ 2
[ x +4x + 18
I ———— dx
1 3

log(x - 4) / x +2x+1
(%02) e o

(%i3) grind (%);
log(x-4)/73-(’integrate ((x"2+4*x+18) / (x"3+2*x+1) ,x)) /73$
e Defining a function in terms of an integral. The body of a function is not evalu-

ated when the function is defined. Thus the body of £_1 in this example contains
the noun form of integrate. The quote-quote operator >’ causes the integral
to be evaluated, and the result becomes the body of f_2.

(%i1) f£_1 (a) := integrate (x73, x, 1, a);

3

(%o1) f_1(a) := integrate(x , x, 1, a)

(%i2) ev (f_1 (7), nouns);

(%02) 600

(%13) /* Note parentheses around integrate(...) here */

f_2 (a) := ’’(integrate (x73, x, 1, a));

(%03) f_2(a) := -- - -

(hid) £_2 (7);
(hod) 600
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integration_constant System variable
Default value: %c

When a constant of integration is introduced by indefinite integration of an equation,
the name of the constant is constructed by concatenating integration_constant
and integration_constant_counter.

integration_constant may be assigned any symbol.

Examples:
(%i1) integrate (x72 = 1, x);
3
X
(%o1) -— =x + %cil
3
(%12) integration_constant : ’k;
(%h02) k
(%13) integrate (x72 = 1, x);
3
X
(%03) -- =x + k2
3
integration_constant_counter System variable

Default value: 0

When a constant of integration is introduced by indefinite integration of an equation,
the name of the constant is constructed by concatenating integration_constant
and integration_constant_counter.

integration_constant_counter is incremented before constructing the next inte-
gration constant.

Examples:
(%1i1) integrate (x"2 = 1, x);
3
X
(%ho1) -— = x + %cl
3
(%12) integrate (x72 = 1, x);
3
X
(%ho2) -— = x + %c2
3
(%13) integrate (x72 = 1, x);
3
X
(%03) -- = x + %c3
3
(%14) reset (integration_constant_counter);
(%04) [integration_constant_counter]

(%15) integrate (x72 = 1, x);
3
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(%05) -— =x + Jcl

integrate_use_rootsof Option variable

Default value: false
When integrate_use_rootsof is true and the denominator of a rational function
cannot be factored, integrate returns the integral in a form which is a sum over the
roots (not yet known) of the denominator.
For example, with integrate_use_rootsof set to false, integrate returns an un-
solved integral of a rational function in noun form:

(%11) integrate_use_rootsof: false$

(%12) integrate (1/(1+x+x"5), x);

/ 2

[x -4x+5

I —————- dx 2x +1

1 3 2 2 5 atan(-———--- )

/ x -x +1 log(x + x + 1) sqrt(3)
(ho2) e e

7 14 7 sqrt(3)

Now we set the flag to be true and the unsolved part of the integral will be expressed
as a summation over the roots of the denominator of the rational function:

(%13) integrate_use_rootsof: true$
(%i4) integrate (1/(1+x+x75), x);

==== 2
\ (hrd - 4 Yrd + 5) log(x - %r4)
> _______________________________
/ 2
==== 3 %rd - 2 Yrd
3 2
%r4 in rootsof(x - x + 1)
(hod) === mmm
7
2x +1
2 5 atan(------- )
log(x + x + 1) sqrt (3)
- Ee,e,e—e—e——————————— + _______________
14 7 sqrt(3)

Alternatively the user may compute the roots of the denominator separately, and
then express the integrand in terms of these roots, e.g., 1/((x - a)*(x - b)*(x -
c)) or1/((x"2 - (a+b) *x + a*b)*(x - c)) if the denominator is a cubic polynomial.
Sometimes this will help Maxima obtain a more useful result.

ldefint (expr, x, a, b) Function
Attempts to compute the definite integral of expr by using limit to evaluate the
indefinite integral of expr with respect to x at the upper limit b and at the lower
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limit a. If it fails to compute the definite integral, 1defint returns an expression
containing limits as noun forms.

ldefint is not called from integrate, so executing ldefint (expr, x, a, b) may
yield a different result than integrate (expr, x, a, b). ldefint always uses the
same method to evaluate the definite integral, while integrate may employ various
heuristics and may recognize some special cases.

potential (givengradient) Function
The calculation makes use of the global variable potentialzeroloc[0] which must
be nonlist or of the form
[indeterminatej=expressionj, indeterminatek=expressionk, ...]
the former being equivalent to the nonlist expression for all right-hand sides in the lat-
ter. The indicated right-hand sides are used as the lower limit of integration. The suc-

cess of the integrations may depend upon their values and order. potentialzeroloc
is initially set to O.

residue (expr, z, z_0) Function
Computes the residue in the complex plane of the expression expr when the variable z
assumes the value z_0. The residue is the coefficient of (z = z_0) ~(-1) in the Laurent
series for expr.

(%i1) residue (s/(s**2+a*x*x2), s, ax)i);

1

(%o1) -
2

(%12) residue (sin(ax*x)/x**x4, x, 0);
3
a

(%02) - -
6

risch (expr, x) Function

Integrates expr with respect to x using the transcendental case of the Risch algo-
rithm. (The algebraic case of the Risch algorithm has not been implemented.) This
currently handles the cases of nested exponentials and logarithms which the main
part of integrate can’t do. integrate will automatically apply risch if given these
cases.

erfflag, if false, prevents risch from introducing the erf function in the answer
if there were none in the integrand to begin with.

(%1i1) risch (x"2*xerf(x), x);
3 2 - X
wpi x erf(x) + (sqrt(%pi) x + sqrt(lpi)) Je
(%h01) ===
(%i2) diff(%, x), ratsimp;

(%02) x  erf(x)
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tldefint (expr, x, a, b) Function
Equivalent to 1defint with tlimswitch set to true.

20.3 Introduction to QUADPACK

QUADPACK is a collection of functions for the numerical computation of one-
dimensional definite integrals. It originated from a joint project of R. Piessens!, E. de
Doncker?, C. Ueberhuber?, and D. Kahaner®.

The QUADPACK library included in Maxima is an automatic translation (via the pro-
gram f2cl) of the Fortran source code of QUADPACK as it appears in the SLATEC
Common Mathematical Library, Version 4.1°. The SLATEC library is dated July 1993, but
the QUADPACK functions were written some years before. There is another version of
QUADPACK at Netlib®; it is not clear how that version differs from the SLATEC version.

The QUADPACK functions included in Maxima are all automatic, in the sense that
these functions attempt to compute a result to a specified accuracy, requiring an unspecified
number of function evaluations. Maxima’s Lisp translation of QUADPACK also includes
some non-automatic functions, but they are not exposed at the Maxima level.

Further information about QUADPACK can be found in the QUADPACK book’.

20.3.1 Overview

quad_qag Integration of a general function over a finite interval. quad_qag implements a
simple globally adaptive integrator using the strategy of Aind (Piessens, 1973).
The caller may choose among 6 pairs of Gauss-Kronrod quadrature formulae for
the rule evaluation component. The high-degree rules are suitable for strongly
oscillating integrands.

quad_qgags
Integration of a general function over a finite interval. quad_qags implements
globally adaptive interval subdivision with extrapolation (de Doncker, 1978) by
the Epsilon algorithm (Wynn, 1956).

quad_qagi
Integration of a general function over an infinite or semi-infinite interval. The
interval is mapped onto a finite interval and then the same strategy as in quad_
qags is applied.

quad_qgawo
Integration of cos(omegazx)f(x) or sin(omegaz)f(x) over a finite interval,
where omega is a constant. The rule evaluation component is based on the

Applied Mathematics and Programming Division, K.U. Leuven
Applied Mathematics and Programming Division, K.U. Leuven
Institut fir Mathematik, T.U. Wien

National Bureau of Standards, Washington, D.C.; U.S.A
http://www.netlib.org/slatec
http://www.netlib.org/quadpack

R. Piessens, E. de Doncker-Kapenga, C.W. Uberhuber, and D.K. Kahaner. QUADPACK: A Subroutine
Package for Automatic Integration. Berlin: Springer-Verlag, 1983, ISBN 0387125531.
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modified Clenshaw-Curtis technique. quad_gawo applies adaptive subdivision
with extrapolation, similar to quad_qgags.

quad_qawf
Calculates a Fourier cosine or Fourier sine transform on a semi-infinite interval.
The same approach as in quad_gawo is applied on successive finite intervals,
and convergence acceleration by means of the Epsilon algorithm (Wynn, 1956)
is applied to the series of the integral contributions.

quad_qaws
Integration of w(x)f(x) over a finite interval [a,b], where w is a function of
the form (x — a)®lpha(b — x)betav(x) and v(zx) is 1 or log(x — a) or log(b — x)
or log(x — a)log(b — x), and alpha > —1 and beta > —1. A globally adaptive
subdivision strategy is applied, with modified Clenshaw-Curtis integration on
the subintervals which contain @ or b.

quad_qgawc
Computes the Cauchy principal value of f(z)/(z —c) over a finite interval (a, b)
and specified ¢. The strategy is globally adaptive, and modified Clenshaw-
Curtis integration is used on the subranges which contain the point x = c.

