
Maxima Manual

Maxima is a computer algebra system, implemented in Lisp.
Maxima is derived from the Macsyma system, developed at MIT in the years 1968 through
1982 as part of Project MAC. MIT turned over a copy of the Macsyma source code to the
Department of Energy in 1982; that version is now known as DOE Macsyma. A copy of DOE
Macsyma was maintained by Professor William F. Schelter of the University of Texas from
1982 until his death in 2001. In 1998, Schelter obtained permission from the Department
of Energy to release the DOE Macsyma source code under the GNU Public License, and
in 2000 he initiated the Maxima project at SourceForge to maintain and develop DOE
Macsyma, now called Maxima.

i

Short Contents

1 Introduction to Maxima . 1

2 Bug Detection and Reporting . 5

3 Help . 7

4 Command Line . 13

5 Operators. 27

6 Expressions . 59

7 Simplification . 93

8 Plotting . 101

9 Input and Output . 123

10 Floating Point . 151

11 Contexts . 153

12 Polynomials . 159

13 Constants . 181

14 Logarithms . 185

15 Trigonometric . 189

16 Special Functions . 197

17 Elliptic Functions . 205

18 Limits . 211

19 Differentiation . 213

20 Integration . 223

21 Equations . 243

22 Differential Equations. 261

23 Numerical. 265

24 Arrays . 273

25 Matrices and Linear Algebra . 283

26 Affine. 305

27 itensor . 309

28 ctensor . 343

29 atensor . 371

30 Series . 375

31 Number Theory . 387

32 Symmetries . 395

33 Groups . 411

34 Runtime Environment . 413

35 Miscellaneous Options . 417

ii Maxima Manual

36 Rules and Patterns . 425

37 Lists . 443

38 Sets . 449

39 Function Definition . 477

40 Program Flow . 505

41 Debugging . 517

42 augmented lagrangian . 525

43 bode . 527

44 contrib ode . 529

45 descriptive . 537

46 diag . 557

47 distrib . 565

48 draw . 601

49 dynamics . 649

50 f90. 659

51 ggf. 661

52 graphs . 663

53 grobner . 691

54 impdiff . 699

55 implicit plot . 701

56 interpol . 703

57 lapack . 709

58 lbfgs . 713

59 lindstedt. 719

60 linearalgebra . 721

61 lsquares . 735

62 makeOrders . 745

63 mnewton . 747

64 numericalio . 749

65 opsubst . 755

66 orthopoly . 757

67 plotdf. 769

68 romberg . 775

69 simplex . 779

70 simplification . 781

71 solve rec . 791

72 stats . 795

73 stirling . 811

iii

74 stringproc . 813

75 unit . 825

76 zeilberger . 835

77 Indices . 839

A Function and Variable Index . 841

iv Maxima Manual

v

Table of Contents

1 Introduction to Maxima . 1

2 Bug Detection and Reporting 5
2.1 Functions and Variables for Bug Detection and Reporting . . 5

3 Help . 7
3.1 Lisp and Maxima . 7
3.2 Garbage Collection . 8
3.3 Documentation. 8
3.4 Functions and Variables for Help . 9

4 Command Line . 13
4.1 Introduction to Command Line . 13
4.2 Functions and Variables for Command Line 17

5 Operators . 27
5.1 nary . 27
5.2 nofix . 27
5.3 postfix . 27
5.4 prefix . 27
5.5 Arithmetic operators . 27
5.6 Relational operators . 30
5.7 General operators . 32

6 Expressions . 59
6.1 Introduction to Expressions . 59
6.2 Complex . 59
6.3 Nouns and Verbs . 60
6.4 Identifiers . 61
6.5 Strings . 62
6.6 Inequality . 62
6.7 Syntax . 62
6.8 Functions and Variables for Expressions 65

7 Simplification. 93
7.1 Functions and Variables for Simplification 93

8 Plotting . 101
8.1 Functions and Variables for Plotting . 101

8.1.1 Functions for working with the gnuplot pipes format
. 121

vi Maxima Manual

9 Input and Output . 123
9.1 Comments . 123
9.2 Files . 123
9.3 Functions and Variables for Input and Output 123

10 Floating Point . 151
10.1 Functions and Variables for Floating Point 151

11 Contexts . 153
11.1 Functions and Variables for Contexts 153

12 Polynomials . 159
12.1 Introduction to Polynomials . 159
12.2 Functions and Variables for Polynomials 159

13 Constants . 181
13.1 Functions and Variables for Constants 181

14 Logarithms . 185
14.1 Functions and Variables for Logarithms 185

15 Trigonometric . 189
15.1 Introduction to Trigonometric . 189
15.2 Functions and Variables for Trigonometric 189

16 Special Functions . 197
16.1 Introduction to Special Functions . 197
16.2 Functions and Variables for Special Functions 197

17 Elliptic Functions . 205
17.1 Introduction to Elliptic Functions and Integrals 205
17.2 Functions and Variables for Elliptic Functions 206
17.3 Functions and Variables for Elliptic Integrals 208

18 Limits . 211
18.1 Functions and Variables for Limits . 211

19 Differentiation . 213
19.1 Functions and Variables for Differentiation 213

vii

20 Integration . 223
20.1 Introduction to Integration . 223
20.2 Functions and Variables for Integration 223
20.3 Introduction to QUADPACK . 232

20.3.1 Overview . 232
20.4 Functions and Variables for QUADPACK 233

21 Equations . 243
21.1 Functions and Variables for Equations 243

22 Differential Equations 261
22.1 Introduction to Differential Equations 261
22.2 Functions and Variables for Differential Equations 261

23 Numerical. 265
23.1 Introduction to fast Fourier transform 265
23.2 Functions and Variables for fast Fourier transform 265
23.3 Introduction to Fourier series . 270
23.4 Functions and Variables for Fourier series 270

24 Arrays . 273
24.1 Functions and Variables for Arrays . 273

25 Matrices and Linear Algebra 283
25.1 Introduction to Matrices and Linear Algebra 283

25.1.1 Dot . 283
25.1.2 Vectors . 283
25.1.3 eigen . 283

25.2 Functions and Variables for Matrices and Linear Algebra
. 284

26 Affine . 305
26.1 Introduction to Affine . 305
26.2 Functions and Variables for Affine . 305

viii Maxima Manual

27 itensor . 309
27.1 Introduction to itensor . 309

27.1.1 New tensor notation . 310
27.1.2 Indicial tensor manipulation 310

27.2 Functions and Variables for itensor . 313
27.2.1 Managing indexed objects . 313
27.2.2 Tensor symmetries . 322
27.2.3 Indicial tensor calculus . 323
27.2.4 Tensors in curved spaces . 328
27.2.5 Moving frames . 331
27.2.6 Torsion and nonmetricity. 334
27.2.7 Exterior algebra . 336
27.2.8 Exporting TeX expressions 340
27.2.9 Interfacing with ctensor . 340
27.2.10 Reserved words . 341

28 ctensor. 343
28.1 Introduction to ctensor . 343
28.2 Functions and Variables for ctensor . 345

28.2.1 Initialization and setup . 345
28.2.2 The tensors of curved space 348
28.2.3 Taylor series expansion. 350
28.2.4 Frame fields . 353
28.2.5 Algebraic classification . 353
28.2.6 Torsion and nonmetricity. 356
28.2.7 Miscellaneous features . 357
28.2.8 Utility functions . 359
28.2.9 Variables used by ctensor 364
28.2.10 Reserved names . 368
28.2.11 Changes . 368

29 atensor . 371
29.1 Introduction to atensor . 371
29.2 Functions and Variables for atensor . 372

30 Series . 375
30.1 Introduction to Series . 375
30.2 Functions and Variables for Series . 375

31 Number Theory . 387
31.1 Functions and Variables for Number Theory 387

ix

32 Symmetries . 395
32.1 Introduction to Symmetries . 395
32.2 Functions and Variables for Symmetries 395

32.2.1 Changing bases . 395
32.2.2 Changing representations . 398
32.2.3 Groups and orbits . 400
32.2.4 Partitions . 402
32.2.5 Polynomials and their roots 403
32.2.6 Resolvents . 405
32.2.7 Miscellaneous . 410

33 Groups . 411
33.1 Functions and Variables for Groups . 411

34 Runtime Environment 413
34.1 Introduction for Runtime Environment 413
34.2 Interrupts . 413
34.3 Functions and Variables for Runtime Environment 413

35 Miscellaneous Options 417
35.1 Introduction to Miscellaneous Options 417
35.2 Share . 417
35.3 Functions and Variables for Miscellaneous Options 417

36 Rules and Patterns . 425
36.1 Introduction to Rules and Patterns . 425
36.2 Functions and Variables for Rules and Patterns 425

37 Lists . 443
37.1 Introduction to Lists . 443
37.2 Functions and Variables for Lists . 443

38 Sets . 449
38.1 Introduction to Sets . 449

38.1.1 Usage . 449
38.1.2 Set Member Iteration . 451
38.1.3 Bugs . 452
38.1.4 Authors . 453

38.2 Functions and Variables for Sets . 453

x Maxima Manual

39 Function Definition . 477
39.1 Introduction to Function Definition . 477
39.2 Function . 477

39.2.1 Ordinary functions . 477
39.2.2 Array functions . 478

39.3 Macros . 478
39.4 Functions and Variables for Function Definition 482

40 Program Flow . 505
40.1 Introduction to Program Flow . 505
40.2 Functions and Variables for Program Flow 505

41 Debugging . 517
41.1 Source Level Debugging . 517
41.2 Keyword Commands . 518
41.3 Functions and Variables for Debugging. 519

42 augmented lagrangian 525
42.1 Functions and Variables for augmented lagrangian 525

43 bode . 527
43.1 Functions and Variables for bode . 527

44 contrib ode. 529
44.1 Introduction to contrib ode . 529
44.2 Functions and Variables for contrib ode 531
44.3 Possible improvements to contrib ode 534
44.4 Test cases for contrib ode . 534
44.5 References for contrib ode . 534

45 descriptive . 537
45.1 Introduction to descriptive . 537
45.2 Functions and Variables for data manipulation 539
45.3 Functions and Variables for descriptive statistics 541
45.4 Functions and Variables for specific multivariate descriptive

statistics . 549
45.5 Functions and Variables for statistical graphs 553

46 diag . 557
46.1 Functions and Variables for diag . 557

47 distrib . 565
47.1 Introduction to distrib . 565
47.2 Functions and Variables for continuous distributions 567
47.3 Functions and Variables for discrete distributions 591

xi

48 draw . 601
48.1 Introduction to draw . 601
48.2 Functions and Variables for draw . 601
48.3 Functions and Variables for pictures 643
48.4 Functions and Variables for worldmap 645

49 dynamics. 649
49.1 Introduction to dynamics . 649
49.2 Functions and Variables for dynamics 649

50 f90 . 659
50.1 Functions and Variables for f90 . 659

51 ggf . 661
51.1 Functions and Variables for ggf . 661

52 graphs . 663
52.1 Introduction to graphs . 663
52.2 Functions and Variables for graphs . 663

52.2.1 Building graphs . 663
52.2.2 Graph properties . 668
52.2.3 Modifying graphs . 683
52.2.4 Reading and writing to files 685
52.2.5 Visualization . 686

53 grobner . 691
53.1 Introduction to grobner . 691

53.1.1 Notes on the grobner package. 691
53.1.2 Implementations of admissible monomial orders in

grobner . 691
53.2 Functions and Variables for grobner 692

53.2.1 Global switches for grobner. 692
53.2.2 Simple operators in grobner 693
53.2.3 Other functions in grobner 694
53.2.4 Standard postprocessing of Groebner Bases 695

54 impdiff . 699
54.1 Functions and Variables for impdiff . 699

55 implicit plot . 701
55.1 Functions and Variables for implicit plot 701

56 interpol . 703
56.1 Introduction to interpol. 703
56.2 Functions and Variables for interpol 703

xii Maxima Manual

57 lapack . 709
57.1 Introduction to lapack . 709
57.2 Functions and Variables for lapack . 709

58 lbfgs . 713
58.1 Introduction to lbfgs . 713
58.2 Functions and Variables for lbfgs . 713

59 lindstedt . 719
59.1 Functions and Variables for lindstedt 719

60 linearalgebra . 721
60.1 Introduction to linearalgebra . 721
60.2 Functions and Variables for linearalgebra 722

61 lsquares . 735
61.1 Introduction to lsquares . 735
61.2 Functions and Variables for lsquares 735

62 makeOrders . 745
62.1 Functions and Variables for makeOrders 745

63 mnewton . 747
63.1 Introduction to mnewton . 747
63.2 Functions and Variables for mnewton 747

64 numericalio . 749
64.1 Introduction to numericalio . 749

64.1.1 Plain-text input and output 749
64.1.2 Separator flag values for input 749
64.1.3 Separator flag values for output 749
64.1.4 Binary floating-point input and output 750

64.2 Functions and Variables for plain-text input and output
. 750

64.3 Functions and Variables for binary input and output 752

65 opsubst . 755
65.1 Functions and Variables for opsubst 755

xiii

66 orthopoly . 757
66.1 Introduction to orthogonal polynomials 757

66.1.1 Getting Started with orthopoly 757
66.1.2 Limitations . 759
66.1.3 Floating point Evaluation . 761
66.1.4 Graphics and orthopoly . 762
66.1.5 Miscellaneous Functions . 763
66.1.6 Algorithms . 764

66.2 Functions and Variables for orthogonal polynomials 764

67 plotdf . 769
67.1 Introduction to plotdf . 769
67.2 Functions and Variables for plotdf . 769

68 romberg . 775
68.1 Functions and Variables for romberg 775

69 simplex . 779
69.1 Introduction to simplex . 779
69.2 Functions and Variables for simplex 779

70 simplification . 781
70.1 Introduction to simplification . 781
70.2 Package absimp . 781
70.3 Package facexp . 781
70.4 Package functs . 783
70.5 Package ineq . 786
70.6 Package rducon . 787
70.7 Package scifac . 788
70.8 Package sqdnst. 788

71 solve rec . 791
71.1 Introduction to solve rec . 791
71.2 Functions and Variables for solve rec 791

72 stats . 795
72.1 Introduction to stats . 795
72.2 Functions and Variables for inference result 795
72.3 Functions and Variables for stats . 797
72.4 Functions and Variables for special distributions 808

73 stirling . 811
73.1 Functions and Variables for stirling . 811

xiv Maxima Manual

74 stringproc . 813
74.1 Introduction to string processing . 813
74.2 Functions and Variables for input and output 814
74.3 Functions and Variables for characters 817
74.4 Functions and Variables for strings . 818

75 unit . 825
75.1 Introduction to Units . 825
75.2 Functions and Variables for Units . 826

76 zeilberger . 835
76.1 Introduction to zeilberger . 835

76.1.0.1 The indefinite summation problem . . . 835
76.1.0.2 The definite summation problem 835

76.1.1 Verbosity levels. 835
76.2 Functions and Variables for zeilberger 836
76.3 General global variables . 837
76.4 Variables related to the modular test 838

77 Indices . 839

Appendix A Function and Variable Index . . . 841

Chapter 1: Introduction to Maxima 1

1 Introduction to Maxima

Start Maxima with the command "maxima". Maxima will display version information
and a prompt. End each Maxima command with a semicolon. End the session with the
command "quit();". Here’s a sample session:

[wfs@chromium]$ maxima
Maxima 5.9.1 http://maxima.sourceforge.net
Using Lisp CMU Common Lisp 19a
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
This is a development version of Maxima. The function bug_report()
provides bug reporting information.
(%i1) factor(10!);

8 4 2
(%o1) 2 3 5 7
(%i2) expand ((x + y)^6);

6 5 2 4 3 3 4 2 5 6
(%o2) y + 6 x y + 15 x y + 20 x y + 15 x y + 6 x y + x
(%i3) factor (x^6 - 1);

2 2
(%o3) (x - 1) (x + 1) (x - x + 1) (x + x + 1)
(%i4) quit();
[wfs@chromium]$

Maxima can search the info pages. Use the describe command to show information
about the command or all the commands and variables containing a string. The question
mark ? (exact search) and double question mark ?? (inexact search) are abbreviations for
describe:

(%i1) ?? integ
0: Functions and Variables for Elliptic Integrals
1: Functions and Variables for Integration
2: Introduction to Elliptic Functions and Integrals
3: Introduction to Integration
4: askinteger (Functions and Variables for Simplification)
5: integerp (Functions and Variables for Miscellaneous Options)
6: integer_partitions (Functions and Variables for Sets)
7: integrate (Functions and Variables for Integration)
8: integrate_use_rootsof (Functions and Variables for Integration)
9: integration_constant_counter (Functions and Variables for

Integration)
10: nonnegintegerp (Functions and Variables for linearalgebra)
Enter space-separated numbers, ‘all’ or ‘none’: 5 4

-- Function: integerp (<expr>)
Returns ‘true’ if <expr> is a literal numeric integer, otherwise
‘false’.

‘integerp’ returns false if its argument is a symbol, even if the
argument is declared integer.

2 Maxima Manual

Examples:

(%i1) integerp (0);
(%o1) true
(%i2) integerp (1);
(%o2) true
(%i3) integerp (-17);
(%o3) true
(%i4) integerp (0.0);
(%o4) false
(%i5) integerp (1.0);
(%o5) false
(%i6) integerp (%pi);
(%o6) false
(%i7) integerp (n);
(%o7) false
(%i8) declare (n, integer);
(%o8) done
(%i9) integerp (n);
(%o9) false

-- Function: askinteger (<expr>, integer)
-- Function: askinteger (<expr>)
-- Function: askinteger (<expr>, even)
-- Function: askinteger (<expr>, odd)

‘askinteger (<expr>, integer)’ attempts to determine from the
‘assume’ database whether <expr> is an integer. ‘askinteger’
prompts the user if it cannot tell otherwise, and attempt to
install the information in the database if possible. ‘askinteger
(<expr>)’ is equivalent to ‘askinteger (<expr>, integer)’.

‘askinteger (<expr>, even)’ and ‘askinteger (<expr>, odd)’
likewise attempt to determine if <expr> is an even integer or odd
integer, respectively.

(%o1) true

To use a result in later calculations, you can assign it to a variable or refer to it by its
automatically supplied label. In addition, % refers to the most recent calculated result:

(%i1) u: expand ((x + y)^6);
6 5 2 4 3 3 4 2 5 6

(%o1) y + 6 x y + 15 x y + 20 x y + 15 x y + 6 x y + x
(%i2) diff (u, x);

5 4 2 3 3 2 4 5
(%o2) 6 y + 30 x y + 60 x y + 60 x y + 30 x y + 6 x
(%i3) factor (%o2);

5
(%o3) 6 (y + x)

Chapter 1: Introduction to Maxima 3

Maxima knows about complex numbers and numerical constants:
(%i1) cos(%pi);
(%o1) - 1
(%i2) exp(%i*%pi);
(%o2) - 1

Maxima can do differential and integral calculus:
(%i1) u: expand ((x + y)^6);

6 5 2 4 3 3 4 2 5 6
(%o1) y + 6 x y + 15 x y + 20 x y + 15 x y + 6 x y + x
(%i2) diff (%, x);

5 4 2 3 3 2 4 5
(%o2) 6 y + 30 x y + 60 x y + 60 x y + 30 x y + 6 x
(%i3) integrate (1/(1 + x^3), x);

2 x - 1
2 atan(-------)

log(x - x + 1) sqrt(3) log(x + 1)
(%o3) - --------------- + ------------- + ----------

6 sqrt(3) 3

Maxima can solve linear systems and cubic equations:
(%i1) linsolve ([3*x + 4*y = 7, 2*x + a*y = 13], [x, y]);

7 a - 52 25
(%o1) [x = --------, y = -------]

3 a - 8 3 a - 8
(%i2) solve (x^3 - 3*x^2 + 5*x = 15, x);
(%o2) [x = - sqrt(5) %i, x = sqrt(5) %i, x = 3]

Maxima can solve nonlinear sets of equations. Note that if you don’t want a result
printed, you can finish your command with $ instead of ;.

(%i1) eq_1: x^2 + 3*x*y + y^2 = 0$
(%i2) eq_2: 3*x + y = 1$
(%i3) solve ([eq_1, eq_2]);

3 sqrt(5) + 7 sqrt(5) + 3
(%o3) [[y = - -------------, x = -----------],

2 2

3 sqrt(5) - 7 sqrt(5) - 3
[y = -------------, x = - -----------]]

2 2

Maxima can generate plots of one or more functions:
(%i1) eq_1: x^2 + 3*x*y + y^2 = 0$
(%i2) eq_2: 3*x + y = 1$
(%i3) solve ([eq_1, eq_2]);

3 sqrt(5) + 7 sqrt(5) + 3
(%o3) [[y = - -------------, x = -----------],

2 2

3 sqrt(5) - 7 sqrt(5) - 3
[y = -------------, x = - -----------]]

4 Maxima Manual

2 2
(%i4) kill(labels);
(%o0) done
(%i1) plot2d (sin(x)/x, [x, -20, 20]);
(%o1)
(%i2) plot2d ([atan(x), erf(x), tanh(x)], [x, -5, 5]);
(%o2)
(%i3) plot3d (sin(sqrt(x^2 + y^2))/sqrt(x^2 + y^2), [x, -12, 12],

[y, -12, 12]);
(%o3)

Chapter 2: Bug Detection and Reporting 5

2 Bug Detection and Reporting

2.1 Functions and Variables for Bug Detection and
Reporting

Functionrun testsuite ()
Functionrun testsuite (boolean)
Functionrun testsuite (boolean, boolean)
Functionrun testsuite (boolean, boolean, list)

Run the Maxima test suite. Tests producing the desired answer are considered
“passes,” as are tests that do not produce the desired answer, but are marked as
known bugs.
run_testsuite () displays only tests that do not pass.
run_testsuite (true) displays tests that are marked as known bugs, as well as
failures.
run_testsuite (true, true) displays all tests.
If the optional third argument is given, a subset of the tests is run. The subset of the
tests to run is given as a list of the names of the tests. The complete set of tests is
specified by testsuite_files.
run_testsuite changes the Maxima environment. Typically a test script executes
kill to establish a known environment (namely one without user-defined functions
and variables) and then defines functions and variables appropriate to the test.
run_testsuite returns done.

Option variabletestsuite files
testsuite_files is the set of tests to be run by run_testsuite. It is a list of names
of the files containing the tests to run. If some of the tests in a file are known to fail,
then instead of listing the name of the file, a list containing the file name and the test
numbers that fail is used.
For example, this is a part of the default set of tests:

["rtest13s", ["rtest14", 57, 63]]

This specifies the testsuite consists of the files "rtest13s" and "rtest14", but "rtest14"
contains two tests that are known to fail: 57 and 63.

Functionbug report ()
Prints out Maxima and Lisp version numbers, and gives a link to the Maxima project
bug report web page. The version information is the same as reported by build_info.
When a bug is reported, it is helpful to copy the Maxima and Lisp version information
into the bug report.
bug_report returns an empty string "".

Functionbuild info ()
Prints out a summary of the parameters of the Maxima build.
build_info returns an empty string "".

6 Maxima Manual

Chapter 3: Help 7

3 Help

3.1 Lisp and Maxima

Maxima is written in Lisp, and it is easy to access Lisp functions and variables from Max-
ima and vice versa. Lisp and Maxima symbols are distinguished by a naming convention.
A Lisp symbol which begins with a dollar sign $ corresponds to a Maxima symbol without
the dollar sign. A Maxima symbol which begins with a question mark ? corresponds to a
Lisp symbol without the question mark. For example, the Maxima symbol foo corresponds
to the Lisp symbol $foo, while the Maxima symbol ?foo corresponds to the Lisp symbol
foo, Note that ?foo is written without a space between ? and foo; otherwise it might be
mistaken for describe ("foo").

Hyphen -, asterisk *, or other special characters in Lisp symbols must be escaped by
backslash \ where they appear in Maxima code. For example, the Lisp identifier *foo-bar*
is written ?*foo\-bar* in Maxima.

Lisp code may be executed from within a Maxima session. A single line of Lisp (con-
taining one or more forms) may be executed by the special command :lisp. For example,

(%i1) :lisp (foo $x $y)

calls the Lisp function foo with Maxima variables x and y as arguments. The :lisp
construct can appear at the interactive prompt or in a file processed by batch or demo, but
not in a file processed by load, batchload, translate_file, or compile_file.

The function to_lisp() opens an interactive Lisp session. Entering (to-maxima) closes
the Lisp session and returns to Maxima.

Lisp functions and variables which are to be visible in Maxima as functions and variables
with ordinary names (no special punctuation) must have Lisp names beginning with the
dollar sign $.

Maxima is case-sensitive, distinguishing between lowercase and uppercase letters in iden-
tifiers, while Lisp is not. There are some rules governing the translation of names between
Lisp and Maxima.
1. A Lisp identifier not enclosed in vertical bars corresponds to a Maxima identifier in

lowercase. Whether the Lisp identifier is uppercase, lowercase, or mixed case, is ignored.
E.g., Lisp $foo, $FOO, and $Foo all correspond to Maxima foo.

2. A Lisp identifier which is all uppercase or all lowercase and enclosed in vertical bars
corresponds to a Maxima identifier with case reversed. That is, uppercase is changed
to lowercase and lowercase to uppercase. E.g., Lisp |$FOO| and |$foo| correspond to
Maxima foo and FOO, respectively.

3. A Lisp identifier which is mixed uppercase and lowercase and enclosed in vertical bars
corresponds to a Maxima identifier with the same case. E.g., Lisp |$Foo| corresponds
to Maxima Foo.

The #$ Lisp macro allows the use of Maxima expressions in Lisp code. #$expr$ expands
to a Lisp expression equivalent to the Maxima expression expr.

(msetq $foo #$[x, y]$)

This has the same effect as entering

8 Maxima Manual

(%i1) foo: [x, y];

The Lisp function displa prints an expression in Maxima format.
(%i1) :lisp #$[x, y, z]$
((MLIST SIMP) $X $Y $Z)
(%i1) :lisp (displa ’((MLIST SIMP) $X $Y $Z))
[x, y, z]
NIL

Functions defined in Maxima are not ordinary Lisp functions. The Lisp function
mfuncall calls a Maxima function. For example:

(%i1) foo(x,y) := x*y$
(%i2) :lisp (mfuncall ’$foo ’a ’b)
((MTIMES SIMP) A B)

Some Lisp functions are shadowed in the Maxima package, namely the following.
complement, continue, //, float, functionp, array, exp, listen, signum, atan, asin,

acos, asinh, acosh, atanh, tanh, cosh, sinh, tan, break, and gcd.

3.2 Garbage Collection

Symbolic computation tends to create a good deal of garbage, and effective handling of
this can be crucial to successful completion of some programs.

Under GCL, on UNIX systems where the mprotect system call is available (including
SUN OS 4.0 and some variants of BSD) a stratified garbage collection is available. This
limits the collection to pages which have been recently written to. See the GCL documen-
tation under ALLOCATE and GBC. At the Lisp level doing (setq si::*notify-gbc* t) will
help you determine which areas might need more space.

3.3 Documentation

The Maxima on-line user’s manual can be viewed in different forms. From the Maxima
interactive prompt, the user’s manual is viewed as plain text by the ? command (i.e., the
describe function). The user’s manual is viewed as info hypertext by the info viewer
program and as a web page by any ordinary web browser.

example displays examples for many Maxima functions. For example,
(%i1) example (integrate);

yields
(%i2) test(f):=block([u],u:integrate(f,x),ratsimp(f-diff(u,x)))
(%o2) test(f) := block([u], u : integrate(f, x),

ratsimp(f - diff(u, x)))
(%i3) test(sin(x))
(%o3) 0
(%i4) test(1/(x+1))
(%o4) 0
(%i5) test(1/(x^2+1))
(%o5) 0

and additional output.

Chapter 3: Help 9

3.4 Functions and Variables for Help

Functiondemo (filename)
Evaluates Maxima expressions in filename and displays the results. demo pauses after
evaluating each expression and continues after the user enters a carriage return. (If
running in Xmaxima, demo may need to see a semicolon ; followed by a carriage
return.)

demo searches the list of directories file_search_demo to find filename. If the file
has the suffix dem, the suffix may be omitted. See also file_search.

demo evaluates its argument. demo returns the name of the demonstration file.

Example:
(%i1) demo ("disol");

batching /home/wfs/maxima/share/simplification/disol.dem
At the _ prompt, type ’;’ followed by enter to get next demo
(%i2) load(disol)

_
(%i3) exp1 : a (e (g + f) + b (d + c))
(%o3) a (e (g + f) + b (d + c))

_
(%i4) disolate(exp1, a, b, e)
(%t4) d + c

(%t5) g + f

(%o5) a (%t5 e + %t4 b)

_
(%i5) demo ("rncomb");

batching /home/wfs/maxima/share/simplification/rncomb.dem
At the _ prompt, type ’;’ followed by enter to get next demo
(%i6) load(rncomb)

_
z x

(%i7) exp1 : ----- + ---------
y + x 2 (y + x)

z x
(%o7) ----- + ---------

y + x 2 (y + x)

_
(%i8) combine(exp1)

z x

10 Maxima Manual

(%o8) ----- + ---------
y + x 2 (y + x)

_
(%i9) rncombine(%)

2 z + x
(%o9) ---------

2 (y + x)

_
d c b a

(%i10) exp2 : - + - + - + -
3 3 2 2

d c b a
(%o10) - + - + - + -

3 3 2 2

_
(%i11) combine(exp2)

2 d + 2 c + 3 (b + a)
(%o11) ---------------------

6

_
(%i12) rncombine(exp2)

2 d + 2 c + 3 b + 3 a
(%o12) ---------------------

6

_
(%i13)

Functiondescribe (string)
Functiondescribe (string, exact)
Functiondescribe (string, inexact)

describe(string) is equivalent to describe(string, exact).
describe(string, exact) finds an item with title equal (case-insensitive) to string, if
there is any such item.
describe(string, inexact) finds all documented items which contain string in their
titles. If there is more than one such item, Maxima asks the user to select an item or
items to display.
At the interactive prompt, ? foo (with a space between ? and foo) is equivalent to
describe("foo", exact), and ?? foo is equivalent to describe("foo", inexact).
describe("", inexact) yields a list of all topics documented in the on-line manual.
describe quotes its argument. describe returns true if some documentation is
found, otherwise false.
See also Section 3.3 [Documentation], page 8.

Chapter 3: Help 11

Example:
(%i1) ?? integ
0: Functions and Variables for Elliptic Integrals
1: Functions and Variables for Integration
2: Introduction to Elliptic Functions and Integrals
3: Introduction to Integration
4: askinteger (Functions and Variables for Simplification)
5: integerp (Functions and Variables for Miscellaneous Options)
6: integer_partitions (Functions and Variables for Sets)
7: integrate (Functions and Variables for Integration)
8: integrate_use_rootsof (Functions and Variables for

Integration)
9: integration_constant_counter (Functions and Variables for

Integration)
10: nonnegintegerp (Functions and Variables for linearalgebra)
Enter space-separated numbers, ‘all’ or ‘none’: 7 8

-- Function: integrate (<expr>, <x>)
-- Function: integrate (<expr>, <x>, <a>,)

Attempts to symbolically compute the integral of <expr> with
respect to <x>. ‘integrate (<expr>, <x>)’ is an indefinite
integral, while ‘integrate (<expr>, <x>, <a>,)’ is a
definite integral, [...]

-- Option variable: integrate_use_rootsof
Default value: ‘false’

When ‘integrate_use_rootsof’ is ‘true’ and the denominator of
a rational function cannot be factored, ‘integrate’ returns
the integral in a form which is a sum over the roots (not yet
known) of the denominator.
[...]

In this example, items 7 and 8 were selected (output is shortened as indicated by
[...]. All or none of the items could have been selected by entering all or none,
which can be abbreviated a or n, respectively.

Functionexample (topic)
Functionexample ()

example (topic) displays some examples of topic, which is a symbol (not a string).
Most topics are function names. example () returns the list of all recognized topics.
The name of the file containing the examples is given by the global variable manual_
demo, which defaults to "manual.demo".
example quotes its argument. example returns done unless there is an error or there
is no argument, in which case example returns the list of all recognized topics.
Examples:

(%i1) example (append);
(%i2) append([x+y,0,-3.2],[2.5E+20,x])

12 Maxima Manual

(%o2) [y + x, 0, - 3.2, 2.5E+20, x]
(%o2) done
(%i3) example (coeff);
(%i4) coeff(b+tan(x)+2*a*tan(x) = 3+5*tan(x),tan(x))
(%o4) 2 a + 1 = 5
(%i5) coeff(1+x*%e^x+y,x,0)
(%o5) y + 1
(%o5) done

Chapter 4: Command Line 13

4 Command Line

4.1 Introduction to Command Line

Operator’
The single quote operator ’ prevents evaluation.
Applied to a symbol, the single quote prevents evaluation of the symbol.
Applied to a function call, the single quote prevents evaluation of the function call, al-
though the arguments of the function are still evaluated (if evaluation is not otherwise
prevented). The result is the noun form of the function call.
Applied to a parenthesized expression, the single quote prevents evaluation of all
symbols and function calls in the expression. E.g., ’(f(x)) means do not evaluate
the expression f(x). ’f(x) (with the single quote applied to f instead of f(x)) means
return the noun form of f applied to [x].
The single quote does not prevent simplification.
When the global flag noundisp is true, nouns display with a single quote. This switch
is always true when displaying function definitions.
See also the quote-quote operator ’’ and nouns.
Examples:
Applied to a symbol, the single quote prevents evaluation of the symbol.

(%i1) aa: 1024;
(%o1) 1024
(%i2) aa^2;
(%o2) 1048576
(%i3) ’aa^2;

2
(%o3) aa
(%i4) ’’%;
(%o4) 1048576

Applied to a function call, the single quote prevents evaluation of the function call.
The result is the noun form of the function call.

(%i1) x0: 5;
(%o1) 5
(%i2) x1: 7;
(%o2) 7
(%i3) integrate (x^2, x, x0, x1);

218
(%o3) ---

3
(%i4) ’integrate (x^2, x, x0, x1);

7
/
[2

(%o4) I x dx

14 Maxima Manual

]
/
5

(%i5) %, nouns;
218

(%o5) ---
3

Applied to a parenthesized expression, the single quote prevents evaluation of all
symbols and function calls in the expression.

(%i1) aa: 1024;
(%o1) 1024
(%i2) bb: 19;
(%o2) 19
(%i3) sqrt(aa) + bb;
(%o3) 51
(%i4) ’(sqrt(aa) + bb);
(%o4) bb + sqrt(aa)
(%i5) ’’%;
(%o5) 51

The single quote does not prevent simplification.
(%i1) sin (17 * %pi) + cos (17 * %pi);
(%o1) - 1
(%i2) ’(sin (17 * %pi) + cos (17 * %pi));
(%o2) - 1

Operator”
The quote-quote operator ’’ (two single quote marks) modifies evaluation in input
expressions.
Applied to a general expression expr, quote-quote causes the value of expr to be
substituted for expr in the input expression.
Applied to the operator of an expression, quote-quote changes the operator from a
noun to a verb (if it is not already a verb).
The quote-quote operator is applied by the input parser; it is not stored as part
of a parsed input expression. The quote-quote operator is always applied as soon
as it is parsed, and cannot be quoted. Thus quote-quote causes evaluation when
evaluation is otherwise suppressed, such as in function definitions, lambda expressions,
and expressions quoted by single quote ’.
Quote-quote is recognized by batch and load.
See also the single-quote operator ’ and nouns.
Examples:
Applied to a general expression expr, quote-quote causes the value of expr to be
substituted for expr in the input expression.

(%i1) expand ((a + b)^3);
3 2 2 3

(%o1) b + 3 a b + 3 a b + a

Chapter 4: Command Line 15

(%i2) [_, ’’_];
3 3 2 2 3

(%o2) [expand((b + a)), b + 3 a b + 3 a b + a]
(%i3) [%i1, ’’%i1];

3 3 2 2 3
(%o3) [expand((b + a)), b + 3 a b + 3 a b + a]
(%i4) [aa : cc, bb : dd, cc : 17, dd : 29];
(%o4) [cc, dd, 17, 29]
(%i5) foo_1 (x) := aa - bb * x;
(%o5) foo_1(x) := aa - bb x
(%i6) foo_1 (10);
(%o6) cc - 10 dd
(%i7) ’’%;
(%o7) - 273
(%i8) ’’(foo_1 (10));
(%o8) - 273
(%i9) foo_2 (x) := ’’aa - ’’bb * x;
(%o9) foo_2(x) := cc - dd x
(%i10) foo_2 (10);
(%o10) - 273
(%i11) [x0 : x1, x1 : x2, x2 : x3];
(%o11) [x1, x2, x3]
(%i12) x0;
(%o12) x1
(%i13) ’’x0;
(%o13) x2
(%i14) ’’ ’’x0;
(%o14) x3

Applied to the operator of an expression, quote-quote changes the operator from a
noun to a verb (if it is not already a verb).

(%i1) sin (1);
(%o1) sin(1)
(%i2) ’’sin (1);
(%o2) 0.8414709848079
(%i3) declare (foo, noun);
(%o3) done
(%i4) foo (x) := x - 1729;
(%o4) ’’foo(x) := x - 1729
(%i5) foo (100);
(%o5) foo(100)
(%i6) ’’foo (100);
(%o6) - 1629

The quote-quote operator is applied by the input parser; it is not stored as part of a
parsed input expression.

(%i1) [aa : bb, cc : dd, bb : 1234, dd : 5678];
(%o1) [bb, dd, 1234, 5678]
(%i2) aa + cc;
(%o2) dd + bb

16 Maxima Manual

(%i3) display (_, op (_), args (_));
_ = cc + aa

op(cc + aa) = +

args(cc + aa) = [cc, aa]

(%o3) done
(%i4) ’’(aa + cc);
(%o4) 6912
(%i5) display (_, op (_), args (_));

_ = dd + bb

op(dd + bb) = +

args(dd + bb) = [dd, bb]

(%o5) done

Quote-quote causes evaluation when evaluation is otherwise suppressed, such as in
function definitions, lambda expressions, and expressions quoted by single quote ’.

(%i1) foo_1a (x) := ’’(integrate (log (x), x));
(%o1) foo_1a(x) := x log(x) - x
(%i2) foo_1b (x) := integrate (log (x), x);
(%o2) foo_1b(x) := integrate(log(x), x)
(%i3) dispfun (foo_1a, foo_1b);
(%t3) foo_1a(x) := x log(x) - x

(%t4) foo_1b(x) := integrate(log(x), x)

(%o4) [%t3, %t4]
(%i4) integrate (log (x), x);
(%o4) x log(x) - x
(%i5) foo_2a (x) := ’’%;
(%o5) foo_2a(x) := x log(x) - x
(%i6) foo_2b (x) := %;
(%o6) foo_2b(x) := %
(%i7) dispfun (foo_2a, foo_2b);
(%t7) foo_2a(x) := x log(x) - x

(%t8) foo_2b(x) := %

(%o8) [%t7, %t8]
(%i8) F : lambda ([u], diff (sin (u), u));
(%o8) lambda([u], diff(sin(u), u))
(%i9) G : lambda ([u], ’’(diff (sin (u), u)));
(%o9) lambda([u], cos(u))
(%i10) ’(sum (a[k], k, 1, 3) + sum (b[k], k, 1, 3));
(%o10) sum(b , k, 1, 3) + sum(a , k, 1, 3)

k k

Chapter 4: Command Line 17

(%i11) ’(’’(sum (a[k], k, 1, 3)) + ’’(sum (b[k], k, 1, 3)));
(%o11) b + a + b + a + b + a

3 3 2 2 1 1

4.2 Functions and Variables for Command Line

Functionalias (new name 1, old name 1, ..., new name n, old name n)
provides an alternate name for a (user or system) function, variable, array, etc. Any
even number of arguments may be used.

Option variabledebugmode
Default value: false
When a Maxima error occurs, Maxima will start the debugger if debugmode is true.
The user may enter commands to examine the call stack, set breakpoints, step through
Maxima code, and so on. See debugging for a list of debugger commands.
Enabling debugmode will not catch Lisp errors.

Functionev (expr, arg 1, ..., arg n)
Evaluates the expression expr in the environment specified by the arguments arg 1,
..., arg n. The arguments are switches (Boolean flags), assignments, equations, and
functions. ev returns the result (another expression) of the evaluation.
The evaluation is carried out in steps, as follows.
1. First the environment is set up by scanning the arguments which may be any or

all of the following.
• simp causes expr to be simplified regardless of the setting of the switch simp

which inhibits simplification if false.
• noeval supresses the evaluation phase of ev (see step (4) below). This is

useful in conjunction with the other switches and in causing expr to be
resimplified without being reevaluated.

• nouns causes the evaluation of noun forms (typically unevaluated functions
such as ’integrate or ’diff) in expr.

• expand causes expansion.
• expand (m, n) causes expansion, setting the values of maxposex and

maxnegex to m and n respectively.
• detout causes any matrix inverses computed in expr to have their determi-

nant kept outside of the inverse rather than dividing through each element.
• diff causes all differentiations indicated in expr to be performed.
• derivlist (x, y, z, ...) causes only differentiations with respect to the

indicated variables.
• float causes non-integral rational numbers to be converted to floating point.
• numer causes some mathematical functions (including exponentiation) with

numerical arguments to be evaluated in floating point. It causes variables
in expr which have been given numervals to be replaced by their values. It
also sets the float switch on.

18 Maxima Manual

• pred causes predicates (expressions which evaluate to true or false) to be
evaluated.

• eval causes an extra post-evaluation of expr to occur. (See step (5) below.)
eval may occur multiple times. For each instance of eval, the expression is
evaluated again.

• A where A is an atom declared to be an evaluation flag (see evflag) causes
A to be bound to true during the evaluation of expr.

• V: expression (or alternately V=expression) causes V to be bound to the
value of expression during the evaluation of expr. Note that if V is a
Maxima option, then expression is used for its value during the evaluation
of expr. If more than one argument to ev is of this type then the binding is
done in parallel. If V is a non-atomic expression then a substitution rather
than a binding is performed.

• F where F, a function name, has been declared to be an evaluation function
(see evfun) causes F to be applied to expr.

• Any other function names (e.g., sum) cause evaluation of occurrences of those
names in expr as though they were verbs.

• In addition a function occurring in expr (say F(x)) may be defined locally
for the purpose of this evaluation of expr by giving F(x) := expression as
an argument to ev.

• If an atom not mentioned above or a subscripted variable or subscripted
expression was given as an argument, it is evaluated and if the result is an
equation or assignment then the indicated binding or substitution is per-
formed. If the result is a list then the members of the list are treated as if
they were additional arguments given to ev. This permits a list of equations
to be given (e.g. [X=1, Y=A**2]) or a list of names of equations (e.g., [%t1,
%t2] where %t1 and %t2 are equations) such as that returned by solve.

The arguments of ev may be given in any order with the exception of substi-
tution equations which are handled in sequence, left to right, and evaluation
functions which are composed, e.g., ev (expr, ratsimp, realpart) is handled
as realpart (ratsimp (expr)).

The simp, numer, float, and pred switches may also be set locally in a block,
or globally in Maxima so that they will remain in effect until being reset.

If expr is a canonical rational expression (CRE), then the expression returned by
ev is also a CRE, provided the numer and float switches are not both true.

2. During step (1), a list is made of the non-subscripted variables appearing on the
left side of equations in the arguments or in the value of some arguments if the
value is an equation. The variables (subscripted variables which do not have
associated array functions as well as non-subscripted variables) in the expression
expr are replaced by their global values, except for those appearing in this list.
Usually, expr is just a label or % (as in %i2 in the example below), so this step
simply retrieves the expression named by the label, so that ev may work on it.

3. If any substitutions are indicated by the arguments, they are carried out now.

Chapter 4: Command Line 19

4. The resulting expression is then re-evaluated (unless one of the arguments was
noeval) and simplified according to the arguments. Note that any function
calls in expr will be carried out after the variables in it are evaluated and that
ev(F(x)) thus may behave like F(ev(x)).

5. For each instance of eval in the arguments, steps (3) and (4) are repeated.

Examples
(%i1) sin(x) + cos(y) + (w+1)^2 + ’diff (sin(w), w);

d 2
(%o1) cos(y) + sin(x) + -- (sin(w)) + (w + 1)

dw
(%i2) ev (%, sin, expand, diff, x=2, y=1);

2
(%o2) cos(w) + w + 2 w + cos(1) + 1.909297426825682

An alternate top level syntax has been provided for ev, whereby one may just type
in its arguments, without the ev(). That is, one may write simply

expr, arg 1, ..., arg n

This is not permitted as part of another expression, e.g., in functions, blocks, etc.

Notice the parallel binding process in the following example.
(%i3) programmode: false;
(%o3) false
(%i4) x+y, x: a+y, y: 2;
(%o4) y + a + 2
(%i5) 2*x - 3*y = 3$
(%i6) -3*x + 2*y = -4$
(%i7) solve ([%o5, %o6]);
Solution

1
(%t7) y = - -

5

6
(%t8) x = -

5
(%o8) [[%t7, %t8]]
(%i8) %o6, %o8;
(%o8) - 4 = - 4
(%i9) x + 1/x > gamma (1/2);

1
(%o9) x + - > sqrt(%pi)

x
(%i10) %, numer, x=1/2;
(%o10) 2.5 > 1.772453850905516
(%i11) %, pred;
(%o11) true

20 Maxima Manual

Propertyevflag
When a symbol x has the evflag property, the expressions ev(expr, x) and expr,
x (at the interactive prompt) are equivalent to ev(expr, x = true). That is, x is
bound to true while expr is evaluated.
The expression declare(x, evflag) gives the evflag property to the variable x.
The flags which have the evflag property by default are the following:
algebraic, cauchysum, demoivre, dotscrules, %emode, %enumer, exponentialize,
exptisolate, factorflag, float, halfangles, infeval, isolate_wrt_times,
keepfloat, letrat, listarith, logabs, logarc, logexpand, lognegint, lognumer,
m1pbranch, numer_pbranch, programmode, radexpand, ratalgdenom, ratfac,
ratmx, ratsimpexpons, simp, simpsum, sumexpand, and trigexpand.
Examples:

(%i1) sin (1/2);
1

(%o1) sin(-)
2

(%i2) sin (1/2), float;
(%o2) 0.479425538604203
(%i3) sin (1/2), float=true;
(%o3) 0.479425538604203
(%i4) simp : false;
(%o4) false
(%i5) 1 + 1;
(%o5) 1 + 1
(%i6) 1 + 1, simp;
(%o6) 2
(%i7) simp : true;
(%o7) true
(%i8) sum (1/k^2, k, 1, inf);

inf
====
\ 1

(%o8) > --
/ 2
==== k
k = 1

(%i9) sum (1/k^2, k, 1, inf), simpsum;
2

%pi
(%o9) ----

6
(%i10) declare (aa, evflag);
(%o10) done
(%i11) if aa = true then YES else NO;
(%o11) NO
(%i12) if aa = true then YES else NO, aa;
(%o12) YES

Chapter 4: Command Line 21

Propertyevfun
When a function F has the evfun property, the expressions ev(expr, F) and expr,
F (at the interactive prompt) are equivalent to F(ev(expr)).
If two or more evfun functions F, G, etc., are specified, the functions are applied in
the order that they are specified.
The expression declare(F, evfun) gives the evfun property to the function F.
The functions which have the evfun property by default are the following: bfloat,
factor, fullratsimp, logcontract, polarform, radcan, ratexpand, ratsimp,
rectform, rootscontract, trigexpand, and trigreduce.
Examples:

(%i1) x^3 - 1;
3

(%o1) x - 1
(%i2) x^3 - 1, factor;

2
(%o2) (x - 1) (x + x + 1)
(%i3) factor (x^3 - 1);

2
(%o3) (x - 1) (x + x + 1)
(%i4) cos(4 * x) / sin(x)^4;

cos(4 x)
(%o4) --------

4
sin (x)

(%i5) cos(4 * x) / sin(x)^4, trigexpand;
4 2 2 4

sin (x) - 6 cos (x) sin (x) + cos (x)
(%o5) -------------------------------------

4
sin (x)

(%i6) cos(4 * x) / sin(x)^4, trigexpand, ratexpand;
2 4

6 cos (x) cos (x)
(%o6) - --------- + ------- + 1

2 4
sin (x) sin (x)

(%i7) ratexpand (trigexpand (cos(4 * x) / sin(x)^4));
2 4

6 cos (x) cos (x)
(%o7) - --------- + ------- + 1

2 4
sin (x) sin (x)

(%i8) declare ([F, G], evfun);
(%o8) done
(%i9) (aa : bb, bb : cc, cc : dd);
(%o9) dd
(%i10) aa;
(%o10) bb

22 Maxima Manual

(%i11) aa, F;
(%o11) F(cc)
(%i12) F (aa);
(%o12) F(bb)
(%i13) F (ev (aa));
(%o13) F(cc)
(%i14) aa, F, G;
(%o14) G(F(cc))
(%i15) G (F (ev (aa)));
(%o15) G(F(cc))

Option variableinfeval
Enables "infinite evaluation" mode. ev repeatedly evaluates an expression until it
stops changing. To prevent a variable, say X, from being evaluated away in this
mode, simply include X=’X as an argument to ev. Of course expressions such as ev
(X, X=X+1, infeval) will generate an infinite loop.

Functionkill (a 1, ..., a n)
Functionkill (labels)
Functionkill (inlabels, outlabels, linelabels)
Functionkill (n)
Functionkill ([m, n])
Functionkill (values, functions, arrays, ...)
Functionkill (all)
Functionkill (allbut (a 1, ..., a n))

Removes all bindings (value, function, array, or rule) from the arguments a 1, ..., a n.
An argument a k may be a symbol or a single array element. When a k is a single
array element, kill unbinds that element without affecting any other elements of the
array.

Several special arguments are recognized. Different kinds of arguments may be com-
bined, e.g., kill (inlabels, functions, allbut (foo, bar)).

kill (labels) unbinds all input, output, and intermediate expression labels created
so far. kill (inlabels) unbinds only input labels which begin with the current value
of inchar. Likewise, kill (outlabels) unbinds only output labels which begin with
the current value of outchar, and kill (linelabels) unbinds only intermediate
expression labels which begin with the current value of linechar.

kill (n), where n is an integer, unbinds the n most recent input and output labels.

kill ([m, n]) unbinds input and output labels m through n.

kill (infolist), where infolist is any item in infolists (such as values, functions,
or arrays) unbinds all items in infolist. See also infolists.

kill (all) unbinds all items on all infolists. kill (all) does not reset global vari-
ables to their default values; see reset on this point.

kill (allbut (a 1, ..., a n)) unbinds all items on all infolists except for a 1, ...,
a n. kill (allbut (infolist)) unbinds all items except for the ones on infolist, where
infolist is values, functions, arrays, etc.