20.4 Functions and Variables for QUADPACK

quad_qag (f(x), x, a, b, key, [epsrel, epsabs, limit]) Function

quad_qag (f, x, a, b, key, [epsrel, epsabs, limit]) Function
Integration of a general function over a finite interval. quad_qgag implements a simple
globally adaptive integrator using the strategy of Aind (Piessens, 1973). The caller
may choose among 6 pairs of Gauss-Kronrod quadrature formulae for the rule evalua-
tion component. The high-degree rules are suitable for strongly oscillating integrands.

quad_qgag computes the integral

/ab f(z)dzx

The function to be integrated is f(x), with dependent variable x, and the function is to
be integrated between the limits a and b. key is the integrator to be used and should
be an integer between 1 and 6, inclusive. The value of key selects the order of the
Gauss-Kronrod integration rule. High-order rules are suitable for strongly oscillating
integrands.

The integrand may be specified as the name of a Maxima or Lisp function or operator,
a Maxima lambda expression, or a general Maxima expression.

The numerical integration is done adaptively by subdividing the integration region
into sub-intervals until the desired accuracy is achieved.

The keyword arguments are optional and may be specified in any order. They all
take the form key=val. The keyword arguments are:

epsrel Desired relative error of approximation. Default is 1d-10.
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epsabs Desired absolute error of approximation. Default is 0.
limit Size of internal work array. (limit - limlst)/2 is the maximum number of
subintervals to use. Default is 200.
quad_qgag returns a list of four elements:
an approximation to the integral,
the estimated absolute error of the approximation,
the number integrand evaluations,
an error code.
The error code (fourth element of the return value) can have the values:
0 if no problems were encountered;
1 if too many sub-intervals were done;
2 if excessive roundoff error is detected;
3 if extremely bad integrand behavior occurs;
6 if the input is invalid.
Examples:
(%i1) quad_qag (x~(1/2)*log(1/x), x, 0, 1, 3, ’epsrel=5d-8);
(%o1) [.4444444444492108, 3.1700968502883E-9, 961, 0]
(%12) integrate (x~(1/2)*log(1/x), x, 0, 1);
4
(%02) -
9
quad_qags (f(x), x, a, b, [epsrel, epsabs, limit]) Function
quad_qags (f, x, a, b, [epsrel, epsabs, limit]) Function

Integration of a general function over a finite interval. quad_qgags implements globally
adaptive interval subdivision with extrapolation (de Doncker, 1978) by the Epsilon
algorithm (Wynn, 1956).

quad_qgags computes the integral

[ s

The function to be integrated is f(x), with dependent variable x, and the function is
to be integrated between the limits a and b.

The integrand may be specified as the name of a Maxima or Lisp function or operator,
a Maxima lambda expression, or a general Maxima expression.

The keyword arguments are optional and may be specified in any order. They all
take the form key=val. The keyword arguments are:

epsrel Desired relative error of approximation. Default is 1d-10.

epsabs Desired absolute error of approximation. Default is 0.
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limit

Size of internal work array. (limit - limlst)/2 is the maximum number of
subintervals to use. Default is 200.

quad_qgags returns a list of four elements:

an approximation to the integral,
the estimated absolute error of the approximation,
the number integrand evaluations,

an error code.

The error code (fourth element of the return value) can have the values:

0
1
2
3
4
5
6

Examples:
(%1i1) quad_qgags (x~(1/2)*log(1/x), x, 0, 1, ’epsrel=1d-10);

no problems were encountered;

too many sub-intervals were done;

excessive roundoff error is detected;

extremely bad integrand behavior occurs;

failed to converge

integral is probably divergent or slowly convergent

if the input is invalid.

[.4444444444444448, 1.11022302462516E-15, 315, 0]

Note that quad_qgags is more accurate and efficient than quad_qgag for this integrand.

quad_qagi (f(x), x, a, inftype, [epsrel, epsabs, limit]) Function
quad_qagi (f, x, a, inftype, [epsrel, epsabs, limit]) Function
Integration of a general function over an infinite or semi-infinite interval. The interval
is mapped onto a finite interval and then the same strategy as in quad_qgags is applied.

quad_qgagi evaluates one of the following integrals

/aoo f(z)dx

/0: f(x)dx

using the Quadpack QAGI routine. The function to be integrated is f(x), with de-
pendent variable x, and the function is to be integrated over an infinite range.

The integrand may be specified as the name of a Maxima or Lisp function or operator,
a Maxima lambda expression, or a general Maxima expression.

The parameter inftype determines the integration interval as follows:

inf

The interval is from a to positive infinity.
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minf The interval is from negative infinity to a.
both The interval is the entire real line.

The keyword arguments are optional and may be specified in any order. They all
take the form key=val. The keyword arguments are:

epsrel Desired relative error of approximation. Default is 1d-10.
epsabs Desired absolute error of approximation. Default is 0.

limit Size of internal work array. (limit - limlst)/2 is the maximum number of
subintervals to use. Default is 200.
quad_qgagi returns a list of four elements:
an approximation to the integral,
the estimated absolute error of the approximation,
the number integrand evaluations,

an error code.
The error code (fourth element of the return value) can have the values:
0 no problems were encountered;
1 too many sub-intervals were done;
2 excessive roundoff error is detected;
3 extremely bad integrand behavior occurs;
4 failed to converge
5 integral is probably divergent or slowly convergent
6 if the input is invalid.

Examples:
(%1i1) quad_qagi (x"2*exp(-4*x), x, 0, inf, ’epsrel=1d-8);
(%hol) [0.03125, 2.95916102995002E-11, 105, 0]
(%12) integrate (x"2%exp(-4*x), x, 0, inf);
1
(%02) -
32

quad_qawc (f(x), x, ¢, a, b, [epsrel, epsabs, limit]) Function
quad_qawc (f, x, ¢, a, b, [epsrel, epsabs, limit)) Function

Computes the Cauchy principal value of f(x)/(z — ¢) over a finite interval. The
strategy is globally adaptive, and modified Clenshaw-Curtis integration is used on
the subranges which contain the point z = c.

quad_qgawc computes the Cauchy principal value of

" f(2)

e T—C

dx
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using the Quadpack QAWC routine. The function to be integrated is f(x)/(x - ¢),
with dependent variable x, and the function is to be integrated over the interval a to
b.

The integrand may be specified as the name of a Maxima or Lisp function or operator,
a Maxima lambda expression, or a general Maxima expression.

The keyword arguments are optional and may be specified in any order. They all
take the form key=val. The keyword arguments are:

epsrel Desired relative error of approximation. Default is 1d-10.
epsabs Desired absolute error of approximation. Default is 0.
limit Size of internal work array. (limit - limlst)/2 is the maximum number of

subintervals to use. Default is 200.

quad_qgawc returns a list of four elements:
an approximation to the integral,
the estimated absolute error of the approximation,
the number integrand evaluations,

an error code.

The error code (fourth element of the return value) can have the values:

0 no problems were encountered;

1 too many sub-intervals were done;

2 excessive roundoff error is detected;

3 extremely bad integrand behavior occurs;
6 if the input is invalid.

Examples:

(%1i1) quad_qawc (27 (-5)*((x-1)"2+4"(-5))"(-1), x, 2, 0, 5, ’epsrel=1d-7);}}
(%hol) [- 3.130120337415925, 1.306830140249558E-8, 495, 0]
(%i2) integrate (2~ (-alpha)*(((x-1)"2 + 4~(-alpha))*(x-2))"(-1),
x, 0, 5);
Principal Value

alpha
alpha 9 4 9
4 log(-———————————- ittt )
alpha alpha
64 4 +4 64 4 + 4
(%02)  (mmmmmmmmmmm o
alpha
2 4 + 2
3 alpha 3 alpha
2 alpha/2 2 alpha/2

2 4 atan(4 4 ) 24 atan(4 )  alpha
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e )/2
alpha alpha
2 4 + 2 2 4 + 2
(%13) ev (%, alpha=5, numer);
(%03) - 3.130120337415917
quad_qawf (f(x), x, a, omega, trig, [epsabs, limit, maxpl, limlst]) Function
quad_qawf (f, x, a, omega, trig, [epsabs, limit, maxpl, limlst]) Function

Calculates a Fourier cosine or Fourier sine transform on a semi-infinite interval us-
ing the Quadpack QAWF function. The same approach as in quad_qgawo is applied
on successive finite intervals, and convergence acceleration by means of the Epsilon
algorithm (Wynn, 1956) is applied to the series of the integral contributions.

quad_qgawf computes the integral

/:o f(@)w(z)dx

The weight function w is selected by trig:

cos w(zx) = cos(omegax)

sin w(zx) = sin(omegazx)

The integrand may be specified as the name of a Maxima or Lisp function or operator,
a Maxima lambda expression, or a general Maxima expression.