Chapter 4: Command Line 23

The memory taken up by a bound property is not released until all symbols are
unbound from it. In particular, to release the memory taken up by the value of
a symbol, one unbinds the output label which shows the bound value, as well as
unbinding the symbol itself.
kill quotes its arguments. The quote-quote operator ’’ defeats quotation.
kill (symbol) unbinds all properties of symbol. In contrast, remvalue,
remfunction, remarray, and remrule unbind a specific property.
kill always returns done, even if an argument has no binding.

Functionlabels (symbol)
System variablelabels

Returns the list of input, output, or intermediate expression labels which begin with
symbol. Typically symbol is the value of inchar, outchar, or linechar. The label
character may be given with or without a percent sign, so, for example, i and %i
yield the same result.
If no labels begin with symbol, labels returns an empty list.
The function labels quotes its argument. The quote-quote operator ’’ defeats quo-
tation. For example, labels (’’inchar) returns the input labels which begin with
the current input label character.
The variable labels is the list of input, output, and intermediate expression labels,
including all previous labels if inchar, outchar, or linechar were redefined.
By default, Maxima displays the result of each user input expression, giving the result
an output label. The output display is suppressed by terminating the input with $
(dollar sign) instead of ; (semicolon). An output label is constructed and bound to
the result, but not displayed, and the label may be referenced in the same way as
displayed output labels. See also %, %%, and %th.
Intermediate expression labels can be generated by some functions. The flag
programmode controls whether solve and some other functions generate intermediate
expression labels instead of returning a list of expressions. Some other functions,
such as ldisplay, always generate intermediate expression labels.
See also inchar, outchar, linechar, and infolists.

System variablelinenum
The line number of the current pair of input and output expressions.

System variablemyoptions
Default value: []
myoptions is the list of all options ever reset by the user, whether or not they get
reset to their default value.

Option variablenolabels
Default value: false
When nolabels is true, input and output result labels (%i and %o, respectively) are
displayed, but the labels are not bound to results, and the labels are not appended to

24 Maxima Manual

the labels list. Since labels are not bound to results, garbage collection can recover
the memory taken up by the results.
Otherwise input and output result labels are bound to results, and the labels are
appended to the labels list.
Intermediate expression labels (%t) are not affected by nolabels; whether nolabels
is true or false, intermediate expression labels are bound and appended to the
labels list.
See also batch, load, and labels.

Option variableoptionset
Default value: false
When optionset is true, Maxima prints out a message whenever a Maxima option
is reset. This is useful if the user is doubtful of the spelling of some option and wants
to make sure that the variable he assigned a value to was truly an option variable.

Functionplayback ()
Functionplayback (n)
Functionplayback ([m, n])
Functionplayback ([m])
Functionplayback (input)
Functionplayback (slow)
Functionplayback (time)
Functionplayback (grind)

Displays input, output, and intermediate expressions, without recomputing them.
playback only displays the expressions bound to labels; any other output (such as
text printed by print or describe, or error messages) is not displayed. See also
labels.
playback quotes its arguments. The quote-quote operator ’’ defeats quotation.
playback always returns done.
playback () (with no arguments) displays all input, output, and intermediate expres-
sions generated so far. An output expression is displayed even if it was suppressed by
the $ terminator when it was originally computed.
playback (n) displays the most recent n expressions. Each input, output, and inter-
mediate expression counts as one.
playback ([m, n]) displays input, output, and intermediate expressions with num-
bers from m through n, inclusive.
playback ([m]) is equivalent to playback ([m, m]); this usually prints one pair
of input and output expressions.
playback (input) displays all input expressions generated so far.
playback (slow) pauses between expressions and waits for the user to press enter.
This behavior is similar to demo. playback (slow) is useful in conjunction with
save or stringout when creating a secondary-storage file in order to pick out useful
expressions.
playback (time) displays the computation time for each expression.

Chapter 4: Command Line 25

playback (grind) displays input expressions in the same format as the grind func-
tion. Output expressions are not affected by the grind option. See grind.
Arguments may be combined, e.g., playback ([5, 10], grind, time, slow).

Functionprintprops (a, i)
Functionprintprops ([a 1, ..., a n], i)
Functionprintprops (all, i)

Displays the property with the indicator i associated with the atom a. a may also
be a list of atoms or the atom all in which case all of the atoms with the given
property will be used. For example, printprops ([f, g], atvalue). printprops
is for properties that cannot otherwise be displayed, i.e. for atvalue, atomgrad,
gradef, and matchdeclare.

Option variableprompt
Default value: _
prompt is the prompt symbol of the demo function, playback (slow) mode, and the
Maxima break loop (as invoked by break).

Functionquit ()
Terminates the Maxima session. Note that the function must be invoked as quit();
or quit()$, not quit by itself.
To stop a lengthy computation, type control-C. The default action is to return to the
Maxima prompt. If *debugger-hook* is nil, control-C opens the Lisp debugger.
See also debugging.

Functionremfunction (f 1, ..., f n)
Functionremfunction (all)

Unbinds the function definitions of the symbols f 1, ..., f n. The arguments may be the
names of ordinary functions (created by := or define) or macro functions (created
by ::=).
remfunction (all) unbinds all function definitions.
remfunction quotes its arguments.
remfunction returns a list of the symbols for which the function definition was un-
bound. false is returned in place of any symbol for which there is no function
definition.
remfunction does not apply to array functions or subscripted functions. remarray
applies to those types of functions.

Functionreset ()
Resets many global variables and options, and some other variables, to their default
values.
reset processes the variables on the Lisp list *variable-initial-values*. The
Lisp macro defmvar puts variables on this list (among other actions). Many, but not
all, global variables and options are defined by defmvar, and some variables defined
by defmvar are not global variables or options.

26 Maxima Manual

Option variableshowtime
Default value: false
When showtime is true, the computation time and elapsed time is printed with each
output expression.
The computation time is always recorded, so time and playback can display the
computation time even when showtime is false.
See also timer.

Functionsstatus (feature, package)
Sets the status of feature in package. After sstatus (feature, package) is executed,
status (feature, package) returns true. This can be useful for package writers, to
keep track of what features they have loaded in.

Functionto lisp ()
Enters the Lisp system under Maxima. (to-maxima) returns to Maxima.

System variablevalues
Initial value: []
values is a list of all bound user variables (not Maxima options or switches). The
list comprises symbols bound by : , ::, or :=.

Chapter 5: Operators 27

5 Operators

5.1 nary

An nary operator is used to denote a function of any number of arguments, each of
which is separated by an occurrence of the operator, e.g. A+B or A+B+C. The nary("x")
function is a syntax extension function to declare x to be an nary operator. Functions may
be declared to be nary. If declare(j,nary); is done, this tells the simplifier to simplify,
e.g. j(j(a,b),j(c,d)) to j(a, b, c, d).

See also Syntax.

5.2 nofix

nofix operators are used to denote functions of no arguments. The mere presence of
such an operator in a command will cause the corresponding function to be evaluated. For
example, when one types "exit;" to exit from a Maxima break, "exit" is behaving similar to
a nofix operator. The function nofix("x") is a syntax extension function which declares
x to be a nofix operator.

See also Syntax.

5.3 postfix

postfix operators like the prefix variety denote functions of a single argument, but
in this case the argument immediately precedes an occurrence of the operator in the input
string, e.g. 3! . The postfix("x") function is a syntax extension function to declare x to
be a postfix operator.

See also Syntax.

5.4 prefix

A prefix operator is one which signifies a function of one argument, which argument
immediately follows an occurrence of the operator. prefix("x") is a syntax extension
function to declare x to be a prefix operator.

See also Syntax.

5.5 Arithmetic operators

Operator+
Operator-
Operator*
Operator/
Operator^

The symbols + * / and ^ represent addition, multiplication, division, and exponen-
tiation, respectively. The names of these operators are "+" "*" "/" and "^", which
may appear where the name of a function or operator is required.

28 Maxima Manual

The symbols + and - represent unary addition and negation, respectively, and the
names of these operators are "+" and "-", respectively.
Subtraction a - b is represented within Maxima as addition, a + (- b). Expressions
such as a + (- b) are displayed as subtraction. Maxima recognizes "-" only as the
name of the unary negation operator, and not as the name of the binary subtraction
operator.
Division a / b is represented within Maxima as multiplication, a * b^(- 1). Expres-
sions such as a * b^(- 1) are displayed as division. Maxima recognizes "/" as the
name of the division operator.
Addition and multiplication are n-ary, commutative operators. Division and expo-
nentiation are binary, noncommutative operators.
Maxima sorts the operands of commutative operators to construct a canonical rep-
resentation. For internal storage, the ordering is determined by orderlessp. For
display, the ordering for addition is determined by ordergreatp, and for multiplica-
tion, it is the same as the internal ordering.
Arithmetic computations are carried out on literal numbers (integers, rationals, or-
dinary floats, and bigfloats). Except for exponentiation, all arithmetic operations on
numbers are simplified to numbers. Exponentiation is simplified to a number if either
operand is an ordinary float or bigfloat or if the result is an exact integer or rational;
otherwise an exponentiation may be simplified to sqrt or another exponentiation or
left unchanged.
Floating-point contagion applies to arithmetic computations: if any operand is a
bigfloat, the result is a bigfloat; otherwise, if any operand is an ordinary float, the
result is an ordinary float; otherwise, the operands are rationals or integers and the
result is a rational or integer.
Arithmetic computations are a simplification, not an evaluation. Thus arithmetic is
carried out in quoted (but simplified) expressions.
Arithmetic operations are applied element-by-element to lists when the global flag
listarith is true, and always applied element-by-element to matrices. When one
operand is a list or matrix and another is an operand of some other type, the other
operand is combined with each of the elements of the list or matrix.
Examples:
Addition and multiplication are n-ary, commutative operators. Maxima sorts the
operands to construct a canonical representation. The names of these operators are
"+" and "*".

(%i1) c + g + d + a + b + e + f;
(%o1) g + f + e + d + c + b + a
(%i2) [op (%), args (%)];
(%o2) [+, [g, f, e, d, c, b, a]]
(%i3) c * g * d * a * b * e * f;
(%o3) a b c d e f g
(%i4) [op (%), args (%)];
(%o4) [*, [a, b, c, d, e, f, g]]
(%i5) apply ("+", [a, 8, x, 2, 9, x, x, a]);
(%o5) 3 x + 2 a + 19

Chapter 5: Operators 29

(%i6) apply ("*", [a, 8, x, 2, 9, x, x, a]);
2 3

(%o6) 144 a x

Division and exponentiation are binary, noncommutative operators. The names of
these operators are "/" and "^".

(%i1) [a / b, a ^ b];
a b

(%o1) [-, a]
b

(%i2) [map (op, %), map (args, %)];
(%o2) [[/, ^], [[a, b], [a, b]]]
(%i3) [apply ("/", [a, b]), apply ("^", [a, b])];

a b
(%o3) [-, a]

b

Subtraction and division are represented internally in terms of addition and multipli-
cation, respectively.

(%i1) [inpart (a - b, 0), inpart (a - b, 1), inpart (a - b, 2)];
(%o1) [+, a, - b]
(%i2) [inpart (a / b, 0), inpart (a / b, 1), inpart (a / b, 2)];

1
(%o2) [*, a, -]

b

Computations are carried out on literal numbers. Floating-point contagion applies.
(%i1) 17 + b - (1/2)*29 + 11^(2/4);

5
(%o1) b + sqrt(11) + -

2
(%i2) [17 + 29, 17 + 29.0, 17 + 29b0];
(%o2) [46, 46.0, 4.6b1]

Arithmetic computations are a simplification, not an evaluation.
(%i1) simp : false;
(%o1) false
(%i2) ’(17 + 29*11/7 - 5^3);

29 11 3
(%o2) 17 + ----- - 5

7
(%i3) simp : true;
(%o3) true
(%i4) ’(17 + 29*11/7 - 5^3);

437
(%o4) - ---

7

Arithmetic is carried out element-by-element for lists (depending on listarith) and
matrices.

(%i1) matrix ([a, x], [h, u]) - matrix ([1, 2], [3, 4]);
[a - 1 x - 2]

30 Maxima Manual

(%o1) []
[h - 3 u - 4]

(%i2) 5 * matrix ([a, x], [h, u]);
[5 a 5 x]

(%o2) []
[5 h 5 u]

(%i3) listarith : false;
(%o3) false
(%i4) [a, c, m, t] / [1, 7, 2, 9];

[a, c, m, t]
(%o4) ------------

[1, 7, 2, 9]
(%i5) [a, c, m, t] ^ x;

x
(%o5) [a, c, m, t]
(%i6) listarith : true;
(%o6) true
(%i7) [a, c, m, t] / [1, 7, 2, 9];

c m t
(%o7) [a, -, -, -]

7 2 9
(%i8) [a, c, m, t] ^ x;

x x x x
(%o8) [a , c , m , t]

Operator**
Exponentiation operator. Maxima recognizes ** as the same operator as ^ in input,
and it is displayed as ^ in 1-dimensional output, or by placing the exponent as a
superscript in 2-dimensional output.

The fortran function displays the exponentiation operator as **, whether it was
input as ** or ^.

Examples:

(%i1) is (a**b = a^b);
(%o1) true
(%i2) x**y + x^z;

z y
(%o2) x + x
(%i3) string (x**y + x^z);
(%o3) x^z+x^y
(%i4) fortran (x**y + x^z);

x**z+x**y
(%o4) done

5.6 Relational operators

Chapter 5: Operators 31

Operator<
Operator<=
Operator>=
Operator>

The symbols < <= >= and > represent less than, less than or equal, greater than or
equal, and greater than, respectively. The names of these operators are "<" "<=" ">="
and ">", which may appear where the name of a function or operator is required.

These relational operators are all binary operators; constructs such as a < b < c are
not recognized by Maxima.

Relational expressions are evaluated to Boolean values by the functions is and maybe,
and the programming constructs if, while, and unless. Relational expressions are
not otherwise evaluated or simplified to Boolean values, although the arguments of
relational expressions are evaluated (when evaluation is not otherwise prevented by
quotation).

When a relational expression cannot be evaluated to true or false, the behavior
of is and if are governed by the global flag prederror. When prederror is true,
is and if trigger an error. When prederror is false, is returns unknown, and if
returns a partially-evaluated conditional expression.

maybe always behaves as if prederror were false, and while and unless always
behave as if prederror were true.

Relational operators do not distribute over lists or other aggregates.

See also = # equal and notequal.

Examples:

Relational expressions are evaluated to Boolean values by some functions and pro-
gramming constructs.

(%i1) [x, y, z] : [123, 456, 789];
(%o1) [123, 456, 789]
(%i2) is (x < y);
(%o2) true
(%i3) maybe (y > z);
(%o3) false
(%i4) if x >= z then 1 else 0;
(%o4) 0
(%i5) block ([S], S : 0, for i:1 while i <= 100 do S : S + i, return (S));
(%o5) 5050

Relational expressions are not otherwise evaluated or simplified to Boolean values,
although the arguments of relational expressions are evaluated.

(%o1) [123, 456, 789]
(%i2) [x < y, y <= z, z >= y, y > z];
(%o2) [123 < 456, 456 <= 789, 789 >= 456, 456 > 789]
(%i3) map (is, %);
(%o3) [true, true, true, false]

32 Maxima Manual

5.7 General operators

Operator^^
Noncommutative exponentiation operator. ^^ is the exponentiation operator corre-
sponding to noncommutative multiplication ., just as the ordinary exponentiation
operator ^ corresponds to commutative multiplication *.
Noncommutative exponentiation is displayed by ^^ in 1-dimensional output, and by
placing the exponent as a superscript within angle brackets < > in 2-dimensional
output.
Examples:

(%i1) a . a . b . b . b + a * a * a * b * b;
3 2 <2> <3>

(%o1) a b + a . b
(%i2) string (a . a . b . b . b + a * a * a * b * b);
(%o2) a^3*b^2+a^^2 . b^^3

Operator!
The factorial operator. For any complex number x (including integer, rational, and
real numbers) except for negative integers, x! is defined as gamma(x+1).
For an integer x, x! simplifies to the product of the integers from 1 to x inclusive.
0! simplifies to 1. For a floating point number x, x! simplifies to the value of gamma
(x+1). For x equal to n/2 where n is an odd integer, x! simplifies to a rational factor
times sqrt (%pi) (since gamma (1/2) is equal to sqrt (%pi)). If x is anything else,
x! is not simplified.
The variables factlim, minfactorial, and factcomb control the simplification of
expressions containing factorials.
The functions gamma, bffac, and cbffac are varieties of the gamma function.
makegamma substitutes gamma for factorials and related functions.
See also binomial.
The factorial of an integer, half-integer, or floating point argument is simplified unless
the operand is greater than factlim.

(%i1) factlim : 10;
(%o1) 10
(%i2) [0!, (7/2)!, 4.77!, 8!, 20!];

105 sqrt(%pi)
(%o2) [1, -------------, 81.44668037931199, 40320, 20!]

16

The factorial of a complex number, known constant, or general expression is not
simplified. Even so it may be possible simplify the factorial after evaluating the
operand.

(%i1) [(%i + 1)!, %pi!, %e!, (cos(1) + sin(1))!];
(%o1) [(%i + 1)!, %pi!, %e!, (sin(1) + cos(1))!]
(%i2) ev (%, numer, %enumer);
(%o2) [(%i + 1)!, 7.188082728976037, 4.260820476357,

Chapter 5: Operators 33

1.227580202486819]

The factorial of an unbound symbol is not simplified.

(%i1) kill (foo);
(%o1) done
(%i2) foo!;
(%o2) foo!

Factorials are simplified, not evaluated. Thus x! may be replaced even in a quoted
expression.

(%i1) ’([0!, (7/2)!, 4.77!, 8!, 20!]);
105 sqrt(%pi)

(%o1) [1, -------------, 81.44668037931199, 40320,
16

2432902008176640000]

Operator!!
The double factorial operator.

For an integer, float, or rational number n, n!! evaluates to the product n (n-2) (n-
4) (n-6) ... (n - 2 (k-1)) where k is equal to entier (n/2), that is, the largest
integer less than or equal to n/2. Note that this definition does not coincide with
other published definitions for arguments which are not integers.

For an even (or odd) integer n, n!! evaluates to the product of all the consecutive
even (or odd) integers from 2 (or 1) through n inclusive.

For an argument n which is not an integer, float, or rational, n!! yields a noun form
genfact (n, n/2, 2).

Operator#
Represents the negation of syntactic equality =.

Note that because of the rules for evaluation of predicate expressions (in particular
because not expr causes evaluation of expr), not a = b is equivalent to is(a # b),
instead of a # b.

Examples:

(%i1) a = b;
(%o1) a = b
(%i2) is (a = b);
(%o2) false
(%i3) a # b;
(%o3) a # b
(%i4) not a = b;
(%o4) true
(%i5) is (a # b);
(%o5) true
(%i6) is (not a = b);
(%o6) true

34 Maxima Manual

Operator.
The dot operator, for matrix (non-commutative) multiplication. When "." is used
in this way, spaces should be left on both sides of it, e.g. A . B. This distinguishes it
plainly from a decimal point in a floating point number.
See also dot, dot0nscsimp, dot0simp, dot1simp, dotassoc, dotconstrules,
dotdistrib, dotexptsimp, dotident, and dotscrules.

Operator:
Assignment operator.
When the left-hand side is a simple variable (not subscripted), : evaluates its right-
hand side and associates that value with the left-hand side.
When the left-hand side is a subscripted element of a list, matrix, declared Maxima
array, or Lisp array, the right-hand side is assigned to that element. The subscript
must name an existing element; such objects cannot be extended by naming nonex-
istent elements.
When the left-hand side is a subscripted element of an undeclared Maxima array, the
right-hand side is assigned to that element, if it already exists, or a new element is
allocated, if it does not already exist.
When the left-hand side is a list of simple and/or subscripted variables, the right-hand
side must evaluate to a list, and the elements of the right-hand side are assigned to
the elements of the left-hand side, in parallel.
See also kill and remvalue, which undo the association between the left-hand side
and its value.
Examples:
Assignment to a simple variable.

(%i1) a;
(%o1) a
(%i2) a : 123;
(%o2) 123
(%i3) a;
(%o3) 123

Assignment to an element of a list.
(%i1) b : [1, 2, 3];
(%o1) [1, 2, 3]
(%i2) b[3] : 456;
(%o2) 456
(%i3) b;
(%o3) [1, 2, 456]

Assignment creates an undeclared array.
(%i1) c[99] : 789;
(%o1) 789
(%i2) c[99];
(%o2) 789
(%i3) c;
(%o3) c

Chapter 5: Operators 35

(%i4) arrayinfo (c);
(%o4) [hashed, 1, [99]]
(%i5) listarray (c);
(%o5) [789]

Multiple assignment.

(%i1) [a, b, c] : [45, 67, 89];
(%o1) [45, 67, 89]
(%i2) a;
(%o2) 45
(%i3) b;
(%o3) 67
(%i4) c;
(%o4) 89

Multiple assignment is carried out in parallel. The values of a and b are exchanged
in this example.

(%i1) [a, b] : [33, 55];
(%o1) [33, 55]
(%i2) [a, b] : [b, a];
(%o2) [55, 33]
(%i3) a;
(%o3) 55
(%i4) b;
(%o4) 33

Operator::
Assignment operator.

:: is the same as : (which see) except that :: evaluates its left-hand side as well as
its right-hand side.

Examples:

(%i1) x : ’foo;
(%o1) foo
(%i2) x :: 123;
(%o2) 123
(%i3) foo;
(%o3) 123
(%i4) x : ’[a, b, c];
(%o4) [a, b, c]
(%i5) x :: [11, 22, 33];
(%o5) [11, 22, 33]
(%i6) a;
(%o6) 11
(%i7) b;
(%o7) 22
(%i8) c;
(%o8) 33

36 Maxima Manual

Operator::=
Macro function definition operator. ::= defines a function (called a "macro" for
historical reasons) which quotes its arguments, and the expression which it returns
(called the "macro expansion") is evaluated in the context from which the macro was
called. A macro function is otherwise the same as an ordinary function.
macroexpand returns a macro expansion (without evaluating it). macroexpand (foo
(x)) followed by ’’% is equivalent to foo (x) when foo is a macro function.
::= puts the name of the new macro function onto the global list macros. kill,
remove, and remfunction unbind macro function definitions and remove names from
macros.
fundef or dispfun return a macro function definition or assign it to a label, respec-
tively.
Macro functions commonly contain buildq and splice expressions to construct an
expression, which is then evaluated.
Examples
A macro function quotes its arguments, so message (1) shows y - z, not the value of
y - z. The macro expansion (the quoted expression ’(print ("(2) x is equal to",
x)) is evaluated in the context from which the macro was called, printing message
(2).

(%i1) x: %pi;
(%o1) %pi
(%i2) y: 1234;
(%o2) 1234
(%i3) z: 1729 * w;
(%o3) 1729 w
(%i4) printq1 (x) ::= block (print ("(1) x is equal to", x),

’(print ("(2) x is equal to", x)));
(%o4) printq1(x) ::= block(print("(1) x is equal to", x),

’(print("(2) x is equal to", x)))
(%i5) printq1 (y - z);
(1) x is equal to y - z
(2) x is equal to %pi
(%o5) %pi

An ordinary function evaluates is arguments, so message (1) shows the value of y -
z. The return value is not evaluated, so message (2) is not printed until the explicit
evaluation ’’%.

(%i1) x: %pi;
(%o1) %pi
(%i2) y: 1234;
(%o2) 1234
(%i3) z: 1729 * w;
(%o3) 1729 w
(%i4) printe1 (x) := block (print ("(1) x is equal to", x),

’(print ("(2) x is equal to", x)));
(%o4) printe1(x) := block(print("(1) x is equal to", x),

’(print("(2) x is equal to", x)))

Chapter 5: Operators 37

(%i5) printe1 (y - z);
(1) x is equal to 1234 - 1729 w
(%o5) print((2) x is equal to, x)
(%i6) ’’%;
(2) x is equal to %pi
(%o6) %pi

macroexpand returns a macro expansion. macroexpand (foo (x)) followed by ’’% is
equivalent to foo (x) when foo is a macro function.

(%i1) x: %pi;
(%o1) %pi
(%i2) y: 1234;
(%o2) 1234
(%i3) z: 1729 * w;
(%o3) 1729 w
(%i4) g (x) ::= buildq ([x], print ("x is equal to", x));
(%o4) g(x) ::= buildq([x], print("x is equal to", x))
(%i5) macroexpand (g (y - z));
(%o5) print(x is equal to, y - z)
(%i6) ’’%;
x is equal to 1234 - 1729 w
(%o6) 1234 - 1729 w
(%i7) g (y - z);
x is equal to 1234 - 1729 w
(%o7) 1234 - 1729 w

Operator:=
The function definition operator. f (x 1, ..., x n) := expr defines a function named
f with arguments x 1, ..., x n and function body expr. := never evaluates the function
body (unless explicitly evaluated by quote-quote ’’). The function so defined may be
an ordinary Maxima function (with arguments enclosed in parentheses) or an array
function (with arguments enclosed in square brackets).
When the last or only function argument x n is a list of one element, the function
defined by := accepts a variable number of arguments. Actual arguments are assigned
one-to-one to formal arguments x 1, ..., x (n - 1), and any further actual arguments,
if present, are assigned to x n as a list.
All function definitions appear in the same namespace; defining a function f within
another function g does not limit the scope of f to g.
If some formal argument x k is a quoted symbol, the function defined by := does
not evaluate the corresponding actual argument. Otherwise all actual arguments are
evaluated.
See also define and ::=.
Examples:
:= never evaluates the function body (unless explicitly evaluated by quote-quote).

(%i1) expr : cos(y) - sin(x);
(%o1) cos(y) - sin(x)
(%i2) F1 (x, y) := expr;

38 Maxima Manual

(%o2) F1(x, y) := expr
(%i3) F1 (a, b);
(%o3) cos(y) - sin(x)
(%i4) F2 (x, y) := ’’expr;
(%o4) F2(x, y) := cos(y) - sin(x)
(%i5) F2 (a, b);
(%o5) cos(b) - sin(a)

The function defined by := may be an ordinary Maxima function or an array function.
(%i1) G1 (x, y) := x.y - y.x;
(%o1) G1(x, y) := x . y - y . x
(%i2) G2 [x, y] := x.y - y.x;
(%o2) G2 := x . y - y . x

x, y

When the last or only function argument x n is a list of one element, the function
defined by := accepts a variable number of arguments.

(%i1) H ([L]) := apply ("+", L);
(%o1) H([L]) := apply("+", L)
(%i2) H (a, b, c);
(%o2) c + b + a

Operator=
The equation operator.
An expression a = b, by itself, represents an unevaluated equation, which might or
might not hold. Unevaluated equations may appear as arguments to solve and
algsys or some other functions.
The function is evaluates = to a Boolean value. is(a = b) evaluates a = b to true
when a and b are identical. That is, a and b are atoms which are identical, or they
are not atoms and their operators are identical and their arguments are identical.
Otherwise, is(a = b) evaluates to false; it never evaluates to unknown. When is(a
= b) is true, a and b are said to be syntactically equal, in contrast to equivalent
expressions, for which is(equal(a, b)) is true. Expressions can be equivalent and
not syntactically equal.
The negation of = is represented by #. As with =, an expression a # b, by itself, is not
evaluated. is(a # b) evaluates a # b to true or false.
In addition to is, some other operators evaluate = and # to true or false, namely
if, and, or, and not.
Note that because of the rules for evaluation of predicate expressions (in particular
because not expr causes evaluation of expr), not a = b is equivalent to is(a # b),
instead of a # b.
rhs and lhs return the right-hand and left-hand sides, respectively, of an equation
or inequation.
See also equal and notequal.
Examples:
An expression a = b, by itself, represents an unevaluated equation, which might or
might not hold.

Chapter 5: Operators 39

(%i1) eq_1 : a * x - 5 * y = 17;
(%o1) a x - 5 y = 17
(%i2) eq_2 : b * x + 3 * y = 29;
(%o2) 3 y + b x = 29
(%i3) solve ([eq_1, eq_2], [x, y]);

196 29 a - 17 b
(%o3) [[x = ---------, y = -----------]]

5 b + 3 a 5 b + 3 a
(%i4) subst (%, [eq_1, eq_2]);

196 a 5 (29 a - 17 b)
(%o4) [--------- - --------------- = 17,

5 b + 3 a 5 b + 3 a
196 b 3 (29 a - 17 b)

--------- + --------------- = 29]
5 b + 3 a 5 b + 3 a

(%i5) ratsimp (%);
(%o5) [17 = 17, 29 = 29]

is(a = b) evaluates a = b to true when a and b are syntactically equal (that is,
identical). Expressions can be equivalent and not syntactically equal.

(%i1) a : (x + 1) * (x - 1);
(%o1) (x - 1) (x + 1)
(%i2) b : x^2 - 1;

2
(%o2) x - 1
(%i3) [is (a = b), is (a # b)];
(%o3) [false, true]
(%i4) [is (equal (a, b)), is (notequal (a, b))];
(%o4) [true, false]

Some operators evaluate = and # to true or false.
(%i1) if expand ((x + y)^2) = x^2 + 2 * x * y + y^2 then FOO else

BAR;
(%o1) FOO
(%i2) eq_3 : 2 * x = 3 * x;
(%o2) 2 x = 3 x
(%i3) eq_4 : exp (2) = %e^2;

2 2
(%o3) %e = %e
(%i4) [eq_3 and eq_4, eq_3 or eq_4, not eq_3];
(%o4) [false, true, true]

Because not expr causes evaluation of expr, not a = b is equivalent to is(a # b).
(%i1) [2 * x # 3 * x, not (2 * x = 3 * x)];
(%o1) [2 x # 3 x, true]
(%i2) is (2 * x # 3 * x);
(%o2) true

Operatorand
The logical conjunction operator. and is an n-ary infix operator; its operands are
Boolean expressions, and its result is a Boolean value.

40 Maxima Manual

and forces evaluation (like is) of one or more operands, and may force evaluation of
all operands.
Operands are evaluated in the order in which they appear. and evaluates only as
many of its operands as necessary to determine the result. If any operand is false,
the result is false and no further operands are evaluated.
The global flag prederror governs the behavior of and when an evaluated operand
cannot be determined to be true or false. and prints an error message when
prederror is true. Otherwise, operands which do not evaluate to true or false
are accepted, and the result is a Boolean expression.
and is not commutative: a and b might not be equal to b and a due to the treatment
of indeterminate operands.

Operatoror
The logical disjunction operator. or is an n-ary infix operator; its operands are
Boolean expressions, and its result is a Boolean value.
or forces evaluation (like is) of one or more operands, and may force evaluation of
all operands.
Operands are evaluated in the order in which they appear. or evaluates only as many
of its operands as necessary to determine the result. If any operand is true, the result
is true and no further operands are evaluated.
The global flag prederror governs the behavior of or when an evaluated operand can-
not be determined to be true or false. or prints an error message when prederror
is true. Otherwise, operands which do not evaluate to true or false are accepted,
and the result is a Boolean expression.
or is not commutative: a or b might not be equal to b or a due to the treatment of
indeterminate operands.

Operatornot
The logical negation operator. not is a prefix operator; its operand is a Boolean
expression, and its result is a Boolean value.
not forces evaluation (like is) of its operand.
The global flag prederror governs the behavior of not when its operand cannot be
determined to be true or false. not prints an error message when prederror is
true. Otherwise, operands which do not evaluate to true or false are accepted, and
the result is a Boolean expression.

Functionabs (expr)
Returns the absolute value expr. If expr is complex, returns the complex modulus of
expr.

Keywordadditive
If declare(f,additive) has been executed, then:
(1) If f is univariate, whenever the simplifier encounters f applied to a sum, f will be
distributed over that sum. I.e. f(y+x) will simplify to f(y)+f(x).

Chapter 5: Operators 41

(2) If f is a function of 2 or more arguments, additivity is defined as additivity in
the first argument to f, as in the case of sum or integrate, i.e. f(h(x)+g(x),x)
will simplify to f(h(x),x)+f(g(x),x). This simplification does not occur when f is
applied to expressions of the form sum(x[i],i,lower-limit,upper-limit).

Keywordallbut
works with the part commands (i.e. part, inpart, substpart, substinpart, dpart,
and lpart). For example,

(%i1) expr : e + d + c + b + a;
(%o1) e + d + c + b + a
(%i2) part (expr, [2, 5]);
(%o2) d + a

while
(%i1) expr : e + d + c + b + a;
(%o1) e + d + c + b + a
(%i2) part (expr, allbut (2, 5));
(%o2) e + c + b

allbut is also recognized by kill.
(%i1) [aa : 11, bb : 22, cc : 33, dd : 44, ee : 55];
(%o1) [11, 22, 33, 44, 55]
(%i2) kill (allbut (cc, dd));
(%o0) done
(%i1) [aa, bb, cc, dd];
(%o1) [aa, bb, 33, 44]

kill(allbut(a 1, a 2, ...)) has the effect of kill(all) except that it does not
kill the symbols a 1, a 2,

Declarationantisymmetric
If declare(h,antisymmetric) is done, this tells the simplifier that h is antisymmet-
ric. E.g. h(x,z,y) will simplify to - h(x, y, z). That is, it will give (-1)^n times the
result given by symmetric or commutative, where n is the number of interchanges of
two arguments necessary to convert it to that form.

Functioncabs (expr)
Returns the complex absolute value (the complex modulus) of expr.

Functionceiling (x)
When x is a real number, return the least integer that is greater than or equal to x.
If x is a constant expression (10 * %pi, for example), ceiling evaluates x using
big floating point numbers, and applies ceiling to the resulting big float. Because
ceiling uses floating point evaluation, it’s possible, although unlikely, that ceiling
could return an erroneous value for constant inputs. To guard against errors, the
floating point evaluation is done using three values for fpprec.
For non-constant inputs, ceiling tries to return a simplified value. Here are examples
of the simplifications that ceiling knows about:

42 Maxima Manual

(%i1) ceiling (ceiling (x));
(%o1) ceiling(x)
(%i2) ceiling (floor (x));
(%o2) floor(x)
(%i3) declare (n, integer)$
(%i4) [ceiling (n), ceiling (abs (n)), ceiling (max (n, 6))];
(%o4) [n, abs(n), max(n, 6)]
(%i5) assume (x > 0, x < 1)$
(%i6) ceiling (x);
(%o6) 1
(%i7) tex (ceiling (a));
$$\left \lceil a \right \rceil$$
(%o7) false

The function ceiling does not automatically map over lists or matrices. Finally, for
all inputs that are manifestly complex, ceiling returns a noun form.
If the range of a function is a subset of the integers, it can be declared to be
integervalued. Both the ceiling and floor functions can use this information;
for example:

(%i1) declare (f, integervalued)$
(%i2) floor (f(x));
(%o2) f(x)
(%i3) ceiling (f(x) - 1);
(%o3) f(x) - 1

Functioncharfun (p)
Return 0 when the predicate p evaluates to false; return 1 when the predicate
evaluates to true. When the predicate evaluates to something other than true or
false (unknown), return a noun form.
Examples:

(%i1) charfun (x < 1);
(%o1) charfun(x < 1)
(%i2) subst (x = -1, %);
(%o2) 1
(%i3) e : charfun (’"and" (-1 < x, x < 1))$
(%i4) [subst (x = -1, e), subst (x = 0, e), subst (x = 1, e)];
(%o4) [0, 1, 0]

Declarationcommutative
If declare(h,commutative) is done, this tells the simplifier that h is a commutative
function. E.g. h(x,z,y) will simplify to h(x, y, z). This is the same as symmetric.

Functioncompare (x, y)
Return a comparison operator op (<, <=, >, >=, =, or #) such that is (x op y) eval-
uates to true; when either x or y depends on %i and x # y , return notcomparable;
when there is no such operator or Maxima isn’t able to determine the operator, return
unknown.
Examples:

Chapter 5: Operators 43

(%i1) compare (1, 2);
(%o1) <
(%i2) compare (1, x);
(%o2) unknown
(%i3) compare (%i, %i);
(%o3) =
(%i4) compare (%i, %i + 1);
(%o4) notcomparable
(%i5) compare (1/x, 0);
(%o5) #
(%i6) compare (x, abs(x));
(%o6) <=

The function compare doesn’t try to determine whether the real domains of its argu-
ments are nonempty; thus

(%i1) compare (acos (x^2 + 1), acos (x^2 + 1) + 1);
(%o1) <

The real domain of acos (x^2 + 1) is empty.

Functionentier (x)
Returns the largest integer less than or equal to x where x is numeric. fix (as in
fixnum) is a synonym for this, so fix(x) is precisely the same.

Functionequal (a, b)
Represents equivalence, that is, equal value.
By itself, equal does not evaluate or simplify. The function is attempts to evaluate
equal to a Boolean value. is(equal(a, b)) returns true (or false) if and only if a
and b are equal (or not equal) for all possible values of their variables, as determined by
evaluating ratsimp(a - b); if ratsimp returns 0, the two expressions are considered
equivalent. Two expressions may be equivalent even if they are not syntactically equal
(i.e., identical).
When is fails to reduce equal to true or false, the result is governed by the global
flag prederror. When prederror is true, is complains with an error message.
Otherwise, is returns unknown.
In addition to is, some other operators evaluate equal and notequal to true or
false, namely if, and, or, and not.
The negation of equal is notequal.
Examples:
By itself, equal does not evaluate or simplify.

(%i1) equal (x^2 - 1, (x + 1) * (x - 1));
2

(%o1) equal(x - 1, (x - 1) (x + 1))
(%i2) equal (x, x + 1);
(%o2) equal(x, x + 1)
(%i3) equal (x, y);
(%o3) equal(x, y)

44 Maxima Manual

The function is attempts to evaluate equal to a Boolean value. is(equal(a, b))
returns true when ratsimp(a - b) returns 0. Two expressions may be equivalent
even if they are not syntactically equal (i.e., identical).

(%i1) ratsimp (x^2 - 1 - (x + 1) * (x - 1));
(%o1) 0
(%i2) is (equal (x^2 - 1, (x + 1) * (x - 1)));
(%o2) true
(%i3) is (x^2 - 1 = (x + 1) * (x - 1));
(%o3) false
(%i4) ratsimp (x - (x + 1));
(%o4) - 1
(%i5) is (equal (x, x + 1));
(%o5) false
(%i6) is (x = x + 1);
(%o6) false
(%i7) ratsimp (x - y);
(%o7) x - y
(%i8) is (equal (x, y));
(%o8) unknown
(%i9) is (x = y);
(%o9) false

When is fails to reduce equal to true or false, the result is governed by the global
flag prederror.

(%i1) [aa : x^2 + 2*x + 1, bb : x^2 - 2*x - 1];
2 2

(%o1) [x + 2 x + 1, x - 2 x - 1]
(%i2) ratsimp (aa - bb);
(%o2) 4 x + 2
(%i3) prederror : true;
(%o3) true
(%i4) is (equal (aa, bb));
Maxima was unable to evaluate the predicate:

2 2
equal(x + 2 x + 1, x - 2 x - 1)
-- an error. Quitting. To debug this try debugmode(true);
(%i5) prederror : false;
(%o5) false
(%i6) is (equal (aa, bb));
(%o6) unknown

Some operators evaluate equal and notequal to true or false.
(%i1) if equal (y, y - 1) then FOO else BAR;
(%o1) BAR
(%i2) eq_1 : equal (x, x + 1);
(%o2) equal(x, x + 1)
(%i3) eq_2 : equal (y^2 + 2*y + 1, (y + 1)^2);

2 2
(%o3) equal(y + 2 y + 1, (y + 1))
(%i4) [eq_1 and eq_2, eq_1 or eq_2, not eq_1];

Chapter 5: Operators 45

(%o4) [false, true, true]

Because not expr causes evaluation of expr, not equal(a, b) is equivalent to
is(notequal(a, b)).

(%i1) [notequal (2*z, 2*z - 1), not equal (2*z, 2*z - 1)];
(%o1) [notequal(2 z, 2 z - 1), true]
(%i2) is (notequal (2*z, 2*z - 1));
(%o2) true

Functionfloor (x)
When x is a real number, return the largest integer that is less than or equal to x.
If x is a constant expression (10 * %pi, for example), floor evaluates x using big
floating point numbers, and applies floor to the resulting big float. Because floor
uses floating point evaluation, it’s possible, although unlikely, that floor could return
an erroneous value for constant inputs. To guard against errors, the floating point
evaluation is done using three values for fpprec.
For non-constant inputs, floor tries to return a simplified value. Here are examples
of the simplifications that floor knows about:

(%i1) floor (ceiling (x));
(%o1) ceiling(x)
(%i2) floor (floor (x));
(%o2) floor(x)
(%i3) declare (n, integer)$
(%i4) [floor (n), floor (abs (n)), floor (min (n, 6))];
(%o4) [n, abs(n), min(n, 6)]
(%i5) assume (x > 0, x < 1)$
(%i6) floor (x);
(%o6) 0
(%i7) tex (floor (a));
$$\left \lfloor a \right \rfloor$$
(%o7) false

The function floor does not automatically map over lists or matrices. Finally, for
all inputs that are manifestly complex, floor returns a noun form.
If the range of a function is a subset of the integers, it can be declared to be
integervalued. Both the ceiling and floor functions can use this information;
for example:

(%i1) declare (f, integervalued)$
(%i2) floor (f(x));
(%o2) f(x)
(%i3) ceiling (f(x) - 1);
(%o3) f(x) - 1

Functionnotequal (a, b)
Represents the negation of equal(a, b).
Examples:

(%i1) equal (a, b);
(%o1) equal(a, b)

46 Maxima Manual

(%i2) maybe (equal (a, b));
(%o2) unknown
(%i3) notequal (a, b);
(%o3) notequal(a, b)
(%i4) not equal (a, b);
(%o4) notequal(a, b)
(%i5) maybe (notequal (a, b));
(%o5) unknown
(%i6) assume (a > b);
(%o6) [a > b]
(%i7) equal (a, b);
(%o7) equal(a, b)
(%i8) maybe (equal (a, b));
(%o8) false
(%i9) notequal (a, b);
(%o9) notequal(a, b)
(%i10) maybe (notequal (a, b));
(%o10) true

Operatoreval
As an argument in a call to ev (expr), eval causes an extra evaluation of expr. See
ev.

Functionevenp (expr)
Returns true if expr is an even integer. false is returned in all other cases.

Functionfix (x)
A synonym for entier (x).

Functionfullmap (f, expr 1, ...)
Similar to map, but fullmap keeps mapping down all subexpressions until the main
operators are no longer the same.
fullmap is used by the Maxima simplifier for certain matrix manipulations; thus,
Maxima sometimes generates an error message concerning fullmap even though
fullmap was not explicitly called by the user.
Examples:

(%i1) a + b * c;
(%o1) b c + a
(%i2) fullmap (g, %);
(%o2) g(b) g(c) + g(a)
(%i3) map (g, %th(2));
(%o3) g(b c) + g(a)

Functionfullmapl (f, list 1, ...)
Similar to fullmap, but fullmapl only maps onto lists and matrices.
Example:

(%i1) fullmapl ("+", [3, [4, 5]], [[a, 1], [0, -1.5]]);
(%o1) [[a + 3, 4], [4, 3.5]]

Chapter 5: Operators 47

Functionis (expr)
Attempts to determine whether the predicate expr is provable from the facts in the
assume database.

If the predicate is provably true or false, is returns true or false, respectively.
Otherwise, the return value is governed by the global flag prederror. When
prederror is true, is complains with an error message. Otherwise, is returns
unknown.

ev(expr, pred) (which can be written expr, pred at the interactive prompt) is equiv-
alent to is(expr).

See also assume, facts, and maybe.

Examples:

is causes evaluation of predicates.
(%i1) %pi > %e;
(%o1) %pi > %e
(%i2) is (%pi > %e);
(%o2) true

is attempts to derive predicates from the assume database.
(%i1) assume (a > b);
(%o1) [a > b]
(%i2) assume (b > c);
(%o2) [b > c]
(%i3) is (a < b);
(%o3) false
(%i4) is (a > c);
(%o4) true
(%i5) is (equal (a, c));
(%o5) false

If is can neither prove nor disprove a predicate from the assume database, the global
flag prederror governs the behavior of is.

(%i1) assume (a > b);
(%o1) [a > b]
(%i2) prederror: true$
(%i3) is (a > 0);
Maxima was unable to evaluate the predicate:
a > 0
-- an error. Quitting. To debug this try debugmode(true);
(%i4) prederror: false$
(%i5) is (a > 0);
(%o5) unknown

Functionmaybe (expr)
Attempts to determine whether the predicate expr is provable from the facts in the
assume database.

If the predicate is provably true or false, maybe returns true or false, respectively.
Otherwise, maybe returns unknown.

48 Maxima Manual

maybe is functionally equivalent to is with prederror: false, but the result is com-
puted without actually assigning a value to prederror.

See also assume, facts, and is.

Examples:

(%i1) maybe (x > 0);
(%o1) unknown
(%i2) assume (x > 1);
(%o2) [x > 1]
(%i3) maybe (x > 0);
(%o3) true

Functionisqrt (x)
Returns the "integer square root" of the absolute value of x, which is an integer.

Functionlmax (L)
When L is a list or a set, return apply (’max, args (L)). When L isn’t a list or a
set, signal an error.

Functionlmin (L)
When L is a list or a set, return apply (’min, args (L)). When L isn’t a list or a
set, signal an error.

Functionmax (x 1, ..., x n)
Return a simplified value for the maximum of the expressions x 1 through x n. When
get (trylevel, maxmin), is 2 or greater, max uses the simplification max (e, -e)
--> |e|. When get (trylevel, maxmin) is 3 or greater, max tries to eliminate
expressions that are between two other arguments; for example, max (x, 2*x, 3*x) -
-> max (x, 3*x). To set the value of trylevel to 2, use put (trylevel, 2, maxmin).

Functionmin (x 1, ..., x n)
Return a simplified value for the minimum of the expressions x_1 through x_n. When
get (trylevel, maxmin), is 2 or greater, min uses the simplification min (e, -e)
--> -|e|. When get (trylevel, maxmin) is 3 or greater, min tries to eliminate
expressions that are between two other arguments; for example, min (x, 2*x, 3*x) -
-> min (x, 3*x). To set the value of trylevel to 2, use put (trylevel, 2, maxmin).

Functionpolymod (p)
Functionpolymod (p, m)

Converts the polynomial p to a modular representation with respect to the current
modulus which is the value of the variable modulus.

polymod (p, m) specifies a modulus m to be used instead of the current value of
modulus.

See modulus.

Chapter 5: Operators 49

Functionmod (x, y)
If x and y are real numbers and y is nonzero, return x - y * floor(x / y). Further
for all real x, we have mod (x, 0) = x. For a discussion of the definition mod (x, 0)
= x, see Section 3.4, of "Concrete Mathematics," by Graham, Knuth, and Patashnik.
The function mod (x, 1) is a sawtooth function with period 1 with mod (1, 1) = 0
and mod (0, 1) = 0.

To find the principal argument (a number in the interval (-%pi, %pi]) of a complex
number, use the function x |-> %pi - mod (%pi - x, 2*%pi), where x is an argument.

When x and y are constant expressions (10 * %pi, for example), mod uses the same big
float evaluation scheme that floor and ceiling uses. Again, it’s possible, although
unlikely, that mod could return an erroneous value in such cases.

For nonnumerical arguments x or y, mod knows several simplification rules:
(%i1) mod (x, 0);
(%o1) x
(%i2) mod (a*x, a*y);
(%o2) a mod(x, y)
(%i3) mod (0, x);
(%o3) 0

Functionoddp (expr)
is true if expr is an odd integer. false is returned in all other cases.

Operatorpred
As an argument in a call to ev (expr), pred causes predicates (expressions which
evaluate to true or false) to be evaluated. See ev.

Functionmake random state (n)
Functionmake random state (s)
Functionmake random state (true)
Functionmake random state (false)

A random state object represents the state of the random number generator. The
state comprises 627 32-bit words.

make_random_state (n) returns a new random state object created from an integer
seed value equal to n modulo 2^32. n may be negative.

make_random_state (s) returns a copy of the random state s.

make_random_state (true) returns a new random state object, using the current
computer clock time as the seed.

make_random_state (false) returns a copy of the current state of the random num-
ber generator.

Functionset random state (s)
Copies s to the random number generator state.

set_random_state always returns done.

50 Maxima Manual

Functionrandom (x)
Returns a pseudorandom number. If x is an integer, random (x) returns an integer
from 0 through x - 1 inclusive. If x is a floating point number, random (x) returns
a nonnegative floating point number less than x. random complains with an error if
x is neither an integer nor a float, or if x is not positive.

The functions make_random_state and set_random_state maintain the state of the
random number generator.

The Maxima random number generator is an implementation of the Mersenne twister
MT 19937.

Examples:
(%i1) s1: make_random_state (654321)$
(%i2) set_random_state (s1);
(%o2) done
(%i3) random (1000);
(%o3) 768
(%i4) random (9573684);
(%o4) 7657880
(%i5) random (2^75);
(%o5) 11804491615036831636390
(%i6) s2: make_random_state (false)$
(%i7) random (1.0);
(%o7) .2310127244107132
(%i8) random (10.0);
(%o8) 4.394553645870825
(%i9) random (100.0);
(%o9) 32.28666704056853
(%i10) set_random_state (s2);
(%o10) done
(%i11) random (1.0);
(%o11) .2310127244107132
(%i12) random (10.0);
(%o12) 4.394553645870825
(%i13) random (100.0);
(%o13) 32.28666704056853

Functionrationalize (expr)
Convert all double floats and big floats in the Maxima expression expr to their exact
rational equivalents. If you are not familiar with the binary representation of floating
point numbers, you might be surprised that rationalize (0.1) does not equal 1/10.
This behavior isn’t special to Maxima – the number 1/10 has a repeating, not a
terminating, binary representation.