The keyword arguments are optional and may be specified in any order. They all
take the form key=val. The keyword arguments are:

epsabs Desired absolute error of approximation. Default is 1d-10.

limit Size of internal work array. (limit - limlst)/2 is the maximum number of
subintervals to use. Default is 200.

maxpl Maximum number of Chebyshev moments. Must be greater than 0. De-
fault is 100.

limlst Upper bound on the number of cycles. Must be greater than or equal to
3. Default is 10.
quad_qgawf returns a list of four elements:
an approximation to the integral,
the estimated absolute error of the approximation,
the number integrand evaluations,

an error code.

The error code (fourth element of the return value) can have the values:

0 no problems were encountered;

1 too many sub-intervals were done;

2 excessive roundoff error is detected;

3 extremely bad integrand behavior occurs;
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6 if the input is invalid.

Examples:

(%i1) quad_qawf (exp(-x~2), x, 0, 1, ’cos, ’epsabs=1d-9);
(%hol) [.6901942235215714, 2.84846300257552E-11, 215, 0]
(%12) integrate (exp(-x~"2)*cos(x), x, 0, inf);

- 1/4
%he sqrt (%pi)
Go2)  mmmmmmmmmmmeee
2
(%13) ev (%, numer);
(%03) .6901942235215714
quad_qawo (f(x), x, a, b, omega, trig, [epsrel, epsabs, limit, maxpl, Function
limlst])
quad_qawo (f, x, a, b, omega, trig, [epsrel, epsabs, limit, maxpl, limlst]) Function

Integration of cos(omegax)f(x) or sin(omegax)f(x) over a finite interval, where
omega is a constant. The rule evaluation component is based on the modified
Clenshaw-Curtis technique. quad_gawo applies adaptive subdivision with extrapo-
lation, similar to quad_qags.

quad_qgawo computes the integral using the Quadpack QAWO routine:

/ab f(z)w(z)dx

The weight function w is selected by trig:
cos w(zx) = cos(omegax)
sin w(zx) = sin(omegazx)

The integrand may be specified as the name of a Maxima or Lisp function or operator,
a Maxima lambda expression, or a general Maxima expression.

The keyword arguments are optional and may be specified in any order. They all
take the form key=val. The keyword arguments are:

epsrel Desired relative error of approximation. Default is 1d-10.
epsabs Desired absolute error of approximation. Default is 0.
limit Size of internal work array. (limit - limlst)/2 is the maximum number of

subintervals to use. Default is 200.

maxpl Maximum number of Chebyshev moments. Must be greater than 0. De-
fault is 100.

limlst Upper bound on the number of cycles. Must be greater than or equal to
3. Default is 10.
quad_qgawo returns a list of four elements:
an approximation to the integral,

the estimated absolute error of the approximation,
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the number integrand evaluations,

an error code.

The error code (fourth element of the return value) can have the values:

0 no problems were encountered;
1 too many sub-intervals were done;
2 excessive roundoff error is detected;
3 extremely bad integrand behavior occurs;
6 if the input is invalid.
Examples:
(%1i1) quad_qgawo (x~(-1/2)xexp(-2~(-2)*x), x, 1d-8, 20%2°2, 1, cos);
(%o1) [1.376043389877692, 4.72710759424899E-11, 765, 0]
(%12) rectform (integrate (x~(-1/2)*exp(-2~(-alpha)*x) * cos(x),
x, 0, inf));
alpha/2 - 1/2 2 alpha
sqrt (%pi) 2 sqrt (sqrt (2 + 1) + 1)
(%02)  mmmm
2 alpha
sqrt (2 + 1)
(%13) ev (%, alpha=2, numer);
(%03) 1.376043390090716
quad_qaws (f(x), x, a, b, alpha, beta, wfun, [epsrel, epsabs, limit]) Function
quad_qaws (f, x, a, b, alpha, beta, wfun, [epsrel, epsabs, limit]) Function

Integration of w(z)f(z) over a finite interval, where w(z) is a certain algebraic or log-
arithmic function. A globally adaptive subdivision strategy is applied, with modified
Clenshaw-Curtis integration on the subintervals which contain the endpoints of the
interval of integration.

quad_qgaws computes the integral using the Quadpack QAWS routine:

/ab f(x)w(x)dx

The weight function w is selected by wfun:

1 w(x) = (x — a)®lpha(b — z)’eta

2 w(x) = (x — a)®lpha(b — z)’etalog(x — a)

3 w(x) = (x — a)®lpha(b — z)’etalog(b — x)

4 w(x) = (x — a)®lpha(b — z)’etalog(x — a)log(b — x)

The integrand may be specified as the name of a Maxima or Lisp function or operator,
a Maxima lambda expression, or a general Maxima expression.

The keyword arguments are optional and may be specified in any order. They all
take the form key=val. The keyword arguments are:
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epsrel Desired relative error of approximation. Default is 1d-10.
epsabs Desired absolute error of approximation. Default is 0.
limit Size of internal work array. limitis the maximum number of subintervals

to use. Default is 200.

quad_qgaws returns a list of four elements:
an approximation to the integral,
the estimated absolute error of the approximation,
the number integrand evaluations,

an error code.

The error code (fourth element of the return value) can have the values:

0 no problems were encountered;
1 too many sub-intervals were done;
2 excessive roundoff error is detected;
3 extremely bad integrand behavior occurs;
6 if the input is invalid.
Examples:
(%i1) quad_qaws (1/(x+1+2°(-4)), x, -1, 1, -0.5, -0.5, 1, ’epsabs=1d-9);l}
(%o1) [8.750097361672832, 1.24321522715422E-10, 170, O]
(%12) integrate ((1-x*x)~(-1/2)/(x+1+2"(-alpha)), x, -1, 1);
alpha
Is 4 2 - 1 positive, negative, or zero?
pos;
alpha alpha
2 Ypi 2 sqrt (2 2 + 1)
(ho2) e
alpha
4 2 + 2

(%i3) ev (%, alpha=4, numer);
(%03) 8.750097361672829
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21 Equations

21.1 Functions and Variables for Equations

Yornum_list System variable
Default value: []

%rnum_list is the list of variables introduced in solutions by solve and algsys. %r
variables are added to Jrnum_list in the order they are created. This is convenient
for doing substitutions into the solution later on. It’s recommended to use this list
rather than doing concat (’%r, j).

algexact Option variable
Default value: false

algexact affects the behavior of algsys as follows:

If algexact is true, algsys always calls solve and then uses realroots on solve’s
failures.

If algexact is false, solve is called only if the eliminant was not univariate, or if it
was a quadratic or biquadratic.

Thus algexact: true doesn’t guarantee only exact solutions, just that algsys will
first try as hard as it can to give exact solutions, and only yield approximations when
all else fails.

algsys ([expr_1, ..., expr_m], [x_1, ..., x_n]) Function

algsys ([eqn-1, ..., eqn_m], [x_1, ..., x_n]) Function
Solves the simultaneous polynomials expr_1, ..., expr-m or polynomial equations
eqn_1, ..., eqn_m for the variables x_1, ..., x.n. An expression expr is equivalent

to an equation expr = 0. There may be more equations than variables or vice versa.

algsys returns a list of solutions, with each solution given as a list of equations stating
values of the variables x_1, ..., x_n which satisfy the system of equations. If algsys
cannot find a solution, an empty list [] is returned.

The symbols %r1, %r2, ..., are introduced as needed to represent arbitrary parameters
in the solution; these variables are also appended to the list %rnum_list.

The method is as follows:
(1) First the equations are factored and split into subsystems.

(2) For each subsystem S_i, an equation E and a variable x are selected. The variable
is chosen to have lowest nonzero degree. Then the resultant of E and E_j with respect
to x is computed for each of the remaining equations E_j in the subsystem S_i. This
yields a new subsystem S_i’ in one fewer variables, as x has been eliminated. The
process now returns to (1).

(3) Eventually, a subsystem consisting of a single equation is obtained. If the equation
is multivariate and no approximations in the form of floating point numbers have been
introduced, then solve is called to find an exact solution.
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In some cases, solve is not be able to find a solution, or if it does the solution may
be a very large expression.

If the equation is univariate and is either linear, quadratic, or biquadratic, then again
solve is called if no approximations have been introduced. If approximations have
been introduced or the equation is not univariate and neither linear, quadratic, or
biquadratic, then if the switch realonly is true, the function realroots is called to
find the real-valued solutions. If realonly is false, then allroots is called which
looks for real and complex-valued solutions.

If algsys produces a solution which has fewer significant digits than required, the
user can change the value of algepsilon to a higher value.

If algexact is set to true, solve will always be called.

(4) Finally, the solutions obtained in step (3) are substituted into previous levels and
the solution process returns to (1).

When algsys encounters a multivariate equation which contains floating point ap-
proximations (usually due to its failing to find exact solutions at an earlier stage),
then it does not attempt to apply exact methods to such equations and instead prints
the message: "algsys cannot solve - system too complicated."

Interactions with radcan can produce large or complicated expressions. In that case,
it may be possible to isolate parts of the result with pickapart or reveal.
Occasionally, radcan may introduce an imaginary unit %i into a solution which is
actually real-valued.

Examples:

(hi1) el: 2xx*x(1 - al) - 2*%(x - 1)*a2;
(%o1) 2 (1-al) x-2a2 (x-1)
(%i2) e2: a2 - ail;
(ho2) a2 - al
(%13) e3: alx(-y - x"2 + 1);

2
(%03) al (-y-x + 1)
(%i4) ed: a2+(y - (x - 1)72);

2

(%hod) a2 (y - (x - 1))

(%15) algsys ([el, e2, e3, e4], [x, y, al, a2]);
(%05) [[x =0, y = %rl, al = 0, a2 = 0],

[x =1, y=0, al = 1, a2 = 1]]
(%i6) el: x°2 - y~2;

2 2
(%06) x -y
(hi7) e2: -1 - y + 2%xy~2 - x + x"2;
2 2

(hoT) 2y -y+x -x-1
(%i8) algsys ([el, e2], [x, yl);

1 1
(%08) [[x = - ——————- e — 1,

sqrt(3) , sqrt (3)
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1 1 1
I:X = T ===—- ) y = - TT==—- ]’ I:X =T 7, Y = - _], [X = 1’ Y = 1]]
sqrt (3) sqrt (3) 3 3
allroots (expr) Function
allroots (eqn) Function

Computes numerical approximations of the real and complex roots of the polynomial
expr or polynomial equation eqn of one variable.

The flag polyfactor when true causes allroots to factor the polynomial over the
real numbers if the polynomial is real, or over the complex numbers, if the polynomial
is complex.

allroots may give inaccurate results in case of multiple roots. If the polynomial
is real, allroots (%i*p)) may yield more accurate approximations than allroots
(p), as allroots invokes a different algorithm in that case.

allroots rejects non-polynomials. It requires that the numerator after rat’ing should
be a polynomial, and it requires that the denominator be at most a complex number.
As aresult of this allroots will always return an equivalent (but factored) expression,
if polyfactor is true.

For complex polynomials an algorithm by Jenkins and Traub is used (Algorithm 419,
Comm. ACM, vol. 15, (1972), p. 97). For real polynomials the algorithm used is due
to Jenkins (Algorithm 493, ACM TOMS, vol. 1, (1975), p.178).

Examples:
(%i1) egn: (1 + 2%x)73 = 13.5%(1 + x"5);
3 5
(%o1) (2x+1) =13.5 (x + 1)
(%i2) soln: allroots (eqn);
(%h02) [x = .8296749902129361, x = - 1.015755543828121,
X = .9659625152196369 %i - .4069597231924075,
X = - .9659625152196369 J%i - .4069597231924075, x = 1.0]

(%i3) for e in soln
do (e2: subst (e, eqn), disp (expand (lhs(e2) - rhs(e2))));
- 3.5527136788005E-15
- 5.32907051820075E-15
4.44089209850063E-15 %i - 4.88498130835069E-15
- 4.44089209850063E-15 i - 4.88498130835069E-15
3.5527136788005E-15
(%h03) done

(%1i4) polyfactor: true$
(%15) allroots (eqn);
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backsubst

(o) - 13.5 (x - 1.0) (x - .8296749902129361)

(x + 1.015755543828121) (x

+ 1.098699797110288)

Default value: true

2

+

.8139194463848151 x

Maxima Manual

Option variable

When backsubst is false, prevents back substitution after the equations have been
triangularized. This may be helpful in very big problems where back substitution
would cause the generation of extremely large expressions.

breakup

Default value: true

Option variable

When breakup is true, solve expresses solutions of cubic and quartic equations in
terms of common subexpressions, which are assigned to intermediate expression labels
(%t1, %ht2, etc.). Otherwise, common subexpressions are not identified.

breakup: true has an effect only when programmode is false.

Examples:

(%1i1) programmode: false$
(%12) breakup: true$
(%13) solve (x°3 + x°2 - 1)

I

1

> 1
3

1

> 1
3

sqrt (23) 25 1/3
(%t3) (G — + —-)
6 sqrt(3) 54
Solution:
sqrt(3) %i
sqrt(3) %i 1 2
(ht4) x = (- ——=—————= - B T T e — -
2 2 9 %t3
sqrt(3) %i
sqrt(3) %i 1 2
(%t5) x = (- - =) Yt3 + —mmmmmmmmmmmmm - _
2 2 9 %t3
1 1
(%t6) x = ft3 + ————— - -
9 %t3 3
(%06) [%t4, %t5, %t6]

(%16) breakup: false$

(%i7) solve (x°3 + x72 - 1);
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Solution:
sqrt(3) %»i 1
2 2 sqrt(23) 25 1/3
(ht7) x = ——————————————m + (mm——————- + =)
sqrt (23) 25 1/3 6 sqrt(3) 54
9 (m==—=——-- + —-)
6 sqrt(3) 54
sqrt(3) %i 1 1
(= === - -) - -
2 2 3
sqrt (23) 25 1/3 sqrt(3) %i 1
(ht8) x = (-——-——-—- + --) (=== - -)
6 sqrt(3) 54 2 2
sqrt(3) %i 1
2 2 1
+ ______________________ -—
sqrt(23) 25 1/3 3
9 (-==————- + —-)
6 sqrt(3) 54
sqrt (23) 25 1/3 1 1
(ht9) x = (-=—=——-—- + =) et -
6 sqrt(3) 54 sqrt (23) 25 1/3 3
9 (-——————-- + =)
6 sqrt(3) 54
(%09) [%t7, %t8, %t9]
dimension (eqn) Function
dimension (eqn_1, ..., eqn_n) Function

dimen is a package for dimensional analysis. load ("dimen") loads this package.
demo ("dimen") displays a short demonstration.

dispflag Option variable
Default value: true
If set to false within a block will inhibit the display of output generated by the
solve functions called from within the block. Termination of the block with a dollar
sign, $, sets dispflag to false.

funcsolve (eqn, g(t)) Function
Returns [g(t) = ...] or [1, depending on whether or not there exists a rational
function g(t) satisfying eqn, which must be a first order, linear polynomial in (for
this case) g (t) and g (t+1)
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(5i1) eqn: (n + Dx*f(n) - (n + 3)*f(n + 1)/(n + 1)
(- 1/ + 2);

(n+3) f(an+1) n-1
(%o1) (n+1) f(@) - - = ————-
n+1 n+ 2

(%12) funcsolve (eqn, f(n));

Dependent equations eliminated: (4 3)

(%02) £(n) = —----mmmoomoo-
m+1) (@+2)

Warning: this is a very rudimentary implementation — many safety checks and obvious
generalizations are missing.

globalsolve Option variable
Default value: false

When globalsolve is true, solved-for variables are assigned the solution values found
by linsolve, and by solve when solving two or more linear equations.

When globalsolve is false, solutions found by linsolve and by solve when solving
two or more linear equations are expressed as equations, and the solved-for variables
are not assigned.

When solving anything other than two or more linear equations, solve ignores
globalsolve. Other functions which solve equations (e.g., algsys) always ignore
globalsolve.

Examples:

(%i1) globalsolve: true$
(%i2) solve ([x + 3*y = 2, 2xx - y = 5], [x, y]);

Solution
17
(ht2) X : -
7
1
(%t3) y o= -
7
(%03) [[%t2, %t3]1]
(51i3) x;
17
(%03) -
7
(%id) vy;
1
(%04) - -
7

(%15) globalsolve: false$
(hi6) kill (x, y)$
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(%i7) solve ([x + 3%y = 2, 2xx - y = 5], [x, y]);
Solution

(ht7) X = --

(%t8) y=--

(%08) [[%4t7, %t8]]
(%18) x;

(%08) b'e
(%19) v;

(%09) y

ieqn (ie, unk, tech, n, guess) Function
inteqn is a package for solving integral equations. load ("inteqn") loads this pack-
age.
ie is the integral equation; unk is the unknown function; tech is the technique to
be tried from those given above (tech = first means: try the first technique which
finds a solution; tech = all means: try all applicable techniques); n is the maximum
number of terms to take for taylor, neumann, firstkindseries, or fredseries (it
is also the maximum depth of recursion for the differentiation method); guess is the
initial guess for neumann or firstkindseries.
Default values for the 2nd thru 5th parameters are:
unk: p(x), where p is the first function encountered in an integrand which is unknown
to Maxima and x is the variable which occurs as an argument to the first occurrence of
p found outside of an integral in the case of secondkind equations, or is the only other
variable besides the variable of integration in firstkind equations. If the attempt
to search for x fails, the user will be asked to supply the independent variable.
tech: first
n: 1
guess: none which will cause neumann and firstkindseries to use f (x) as an initial
guess.

ieqnprint Option variable
Default value: true
ieqnprint governs the behavior of the result returned by the ieqn command. When
ieqnprint is false, the lists returned by the ieqn function are of the form
[solution, technique used, nterms, flag]
where flag is absent if the solution is exact.
Otherwise, it is the word approximate or incomplete corresponding to an inexact
or non-closed form solution, respectively. If a series method was used, nterms gives
the number of terms taken (which could be less than the n given to ieqn if an error
prevented generation of further terms).
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lhs (expr) Function
Returns the left-hand side (that is, the first argument) of the expression expr, when
the operator of expr is one of the relational operators < <= = # equal notequal >= >,
one of the assignment operators := ::=: ::, or a user-defined binary infix operator,
as declared by infix.