(%i1) rationalize (0.5);
1

(%o1) -
2

(%i2) rationalize (0.1);
1

Chapter 5: Operators 51

(%o2) --
10

(%i3) fpprec : 5$
(%i4) rationalize (0.1b0);

209715
(%o4) -------

2097152
(%i5) fpprec : 20$
(%i6) rationalize (0.1b0);

236118324143482260685
(%o6) ----------------------

2361183241434822606848
(%i7) rationalize (sin (0.1*x + 5.6));

x 28
(%o7) sin(-- + --)

10 5

Example use:
(%i1) unitfrac(r) := block([uf : [], q],

if not(ratnump(r)) then
error("The input to ’unitfrac’ must be a rational number"),

while r # 0 do (
uf : cons(q : 1/ceiling(1/r), uf),
r : r - q),

reverse(uf));
(%o1) unitfrac(r) := block([uf : [], q],
if not ratnump(r) then

error("The input to ’unitfrac’ must be a rational number"),
1

while r # 0 do (uf : cons(q : ----------, uf), r : r - q),
1

ceiling(-)
r

reverse(uf))
(%i2) unitfrac (9/10);

1 1 1
(%o2) [-, -, --]

2 3 15
(%i3) apply ("+", %);

9
(%o3) --

10
(%i4) unitfrac (-9/10);

1
(%o4) [- 1, --]

10
(%i5) apply ("+", %);

9
(%o5) - --

10

52 Maxima Manual

(%i6) unitfrac (36/37);
1 1 1 1 1

(%o6) [-, -, -, --, ----]
2 3 8 69 6808

(%i7) apply ("+", %);
36

(%o7) --
37

Functionround (x)
When x is a real number, returns the closest integer to x. Multiples of 1/2 are rounded
to the nearest even integer. Evaluation of x is similar to floor and ceiling.

Functionsign (expr)
Attempts to determine the sign of expr on the basis of the facts in the current data
base. It returns one of the following answers: pos (positive), neg (negative), zero, pz
(positive or zero), nz (negative or zero), pn (positive or negative), or pnz (positive,
negative, or zero, i.e. nothing known).

Functionsignum (x)
For numeric x, returns 0 if x is 0, otherwise returns -1 or +1 as x is less than or greater
than 0, respectively.
If x is not numeric then a simplified but equivalent form is returned. For example,
signum(-x) gives -signum(x).

Functionsort (L, P)
Functionsort (L)

Sorts a list L according to a predicate P of two arguments, such that P (L[k], L[k
+ 1]) is true for any two successive elements. The predicate may be specified as the
name of a function or binary infix operator, or as a lambda expression. If specified as
the name of an operator, the name is enclosed in "double quotes".
The sorted list is returned as a new object; the argument L is not modified. To
construct the return value, sort makes a shallow copy of the elements of L.
If the predicate P is not a total order on the elements of L, then sort might run to
completion without error, but the result is undefined. sort complains if the predicate
evaluates to something other than true or false.
sort (L) is equivalent to sort (L, orderlessp). That is, the default sorting order
is ascending, as determined by orderlessp. All Maxima atoms and expressions are
comparable under orderlessp, although there are isolated examples of expressions
for which orderlessp is not transitive; this is a bug.
Examples:

(%i1) sort ([11, -17, 29b0, 7.55, 3, -5/2, b + a, 9 * c,
19 - 3 * x]);

5
(%o1) [- 17, - -, 3, 7.55, 11, 2.9b1, b + a, 9 c, 19 - 3 x]

2

Chapter 5: Operators 53

(%i2) sort ([11, -17, 29b0, 7.55, 3, -5/2, b + a, 9*c, 19 - 3*x],
ordergreatp);

5
(%o2) [19 - 3 x, 9 c, b + a, 2.9b1, 11, 7.55, 3, - -, - 17]

2
(%i3) sort ([%pi, 3, 4, %e, %gamma]);
(%o3) [3, 4, %e, %gamma, %pi]
(%i4) sort ([%pi, 3, 4, %e, %gamma], "<");
(%o4) [%gamma, %e, 3, %pi, 4]
(%i5) my_list: [[aa,hh,uu], [ee,cc], [zz,xx,mm,cc], [%pi,%e]];
(%o5) [[aa, hh, uu], [ee, cc], [zz, xx, mm, cc], [%pi, %e]]
(%i6) sort (my_list);
(%o6) [[%pi, %e], [aa, hh, uu], [ee, cc], [zz, xx, mm, cc]]
(%i7) sort (my_list, lambda ([a, b], orderlessp (reverse (a),

reverse (b))));
(%o7) [[%pi, %e], [ee, cc], [zz, xx, mm, cc], [aa, hh, uu]]

Functionsqrt (x)
The square root of x. It is represented internally by x^(1/2). See also
rootscontract.
radexpand if true will cause nth roots of factors of a product which are powers of
n to be pulled outside of the radical, e.g. sqrt(16*x^2) will become 4*x only if
radexpand is true.

Option variablesqrtdispflag
Default value: true
When sqrtdispflag is false, causes sqrt to display with exponent 1/2.

Functionsublis (list, expr)
Makes multiple parallel substitutions into an expression.
The variable sublis_apply_lambda controls simplification after sublis.
Example:

(%i1) sublis ([a=b, b=a], sin(a) + cos(b));
(%o1) sin(b) + cos(a)

Functionsublist (list, p)
Returns the list of elements of list for which the predicate p returns true.
Example:

(%i1) L: [1, 2, 3, 4, 5, 6];
(%o1) [1, 2, 3, 4, 5, 6]
(%i2) sublist (L, evenp);
(%o2) [2, 4, 6]

Option variablesublis apply lambda
Default value: true
Controls whether lambda’s substituted are applied in simplification after sublis is
used or whether you have to do an ev to get things to apply. true means do the
application.

54 Maxima Manual

Functionsubst (a, b, c)
Substitutes a for b in c. b must be an atom or a complete subexpression of c.
For example, x+y+z is a complete subexpression of 2*(x+y+z)/w while x+y is not.
When b does not have these characteristics, one may sometimes use substpart or
ratsubst (see below). Alternatively, if b is of the form e/f then one could use subst
(a*f, e, c) while if b is of the form e^(1/f) then one could use subst (a^f, e,
c). The subst command also discerns the x^y in x^-y so that subst (a, sqrt(x),
1/sqrt(x)) yields 1/a. a and b may also be operators of an expression enclosed in
double-quotes " or they may be function names. If one wishes to substitute for the
independent variable in derivative forms then the at function (see below) should be
used.

subst is an alias for substitute.

subst (eq 1, expr) or subst ([eq 1, ..., eq k], expr) are other permissible
forms. The eq i are equations indicating substitutions to be made. For each
equation, the right side will be substituted for the left in the expression expr.

exptsubst if true permits substitutions like y for %e^x in %e^(a*x) to take place.

When opsubst is false, subst will not attempt to substitute into the operator of an
expression. E.g. (opsubst: false, subst (x^2, r, r+r[0])) will work.

Examples:

(%i1) subst (a, x+y, x + (x+y)^2 + y);
2

(%o1) y + x + a
(%i2) subst (-%i, %i, a + b*%i);
(%o2) a - %i b

For further examples, do example (subst).

Functionsubstinpart (x, expr, n 1, ..., n k)
Similar to substpart, but substinpart works on the internal representation of expr.

Examples:

(%i1) x . ’diff (f(x), x, 2);
2
d

(%o1) x . (--- (f(x)))
2

dx
(%i2) substinpart (d^2, %, 2);

2
(%o2) x . d
(%i3) substinpart (f1, f[1](x + 1), 0);
(%o3) f1(x + 1)

If the last argument to a part function is a list of indices then several subexpressions
are picked out, each one corresponding to an index of the list. Thus

(%i1) part (x + y + z, [1, 3]);
(%o1) z + x

Chapter 5: Operators 55

piece holds the value of the last expression selected when using the part functions. It
is set during the execution of the function and thus may be referred to in the function
itself as shown below. If partswitch is set to true then end is returned when a
selected part of an expression doesn’t exist, otherwise an error message is given.

(%i1) expr: 27*y^3 + 54*x*y^2 + 36*x^2*y + y + 8*x^3 + x + 1;
3 2 2 3

(%o1) 27 y + 54 x y + 36 x y + y + 8 x + x + 1
(%i2) part (expr, 2, [1, 3]);

2
(%o2) 54 y
(%i3) sqrt (piece/54);
(%o3) abs(y)
(%i4) substpart (factor (piece), expr, [1, 2, 3, 5]);

3
(%o4) (3 y + 2 x) + y + x + 1
(%i5) expr: 1/x + y/x - 1/z;

1 y 1
(%o5) - - + - + -

z x x
(%i6) substpart (xthru (piece), expr, [2, 3]);

y + 1 1
(%o6) ----- - -

x z

Also, setting the option inflag to true and calling part or substpart is the same
as calling inpart or substinpart.

Functionsubstpart (x, expr, n 1, ..., n k)
Substitutes x for the subexpression picked out by the rest of the arguments as in
part. It returns the new value of expr. x may be some operator to be substituted
for an operator of expr. In some cases x needs to be enclosed in double-quotes " (e.g.
substpart ("+", a*b, 0) yields b + a).

(%i1) 1/(x^2 + 2);
1

(%o1) ------
2
x + 2

(%i2) substpart (3/2, %, 2, 1, 2);
1

(%o2) --------
3/2
x + 2

(%i3) a*x + f(b, y);
(%o3) a x + f(b, y)
(%i4) substpart ("+", %, 1, 0);
(%o4) x + f(b, y) + a

Also, setting the option inflag to true and calling part or substpart is the same
as calling inpart or substinpart.

56 Maxima Manual

Functionsubvarp (expr)
Returns true if expr is a subscripted variable, for example a[i].

Functionsymbolp (expr)
Returns true if expr is a symbol, else false. In effect, symbolp(x) is equivalent to
the predicate atom(x) and not numberp(x).
See also Section 6.4 [Identifiers], page 61.

Functionunorder ()
Disables the aliasing created by the last use of the ordering commands ordergreat
and orderless. ordergreat and orderless may not be used more than one time
each without calling unorder. See also ordergreat and orderless.
Examples:

(%i1) unorder();
(%o1) []
(%i2) b*x + a^2;

2
(%o2) b x + a
(%i3) ordergreat (a);
(%o3) done
(%i4) b*x + a^2;
%th(1) - %th(3);

2
(%o4) a + b x
(%i5) unorder();

2 2
(%o5) a - a

Functionvectorpotential (givencurl)
Returns the vector potential of a given curl vector, in the current coordinate system.
potentialzeroloc has a similar role as for potential, but the order of the left-hand
sides of the equations must be a cyclic permutation of the coordinate variables.

Functionxthru (expr)
Combines all terms of expr (which should be a sum) over a common denominator
without expanding products and exponentiated sums as ratsimp does. xthru cancels
common factors in the numerator and denominator of rational expressions but only
if the factors are explicit.
Sometimes it is better to use xthru before ratsimping an expression in order to
cause explicit factors of the gcd of the numerator and denominator to be canceled
thus simplifying the expression to be ratsimped.

(%i1) ((x+2)^20 - 2*y)/(x+y)^20 + (x+y)^(-19) - x/(x+y)^20;
20

1 (x + 2) - 2 y x
(%o1) --------- + --------------- - ---------

19 20 20

Chapter 5: Operators 57

(y + x) (y + x) (y + x)
(%i2) xthru (%);

20
(x + 2) - y

(%o2) -------------
20

(y + x)

Functionzeroequiv (expr, v)
Tests whether the expression expr in the variable v is equivalent to zero, returning
true, false, or dontknow.
zeroequiv has these restrictions:
1. Do not use functions that Maxima does not know how to differentiate and eval-

uate.
2. If the expression has poles on the real line, there may be errors in the result (but

this is unlikely to occur).
3. If the expression contains functions which are not solutions to first order differ-

ential equations (e.g. Bessel functions) there may be incorrect results.
4. The algorithm uses evaluation at randomly chosen points for carefully selected

subexpressions. This is always a somewhat hazardous business, although the
algorithm tries to minimize the potential for error.

For example zeroequiv (sin(2*x) - 2*sin(x)*cos(x), x) returns true and
zeroequiv (%e^x + x, x) returns false. On the other hand zeroequiv (log(a*b)
- log(a) - log(b), a) returns dontknow because of the presence of an extra
parameter b.

58 Maxima Manual

Chapter 6: Expressions 59

6 Expressions

6.1 Introduction to Expressions

There are a number of reserved words which cannot be used as variable names. Their
use would cause a possibly cryptic syntax error.

integrate next from diff
in at limit sum
for and elseif then
else do or if
unless product while thru
step

Most things in Maxima are expressions. A sequence of expressions can be made into an
expression by separating them by commas and putting parentheses around them. This is
similar to the C comma expression.

(%i1) x: 3$
(%i2) (x: x+1, x: x^2);
(%o2) 16
(%i3) (if (x > 17) then 2 else 4);
(%o3) 4
(%i4) (if (x > 17) then x: 2 else y: 4, y+x);
(%o4) 20

Even loops in Maxima are expressions, although the value they return is the not too
useful done.

(%i1) y: (x: 1, for i from 1 thru 10 do (x: x*i))$
(%i2) y;
(%o2) done

whereas what you really want is probably to include a third term in the comma expression
which actually gives back the value.

(%i3) y: (x: 1, for i from 1 thru 10 do (x: x*i), x)$
(%i4) y;
(%o4) 3628800

6.2 Complex

A complex expression is specified in Maxima by adding the real part of the expression
to %i times the imaginary part. Thus the roots of the equation x^2 - 4*x + 13 = 0 are 2
+ 3*%i and 2 - 3*%i. Note that simplification of products of complex expressions can be
effected by expanding the product. Simplification of quotients, roots, and other functions
of complex expressions can usually be accomplished by using the realpart, imagpart,
rectform, polarform, abs, carg functions.

60 Maxima Manual

6.3 Nouns and Verbs

Maxima distinguishes between operators which are "nouns" and operators which are
"verbs". A verb is an operator which can be executed. A noun is an operator which
appears as a symbol in an expression, without being executed. By default, function names
are verbs. A verb can be changed into a noun by quoting the function name or applying the
nounify function. A noun can be changed into a verb by applying the verbify function.
The evaluation flag nouns causes ev to evaluate nouns in an expression.

The verb form is distinguished by a leading dollar sign $ on the corresponding Lisp
symbol. In contrast, the noun form is distinguished by a leading percent sign % on the
corresponding Lisp symbol. Some nouns have special display properties, such as ’integrate
and ’derivative (returned by diff), but most do not. By default, the noun and verb
forms of a function are identical when displayed. The global flag noundisp causes Maxima
to display nouns with a leading quote mark ’.

See also noun, nouns, nounify, and verbify.
Examples:

(%i1) foo (x) := x^2;
2

(%o1) foo(x) := x
(%i2) foo (42);
(%o2) 1764
(%i3) ’foo (42);
(%o3) foo(42)
(%i4) ’foo (42), nouns;
(%o4) 1764
(%i5) declare (bar, noun);
(%o5) done
(%i6) bar (x) := x/17;

x
(%o6) ’’bar(x) := --

17
(%i7) bar (52);
(%o7) bar(52)
(%i8) bar (52), nouns;

52
(%o8) --

17
(%i9) integrate (1/x, x, 1, 42);
(%o9) log(42)
(%i10) ’integrate (1/x, x, 1, 42);

42
/
[1

(%o10) I - dx
] x
/
1

(%i11) ev (%, nouns);

Chapter 6: Expressions 61

(%o11) log(42)

6.4 Identifiers

Maxima identifiers may comprise alphabetic characters, plus the numerals 0 through 9,
plus any special character preceded by the backslash \ character.

A numeral may be the first character of an identifier if it is preceded by a backslash.
Numerals which are the second or later characters need not be preceded by a backslash.

Characters may be declared alphabetic by the declare function. If so declared, they
need not be preceded by a backslash in an identifier. The alphabetic characters are initially
A through Z, a through z, %, and _.

Maxima is case-sensitive. The identifiers foo, FOO, and Foo are distinct. See Section 3.1
[Lisp and Maxima], page 7 for more on this point.

A Maxima identifier is a Lisp symbol which begins with a dollar sign $. Any other Lisp
symbol is preceded by a question mark ? when it appears in Maxima. See Section 3.1 [Lisp
and Maxima], page 7 for more on this point.

Examples:

(%i1) %an_ordinary_identifier42;
(%o1) %an_ordinary_identifier42
(%i2) embedded\ spaces\ in\ an\ identifier;
(%o2) embedded spaces in an identifier
(%i3) symbolp (%);
(%o3) true
(%i4) [foo+bar, foo\+bar];
(%o4) [foo + bar, foo+bar]
(%i5) [1729, \1729];
(%o5) [1729, 1729]
(%i6) [symbolp (foo\+bar), symbolp (\1729)];
(%o6) [true, true]
(%i7) [is (foo\+bar = foo+bar), is (\1729 = 1729)];
(%o7) [false, false]
(%i8) baz\~quux;
(%o8) baz~quux
(%i9) declare ("~", alphabetic);
(%o9) done
(%i10) baz~quux;
(%o10) baz~quux
(%i11) [is (foo = FOO), is (FOO = Foo), is (Foo = foo)];
(%o11) [false, false, false]
(%i12) :lisp (defvar *my-lisp-variable* ’$foo)
MY-LISP-VARIABLE
(%i12) ?*my\-lisp\-variable*;
(%o12) foo

62 Maxima Manual

6.5 Strings

Strings (quoted character sequences) are enclosed in double quote marks " for input, and
displayed with or without the quote marks, depending on the global variable stringdisp.

Strings may contain any characters, including embedded tab, newline, and carriage re-
turn characters. The sequence \" is recognized as a literal double quote, and \\ as a literal
backslash. When backslash appears at the end of a line, the backslash and the line termina-
tion (either newline or carriage return and newline) are ignored, so that the string continues
with the next line. No other special combinations of backslash with another character are
recognized; when backslash appears before any character other than ", \, or a line termi-
nation, the backslash is ignored. There is no way to represent a special character (such as
tab, newline, or carriage return) except by embedding the literal character in the string.

There is no character type in Maxima; a single character is represented as a one-character
string.

The stringproc add-on package contains many functions for working with strings.
Examples:

(%i1) s_1 : "This is a string.";
(%o1) This is a string.
(%i2) s_2 : "Embedded \"double quotes\" and backslash \\ characters.";
(%o2) Embedded "double quotes" and backslash \ characters.
(%i3) s_3 : "Embedded line termination
in this string.";
(%o3) Embedded line termination
in this string.
(%i4) s_4 : "Ignore the \
line termination \
characters in \
this string.";
(%o4) Ignore the line termination characters in this string.
(%i5) stringdisp : false;
(%o5) false
(%i6) s_1;
(%o6) This is a string.
(%i7) stringdisp : true;
(%o7) true
(%i8) s_1;
(%o8) "This is a string."

6.6 Inequality

Maxima has the inequality operators <, <=, >=, >, #, and notequal. See if for a
description of conditional expressions.

6.7 Syntax

It is possible to define new operators with specified precedence, to undefine existing
operators, or to redefine the precedence of existing operators. An operator may be unary

Chapter 6: Expressions 63

prefix or unary postfix, binary infix, n-ary infix, matchfix, or nofix. "Matchfix" means a
pair of symbols which enclose their argument or arguments, and "nofix" means an operator
which takes no arguments. As examples of the different types of operators, there are the
following.

unary prefix
negation - a

unary postfix
factorial a!

binary infix
exponentiation a^b

n-ary infix addition a + b

matchfix list construction [a, b]

(There are no built-in nofix operators; for an example of such an operator, see nofix.)
The mechanism to define a new operator is straightforward. It is only necessary to

declare a function as an operator; the operator function might or might not be defined.
An example of user-defined operators is the following. Note that the explicit function

call "dd" (a) is equivalent to dd a, likewise "<-" (a, b) is equivalent to a <- b. Note also
that the functions "dd" and "<-" are undefined in this example.

(%i1) prefix ("dd");
(%o1) dd
(%i2) dd a;
(%o2) dd a
(%i3) "dd" (a);
(%o3) dd a
(%i4) infix ("<-");
(%o4) <-
(%i5) a <- dd b;
(%o5) a <- dd b
(%i6) "<-" (a, "dd" (b));
(%o6) a <- dd b

The Maxima functions which define new operators are summarized in this table, stating
the default left and right binding powers (lbp and rbp, respectively). (Binding power
determines operator precedence. However, since left and right binding powers can differ,
binding power is somewhat more complicated than precedence.) Some of the operation
definition functions take additional arguments; see the function descriptions for details.

prefix rbp=180

postfix lbp=180

infix lbp=180, rbp=180

nary lbp=180, rbp=180

matchfix (binding power not applicable)

nofix (binding power not applicable)

64 Maxima Manual

For comparison, here are some built-in operators and their left and right binding powers.

Operator lbp rbp

: 180 20
:: 180 20
:= 180 20
::= 180 20
! 160
!! 160
^ 140 139
. 130 129
* 120
/ 120 120
+ 100 100
- 100 134
= 80 80
80 80
> 80 80
>= 80 80
< 80 80
<= 80 80
not 70
and 65
or 60
, 10
$ -1
; -1

remove and kill remove operator properties from an atom. remove ("a", op) removes
only the operator properties of a. kill ("a") removes all properties of a, including the
operator properties. Note that the name of the operator must be enclosed in quotation
marks.

(%i1) infix ("##");
(%o1) ##
(%i2) "##" (a, b) := a^b;

b
(%o2) a ## b := a
(%i3) 5 ## 3;
(%o3) 125
(%i4) remove ("##", op);
(%o4) done
(%i5) 5 ## 3;
Incorrect syntax: # is not a prefix operator
5 ##
^

(%i5) "##" (5, 3);
(%o5) 125
(%i6) infix ("##");
(%o6) ##

Chapter 6: Expressions 65

(%i7) 5 ## 3;
(%o7) 125
(%i8) kill ("##");
(%o8) done
(%i9) 5 ## 3;
Incorrect syntax: # is not a prefix operator
5 ##
^

(%i9) "##" (5, 3);
(%o9) ##(5, 3)

6.8 Functions and Variables for Expressions

Functionat (expr, [eqn 1, ..., eqn n])
Functionat (expr, eqn)

Evaluates the expression expr with the variables assuming the values as specified for
them in the list of equations [eqn 1, ..., eqn n] or the single equation eqn.

If a subexpression depends on any of the variables for which a value is specified but
there is no atvalue specified and it can’t be otherwise evaluated, then a noun form of
the at is returned which displays in a two-dimensional form.

at carries out multiple substitutions in series, not parallel.

See also atvalue. For other functions which carry out substitutions, see also subst
and ev.

Examples:
(%i1) atvalue (f(x,y), [x = 0, y = 1], a^2);

2
(%o1) a
(%i2) atvalue (’diff (f(x,y), x), x = 0, 1 + y);
(%o2) @2 + 1
(%i3) printprops (all, atvalue);

!
d !
--- (f(@1, @2))! = @2 + 1
d@1 !

!@1 = 0

2
f(0, 1) = a

(%o3) done
(%i4) diff (4*f(x, y)^2 - u(x, y)^2, x);

d d
(%o4) 8 f(x, y) (-- (f(x, y))) - 2 u(x, y) (-- (u(x, y)))

dx dx
(%i5) at (%, [x = 0, y = 1]);

!

66 Maxima Manual

2 d !
(%o5) 16 a - 2 u(0, 1) (-- (u(x, y))!)

dx !
!x = 0, y = 1

Functionbox (expr)
Functionbox (expr, a)

Returns expr enclosed in a box. The return value is an expression with box as the
operator and expr as the argument. A box is drawn on the display when display2d
is true.

box (expr, a) encloses expr in a box labelled by the symbol a. The label is truncated
if it is longer than the width of the box.

box evaluates its argument. However, a boxed expression does not evaluate to its
content, so boxed expressions are effectively excluded from computations.

boxchar is the character used to draw the box in box and in the dpart and lpart
functions.

Examples:
(%i1) box (a^2 + b^2);

"""""""""
" 2 2"

(%o1) "b + a "
"""""""""

(%i2) a : 1234;
(%o2) 1234
(%i3) b : c - d;
(%o3) c - d
(%i4) box (a^2 + b^2);

""""""""""""""""""""
" 2 "

(%o4) "(c - d) + 1522756"
""""""""""""""""""""

(%i5) box (a^2 + b^2, term_1);
term_1""""""""""""""
" 2 "

(%o5) "(c - d) + 1522756"
""""""""""""""""""""

(%i6) 1729 - box (1729);
""""""

(%o6) 1729 - "1729"
""""""

(%i7) boxchar: "-";
(%o7) -
(%i8) box (sin(x) + cos(y));

(%o8) -cos(y) + sin(x)-

Chapter 6: Expressions 67

Option variableboxchar
Default value: "

boxchar is the character used to draw the box in the box and in the dpart and lpart
functions.

All boxes in an expression are drawn with the current value of boxchar; the drawing
character is not stored with the box expression.

Functioncarg (z)
Returns the complex argument of z. The complex argument is an angle theta in
(-%pi, %pi] such that r exp (theta %i) = z where r is the magnitude of z.

carg is a computational function, not a simplifying function.

carg ignores the declaration declare (x, complex), and treats x as a real variable.
This is a bug.

See also abs (complex magnitude), polarform, rectform, realpart, and imagpart.

Examples:

(%i1) carg (1);
(%o1) 0
(%i2) carg (1 + %i);

%pi
(%o2) ---

4
(%i3) carg (exp (%i));
(%o3) 1
(%i4) carg (exp (%pi * %i));
(%o4) %pi
(%i5) carg (exp (3/2 * %pi * %i));

%pi
(%o5) - ---

2
(%i6) carg (17 * exp (2 * %i));
(%o6) 2

Special operatorconstant
declare (a, constant) declares a to be a constant. See declare.

Functionconstantp (expr)
Returns true if expr is a constant expression, otherwise returns false.