When expr is an atom or its operator is something other than the ones listed above,
1lhs returns expr.

See also rhs.
Examples:

(%i1) e: aa + bb = cc;
(%o1) bb + aa = cc
(%i2) 1lhs (e);
(%02) bb + aa
(%i3) rhs (e);
(%03) cc
(%i4) [1hs (aa < bb), lhs (aa <= bb), lhs (aa >= bb),
lhs (aa > bb)];
(%04) [aa, aa, aa, aal]
(%i5) [lhs (aa = bb), lhs (aa # bb), lhs (equal (aa, bb)),
lhs (notequal (aa, bb))];
(%05) [aa, aa, aa, aa]
(%i6) el: ’(foo(x) := 2%xx);
(%06) foo(x)
(%17) e2: ’>(bar(y) ::= 3x%y);
(hoT) bar (y)
(%i8) e3: ’(x : y);
(%08) X 1y
(%5i9) ed: ’(x :: y);
(%09) X ity
(%i10) [1lhs (el), 1lhs (e2), 1lhs (e3), 1lhs (ed)];
(%010) [foo(x), bar(y), x, x]
(%i11) dinfix ("J[");
(%011) 1L
(%i12) 1hs (aa ][ bb);
(%012) aa

2 X

3y

linsolve ([expr_1, ..., expr_m]|, [x_1, ..., x_n]) Function
Solves the list of simultaneous linear equations for the list of variables. The expressions
must each be polynomials in the variables and may be equations.

When globalsolve is true, each solved-for variable is bound to its value in the
solution of the equations.

When backsubst is false, linsolve does not carry out back substitution after the
equations have been triangularized. This may be necessary in very big problems
where back substitution would cause the generation of extremely large expressions.

When linsolve_params is true, linsolve also generates the %r symbols used to
represent arbitrary parameters described in the manual under algsys. Otherwise,
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linsolve solves an under-determined system of equations with some variables ex-
pressed in terms of others.

When programmode is false, linsolve displays the solution with intermediate ex-
pression (%t) labels, and returns the list of labels.

(%i1) el: x + z = y;

(ho1) zZ+x=y5
(h12) e2: 2%axx - y = 2xa"2;

2
(%ho2) 2ax-y=2a
(%13) e3: y - 2%z = 2;
(%03) y-2z-=2
(%i4) [globalsolve: false, programmode: truel];
(%04) [false, true]
(%15) linsolve ([el, e2, e3], [x, y, zl);
(%05) [x =a+1,y=2a, z=a - 1]
(%i6) [globalsolve: false, programmode: falsel];
(%06) [false, false]
(%i7) linsolve ([el, e2, e3], [x, y, zl);
Solution
(ht7) z=a-1
(%t8) y=2a
(%t9) x=a+1
(%09) [%t7, %t8, %t9]
(%19) %;
(%09) [z=a-1,y=2a, x=a+ 1]
(%110) [globalsolve: true, programmode: false];
(%010) [true, false]
(%111) linsolve ([el, e2, e3], [x, y, zl1);
Solution
(%t11) z:a-1
(ht12) y:2a
(%t13) x :a+1
(%013) [%t11, %t12, %t13]
(hi13) > 7%;
(%013) [z:a-1,57 :2a, x: a+ 1]
(%i14) [x, y, z];
(%ho14) [a+1, 2 a, a- 1]
(%115) [globalsolve: true, programmode: true];
(%o15) [true, truel
(%116) linsolve ([el, e2, e3], ’[x, y, zl);
(%016) [x ta+1,y:2a, z:a-1]

(hi17) [x, y, z];
(%o17) [a+1, 2 a, a- 1]



252 Maxima Manual

linsolvewarn Option variable
Default value: true

When linsolvewarn is true, linsolve prints a message "Dependent equations elim-
inated".

linsolve_params Option variable
Default value: true

When linsolve_params is true, linsolve also generates the %r symbols used to
represent arbitrary parameters described in the manual under algsys. Otherwise,
linsolve solves an under-determined system of equations with some variables ex-
pressed in terms of others.

multiplicities System variable
Default value: not_set_yet

multiplicities is set to a list of the multiplicities of the individual solutions returned
by solve or realroots.

nroots (p, low, high) Function

Returns the number of real roots of the real univariate polynomial p in the half-open
interval (low, high]. The endpoints of the interval may be minf or inf. infinity and
plus infinity.
nroots uses the method of Sturm sequences.

(%i1) p: x710 - 2%x"4 + 1/2%

(%i2) nroots (p, -6, 9.1);

(ho2) 4

nthroot (p, n) Function
where p is a polynomial with integer coefficients and n is a positive integer returns q,
a polynomial over the integers, such that q"n=p or prints an error message indicating
that p is not a perfect nth power. This routine is much faster than factor or even
sqfr.

programmode Option variable
Default value: true

When programmode is true, solve, realroots, allroots, and linsolve return
solutions as elements in a list. (Except when backsubst is set to false, in which
case programmode: false is assumed.)

When programmode is false, solve, etc. create intermediate expression labels %t1,
t2, etc., and assign the solutions to them.

realonly Option variable
Default value: false

When realonly is true, algsys returns only those solutions which are free of %1i.
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realroots (expr, bound) Function
realroots (eqn, bound) Function
realroots (expr) Function
realroots (eqn) Function

Computes rational approximations of the real roots of the polynomial expr or poly-
nomial equation eqn of one variable, to within a tolerance of bound. Coefficients of
expr or eqn must be literal numbers; symbol constants such as %pi are rejected.

realroots assigns the multiplicities of the roots it finds to the global variable
multiplicities.

realroots constructs a Sturm sequence to bracket each root, and then applies bisec-
tion to refine the approximations. All coefficients are converted to rational equivalents
before searching for roots, and computations are carried out by exact rational arith-
metic. Even if some coefficients are floating-point numbers, the results are rational
(unless coerced to floats by the float or numer flags).

When bound is less than 1, all integer roots are found exactly. When bound is
unspecified, it is assumed equal to the global variable rootsepsilon.

When the global variable programmode is true, realroots returns a list of the form [x

=x_1, x=x2, ...]. When programmode is false, realroots creates intermediate
expression labels %t1, %t2, ..., assigns the results to them, and returns the list of
labels.
Examples:
(%i1) realroots (-1 - x + x°5, 5e-6);
612003
(%o1) [x = ———-- ]
524288
(%i2) ev (%[1], float);
(%ho2) x = 1.167303085327148
(%i3) ev (-1 - x + x°5, %);
(%03) - 7.396496210176905E-6
(%i1) realroots (expand ((1 - x)°5 * (2 - x)73 * (3 - x)), 1le-20);
(hol) [x =1, x =2, x = 3]
(%i2) multiplicities;
(ho2) [5, 3, 1]
rhs (expr) Function

Returns the right-hand side (that is, the second argument) of the expression expr,
when the operator of expr is one of the relational operators < <= = # equal notequal
>= > one of the assignment operators := ::=: ::, or a user-defined binary infix
operator, as declared by infix.

When expr is an atom or its operator is something other than the ones listed above,
rhs returns 0.

See also lhs.
Examples:

(%i1) e: aa + bb = cc;
(%hol) bb + aa = cc
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(%i2) 1lhs (e);

(%02) bb + aa

(%i3) rhs (e);

(%03) cc

(%i4) [rhs (aa < bb), rhs (aa <= bb), rhs (aa >= bb),
rhs (aa > bb)];

(%ho4) [bb, bb, bb, bb]

(%15) [rhs (aa = bb), rhs (aa # bb), rhs (equal (aa, bb)),
rhs (notequal (aa, bb))];

(%05) [bb, bb, bb, bb]

(%i6) el: ?(foo(x) := 2%x);

(%06) foo(x)

(%17) e2: ’(bar(y) ::= 3xy);

(%oT) bar (y)

(%i8) e3: ’(x : y);

(%08) X :y

(%19) ed: ’(x :: y);

(%09) X i1y

(%110) [rhs (el), rhs (e2), rhs (e3), rhs (ed)];

(%010) 2 x, 3y, vy, vyl

(%i11) infix ("1[");

(%ho11) 1L

(%i12) rhs (aa ][ bb);

(%012) bb

2 X

3y

rootsconmode Option variable
Default value: true

rootsconmode governs the behavior of the rootscontract command. See
rootscontract for details.

rootscontract (expr) Function
Converts products of roots into roots of products. For example, rootscontract
(sqrt(x)*y~(3/2)) yields sqrt (x*y~3).

When radexpand is true and domain is real, rootscontract converts abs into sqrt,
e.g., rootscontract (abs(x)*sqrt(y)) yields sqrt(x~2x*y).

There is an option rootsconmode affecting rootscontract as follows:

Problem Value of Result of applying
rootsconmode rootscontract
x~(1/2)*y~(3/2) false (xxy~3)~(1/2)
x~(1/2)*y~(1/4) false x~(1/2)*y~(1/4)
x"(1/2)*y~(1/4) true (xxy~(1/2))~(1/2)
x~(1/2)*y~(1/3) true x~(1/2)*y~(1/3)
x7(1/2)*y~(1/4) all (x"2xy) " (1/4)
x~(1/2)*y~(1/3) all (x"3%y~2)"(1/6)

When rootsconmode is false, rootscontract contracts only with respect to rational
number exponents whose denominators are the same. The key to the rootsconmode:
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true examples is simply that 2 divides into 4 but not into 3. rootsconmode: all
involves taking the least common multiple of the denominators of the exponents.

rootscontract uses ratsimp in a manner similar to logcontract.
Examples:

(%1i1) rootsconmode: false$
(%12) rootscontract (x~(1/2)*y~(3/2));
3

(%02) sqrt(x y )

(%i3) rootscontract (x~(1/2)*y~(1/4));
1/4

(%03) sqrt(x) y

(%i4) rootsconmode: true$
(%15) rootscontract (x~(1/2)xy~(1/4));

(%05) sqrt(x sqrt(y))

(%16) rootscontract (x~(1/2)*y~(1/3));
1/3

(%086) sqrt(x) y

(%1i7) rootsconmode: all$
(%i8) rootscontract (x~(1/2)*y~(1/4));

2 1/4
(%08) x v
(%19) rootscontract (x~(1/2)xy~(1/3));

3 21/6
(%09) x y)

(%110) rootsconmode: false$
(%111) rootscontract (sqrt(sqrt(x) + sqrt(l + x))
*sqrt(sqrt(l + x) - sqrt(x)));
(%o11) 1
(%112) rootsconmode: true$
(%113) rootscontract (sqrt(5+sqrt(5)) - 5~ (1/4)*sqrt(l+sqrt(5)));
(%ho13) 0

rootsepsilon Option variable
Default value: 1.0e-7

rootsepsilon is the tolerance which establishes the confidence interval for the roots
found by the realroots function.

solve (expr, x) Function
solve (expr) Function
solve ([eqn-1, ..., eqn_n], [x_1, ..., x_n]) Function

Solves the algebraic equation expr for the variable x and returns a list of solution
equations in x. If expr is not an equation, the equation expr = 0 is assumed in its
place. x may be a function (e.g. £(x)), or other non-atomic expression except a sum
or product. x may be omitted if expr contains only one variable. expr may be a
rational expression, and may contain trigonometric functions, exponentials, etc.

The following method is used:
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Let E be the expression and X be the variable. If E is linear in X then it is trivially
solved for X. Otherwise if E is of the form A*X"N + B then the result is (-B/A) ~1/N)
times the N’th roots of unity.

If E is not linear in X then the ged of the exponents of X in E (say N) is divided
into the exponents and the multiplicity of the roots is multiplied by N. Then solve
is called again on the result. If E factors then solve is called on each of the factors.
Finally solve will use the quadratic, cubic, or quartic formulas where necessary.

In the case where E is a polynomial in some function of the variable to be solved for,
say F(X), then it is first solved for F(X) (call the result C), then the equation F(X)=C
can be solved for X provided the inverse of the function F' is known.

breakup if false will cause solve to express the solutions of cubic or quartic equa-
tions as single expressions rather than as made up of several common subexpressions
which is the default.

multiplicities - will be set to a list of the multiplicities of the individual solutions
returned by solve, realroots, or allroots. Try apropos (solve) for the switches
which affect solve. describe may then by used on the individual switch names if
their purpose is not clear.

solve ([eqn_1, ..., eqn.n], [x_.1, ..., x.n]) solves a system of simultaneous (lin-
ear or non-linear) polynomial equations by calling linsolve or algsys and returns
a list of the solution lists in the variables. In the case of 1insolve this list would
contain a single list of solutions. It takes two lists as arguments. The first list rep-
resents the equations to be solved; the second list is a list of the unknowns to be
determined. If the total number of variables in the equations is equal to the number
of equations, the second argument-list may be omitted. For linear systems if the given
equations are not compatible, the message inconsistent will be displayed (see the
solve_inconsistent_error switch); if no unique solution exists, then singular will
be displayed.

When programmode is false, solve displays solutions with intermediate expression
(%t) labels, and returns the list of labels.

When globalsolve is true and the problem is to solve two or more linear equations,
each solved-for variable is bound to its value in the solution of the equations.

Examples:
(%i1) solve (asin (cos (3*x))*(f(x) - 1), x);

SOLVE is using arc-trig functions to get a solution.
Some solutions will be lost.

%pi
(%o01) [x = —, f(x) = 1]
6
(%1i2) ev (solve (5°f(x) = 125, f(x)), solveradcan);
log(125)
(%02) [f(x) = ——————- ]
log(5)
(%1i3) [4xx"2 - y 2 = 12, x¥y - x = 2];
2 2

(%03) 4 x -y =12, xy -x = 2]
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(%i4) solve (%, [x, y1);
(%04) [[x =2, y = 2], [x = .5202594388652008 %i

.0767837852378778

- .1331240357358706, y

- 3.608003221870287 %il, [x = - .5202594388652008 %i

- .1331240357358706, y = 3.608003221870287 %i

+ .0767837852378778], [x = - 1.733751846381093,

y = - .1535675710019696]]
(5i5) solve (1 + a*x + x73, x);
3
sqrt(3) %i 1 sqrt(4 a + 27) 11/3
(hod) [x = (- —===———-— - =) (e - -)
2 2 6 sqrt(3) 2
sqrt(3) %i 1
(=== - -) a
2 2
e . x =
3
sqrt(4 a + 27) 1 1/3
3 (-=——=—mm - - -)
6 sqrt(3) 2
3
sqrt(3) %i 1  sqrt(4 a +27) 1 1/3
(= - =) (e - -)
2 2 6 sqrt(3) 2
sqrt(3) %i 1
(= === - -) a
2 2
e , x =
3
sqrt(4 a + 27) 11/3
3 (== - -)
6 sqrt(3) 2
3
sqrt(4 a +27) 11/3 a
(mm=mmmm - - -) i ]
6 sqrt(3) 2 3
sqrt(4 a +27) 11/3
3 (mm—=—mm - -)
6 sqrt(3) 2

(%i6) solve (x°3 - 1);

257
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sqrt(3) %i - 1 sqrt(3) %i + 1
(%ho8) [x = —————————————- B , x = 1]
2 2
(%i7) solve (x76 - 1);
sqrt(3) %i + 1 sqrt(3) %i - 1
(ho7) [x = ——=————=——m——- B , x = -1,
2 2
sqrt(3) %i + 1 sqrt(3) %i - 1
X = = —————————————— y X = = —m——m————————— , x = 1]
2 2
(%i8) ev (x76 - 1, %[11);
6
(sqrt(3) %i + 1)
(%08)  mmmmmmmmmm e -1
64
(%19) expand (%);
(%09) 0
(%i10) x°2 - 1;
2
(%010) x -1
(%i11) solve (%, x);
(%o11) [x =-1, x = 1]
(%i12) ev (%th(2), %[11);
(%ho12) 0
solvedecomposes Option variable

Default value: true

When solvedecomposes is true, solve calls polydecomp if asked to solve polynomi-
als.

solveexplicit Option variable
Default value: false

When solveexplicit is true, inhibits solve from returning implicit solutions, that
is, solutions of the form F(x) = 0 where F is some function.

solvefactors Option variable
Default value: true

When solvefactors is false, solve does not try to factor the expression. The
false setting may be desired in some cases where factoring is not necessary.

solvenullwarn Option variable
Default value: true

When solvenullwarn is true, solve prints a warning message if called with either
a null equation list or a null variable list. For example, solve ([], []) would print
two warning messages and return [].
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solveradcan Option variable
Default value: false

When solveradcan is true, solve calls radcan which makes solve slower but will
allow certain problems containing exponentials and logarithms to be solved.

solvetrigwarn Option variable
Default value: true

When solvetrigwarn is true, solve may print a message saying that it is using
inverse trigonometric functions to solve the equation, and thereby losing solutions.

solve_inconsistent_error Option variable
Default value: true

When solve_inconsistent_error is true, solve and linsolve give an error if the
equations to be solved are inconsistent.