An expression is considered a constant expression if its arguments are numbers (in-
cluding rational numbers, as displayed with /R/), symbolic constants such as %pi, %e,
and %i, variables bound to a constant or declared constant by declare, or functions
whose arguments are constant.

constantp evaluates its arguments.

Examples:

68 Maxima Manual

(%i1) constantp (7 * sin(2));
(%o1) true
(%i2) constantp (rat (17/29));
(%o2) true
(%i3) constantp (%pi * sin(%e));
(%o3) true
(%i4) constantp (exp (x));
(%o4) false
(%i5) declare (x, constant);
(%o5) done
(%i6) constantp (exp (x));
(%o6) true
(%i7) constantp (foo (x) + bar (%e) + baz (2));
(%o7) false
(%i8)

Functiondeclare (a 1, p 1, a 2, p 2, ...)
Assigns the atom or list of atoms a i the property or list of properties p i. When a i
and/or p i are lists, each of the atoms gets all of the properties.
declare quotes its arguments. declare always returns done.
As noted in the description for each declaration flag, for some flags featurep(object,
feature) returns true if object has been declared to have feature. However, featurep
does not recognize some flags; this is a bug.
See also features.
declare recognizes the following properties:

evfun Makes a i known to ev so that the function named by a i is applied when
a i appears as a flag argument of ev. See evfun.

evflag Makes a i known to the ev function so that a i is bound to true during the
execution of ev when a i appears as a flag argument of ev. See evflag.

bindtest Tells Maxima to trigger an error when a i is evaluated unbound.

noun Tells Maxima to parse a i as a noun. The effect of this is to replace
instances of a i with ’a i or nounify(a i), depending on the context.

constant Tells Maxima to consider a i a symbolic constant.

scalar Tells Maxima to consider a i a scalar variable.

nonscalar
Tells Maxima to consider a i a nonscalar variable. The usual application
is to declare a variable as a symbolic vector or matrix.

mainvar Tells Maxima to consider a i a "main variable". A main variable succeeds
all other constants and variables in the canonical ordering of Maxima
expressions, as determined by ordergreatp.

alphabetic
Tells Maxima to recognize all characters in a i (which must be a string)
as alphabetic characters.

Chapter 6: Expressions 69

feature Tells Maxima to recognize a i as the name of a feature. Other atoms may
then be declared to have the a i property.

rassociative, lassociative
Tells Maxima to recognize a i as a right-associative or left-associative
function.

nary Tells Maxima to recognize a i as an n-ary function.
The nary declaration is not the same as calling the nary function. The
sole effect of declare(foo, nary) is to instruct the Maxima simplifier to
flatten nested expressions, for example, to simplify foo(x, foo(y, z))
to foo(x, y, z).

symmetric, antisymmetric, commutative
Tells Maxima to recognize a i as a symmetric or antisymmetric function.
commutative is the same as symmetric.

oddfun, evenfun
Tells Maxima to recognize a i as an odd or even function.

outative Tells Maxima to simplify a i expressions by pulling constant factors out
of the first argument.
When a i has one argument, a factor is considered constant if it is a literal
or declared constant.
When a i has two or more arguments, a factor is considered constant
if the second argument is a symbol and the factor is free of the second
argument.

multiplicative
Tells Maxima to simplify a i expressions by the substitution a i(x * y *
z * ...) --> a i(x) * a i(y) * a i(z) * The substitution is carried
out on the first argument only.

additive Tells Maxima to simplify a i expressions by the substitution a i(x + y +
z + ...) --> a i(x) + a i(y) + a i(z) + The substitution is carried
out on the first argument only.

linear Equivalent to declaring a i both outative and additive.

integer, noninteger
Tells Maxima to recognize a i as an integer or noninteger variable.

even, odd Tells Maxima to recognize a i as an even or odd integer variable.

rational, irrational
Tells Maxima to recognize a i as a rational or irrational real variable.

real, imaginary, complex
Tells Maxima to recognize a i as a real, pure imaginary, or complex vari-
able.

increasing, decreasing
Tells Maxima to recognize a i as an increasing or decreasing function.

70 Maxima Manual

posfun Tells Maxima to recognize a i as a positive function.

integervalued
Tells Maxima to recognize a i as an integer-valued function.

Examples:
evfun and evflag declarations.

(%i1) declare (expand, evfun);
(%o1) done
(%i2) (a + b)^3;

3
(%o2) (b + a)
(%i3) (a + b)^3, expand;

3 2 2 3
(%o3) b + 3 a b + 3 a b + a
(%i4) declare (demoivre, evflag);
(%o4) done
(%i5) exp (a + b*%i);

%i b + a
(%o5) %e
(%i6) exp (a + b*%i), demoivre;

a
(%o6) %e (%i sin(b) + cos(b))

bindtest declaration.
(%i1) aa + bb;
(%o1) bb + aa
(%i2) declare (aa, bindtest);
(%o2) done
(%i3) aa + bb;
aa unbound variable
-- an error. Quitting. To debug this try debugmode(true);
(%i4) aa : 1234;
(%o4) 1234
(%i5) aa + bb;
(%o5) bb + 1234

noun declaration.
(%i1) factor (12345678);

2
(%o1) 2 3 47 14593
(%i2) declare (factor, noun);
(%o2) done
(%i3) factor (12345678);
(%o3) factor(12345678)
(%i4) ’’%, nouns;

2
(%o4) 2 3 47 14593

constant, scalar, nonscalar, and mainvar declarations.

alphabetic declaration.

Chapter 6: Expressions 71

(%i1) xx\~yy\‘\@ : 1729;
(%o1) 1729
(%i2) declare ("~‘@", alphabetic);
(%o2) done
(%i3) xx~yy‘@ + @yy‘xx + ‘xx@@yy~;
(%o3) ‘xx@@yy~ + @yy‘xx + 1729
(%i4) listofvars (%);
(%o4) [@yy‘xx, ‘xx@@yy~]

feature declaration.
(%i1) declare (FOO, feature);
(%o1) done
(%i2) declare (x, FOO);
(%o2) done
(%i3) featurep (x, FOO);
(%o3) true

rassociative and lassociative declarations.

nary declaration.
(%i1) H (H (a, b), H (c, H (d, e)));
(%o1) H(H(a, b), H(c, H(d, e)))
(%i2) declare (H, nary);
(%o2) done
(%i3) H (H (a, b), H (c, H (d, e)));
(%o3) H(a, b, c, d, e)

symmetric and antisymmetric declarations.
(%i1) S (b, a);
(%o1) S(b, a)
(%i2) declare (S, symmetric);
(%o2) done
(%i3) S (b, a);
(%o3) S(a, b)
(%i4) S (a, c, e, d, b);
(%o4) S(a, b, c, d, e)
(%i5) T (b, a);
(%o5) T(b, a)
(%i6) declare (T, antisymmetric);
(%o6) done
(%i7) T (b, a);
(%o7) - T(a, b)
(%i8) T (a, c, e, d, b);
(%o8) T(a, b, c, d, e)

oddfun and evenfun declarations.
(%i1) o (- u) + o (u);
(%o1) o(u) + o(- u)
(%i2) declare (o, oddfun);
(%o2) done
(%i3) o (- u) + o (u);
(%o3) 0

72 Maxima Manual

(%i4) e (- u) - e (u);
(%o4) e(- u) - e(u)
(%i5) declare (e, evenfun);
(%o5) done
(%i6) e (- u) - e (u);
(%o6) 0

outative declaration.
(%i1) F1 (100 * x);
(%o1) F1(100 x)
(%i2) declare (F1, outative);
(%o2) done
(%i3) F1 (100 * x);
(%o3) 100 F1(x)
(%i4) declare (zz, constant);
(%o4) done
(%i5) F1 (zz * y);
(%o5) zz F1(y)

multiplicative declaration.
(%i1) F2 (a * b * c);
(%o1) F2(a b c)
(%i2) declare (F2, multiplicative);
(%o2) done
(%i3) F2 (a * b * c);
(%o3) F2(a) F2(b) F2(c)

additive declaration.
(%i1) F3 (a + b + c);
(%o1) F3(c + b + a)
(%i2) declare (F3, additive);
(%o2) done
(%i3) F3 (a + b + c);
(%o3) F3(c) + F3(b) + F3(a)

linear declaration.
(%i1) ’sum (F(k) + G(k), k, 1, inf);

inf
====
\

(%o1) > (G(k) + F(k))
/
====
k = 1

(%i2) declare (nounify (sum), linear);
(%o2) done
(%i3) ’sum (F(k) + G(k), k, 1, inf);

inf inf
==== ====
\ \

(%o3) > G(k) + > F(k)

Chapter 6: Expressions 73

/ /
==== ====
k = 1 k = 1

Functiondisolate (expr, x 1, ..., x n)
is similar to isolate (expr, x) except that it enables the user to isolate more than
one variable simultaneously. This might be useful, for example, if one were at-
tempting to change variables in a multiple integration, and that variable change
involved two or more of the integration variables. This function is autoloaded from
‘simplification/disol.mac’. A demo is available by demo("disol")$.

Functiondispform (expr)
Returns the external representation of expr with respect to its main operator. This
should be useful in conjunction with part which also deals with the external repre-
sentation. Suppose expr is -A . Then the internal representation of expr is "*"(-1,A),
while the external representation is "-"(A). dispform (expr, all) converts the en-
tire expression (not just the top-level) to external format. For example, if expr: sin
(sqrt (x)), then freeof (sqrt, expr) and freeof (sqrt, dispform (expr)) give
true, while freeof (sqrt, dispform (expr, all)) gives false.

Functiondistrib (expr)
Distributes sums over products. It differs from expand in that it works at only the
top level of an expression, i.e., it doesn’t recurse and it is faster than expand. It
differs from multthru in that it expands all sums at that level.
Examples:

(%i1) distrib ((a+b) * (c+d));
(%o1) b d + a d + b c + a c
(%i2) multthru ((a+b) * (c+d));
(%o2) (b + a) d + (b + a) c
(%i3) distrib (1/((a+b) * (c+d)));

1
(%o3) ---------------

(b + a) (d + c)
(%i4) expand (1/((a+b) * (c+d)), 1, 0);

1
(%o4) ---------------------

b d + a d + b c + a c

Functiondpart (expr, n 1, ..., n k)
Selects the same subexpression as part, but instead of just returning that subex-
pression as its value, it returns the whole expression with the selected subexpression
displayed inside a box. The box is actually part of the expression.

(%i1) dpart (x+y/z^2, 1, 2, 1);
y

(%o1) ---- + x
2

"""

74 Maxima Manual

"z"
"""

Functionexp (x)
Represents the exponential function. Instances of exp (x) in input are simplified to
%e^x; exp does not appear in simplified expressions.
demoivre if true causes %e^(a + b %i) to simplify to %e^(a (cos(b) + %i sin(b)))
if b is free of %i. See demoivre.
%emode, when true, causes %e^(%pi %i x) to be simplified. See %emode.
%enumer, when true causes %e to be replaced by 2.718... whenever numer is true.
See %enumer.

Option variable%emode
Default value: true
When %emode is true, %e^(%pi %i x) is simplified as follows.
%e^(%pi %i x) simplifies to cos (%pi x) + %i sin (%pi x) if x is a floating point
number, an integer, or a multiple of 1/2, 1/3, 1/4, or 1/6, and then further simplified.
For other numerical x, %e^(%pi %i x) simplifies to %e^(%pi %i y) where y is x - 2 k
for some integer k such that abs(y) < 1.
When %emode is false, no special simplification of %e^(%pi %i x) is carried out.

Option variable%enumer
Default value: false
When %enumer is true, %e is replaced by its numeric value 2.718... whenever numer
is true.
When %enumer is false, this substitution is carried out only if the exponent in %e^x
evaluates to a number.
See also ev and numer.

Option variableexptisolate
Default value: false
exptisolate, when true, causes isolate (expr, var) to examine exponents of
atoms (such as %e) which contain var.

Option variableexptsubst
Default value: false
exptsubst, when true, permits substitutions such as y for %e^x in %e^(a x).

Functionfreeof (x 1, ..., x n, expr)
freeof (x 1, expr) Returns true if no subexpression of expr is equal to x 1 or if x 1
occurs only as a dummy variable in expr, or if x 1 is neither the noun nor verb form
of any operator in expr, and returns false otherwise.
freeof (x 1, ..., x n, expr) is equivalent to freeof (x 1, expr) and ... and
freeof (x n, expr).

Chapter 6: Expressions 75

The arguments x 1, ..., x n may be names of functions and variables, subscripted
names, operators (enclosed in double quotes), or general expressions. freeof evalu-
ates its arguments.

freeof operates only on expr as it stands (after simplification and evaluation) and
does not attempt to determine if some equivalent expression would give a different
result. In particular, simplification may yield an equivalent but different expression
which comprises some different elements than the original form of expr.

A variable is a dummy variable in an expression if it has no binding outside of the
expression. Dummy variables recognized by freeof are the index of a sum or product,
the limit variable in limit, the integration variable in the definite integral form of
integrate, the original variable in laplace, formal variables in at expressions, and
arguments in lambda expressions. Local variables in block are not recognized by
freeof as dummy variables; this is a bug.

The indefinite form of integrate is not free of its variable of integration.

• Arguments are names of functions, variables, subscripted names, operators,
and expressions. freeof (a, b, expr) is equivalent to freeof (a, expr) and
freeof (b, expr).

(%i1) expr: z^3 * cos (a[1]) * b^(c+d);
d + c 3

(%o1) cos(a) b z
1

(%i2) freeof (z, expr);
(%o2) false
(%i3) freeof (cos, expr);
(%o3) false
(%i4) freeof (a[1], expr);
(%o4) false
(%i5) freeof (cos (a[1]), expr);
(%o5) false
(%i6) freeof (b^(c+d), expr);
(%o6) false
(%i7) freeof ("^", expr);
(%o7) false
(%i8) freeof (w, sin, a[2], sin (a[2]), b*(c+d), expr);
(%o8) true

• freeof evaluates its arguments.
(%i1) expr: (a+b)^5$
(%i2) c: a$
(%i3) freeof (c, expr);
(%o3) false

• freeof does not consider equivalent expressions. Simplification may yield an
equivalent but different expression.

(%i1) expr: (a+b)^5$
(%i2) expand (expr);

5 4 2 3 3 2 4 5
(%o2) b + 5 a b + 10 a b + 10 a b + 5 a b + a

76 Maxima Manual

(%i3) freeof (a+b, %);
(%o3) true
(%i4) freeof (a+b, expr);
(%o4) false
(%i5) exp (x);

x
(%o5) %e
(%i6) freeof (exp, exp (x));
(%o6) true

• A summation or definite integral is free of its dummy variable. An indefinite
integral is not free of its variable of integration.

(%i1) freeof (i, ’sum (f(i), i, 0, n));
(%o1) true
(%i2) freeof (x, ’integrate (x^2, x, 0, 1));
(%o2) true
(%i3) freeof (x, ’integrate (x^2, x));
(%o3) false

Functiongenfact (x, y, z)
Returns the generalized factorial, defined as x (x-z) (x - 2 z) ... (x - (y - 1) z).
Thus, for integral x, genfact (x, x, 1) = x! and genfact (x, x/2, 2) = x!!.

Functionimagpart (expr)
Returns the imaginary part of the expression expr.
imagpart is a computational function, not a simplifying function.
See also abs, carg, polarform, rectform, and realpart.

Functioninfix (op)
Functioninfix (op, lbp, rbp)
Functioninfix (op, lbp, rbp, lpos, rpos, pos)

Declares op to be an infix operator. An infix operator is a function of two arguments,
with the name of the function written between the arguments. For example, the
subtraction operator - is an infix operator.
infix (op) declares op to be an infix operator with default binding powers (left and
right both equal to 180) and parts of speech (left and right both equal to any).
infix (op, lbp, rbp) declares op to be an infix operator with stated left and right
binding powers and default parts of speech (left and right both equal to any).
infix (op, lbp, rbp, lpos, rpos, pos) declares op to be an infix operator with
stated left and right binding powers and parts of speech lpos, rpos, and pos for the
left operand, the right operand, and the operator result, respectively.
"Part of speech", in reference to operator declarations, means expression type. Three
types are recognized: expr, clause, and any, indicating an algebraic expression, a
Boolean expression, or any kind of expression, respectively. Maxima can detect some
syntax errors by comparing the declared part of speech to an actual expression.
The precedence of op with respect to other operators derives from the left and right
binding powers of the operators in question. If the left and right binding powers of

Chapter 6: Expressions 77

op are both greater the left and right binding powers of some other operator, then op
takes precedence over the other operator. If the binding powers are not both greater
or less, some more complicated relation holds.

The associativity of op depends on its binding powers. Greater left binding power
(lbp) implies an instance of op is evaluated before other operators to its left in an
expression, while greater right binding power (rbp) implies an instance of op is eval-
uated before other operators to its right in an expression. Thus greater lbp makes op
right-associative, while greater rbp makes op left-associative. If lbp is equal to rbp,
op is left-associative.

See also Syntax.

Examples:

If the left and right binding powers of op are both greater the left and right binding
powers of some other operator, then op takes precedence over the other operator.

(%i1) :lisp (get ’$+ ’lbp)
100
(%i1) :lisp (get ’$+ ’rbp)
100
(%i1) infix ("##", 101, 101);
(%o1) ##
(%i2) "##"(a, b) := sconcat("(", a, ",", b, ")");
(%o2) (a ## b) := sconcat("(", a, ",", b, ")")
(%i3) 1 + a ## b + 2;
(%o3) (a,b) + 3
(%i4) infix ("##", 99, 99);
(%o4) ##
(%i5) 1 + a ## b + 2;
(%o5) (a+1,b+2)

Greater lbp makes op right-associative, while greater rbp makes op left-associative.
(%i1) infix ("##", 100, 99);
(%o1) ##
(%i2) "##"(a, b) := sconcat("(", a, ",", b, ")")$
(%i3) foo ## bar ## baz;
(%o3) (foo,(bar,baz))
(%i4) infix ("##", 100, 101);
(%o4) ##
(%i5) foo ## bar ## baz;
(%o5) ((foo,bar),baz)

Maxima can detect some syntax errors by comparing the declared part of speech to
an actual expression.

(%i1) infix ("##", 100, 99, expr, expr, expr);
(%o1) ##
(%i2) if x ## y then 1 else 0;
Incorrect syntax: Found algebraic expression where logical expression expected
if x ## y then

^
(%i2) infix ("##", 100, 99, expr, expr, clause);

78 Maxima Manual

(%o2) ##
(%i3) if x ## y then 1 else 0;
(%o3) if x ## y then 1 else 0

Option variableinflag
Default value: false
When inflag is true, functions for part extraction inspect the internal form of expr.
Note that the simplifier re-orders expressions. Thus first (x + y) returns x if inflag
is true and y if inflag is false. (first (y + x) gives the same results.)
Also, setting inflag to true and calling part or substpart is the same as calling
inpart or substinpart.
Functions affected by the setting of inflag are: part, substpart, first, rest, last,
length, the for ... in construct, map, fullmap, maplist, reveal and pickapart.

Functioninpart (expr, n 1, ..., n k)
is similar to part but works on the internal representation of the expression rather
than the displayed form and thus may be faster since no formatting is done. Care
should be taken with respect to the order of subexpressions in sums and products
(since the order of variables in the internal form is often different from that in the
displayed form) and in dealing with unary minus, subtraction, and division (since
these operators are removed from the expression). part (x+y, 0) or inpart (x+y,
0) yield +, though in order to refer to the operator it must be enclosed in "s. For
example ... if inpart (%o9,0) = "+" then
Examples:

(%i1) x + y + w*z;
(%o1) w z + y + x
(%i2) inpart (%, 3, 2);
(%o2) z
(%i3) part (%th (2), 1, 2);
(%o3) z
(%i4) ’limit (f(x)^g(x+1), x, 0, minus);

g(x + 1)
(%o4) limit f(x)

x -> 0-
(%i5) inpart (%, 1, 2);
(%o5) g(x + 1)

Functionisolate (expr, x)
Returns expr with subexpressions which are sums and which do not contain var
replaced by intermediate expression labels (these being atomic symbols like %t1, %t2,
...). This is often useful to avoid unnecessary expansion of subexpressions which
don’t contain the variable of interest. Since the intermediate labels are bound to the
subexpressions they can all be substituted back by evaluating the expression in which
they occur.
exptisolate (default value: false) if true will cause isolate to examine exponents
of atoms (like %e) which contain var.

Chapter 6: Expressions 79

isolate_wrt_times if true, then isolate will also isolate with respect to products.
See isolate_wrt_times.

Do example (isolate) for examples.

Option variableisolate wrt times
Default value: false

When isolate_wrt_times is true, isolate will also isolate with respect to products.
E.g. compare both settings of the switch on

(%i1) isolate_wrt_times: true$
(%i2) isolate (expand ((a+b+c)^2), c);

(%t2) 2 a

(%t3) 2 b

2 2
(%t4) b + 2 a b + a

2
(%o4) c + %t3 c + %t2 c + %t4
(%i4) isolate_wrt_times: false$
(%i5) isolate (expand ((a+b+c)^2), c);

2
(%o5) c + 2 b c + 2 a c + %t4

Option variablelistconstvars
Default value: false

When listconstvars is true, it will cause listofvars to include %e, %pi, %i, and
any variables declared constant in the list it returns if they appear in the expression
listofvars is called on. The default is to omit these.

Option variablelistdummyvars
Default value: true

When listdummyvars is false, "dummy variables" in the expression will not be
included in the list returned by listofvars. (The meaning of "dummy variables" is
as given in freeof. "Dummy variables" are mathematical things like the index of a
sum or product, the limit variable, and the definite integration variable.) Example:

(%i1) listdummyvars: true$
(%i2) listofvars (’sum(f(i), i, 0, n));
(%o2) [i, n]
(%i3) listdummyvars: false$
(%i4) listofvars (’sum(f(i), i, 0, n));
(%o4) [n]

80 Maxima Manual

Functionlistofvars (expr)
Returns a list of the variables in expr.
listconstvars if true causes listofvars to include %e, %pi, %i, and any variables
declared constant in the list it returns if they appear in expr. The default is to omit
these.

(%i1) listofvars (f (x[1]+y) / g^(2+a));
(%o1) [g, a, x , y]

1

Functionlfreeof (list, expr)
For each member m of list, calls freeof (m, expr). It returns false if any call to
freeof does and true otherwise.

Functionlopow (expr, x)
Returns the lowest exponent of x which explicitly appears in expr. Thus

(%i1) lopow ((x+y)^2 + (x+y)^a, x+y);
(%o1) min(a, 2)

Functionlpart (label, expr, n 1, ..., n k)
is similar to dpart but uses a labelled box. A labelled box is similar to the one
produced by dpart but it has a name in the top line.

Functionmultthru (expr)
Functionmultthru (expr 1, expr 2)

Multiplies a factor (which should be a sum) of expr by the other factors of expr. That
is, expr is f 1 f 2 ... f n where at least one factor, say f i, is a sum of terms. Each
term in that sum is multiplied by the other factors in the product. (Namely all the
factors except f i). multthru does not expand exponentiated sums. This function is
the fastest way to distribute products (commutative or noncommutative) over sums.
Since quotients are represented as products multthru can be used to divide sums by
products as well.
multthru (expr 1, expr 2) multiplies each term in expr 2 (which should be a sum
or an equation) by expr 1. If expr 1 is not itself a sum then this form is equivalent
to multthru (expr 1*expr 2).

(%i1) x/(x-y)^2 - 1/(x-y) - f(x)/(x-y)^3;
1 x f(x)

(%o1) - ----- + -------- - --------
x - y 2 3

(x - y) (x - y)
(%i2) multthru ((x-y)^3, %);

2
(%o2) - (x - y) + x (x - y) - f(x)
(%i3) ratexpand (%);

2
(%o3) - y + x y - f(x)
(%i4) ((a+b)^10*s^2 + 2*a*b*s + (a*b)^2)/(a*b*s^2);

Chapter 6: Expressions 81

10 2 2 2
(b + a) s + 2 a b s + a b

(%o4) ------------------------------
2

a b s
(%i5) multthru (%); /* note that this does not expand (b+a)^10 */

10
2 a b (b + a)

(%o5) - + --- + ---------
s 2 a b

s
(%i6) multthru (a.(b+c.(d+e)+f));
(%o6) a . f + a . c . (e + d) + a . b
(%i7) expand (a.(b+c.(d+e)+f));
(%o7) a . f + a . c . e + a . c . d + a . b

Functionnounify (f)
Returns the noun form of the function name f. This is needed if one wishes to refer
to the name of a verb function as if it were a noun. Note that some verb functions
will return their noun forms if they can’t be evaluated for certain arguments. This is
also the form returned if a function call is preceded by a quote.

Functionnterms (expr)
Returns the number of terms that expr would have if it were fully expanded out
and no cancellations or combination of terms occurred. Note that expressions like
sin (expr), sqrt (expr), exp (expr), etc. count as just one term regardless of how
many terms expr has (if it is a sum).