If false, solve and 1linsolve return an empty list [] if the equations are inconsistent.
Example:

(%i1) solve_inconsistent_error: true$

(%i2) solve ([a+ b =1, a+b=2], [a, bl);

Inconsistent equations: (2)

-- an error. Quitting. To debug this try debugmode(true);
(%i3) solve_inconsistent_error: false$

(%i4) solve ([a + b =1, a+ b =2], [a, bl);

(%04) (]
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22 Differential Equations

22.1 Introduction to Differential Equations

This section describes the functions available in Maxima to obtain analytic solutions
for some specific types of first and second-order equations. To obtain a numerical solution
for a system of differential equations, see the additional package dynamics. For graphical
representations in phase space, see the additional package plotdf.

22.2 Functions and Variables for Differential Equations

bc2 (solution, xvall, yvall, xval2, yval2) Function
Solves a boundary value problem for a second order differential equation. Here:
solution is a general solution to the equation, as found by ode2; xvall specifies the
value of the independent variable in a first point, in the form x = x1, and yvall gives
the value of the dependent variable in that point, in the form y = y1. The expressions
xval2 and yval2 give the values for these variables at a second point, using the same
form.

See ode2 for an example of its usage.

desolve (eqn, x) Function
desolve ([eqn_1, ..., eqn_n], [x_1, ..., x_n]) Function
The function desolve solves systems of linear ordinary differential equations using
Laplace transform. Here the eqn’s are differential equations in the dependent variables
x_1, ..., x_n. The functional dependence of x_I, ..., x_.n on an independent variable,
for instance x, must be explicitly indicated in the variables and its derivatives. For
example, this would not be the correct way to define two equations:
eqn_1: ’diff(f,x,2) = sin(x) + ’diff(g,x);
eqn_2: ’diff(f,x) + x"2 - f = 2x’diff(g,x,2);
The correct way would be:
eqn_1: ’diff(£f(x),x,2) = sin(x) + ’diff(g(x),x);
eqn_2: ’diff(f(x),x) + x"2 - £(x) = 2%¥’diff(g(x),x,2);

The call to the function desolve would then be
desolve([eqn_1, eqn_2], [f(x),g(x)1);

If initial conditions at x=0 are known, they can be supplied before calling desolve
by using atvalue.

(%i1) ’diff(£(x),x)="diff(g(x),x)+sin(x);

d d
(%o1) — (fx)) = - (gx)) + sin(x)
dx dx
(%12) ’diff(g(x),x,2)="diff (f(x),x)-cos(x);
2
d d

(%02) -— (gx)) = ——- (£ (%)) - cos(x)
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2 dx
dx
(%13) atvalue(’diff(g(x),x),x=0,a);
(%03) a
(%i4) atvalue(f(x),x=0,1);

(%04) 1
(%15) desolve([%ol,%02], [f(x),g(x)]1);
X

(hob) [f(x) = a e -a+1, gx) =

x
cos(x) + a%e -a+ g(0) - 1]
(%i6) [%o1,%02],%05,diff;
x x x X
(%06) [a%%e =a%e , ahe - cos(x) =a %e - cos(x)]

If desolve cannot obtain a solution, it returns false.

icl (solution, xval, yval) Function
Solves initial value problems for first order differential equations. Here solution is
a general solution to the equation, as found by ode2, xval gives an initial value for
the independent variable in the form x = x0, and yval gives the initial value for the
dependent variable in the form y = y0.

See ode2 for an example of its usage.

ic2 (solution, xval, yval, dval) Function
Solves initial value problems for second-order differential equations. Here solution is a
general solution to the equation, as found by ode2, xval gives the initial value for the
independent variable in the form x = x0, yval gives the initial value of the dependent
variable in the form y = y0, and dval gives the initial value for the first derivative of
the dependent variable with respect to independent variable, in the form diff (y,x)
= dy0 (diff does not have to be quoted).

See ode2 for an example of its usage.

ode2 (eqn, dvar, ivar) Function

The function ode2 solves an ordinary differential equation (ODE) of first or second
order. It takes three arguments: an ODE given by eqn, the dependent variable dvar,
and the independent variable ivar. When successful, it returns either an explicit or
implicit solution for the dependent variable. Y%c is used to represent the integra-
tion constant in the case of first-order equations, and %k1 and %k2 the constants for
second-order equations. The dependence of the dependent variable on the indepen-
dent variable does not have to be written explicitly, as in the case of desolve, but
the independent variable must always be given as the third argument.

If ode2 cannot obtain a solution for whatever reason, it returns false, after perhaps
printing out an error message. The methods implemented for first order equations in
the order in which they are tested are: linear, separable, exact - perhaps requiring
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an integrating factor, homogeneous, Bernoulli’s equation, and a generalized homoge-
neous method. The types of second-order equations which can be solved are: constant
coefficients, exact, linear homogeneous with non-constant coefficients which can be
transformed to constant coefficients, the Euler or equi-dimensional equation, equa-
tions solvable by the method of variation of parameters, and equations which are free
of either the independent or of the dependent variable so that they can be reduced to
two first order linear equations to be solved sequentially.

In the course of solving ODE’s, several variables are set purely for informational pur-
poses: method denotes the method of solution used (e.g., linear), intfactor denotes
any integrating factor used, odeindex denotes the index for Bernoulli’s method or for
the generalized homogeneous method, and yp denotes the particular solution for the
variation of parameters technique.

In order to solve initial value problems (IVP) functions ic1 and ic2 are available for

first and second order equations, and to solve second-order boundary value problems
(BVP) the function bc2 can be used.

FExample:
(%i1) x"2%’diff(y,x) + 3*y*x = sin(x)/x;
2 dy sin(x)
(%o1) X ——+3xy=-———-——-
dx X

(%i2) ode2(%,y,x);
%c - cos(x)
(%02) y = —mmmmmmm—

(%13) ic1(%o02,x=Vpi,y=0);

(%03) § = = mmmmm————-
3
X
(%i4) ’diff(y,x,2) + yx’diff(y,x)"3 = 0;
2
dy dy 3
(%04) — +y (=) =0
2 dx
dx
(%i5) ode2(%,y,x);
3
y + 6 %kl y
G = x + k2
6
(%16) ratsimp(ic2(%05,x=0,y=0,’diff(y,x)=2));
3
2y -3y
(%06) e~ = x
6

(%17) bc2(%05,x=0,y=1,x=1,y=3);
3
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(ho?) == =x - -
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23 Numerical

23.1 Introduction to fast Fourier transform

The £ft package comprises functions for the numerical (not symbolic) computation of
the fast Fourier transform.

23.2 Functions and Variables for fast Fourier transform

polartorect (magnitude_array, phase_array) Function
Translates complex values of the form r %e”~(%i t) to the form a +b %i. load
("fft") loads this function into Maxima. See also fft.

The magnitude and phase, r and t, are taken from magnitude_array and phase_array,
respectively. The original values of the input arrays are replaced by the real and
imaginary parts, a and b, on return. The outputs are calculated as

a: r cos (t)
b: r sin (t)

The input arrays must be the same size and 1-dimensional. The array size need not
be a power of 2.

polartorect is the inverse function of recttopolar.

recttopolar (real_array, imaginary_array) Function

Translates complex values of the form a + b %i to the form r %e”~(%i t). load
("fft") loads this function into Maxima. See also fft.
The real and imaginary parts, a and b, are taken from real_array and imaginary_array,
respectively. The original values of the input arrays are replaced by the magnitude
and angle, r and t, on return. The outputs are calculated as

r: sqrt (a2 + b~2)

t: atan2 (b, a)
The computed angle is in the range -%pi to %pi.
The input arrays must be the same size and 1-dimensional. The array size need not
be a power of 2.

recttopolar is the inverse function of polartorect.

ift (real_array, imaginary_array) Function
Fast inverse discrete Fourier transform. load ("fft") loads this function into Max-
ima.

ift carries out the inverse complex fast Fourier transform on 1-dimensional floating
point arrays. The inverse transform is defined as

x[j1: sum (y[j] exp (+2 %i %pi j k / n), k, O, n-1)

See £ft for more details.
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fft (real_array, imaginary_array) Function
ift (real_array, imaginary_array) Function
recttopolar (real_array, imaginary_array) Function
polartorect (magnitude_array, phase_array) Function

Fast Fourier transform and related functions. load ("fft") loads these functions
into Maxima.

fft and ift carry out the complex fast Fourier transform and inverse transform,
respectively, on 1-dimensional floating point arrays. The size of imaginary_array
must equal the size of real_array.

fft and ift operate in-place. That is, on return from fft or ift, the original content
of the input arrays is replaced by the output. The fillarray function can make a
copy of an array, should it be necessary.

The discrete Fourier transform and inverse transform are defined as follows. Let x be
the original data, with

x[i]: real_array[i] + %i imaginary_arrayl[i]
Let y be the transformed data. The forward and inverse transforms are
ylkl: (1/n) sum (x[j] exp (-2 %i %pi j k¥ / n), j, 0, n-1)

x[j]: sum (y[j] exp (+2 %i %pi j k¥ / n), k, 0, n-1)
Suitable arrays can be allocated by the array function. For example:
array (my_array, float, n-1)$

declares a 1-dimensional array with n elements, indexed from 0 through n-1 inclusive.
The number of elements n must be equal to 2"m for some m.

fft can be applied to real data (imaginary array all zeros) to obtain sine and cosine
coefficients. After calling £ft, the sine and cosine coefficients, say a and b, can be
calculated as

al0]: real_array[0]
b[0]: O

and

aljl: real_array[j] + real_array[n-j]
b[j]: imaginary_array[j] - imaginary_array[n-j]

for j equal to 1 through n/2-1, and

aln/2]: real_array([n/2]
b[n/2]: 0

recttopolar translates complex values of the form a + b %i to the form r %e~ (%1
t). See recttopolar.

polartorect translates complex values of the form r %e” (%1 t) to the form a + b
%1i. See polartorect.

demo ("fft") displays a demonstration of the £ft package.

fortindent Option variable
Default value: 0
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fortindent controls the left margin indentation of expressions printed out by the
fortran command. 0 gives normal printout (i.e., 6 spaces), and positive values will
causes the expressions to be printed farther to the right.

fortran (expr) Function
Prints expr as a Fortran statement. The output line is indented with spaces. If the
line is too long, fortran prints continuation lines. fortran prints the exponentiation
operator ~ as **, and prints a complex number a + b %i in the form (a,b).

expr may be an equation. If so, fortran prints an assignment statement, assigning the
right-hand side of the equation to the left-hand side. In particular, if the right-hand
side of expr is the name of a matrix, then fortran prints an assignment statement
for each element of the matrix.

If expr is not something recognized by fortran, the expression is printed in grind
format without complaint. fortran does not know about lists, arrays, or functions.

fortindent controls the left margin of the printed lines. 0 is the normal margin (i.e.,
indented 6 spaces). Increasing fortindent causes expressions to be printed further
to the right.

When fortspaces is true, fortran fills out each printed line with spaces to 80
columns.

fortran evaluates its arguments; quoting an argument defeats evaluation. fortran
always returns done.

Examples:

(%1i1) expr: (a + b)~12%
(%12) fortran (expr);
(b+a)**12
(%02) done
(%13) fortran (’x=expr);
x = (b+a)**12
(%03) done
(%14) fortran (’x=expand (expr));
X = b**12+12xa*xb**x11+66xa*x*2xb*x*x10+220%a*x*x3*xbx*x9+495%a**x4xb**8+792
1 *a*xk5kD**x7+924%xa*xkB*xb*xkB+792ka*x*x7kb**x5+495%xa*x*8xb*x*x4+220*a*x*x9*b
2 *%3+66%a*x*x10xb*xx2+12%a*x*x11xb+a*x*x12

(%04) done
(%i5) fortran (’x=7+5%%i);

x = (7,5)
(%05) done
(%i6) fortran (°x=[1,2,3,4]1);

x = [1,2,3,4]
(%06) done

(5i7) £(x) := x"2%
(%18) fortran (f);
f
(%08) done
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fortspaces Option variable
Default value: false

When fortspaces is true, fortran fills out each printed line with spaces to 80

columns.
horner (expr, x) Function
horner (expr) Function

Returns a rearranged representation of expr as in Horner’s rule, using x as the main
variable if it is specified. x may be omitted in which case the main variable of the
canonical rational expression form of expr is used.

horner sometimes improves stability if expr is to be numerically evaluated. It is
also useful if Maxima is used to generate programs to be run in Fortran. See also

stringout.
(%1i1) expr: 1e-155*x"2 - 5.5xx + 5.2e155;
2
(%o1) 1.0E-155 x - 5.5 x + 5.2E+155
(%1i2) expr2: horner (%, x), keepfloat: true;
(%02) (1.0E-155 x - 5.5) x + 5.2E+155

(%13) ev (expr, x=1elbb);
Maxima encountered a Lisp error:

floating point overflow
Automatically continuing.

To reenable the Lisp debugger set *debugger-hook* to nil.
(%i4) ev (expr2, x=1el155);

(hod) 7.0E+154
find_root (expr, x, a, b) Function
find_root (f, a, b) Function
find_root_error Option variable
find_root_abs Option variable
find_root_rel Option variable

Finds a root of the expression expr or the function f over the closed interval [a, b].
The expression expr may be an equation, in which case find_root seeks a root of
lhs(expr) - rhs(expr).

Given that Maxima can evaluate expr or f over [a, b] and that expr or f is continuous,
find_root is guaranteed to find the root, or one of the roots if there is more than
one.

find_root initially applies binary search. If the function in question appears to be
smooth enough, find_root applies linear interpolation instead.

The accuracy of find_root is governed by find_root_abs and find_root_rel.
find_root stops when the function in question evaluates to something less than or
equal to find_root_abs, or if successive approximants x_0, x_1 differ by no more than
find_root_rel * max(abs(x_0), abs(x_1)). The default values of find_root_abs
and find_root_rel are both zero.
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find_root expects the function in question to have a different sign at the endpoints
of the search interval. If this condition is not met, the behavior of find_root is
governed by find_root_error. When find_root_error is true, find_root prints
an error message. Otherwise find_root returns the value of find_root_error. The
default value of find_root_error is true.

If f evaluates to something other than a number at any step in the search algorithm,
find_root returns a partially-evaluated find_root expression.

The order of a and b is ignored; the region in which a root is sought is
[min(a, b), maz(a, b)].
Examples:

(hi1) £(x) := sin(x) - x/2;

X
(%o1) f(x) := sin(x) - -
2
(%12) find_root (sin(x) - x/2, x, 0.1, %pi);
(%02) 1.895494267033981
(%13) find_root (sin(x) = x/2, x, 0.1, %pi);
(%03) 1.895494267033981
(%14) find_root (£(x), x, 0.1, %pi);
(%ho4d) 1.895494267033981
(%15) find_root (£, 0.1, %pi);
(%05) 1.895494267033981
(%i6) find_root (exp(x) =y, x, 0, 100);
X
(%o6) find_root(%e =1y, x, 0.0, 100.0)
(%17) find_root (exp(x) =y, x, 0, 100), y = 10;
(%hoT) 2.302585092994046
(%i8) log (10.0);
(%08) 2.302585092994046
newton (expr, x, x_0, eps) Function

Returns an approximate solution of expr = 0 by Newton’s method, considering expr
to be a function of one variable, x. The search begins with x = x_0 and proceeds until
abs (expr) < eps (with expr evaluated at the current value of x).

newton allows undefined variables to appear in expr, so long as the termination test
abs (expr) < eps evaluates to true or false. Thus it is not necessary that expr
evaluate to a number.

load(newtonl) loads this function.
See also realroots, allroots, find_root, and mnewton.
Examples:

(%i1) load (newtonl);

(%o1) /usr/share/maxima/5.10.0cvs/share/numeric/newtonl.mac
(%i2) newton (cos (u), u, 1, 1/100);

(%ho2) 1.570675277161251

(%13) ev (cos (u), u = %);

(%03) 1.2104963335033528E-4
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(%i4) assume (a > 0);

(%o4) [a > 0]
(%1i5) newton (x°2 - a”2, x, a/2, a~2/100);
(%o05) 1.00030487804878 a
(%i6) ev (x°2 - 2”2, x = %)

2
(%06) 6.098490481853958E-4 a

23.3 Introduction to Fourier series

The fourie package comprises functions for the symbolic computation of Fourier series.
There are functions in the fourie package to calculate Fourier integral coefficients and some
functions for manipulation of expressions.

23.4 Functions and Variables for Fourier series

equalp (x, y) Function
Returns true if equal (x, y) otherwise false (doesn’t give an error message like
equal (x, y) would do in this case).

remfun (f, expr) Function
remfun (f expr, x) Function
remfun (f, expr) replaces all occurrences of f (arg) by arg in expr.

remfun (f, expr, x) replaces all occurrences of f (arg) by arg in expr only if arg
contains the variable x.

funp (f, expr) Function
funp (f,