Functionop (expr)
Returns the main operator of the expression expr. op (expr) is equivalent to part
(expr, 0).
op returns a string if the main operator is a built-in or user-defined prefix, binary or
n-ary infix, postfix, matchfix, or nofix operator. Otherwise, if expr is a subscripted
function expression, op returns the subscripted function; in this case the return value
is not an atom. Otherwise, expr is an array function or ordinary function expression,
and op returns a symbol.
op observes the value of the global flag inflag.
op evaluates it argument.
See also args.
Examples:

(%i1) stringdisp: true$
(%i2) op (a * b * c);
(%o2) "*"
(%i3) op (a * b + c);
(%o3) "+"
(%i4) op (’sin (a + b));

82 Maxima Manual

(%o4) sin
(%i5) op (a!);
(%o5) "!"
(%i6) op (-a);
(%o6) "-"
(%i7) op ([a, b, c]);
(%o7) "["
(%i8) op (’(if a > b then c else d));
(%o8) "if"
(%i9) op (’foo (a));
(%o9) foo
(%i10) prefix (foo);
(%o10) "foo"
(%i11) op (foo a);
(%o11) "foo"
(%i12) op (F [x, y] (a, b, c));
(%o12) F

x, y
(%i13) op (G [u, v, w]);
(%o13) G

Functionoperatorp (expr, op)
Functionoperatorp (expr, [op 1, ..., op n])

operatorp (expr, op) returns true if op is equal to the operator of expr.

operatorp (expr, [op 1, ..., op n]) returns true if some element op 1, ..., op n
is equal to the operator of expr.

Functionoptimize (expr)
Returns an expression that produces the same value and side effects as expr but
does so more efficiently by avoiding the recomputation of common subexpressions.
optimize also has the side effect of "collapsing" its argument so that all common
subexpressions are shared. Do example (optimize) for examples.

Option variableoptimprefix
Default value: %

optimprefix is the prefix used for generated symbols by the optimize command.

Functionordergreat (v 1, ..., v n)
Functionorderless (v 1, ..., v n)

ordergreat changes the canonical ordering of Maxima expressions such that v 1 suc-
ceeds v 2 succeeds ... succeeds v n, and v n succeeds any other symbol not mentioned
as an argument.

orderless changes the canonical ordering of Maxima expressions such that v 1 pre-
cedes v 2 precedes ... precedes v n, and v n precedes any other variable not mentioned
as an argument.

Chapter 6: Expressions 83

The order established by ordergreat and orderless is dissolved by unorder.
ordergreat and orderless can be called only once each, unless unorder is called;
only the last call to ordergreat and orderless has any effect.
See also ordergreatp.

Functionordergreatp (expr 1, expr 2)
Functionorderlessp (expr 1, expr 2)

ordergreatp returns true if expr 1 succeeds expr 2 in the canonical ordering of
Maxima expressions, and false otherwise.
orderlessp returns true if expr 1 precedes expr 2 in the canonical ordering of Max-
ima expressions, and false otherwise.
All Maxima atoms and expressions are comparable under ordergreatp and
orderlessp, although there are isolated examples of expressions for which these
predicates are not transitive; that is a bug.
The canonical ordering of atoms (symbols, literal numbers, and strings) is the follow-
ing.
(integers and floats) precede (bigfloats) precede (declared constants) precede (strings)
precede (declared scalars) precede (first argument to orderless) precedes ... precedes
(last argument to orderless) precedes (other symbols) precede (last argument to
ordergreat) precedes ... precedes (first argument to ordergreat) precedes (declared
main variables)
For non-atomic expressions, the canonical ordering is derived from the ordering for
atoms. For the built-in + * and ^ operators, the ordering is not easily summarized.
For other built-in operators and all other functions and operators, expressions are
ordered by their arguments (beginning with the first argument), then by the name
of the operator or function. In the case of subscripted expressions, the subscripted
symbol is considered the operator and the subscript is considered an argument.
The canonical ordering of expressions is modified by the functions ordergreat and
orderless, and the mainvar, constant, and scalar declarations.
See also sort.
Examples:
Ordering ordinary symbols and constants. Note that %pi is not ordered according to
its numerical value.

(%i1) stringdisp : true;
(%o1) true
(%i2) sort ([%pi, 3b0, 3.0, x, X, "foo", 3, a, 4, "bar", 4.0, 4b0]);
(%o2) [3, 3.0, 4, 4.0, 3.0b0, 4.0b0, %pi, "bar", "foo", a, x, X]

Effect of ordergreat and orderless functions.
(%i1) sort ([M, H, K, T, E, W, G, A, P, J, S]);
(%o1) [A, E, G, H, J, K, M, P, S, T, W]
(%i2) ordergreat (S, J);
(%o2) done
(%i3) orderless (M, H);
(%o3) done

84 Maxima Manual

(%i4) sort ([M, H, K, T, E, W, G, A, P, J, S]);
(%o4) [M, H, A, E, G, K, P, T, W, J, S]

Effect of mainvar, constant, and scalar declarations.
(%i1) sort ([aa, foo, bar, bb, baz, quux, cc, dd, A1, B1, C1]);
(%o1) [aa, bar, baz, bb, cc, dd, foo, quux, A1, B1, C1]
(%i2) declare (aa, mainvar);
(%o2) done
(%i3) declare ([baz, quux], constant);
(%o3) done
(%i4) declare ([A1, B1], scalar);
(%o4) done
(%i5) sort ([aa, foo, bar, bb, baz, quux, cc, dd, A1, B1, C1]);
(%o5) [baz, quux, A1, B1, bar, bb, cc, dd, foo, C1, aa]

Ordering non-atomic expressions.
(%i1) sort ([1, 2, n, f(1), f(2), f(2, 1), g(1), g(1, 2), g(n), f(n, 1)]);
(%o1) [1, 2, f(1), g(1), g(1, 2), f(2), f(2, 1), n, g(n),

f(n, 1)]
(%i2) sort ([foo(1), X[1], X[k], foo(k), 1, k]);
(%o2) [1, foo(1), X , k, foo(k), X]

1 k

Functionpart (expr, n 1, ..., n k)
Returns parts of the displayed form of expr. It obtains the part of expr as specified
by the indices n 1, ..., n k. First part n 1 of expr is obtained, then part n 2 of that,
etc. The result is part n k of ... part n 2 of part n 1 of expr.
part can be used to obtain an element of a list, a row of a matrix, etc.
If the last argument to a part function is a list of indices then several subexpressions
are picked out, each one corresponding to an index of the list. Thus part (x + y +
z, [1, 3]) is z+x.
piece holds the last expression selected when using the part functions. It is set
during the execution of the function and thus may be referred to in the function itself
as shown below.
If partswitch is set to true then end is returned when a selected part of an expression
doesn’t exist, otherwise an error message is given.
Example: part (z+2*y, 2, 1) yields 2.
example (part) displays additional examples.

Functionpartition (expr, x)
Returns a list of two expressions. They are (1) the factors of expr (if it is a product),
the terms of expr (if it is a sum), or the list (if it is a list) which don’t contain x and,
(2) the factors, terms, or list which do.

(%i1) partition (2*a*x*f(x), x);
(%o1) [2 a, x f(x)]
(%i2) partition (a+b, x);
(%o2) [b + a, 0]
(%i3) partition ([a, b, f(a), c], a);
(%o3) [[b, c], [a, f(a)]]

Chapter 6: Expressions 85

Option variablepartswitch
Default value: false
When partswitch is true, end is returned when a selected part of an expression
doesn’t exist, otherwise an error message is given.

Functionpickapart (expr, n)
Assigns intermediate expression labels to subexpressions of expr at depth n, an in-
teger. Subexpressions at greater or lesser depths are not assigned labels. pickapart
returns an expression in terms of intermediate expressions equivalent to the original
expression expr.
See also part, dpart, lpart, inpart, and reveal.
Examples:

(%i1) expr: (a+b)/2 + sin (x^2)/3 - log (1 + sqrt(x+1));
2

sin(x) b + a
(%o1) - log(sqrt(x + 1) + 1) + ------- + -----

3 2
(%i2) pickapart (expr, 0);

2
sin(x) b + a

(%t2) - log(sqrt(x + 1) + 1) + ------- + -----
3 2

(%o2) %t2
(%i3) pickapart (expr, 1);

(%t3) - log(sqrt(x + 1) + 1)

2
sin(x)

(%t4) -------
3

b + a
(%t5) -----

2

(%o5) %t5 + %t4 + %t3
(%i5) pickapart (expr, 2);

(%t6) log(sqrt(x + 1) + 1)

2
(%t7) sin(x)

86 Maxima Manual

(%t8) b + a

%t8 %t7
(%o8) --- + --- - %t6

2 3
(%i8) pickapart (expr, 3);

(%t9) sqrt(x + 1) + 1

2
(%t10) x

b + a sin(%t10)
(%o10) ----- - log(%t9) + ---------

2 3
(%i10) pickapart (expr, 4);

(%t11) sqrt(x + 1)

2
sin(x) b + a

(%o11) ------- + ----- - log(%t11 + 1)
3 2

(%i11) pickapart (expr, 5);

(%t12) x + 1

2
sin(x) b + a

(%o12) ------- + ----- - log(sqrt(%t12) + 1)
3 2

(%i12) pickapart (expr, 6);
2

sin(x) b + a
(%o12) ------- + ----- - log(sqrt(x + 1) + 1)

3 2

System variablepiece
Holds the last expression selected when using the part functions. It is set during the
execution of the function and thus may be referred to in the function itself.

Functionpolarform (expr)
Returns an expression r %e^(%i theta) equivalent to expr, such that r and theta
are purely real.

Chapter 6: Expressions 87

Functionpowers (expr, x)
Gives the powers of x occuring in expr.
load (powers) loads this function.

Functionproduct (expr, i, i 0, i 1)
Represents a product of the values of expr as the index i varies from i 0 to i 1. The
noun form ’product is displayed as an uppercase letter pi.
product evaluates expr and lower and upper limits i 0 and i 1, product quotes (does
not evaluate) the index i.
If the upper and lower limits differ by an integer, expr is evaluated for each value of
the index i, and the result is an explicit product.
Otherwise, the range of the index is indefinite. Some rules are applied to simplify the
product. When the global variable simpproduct is true, additional rules are applied.
In some cases, simplification yields a result which is not a product; otherwise, the
result is a noun form ’product.
See also nouns and evflag.
Examples:

(%i1) product (x + i*(i+1)/2, i, 1, 4);
(%o1) (x + 1) (x + 3) (x + 6) (x + 10)
(%i2) product (i^2, i, 1, 7);
(%o2) 25401600
(%i3) product (a[i], i, 1, 7);
(%o3) a a a a a a a

1 2 3 4 5 6 7
(%i4) product (a(i), i, 1, 7);
(%o4) a(1) a(2) a(3) a(4) a(5) a(6) a(7)
(%i5) product (a(i), i, 1, n);

n
/===\
! !

(%o5) ! ! a(i)
! !
i = 1

(%i6) product (k, k, 1, n);
n

/===\
! !

(%o6) ! ! k
! !
k = 1

(%i7) product (k, k, 1, n), simpproduct;
(%o7) n!
(%i8) product (integrate (x^k, x, 0, 1), k, 1, n);

n
/===\
! ! 1

(%o8) ! ! -----

88 Maxima Manual

! ! k + 1
k = 1

(%i9) product (if k <= 5 then a^k else b^k, k, 1, 10);
15 40

(%o9) a b

Functionrealpart (expr)
Returns the real part of expr. realpart and imagpart will work on expressions
involving trigonometic and hyperbolic functions, as well as square root, logarithm,
and exponentiation.

Functionrectform (expr)
Returns an expression a + b %i equivalent to expr, such that a and b are purely real.

Functionrembox (expr, unlabelled)
Functionrembox (expr, label)
Functionrembox (expr)

Removes boxes from expr.
rembox (expr, unlabelled) removes all unlabelled boxes from expr.
rembox (expr, label) removes only boxes bearing label.
rembox (expr) removes all boxes, labelled and unlabelled.
Boxes are drawn by the box, dpart, and lpart functions.
Examples:

(%i1) expr: (a*d - b*c)/h^2 + sin(%pi*x);
a d - b c

(%o1) sin(%pi x) + ---------
2
h

(%i2) dpart (dpart (expr, 1, 1), 2, 2);
""""""" a d - b c

(%o2) sin("%pi x") + ---------
""""""" """"

" 2"
"h "
""""

(%i3) expr2: lpart (BAR, lpart (FOO, %, 1), 2);
FOO""""""""""" BAR""""""""
" """"""" " "a d - b c"

(%o3) "sin("%pi x")" + "---------"
" """"""" " " """" "
"""""""""""""" " " 2" "

" "h " "
" """" "
"""""""""""

(%i4) rembox (expr2, unlabelled);
BAR""""""""

FOO""""""""" "a d - b c"

Chapter 6: Expressions 89

(%o4) "sin(%pi x)" + "---------"
"""""""""""" " 2 "

" h "
"""""""""""

(%i5) rembox (expr2, FOO);
BAR""""""""

""""""" "a d - b c"
(%o5) sin("%pi x") + "---------"

""""""" " """" "
" " 2" "
" "h " "
" """" "
"""""""""""

(%i6) rembox (expr2, BAR);
FOO"""""""""""
" """"""" " a d - b c

(%o6) "sin("%pi x")" + ---------
" """"""" " """"
"""""""""""""" " 2"

"h "
""""

(%i7) rembox (expr2);
a d - b c

(%o7) sin(%pi x) + ---------
2
h

Functionsum (expr, i, i 0, i 1)
Represents a summation of the values of expr as the index i varies from i 0 to i 1.
The noun form ’sum is displayed as an uppercase letter sigma.

sum evaluates its summand expr and lower and upper limits i 0 and i 1, sum quotes
(does not evaluate) the index i.

If the upper and lower limits differ by an integer, the summand expr is evaluated for
each value of the summation index i, and the result is an explicit sum.

Otherwise, the range of the index is indefinite. Some rules are applied to simplify the
summation. When the global variable simpsum is true, additional rules are applied.
In some cases, simplification yields a result which is not a summation; otherwise, the
result is a noun form ’sum.

When the evflag (evaluation flag) cauchysum is true, a product of summations
is expressed as a Cauchy product, in which the index of the inner summation is a
function of the index of the outer one, rather than varying independently.

The global variable genindex is the alphabetic prefix used to generate the next index
of summation, when an automatically generated index is needed.

gensumnum is the numeric suffix used to generate the next index of summation,
when an automatically generated index is needed. When gensumnum is false, an
automatically-generated index is only genindex with no numeric suffix.

90 Maxima Manual

See also sumcontract, intosum, bashindices, niceindices, nouns, evflag, and
zeilberger.
Examples:

(%i1) sum (i^2, i, 1, 7);
(%o1) 140
(%i2) sum (a[i], i, 1, 7);
(%o2) a + a + a + a + a + a + a

7 6 5 4 3 2 1
(%i3) sum (a(i), i, 1, 7);
(%o3) a(7) + a(6) + a(5) + a(4) + a(3) + a(2) + a(1)
(%i4) sum (a(i), i, 1, n);

n
====
\

(%o4) > a(i)
/
====
i = 1

(%i5) sum (2^i + i^2, i, 0, n);
n

====
\ i 2

(%o5) > (2 + i)
/
====
i = 0

(%i6) sum (2^i + i^2, i, 0, n), simpsum;
3 2

n + 1 2 n + 3 n + n
(%o6) 2 + --------------- - 1

6
(%i7) sum (1/3^i, i, 1, inf);

inf
====
\ 1

(%o7) > --
/ i
==== 3
i = 1

(%i8) sum (1/3^i, i, 1, inf), simpsum;
1

(%o8) -
2

(%i9) sum (i^2, i, 1, 4) * sum (1/i^2, i, 1, inf);
inf
====
\ 1

(%o9) 30 > --
/ 2

Chapter 6: Expressions 91

==== i
i = 1

(%i10) sum (i^2, i, 1, 4) * sum (1/i^2, i, 1, inf), simpsum;
2

(%o10) 5 %pi
(%i11) sum (integrate (x^k, x, 0, 1), k, 1, n);

n
====
\ 1

(%o11) > -----
/ k + 1
====
k = 1

(%i12) sum (if k <= 5 then a^k else b^k, k, 1, 10);
10 9 8 7 6 5 4 3 2

(%o12) b + b + b + b + b + a + a + a + a + a

Functionlsum (expr, x, L)
Represents the sum of expr for each element x in L.
A noun form ’lsum is returned if the argument L does not evaluate to a list.
Examples:

(%i1) lsum (x^i, i, [1, 2, 7]);
7 2

(%o1) x + x + x
(%i2) lsum (i^2, i, rootsof (x^3 - 1));

====
\ 2

(%o2) > i
/
====

3
i in rootsof(x - 1)

Functionverbify (f)
Returns the verb form of the function name f.
See also verb, noun, and nounify.
Examples:

(%i1) verbify (’foo);
(%o1) foo
(%i2) :lisp $%
$FOO
(%i2) nounify (foo);
(%o2) foo
(%i3) :lisp $%
%FOO

92 Maxima Manual

Chapter 7: Simplification 93

7 Simplification

7.1 Functions and Variables for Simplification

System variableaskexp
When asksign is called, askexp is the expression asksign is testing.

At one time, it was possible for a user to inspect askexp by entering a Maxima break
with control-A.

Functionaskinteger (expr, integer)
Functionaskinteger (expr)
Functionaskinteger (expr, even)
Functionaskinteger (expr, odd)

askinteger (expr, integer) attempts to determine from the assume database
whether expr is an integer. askinteger prompts the user if it cannot tell otherwise,
and attempt to install the information in the database if possible. askinteger
(expr) is equivalent to askinteger (expr, integer).

askinteger (expr, even) and askinteger (expr, odd) likewise attempt to deter-
mine if expr is an even integer or odd integer, respectively.

Functionasksign (expr)
First attempts to determine whether the specified expression is positive, negative, or
zero. If it cannot, it asks the user the necessary questions to complete its deduc-
tion. The user’s answer is recorded in the data base for the duration of the current
computation. The return value of asksign is one of pos, neg, or zero.

Functiondemoivre (expr)
Option variabledemoivre

The function demoivre (expr) converts one expression without setting the global
variable demoivre.

When the variable demoivre is true, complex exponentials are converted into equiv-
alent expressions in terms of circular functions: exp (a + b*%i) simplifies to %e^a *
(cos(b) + %i*sin(b)) if b is free of %i. a and b are not expanded.

The default value of demoivre is false.

exponentialize converts circular and hyperbolic functions to exponential form.
demoivre and exponentialize cannot both be true at the same time.

Option variabledomain
Default value: real

When domain is set to complex, sqrt (x^2) will remain sqrt (x^2) instead of re-
turning abs(x).

94 Maxima Manual

Functionexpand (expr)
Functionexpand (expr, p, n)

Expand expression expr. Products of sums and exponentiated sums are multiplied
out, numerators of rational expressions which are sums are split into their respective
terms, and multiplication (commutative and non-commutative) are distributed over
addition at all levels of expr.

For polynomials one should usually use ratexpand which uses a more efficient algo-
rithm.

maxnegex and maxposex control the maximum negative and positive exponents, re-
spectively, which will expand.

expand (expr, p, n) expands expr, using p for maxposex and n for maxnegex. This
is useful in order to expand part but not all of an expression.

expon - the exponent of the largest negative power which is automatically expanded
(independent of calls to expand). For example if expon is 4 then (x+1)^(-5) will not
be automatically expanded.

expop - the highest positive exponent which is automatically expanded. Thus
(x+1)^3, when typed, will be automatically expanded only if expop is greater than
or equal to 3. If it is desired to have (x+1)^n expanded where n is greater than
expop then executing expand ((x+1)^n) will work only if maxposex is not less than
n.

The expand flag used with ev causes expansion.

The file ‘simplification/facexp.mac’ contains several related functions (in
particular facsum, factorfacsum and collectterms, which are autoloaded) and
variables (nextlayerfactor and facsum_combine) that provide the user with the
ability to structure expressions by controlled expansion. Brief function descriptions
are available in ‘simplification/facexp.usg’. A demo is available by doing
demo("facexp").

Functionexpandwrt (expr, x 1, ..., x n)
Expands expression expr with respect to the variables x 1, ..., x n. All products
involving the variables appear explicitly. The form returned will be free of products
of sums of expressions that are not free of the variables. x 1, ..., x n may be variables,
operators, or expressions.

By default, denominators are not expanded, but this can be controlled by means of
the switch expandwrt_denom.

This function is autoloaded from ‘simplification/stopex.mac’.

Option variableexpandwrt denom
Default value: false

expandwrt_denom controls the treatment of rational expressions by expandwrt. If
true, then both the numerator and denominator of the expression will be expanded
according to the arguments of expandwrt, but if expandwrt_denom is false, then
only the numerator will be expanded in that way.

Chapter 7: Simplification 95

Functionexpandwrt factored (expr, x 1, ..., x n)
is similar to expandwrt, but treats expressions that are products somewhat differently.
expandwrt_factored expands only on those factors of expr that contain the variables
x 1, ..., x n.

This function is autoloaded from ‘simplification/stopex.mac’.

Option variableexpon
Default value: 0

expon is the exponent of the largest negative power which is automatically expanded
(independent of calls to expand). For example, if expon is 4 then (x+1)^(-5) will
not be automatically expanded.

Functionexponentialize (expr)
Option variableexponentialize

The function exponentialize (expr) converts circular and hyperbolic functions in
expr to exponentials, without setting the global variable exponentialize.

When the variable exponentialize is true, all circular and hyperbolic functions are
converted to exponential form. The default value is false.

demoivre converts complex exponentials into circular functions. exponentialize
and demoivre cannot both be true at the same time.

Option variableexpop
Default value: 0

expop is the highest positive exponent which is automatically expanded. Thus (x +
1)^3, when typed, will be automatically expanded only if expop is greater than or
equal to 3. If it is desired to have (x + 1)^n expanded where n is greater than expop
then executing expand ((x + 1)^n) will work only if maxposex is not less than n.

Option variablefactlim
Default value: -1

factlim specifies the highest factorial which is automatically expanded. If it is -1
then all integers are expanded.

Functionintosum (expr)
Moves multiplicative factors outside a summation to inside. If the index is used in the
outside expression, then the function tries to find a reasonable index, the same as it
does for sumcontract. This is essentially the reverse idea of the outative property
of summations, but note that it does not remove this property, it only bypasses it.

In some cases, a scanmap (multthru, expr) may be necessary before the intosum.

Declarationlassociative
declare (g, lassociative) tells the Maxima simplifier that g is left-associative.
E.g., g (g (a, b), g (c, d)) will simplify to g (g (g (a, b), c), d).

96 Maxima Manual

Declarationlinear
One of Maxima’s operator properties. For univariate f so declared, "expansion" f(x
+ y) yields f(x) + f(y), f(a*x) yields a*f(x) takes place where a is a "constant".
For functions of two or more arguments, "linearity" is defined to be as in the case of
sum or integrate, i.e., f (a*x + b, x) yields a*f(x,x) + b*f(1,x) for a and b free
of x.
linear is equivalent to additive and outative. See also opproperties.

Declarationmainvar
You may declare variables to be mainvar. The ordering scale for atoms is essentially:
numbers < constants (e.g., %e, %pi) < scalars < other variables < mainvars. E.g., com-
pare expand ((X+Y)^4) with (declare (x, mainvar), expand ((x+y)^4)). (Note:
Care should be taken if you elect to use the above feature. E.g., if you subtract an
expression in which x is a mainvar from one in which x isn’t a mainvar, resimplifica-
tion e.g. with ev (expr, simp) may be necessary if cancellation is to occur. Also, if
you save an expression in which x is a mainvar, you probably should also save x.)

Option variablemaxapplydepth
Default value: 10000
maxapplydepth is the maximum depth to which apply1 and apply2 will delve.

Option variablemaxapplyheight
Default value: 10000
maxapplyheight is the maximum height to which applyb1 will reach before giving
up.

Option variablemaxnegex
Default value: 1000
maxnegex is the largest negative exponent which will be expanded by the expand
command (see also maxposex).

Option variablemaxposex
Default value: 1000
maxposex is the largest exponent which will be expanded with the expand command
(see also maxnegex).

Declarationmultiplicative
declare (f, multiplicative) tells the Maxima simplifier that f is multiplicative.
1. If f is univariate, whenever the simplifier encounters f applied to a product, f

distributes over that product. E.g., f(x*y) simplifies to f(x)*f(y).
2. If f is a function of 2 or more arguments, multiplicativity is defined as multiplica-

tivity in the first argument to f, e.g., f (g(x) * h(x), x) simplifies to f (g(x)
,x) * f (h(x), x).

This simplification does not occur when f is applied to expressions of the form product
(x[i], i, m, n).

Chapter 7: Simplification 97

Option variablenegdistrib
Default value: true

When negdistrib is true, -1 distributes over an expression. E.g., -(x + y) becomes
- y - x. Setting it to false will allow - (x + y) to be displayed like that. This is
sometimes useful but be very careful: like the simp flag, this is one flag you do not
want to set to false as a matter of course or necessarily for other than local use in
your Maxima.

Option variablenegsumdispflag
Default value: true

When negsumdispflag is true, x - y displays as x - y instead of as - y + x. Setting
it to false causes the special check in display for the difference of two expressions
to not be done. One application is that thus a + %i*b and a - %i*b may both be
displayed the same way.

Special symbolnoeval
noeval suppresses the evaluation phase of ev. This is useful in conjunction with other
switches and in causing expressions to be resimplified without being reevaluated.

Declarationnoun
noun is one of the options of the declare command. It makes a function so declared
a "noun", meaning that it won’t be evaluated automatically.

Option variablenoundisp
Default value: false

When noundisp is true, nouns display with a single quote. This switch is always
true when displaying function definitions.

Special symbolnouns
nouns is an evflag. When used as an option to the ev command, nouns converts all
"noun" forms occurring in the expression being ev’d to "verbs", i.e., evaluates them.
See also noun, nounify, verb, and verbify.

Special symbolnumer
numer causes some mathematical functions (including exponentiation) with numerical
arguments to be evaluated in floating point. It causes variables in expr which have
been given numerals to be replaced by their values. It also sets the float switch on.

Functionnumerval (x 1, expr 1, ..., var n, expr n)
Declares the variables x_1, ..., x n to have numeric values equal to expr_1, ..., expr_
n. The numeric value is evaluated and substituted for the variable in any expressions
in which the variable occurs if the numer flag is true. See also ev.

The expressions expr_1, ..., expr_n can be any expressions, not necessarily numeric.

98 Maxima Manual

System variableopproperties
opproperties is the list of the special operator properties recognized by the Max-
ima simplifier: linear, additive, multiplicative, outative, evenfun, oddfun,
commutative, symmetric, antisymmetric, nary, lassociative, rassociative.

Option variableopsubst
Default value: true
When opsubst is false, subst does not attempt to substitute into the operator of
an expression. E.g., (opsubst: false, subst (x^2, r, r+r[0])) will work.

Declarationoutative
declare (f, outative) tells the Maxima simplifier that constant factors in the ar-
gument of f can be pulled out.
1. If f is univariate, whenever the simplifier encounters f applied to a product, that

product will be partitioned into factors that are constant and factors that are not
and the constant factors will be pulled out. E.g., f(a*x) will simplify to a*f(x)
where a is a constant. Non-atomic constant factors will not be pulled out.

2. If f is a function of 2 or more arguments, outativity is defined as in the case of
sum or integrate, i.e., f (a*g(x), x) will simplify to a * f(g(x), x) for a free
of x.

sum, integrate, and limit are all outative.

Declarationposfun
declare (f, posfun) declares f to be a positive function. is (f(x) > 0) yields true.

Functionradcan (expr)
Simplifies expr, which can contain logs, exponentials, and radicals, by converting it
into a form which is canonical over a large class of expressions and a given ordering
of variables; that is, all functionally equivalent forms are mapped into a unique form.
For a somewhat larger class of expressions, radcan produces a regular form. Two
equivalent expressions in this class do not necessarily have the same appearance, but
their difference can be simplified by radcan to zero.
For some expressions radcan is quite time consuming. This is the cost of exploring
certain relationships among the components of the expression for simplifications based
on factoring and partial-fraction expansions of exponents.
When %e_to_numlog is true, %e^(r*log(expr)) simplifies to expr^r if r is a rational
number.
When radexpand is false, certain transformations are inhibited. radcan (sqrt (1-
x)) remains sqrt (1-x) and is not simplified to %i sqrt (x-1). radcan (sqrt (x^2
- 2*x + 11)) remains sqrt (x^2 - 2*x + 1) and is not simplified to x - 1.
example (radcan) displays some examples.

Option variableradexpand
Default value: true

Chapter 7: Simplification 99

radexpand controls some simplifications of radicals.
When radexpand is all, causes nth roots of factors of a product which are powers
of n to be pulled outside of the radical. E.g. if radexpand is all, sqrt (16*x^2)
simplifies to 4*x.
More particularly, consider sqrt (x^2).
• If radexpand is all or assume (x > 0) has been executed, sqrt(x^2) simplifies

to x.
• If radexpand is true and domain is real (its default), sqrt(x^2) simplifies to

abs(x).
• If radexpand is false, or radexpand is true and domain is complex, sqrt(x^2)

is not simplified.

Note that domain only matters when radexpand is true.

Option variableradsubstflag
Default value: false
radsubstflag, if true, permits ratsubst to make substitutions such as u for sqrt
(x) in x.

Declarationrassociative
declare (g, rassociative) tells the Maxima simplifier that g is right-associative.
E.g., g(g(a, b), g(c, d)) simplifies to g(a, g(b, g(c, d))).

Functionscsimp (expr, rule 1, ..., rule n)
Sequential Comparative Simplification (method due to Stoute). scsimp attempts
to simplify expr according to the rules rule 1, ..., rule n. If a smaller expression is
obtained, the process repeats. Otherwise after all simplifications are tried, it returns
the original answer.
example (scsimp) displays some examples.

Option variablesimpsum
Default value: false
When simpsum is true, the result of a sum is simplified. This simplification may
sometimes be able to produce a closed form. If simpsum is false or if the quoted
form ’sum is used, the value is a sum noun form which is a representation of the sigma
notation used in mathematics.

Functionsumcontract (expr)
Combines all sums of an addition that have upper and lower bounds that differ by
constants. The result is an expression containing one summation for each set of such
summations added to all appropriate extra terms that had to be extracted to form
this sum. sumcontract combines all compatible sums and uses one of the indices
from one of the sums if it can, and then try to form a reasonable index if it cannot
use any supplied.
It may be necessary to do an intosum (expr) before the sumcontract.

100 Maxima Manual

Option variablesumexpand
Default value: false
When sumexpand is true, products of sums and exponentiated sums simplify to nested
sums.
See also cauchysum.
Examples:

(%i1) sumexpand: true$
(%i2) sum (f (i), i, 0, m) * sum (g (j), j, 0, n);

m n
==== ====
\ \

(%o2) > > f(i1) g(i2)
/ /
==== ====
i1 = 0 i2 = 0

(%i3) sum (f (i), i, 0, m)^2;
m m
==== ====
\ \

(%o3) > > f(i3) f(i4)
/ /
==== ====
i3 = 0 i4 = 0

Option variablesumsplitfact
Default value: true
When sumsplitfact is false, minfactorial is applied after a factcomb.

Declarationsymmetric
declare (h, symmetric) tells the Maxima simplifier that h is a symmetric function.
E.g., h (x, z, y) simplifies to h (x, y, z).
commutative is synonymous with symmetric.

Functionunknown (expr)
Returns true if and only if expr contains an operator or function not recognized by
the Maxima simplifier.

Chapter 8: Plotting 101

8 Plotting

8.1 Functions and Variables for Plotting

Functioncontour plot (expr, x range, y range, options, ...)
Plots the contours (curves of equal value) of expr over the region x range by y range.
Any additional arguments are treated the same as in plot3d.
contour_plot only works when the plot format is gnuplot or gnuplot_pipes.
See also implicit_plot.
Examples:

(%i1) contour_plot (x^2 + y^2, [x, -4, 4], [y, -4, 4]);
(%o1)
(%i2) contour_plot (sin(y) * cos(x)^2, [x, -4, 4], [y, -4, 4]);
(%o2)
(%i3) F(x, y) := x^3 + y^2;

3 2
(%o3) F(x, y) := x + y
(%i4) contour_plot (F, [u, -4, 4], [v, -4, 4]);
(%o4)
(%i5) contour_plot (F, [u, -4, 4], [v, -4, 4], [gnuplot_preamble,

"set size ratio -1"]);
(%o5)
(%i6) set_plot_option ([gnuplot_preamble,

"set cntrparam levels 12"])$

(%i7) contour_plot (F, [u, -4, 4], [v, -4, 4]);

Option variablein netmath
Default value: false
When in_netmath is true, plot3d prints OpenMath output to the console if plot_
format is openmath; otherwise in_netmath (even if true) has no effect. in_netmath
has no effect on plot2d.

Functionplot2d (expr, x range, ..., options, ...)
Functionplot2d ([expr 1, ..., expr n], ..., options, ...)
Functionplot2d ([expr 1, ..., expr n], x range,..., options, ...)

Where expr, expr 1, ..., expr n can be either expressions, or Maxima or Lisp functions
or operators, or a list with the any of the forms: [discrete, [x1, ..., xn], [y1,
..., yn]], [discrete, [[x1, y1], ..., [xn, ..., yn]] or [parametric, x expr,
y expr, t range].
Displays a plot of one or more expressions as a function of one variable.
plot2d plots one expression expr or several expressions [name 1, ..., name n].
The expressions that are not of the parametic or discrete types should all depend
only on one variable var and it will be mandatory the use of x range to name that

102 Maxima Manual

variable and gives its minimum and maximum values, using the syntax: [variable,
min, max]. The plot will show the horizontal axis bound by the values of min and
max.

A expression to be plotted can also be given in the discrete or parametric forms.
Namely, as a list starting with the word “discrete” or “parametric”. The keyword
discrete must be followed by two lists of values, both with the same length, which are
the horizontal and vertical coordinates of a set of points; alternatively, the coordinates
of each point can be put into a list with two values, and all the coordinates of the
points should be inside another list. The keyword parametric must be followed by
two expressions x expr and y expr, and a range of the form [param, min, max].
The two expressions must depend only on the parameter param, and the plot will
show the path traced out by the point with coordinates (x expr, y expr) as param
increases from min to max.

The range of the vertical axis is not mandatory. It is one more of the options for the
command, with the syntax: [y, min, max]. If that option is used, the plot will show
that entire range, even if the expressions do not reach all that range. Otherwise, if
a vertical range is not specified by set_plot_option, the boundaries of the vertical
axis will be set up automatically.

All other options should also be lists, starting with the name of the option. The
option xlabel can be used to give a label for the horizontal axis; if that option is not
used, the horizontal axis will be labeled with the name of the variable specified in
x range, or with the expression x expr in the case of just one parametric expression,
or it will be left blank otherwise.

A label for the vertical axis can be given with the ylabel option. If there is only one
expression to be plotted and the ylabel option was not used, the vertical axis will
be labeled with that expression, unless it is too large, or with the expression y expr
if the expression is parametric, or with the text “discrete data” if the expression is
discrete.

The options [logx] and [logy] do not need any parameters. They will make the
horizontal and vertical axes be scaled logarithmically.

If there are several expressions to be plotted, a legend will be written to identiy each
of the expressions. The labels that should be used in that legend can be given with
the option legend. If that option is not used, Maxima will create labels from the
expressions.

By default, the expressions are plotted as a set of line segments joining adjacent
points within a set of points which is either given in the discrete form, or calculated
automatically from the expression given, using an algorithm that automatically adapts
the steps among points using as an initial estimate of the total number of points the
value set with the nticks option. The option style can be used to make one of the
expressions to be represented as a set of isolated points, or as points and line segments.

There are several global options stored in the list plot options which can be modified
with the function set_plot_option; any of those global options can be overriden
with options given in the plot2d command.

Chapter 8: Plotting 103

A function to be plotted may be specified as the name of a Maxima or Lisp function or
operator, a Maxima lambda expression, or a general Maxima expression. If specified
as a name or a lambda expression, the function must be a function of one argument.
Examples:

Plots of common functions.
(%i1) plot2d (sin(x), [x, -5, 5])$

(%i2) plot2d (sec(x), [x, -2, 2], [y, -20, 20], [nticks, 200])$

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -2 0 2 4

si
n(

x)

x

-20

-15

-10

-5

 0

 5

 10

 15

 20

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

se
c(

x)

x

Plotting functions by name.
(%i3) F(x) := x^2 $

(%i4) :lisp (defun |$g| (x) (m* x x x))

$g
(%i5) H(x) := if x < 0 then x^4 - 1 else 1 - x^5 $

(%i6) plot2d (F, [u, -1, 1])$

104 Maxima Manual

(%i7) plot2d ([F, G, H], [u, -1, 1], [y, -1.5, 1.5])$

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

F

u

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.5 0 0.5 1

u

F
G
H

We can plot a circle using a parametric plot with a parameter t. It is not necessary to
give a range for the horizontal range, since the range of the parameter t determines
the domain. However, since the graph’s horizontal and vertical axes lengths are in
the 4 to 3 proportion, we will use the xrange option to obtain the same scaling in
both axes:

(%i8) plot2d ([parametric, cos(t), sin(t), [t,-%pi,%pi],

Chapter 8: Plotting 105

[nticks,80]], [x, -4/3, 4/3])$

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

si
n(

t)

cos(t)

If we repeat that plot with only 8 points and extending the range of the parameter
to give two turns, we will obtain the plot of a star:

(%i9) plot2d ([parametric, cos(t), sin(t), [t, -%pi*2, %pi*2],
[nticks, 8]], [x, -2, 2], [y, -1.5, 1.5])$

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

si
n(

t)

cos(t)

Combination of an ordinary plot of a cubic polynomial with a parametric plot of a
circle:

(%i10) plot2d ([x^3+2, [parametric, cos(t), sin(t), [t, -5, 5],

106 Maxima Manual

[nticks, 80]]], [x, -3, 3])$

-30

-20

-10

 0

 10

 20

 30

-3 -2 -1 0 1 2 3

x

x^3+2
cos(t), sin(t)

Example of a logarithmic plot:

(%i11) plot2d (exp(3*s), [s, -2, 2], [logy])$

 0.001

 0.01

 0.1

 1

 10

 100

 1000

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

lo
g(

%
e^

(3
*s

))

s

To show some examples of discrete plots, we will start by entering the coordinates of
5 points, in the two different ways that can be used:

(%i12) xx:[10, 20, 30, 40, 50]$
(%i13) yy:[.6, .9, 1.1, 1.3, 1.4]$
(%i14) xy:[[10,.6], [20,.9], [30,1.1], [40,1.3], [50,1.4]]$

To plot those data points, joined with line segments, we use:

Chapter 8: Plotting 107

(%i15) plot2d([discrete,xx,yy])$

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 10 15 20 25 30 35 40 45 50

di
sc

re
te

 d
at

a

We will now show the plot with only points, and illustrating the use of the second
way of giving the points coordinates:

(%i16) plot2d([discrete, xy], [style, points])$

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 10 15 20 25 30 35 40 45 50

di
sc

re
te

 d
at

a

The plot of the data points can be shown together with a plot of the theoretical
function that predicts the data:

(%i17) plot2d([[discrete,xy], 2*%pi*sqrt(l/980)], [l,0,50],
[style, [points,5,2,6], [lines,1,1]],
[legend,"experiment","theory"],

108 Maxima Manual

[xlabel,"pendulum’s length (cm)"], [ylabel,"period (s)"])$

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 10 20 30 40 50

pe
rio

d
(s

)

pendulum’s length (cm)

experiment
theory

The meaning of the three numbers after the “points” style option are as follows;
5: radius of the points, 2: index of color used (red), 6: type of objects used (solid
squares). The two numbers after the “lines” style option give the thickness of the line
(1 point) and the color (1 corresponds to blue).

See also plot_options, which describes plotting options and has more examples.

Functionxgraph curves (list)
graphs the list of ‘point sets’ given in list by using xgraph. If the program xgraph is
not installed, this command will fail.

A point set may be of the form
[x0, y0, x1, y1, x2, y2, ...]

or
[[x0, y0], [x1, y1], ...]

A point set may also contain symbols which give labels or other information.
xgraph_curves ([pt_set1, pt_set2, pt_set3]);

graph the three point sets as three curves.
pt_set: append (["NoLines: True", "LargePixels: true"],

[x0, y0, x1, y1, ...]);

would make the point set (and subsequent ones), have no lines between points, and
to use large pixels. See the man page on xgraph for more options to specify.

pt_set: append ([concat ("\"", "x^2+y")], [x0, y0, x1, y1, ...]);

would make there be a "label" of "x^2+y" for this particular point set. The " at the
beginning is what tells xgraph this is a label.

pt_set: append ([concat ("TitleText: Sample Data")], [x0, ...])$

would make the main title of the plot be "Sample Data" instead of "Maxima Plot".

To make a bar graph with bars which are 0.2 units wide, and to plot two possibly
different such bar graphs:

Chapter 8: Plotting 109

(%i1) xgraph_curves ([append (["BarGraph: true", "NoLines: true",
"BarWidth: .2"], create_list ([i - .2, i^2], i, 1, 3)),
append (["BarGraph: true", "NoLines: true", "BarWidth: .2"],
create_list ([i + .2, .7*i^2], i, 1, 3))]);

Maxima Plot

Set 0
Set 1

Y

X
0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

8.0000

9.0000

1.0000 2.0000 3.0000

A temporary file ‘xgraph-out’ is used.

System variableplot options
Elements of this list state the default options for plotting. If an option is present in a
plot2d or plot3d call, that value takes precedence over the default option. Otherwise,
the value in plot_options is used. Default options are assigned by set_plot_option.

Each element of plot_options is a list of two or more items. The first item is the
name of an option, and the remainder comprises the value or values assigned to the
option. In some cases the, the assigned value is a list, which may comprise several
items.

The plot options which are recognized by plot2d and plot3d are the following:

• Option: plot_format

Determines which graphic interface is used by plot2d and plot3d.

• Value: gnuplot default on Windows

Gnuplot is the most advanced plotting package among the packages available
in Maxima. It requires an external gnuplot installation.

• Value: gnuplot_pipes default on non-Windows platforms

Similar to the gnuplot format except that communication with gnuplot is
done through a pipe. It should be used to plot on screen, for plotting to files
it is better to use the gnuplot format.

110 Maxima Manual

• Value: mgnuplot
Mgnuplot is a Tk-based wrapper around gnuplot. It is included in the Max-
ima distribution. Mgnuplot offers a rudimentary GUI for gnuplot, but has
fewer overall features than the plain gnuplot interface. Mgnuplot requires
an external gnuplot installation and Tcl/Tk.

• Value: openmath
Openmath is a Tcl/Tk GUI plotting program. This format is provided by
Xmaxima, which is distributed together with Maxima; in order to use this
format you should install the package Xmaxima, and it will work not only
from Xmaxima itself, but also from the command line and other GUI’s for
Maxima.

• Option: run_viewer
Controls whether or not the appropriate viewer for the plot format should be
run.
• Default value: true

Execute the viewer program.
• Value: false

Do not execute the viewer program.
• Option: y

The vertical range of the plot.
Example:

[y, - 3, 3]

Sets the vertical range to [-3, 3].
• Option: plot_realpart

When plot_realpart is true, the real part of a complex value x is plotted; this
is equivalent to plotting realpart(x) instead of x. Otherwise, only values with
imaginary part equal to 0 are plotted, and complex values are ignored.
Example:

plot2d (log(x), [x, -5, 5], [plot_realpart, false]);
plot2d (log(x), [x, -5, 5], [plot_realpart, true]);

The default value is false.
• Option: nticks

In plot2d, it is gives the initial number of points used by the adaptive plotting
routine for plotting functions. It is also the number of points that will be shown
in a parametric plot.
Example:

[nticks, 20]

The default for nticks is 10.
• Option: adapt_depth

The maximum number of splittings used by the adaptive plotting routine.
Example:

Chapter 8: Plotting 111

[adapt_depth, 5]

The default for adapt_depth is 10.
• Option: xlabel

The label for the horizontal axis in a 2d plot.
Example:

[xlabel, "Time in seconds"]

• Option: ylabel
The label of the vertical axis in a 2d plot.
Example:

[ylabel, "Temperature"]

• Option: logx
It makes the horizontal axis of a 2d plot to be rendered in a logarithmic scale. It
does not need any aditional parameters.

• Option: logy
It makes the vertical axis of a 2d plot to be rendered in a logarithmic scale. It
does not need any aditional parameters.

• Option: legend
The labels for the various expressions in a 2d plot with several expressions. If
there are more expressions than the number of labels given, they will be repeated.
If legend is followed by the word false, no legend will be shown. By default,
the names of the expressions or functions will be used, or the words discrete1,
discrete2, ..., for discrete sets of points.
Example:

[legend, "Set 1", "Set 2", "Set 3"]

• Option: box
Currently, this option can only be followed by the word false, and it will be used
to supress the box around the plot.
Example:

[box, false]

• Option: style
The styles that will be used for the various functions or sets of data in a 2d
plot. The word style must be followed by one or more styles. If there are more
functions and data sets than the styles given, the styles will be repeated. Each
style can be either lines for line segments, points for isolated points, linespoints
for segments and points, or dots for small isolated dots. Gnuplot accepts also an
impulses style.
Each of the styles can be enclosed inside a list with some aditional parameters.
lines accepts one or two numbers: the width of the line and an integer that
identifies a color. The default color codes are: 1: blue, 2: red, 3: magenta, 4:
orange, 5: brown, 6: lime and 7: aqua. If you use Gnuplot with a terminal
different than X11, those colors might be different; for example, if you use the
option [gnuplot term,ps], color index 4 will correspond to black, instead of orange.

112 Maxima Manual

points accepts one two or three parameters; the first parameter is the radius
of the points, the second parameter is an integer that selects the color, using
the same code used for lines and the third parameter is currently used only by
Gnuplot and it corresponds to several objects instead of points. The default
types of objects are: 1: filled circles, 2: open circles, 3: plus signs, 4: x, 5: *,
6: filled squares, 7: open squares, 8: filled triangles, 9: open triangles, 10: filled
inverted triangles, 11: open inverted triangles, 12: filled lozenges and 13: open
lozenges.
linesdots accepts up to four parameters: line width, points radius, color and type
of object to replace the points.
Example:

[style,[lines,2,3],[points,1,4,3]]

This will plot the first (and third, fifth, etc) expression with magenta line seg-
ments of width 2, and the second (and fourth, sixth, etc) expression with orange
plus signs of size 1 (orange circles in the case of Openmath).
The default for the style option is lines with a width of 1, and different colors.

• Option: grid
Sets the number of grid points to use in the x- and y-directions for three-
dimensional plotting.
Example:

[grid, 50, 50]

sets the grid to 50 by 50 points. The default grid is 30 by 30.
• Option: transform_xy

Allows transformations to be applied to three-dimensional plots.
Example:

[transform_xy, false]

The default transform_xy is false. If it is not false, it should be the output
of

make_transform([x,y,z], f1(x,y,z), f2(x,y,z), f3(x,y,z))$

The polar_xy transformation is built in. It gives the same transformation as
make_transform ([r, th, z], r*cos(th), r*sin(th), z)$

Gnuplot options:

There are several plot options specific to gnuplot. Some of these options are raw
gnuplot commands, specified as strings. Refer to the gnuplot documentation for
more details.
• Option: gnuplot_term

Sets the output terminal type for gnuplot.
• Default value: default

Gnuplot output is displayed in a separate graphical window.
• Value: dumb

Gnuplot output is displayed in the Maxima console by an "ASCII art" ap-
proximation to graphics.

Chapter 8: Plotting 113

• Value: ps
Gnuplot generates commands in the PostScript page description language.
If the option gnuplot_out_file is set to filename, gnuplot writes the
PostScript commands to filename. Otherwise, it is saved as maxplot.ps
file.

• Value: any other valid gnuplot term specification
Gnuplot can generate output in many other graphical formats such as png,
jpeg, svg etc. To create plot in all these formats the gnuplot_term can
be set to any supported gnuplot term name (symbol) or even full gnuplot
term specification with any valid options (string). For example [gnuplot_
term,png] creates output in PNG (Portable Network Graphics) format while
[gnuplot_term,"png size 1000,1000"] creates PNG of 1000x1000 pixels
size. If the option gnuplot_out_file is set to filename, gnuplot writes the
output to filename. Otherwise, it is saved as maxplot.term file, where term
is gnuplot terminal name.

• Option: gnuplot_out_file
Write gnuplot output to a file.
• Default value: false

No output file specified.
• Value: filename

Example: [gnuplot_out_file, "myplot.ps"] This example sends
PostScript output to the file myplot.ps when used in conjunction with the
PostScript gnuplot terminal.

• Option: gnuplot_pm3d
Controls the usage PM3D mode, which has advanced 3D features. PM3D is only
available in gnuplot versions after 3.7. The default value for gnuplot_pm3d is
false.
Example:

[gnuplot_pm3d, true]

• Option: gnuplot_preamble
Inserts gnuplot commands before the plot is drawn. Any valid gnuplot commands
may be used. Multiple commands should be separated with a semi-colon. The ex-
ample shown produces a log scale plot. The default value for gnuplot_preamble
is the empty string "".
Example:

[gnuplot_preamble, "set log y"]

• Option: gnuplot_curve_titles
Controls the titles given in the plot key. The default value is [default],
which automatically sets the title of each curve to the function plotted. If not
[default], gnuplot_curve_titles should contain a list of strings, each of
which is "title ’title string’". (To disable the plot key, add "set nokey" to
gnuplot_preamble.)
Example:

114 Maxima Manual

[gnuplot_curve_titles,
["title ’My first function’", "title ’My second function’"]]

• Option: gnuplot_curve_styles

A list of strings controlling the appearance of curves, i.e., color, width, dashing,
etc., to be sent to the gnuplot plot command. The default value is ["with
lines 3", "with lines 1", "with lines 2", "with lines 5", "with lines
4", "with lines 6", "with lines 7"], which cycles through different colors.
See the gnuplot documentation for plot for more information.

Example:
[gnuplot_curve_styles, ["with lines 7", "with lines 2"]]

• Option: gnuplot_default_term_command

The gnuplot command to set the terminal type for the default terminal. The
default value is set term windows "Verdana" 15 in Windows systems, and set
term x11 font "Helvetica,16" in X11 windows systems.

Example:
[gnuplot_default_term_command, "set term x11"]

• Option: gnuplot_dumb_term_command

The gnuplot command to set the terminal type for the dumb terminal. The de-
fault value is "set term dumb 79 22", which makes the text output 79 characters
by 22 characters.

Example:
[gnuplot_dumb_term_command, "set term dumb 132 50"]

• Option: gnuplot_ps_term_command

The gnuplot command to set the terminal type for the PostScript terminal.
The default value is "set size 1.5, 1.5;set term postscript eps enhanced
color solid 24", which sets the size to 1.5 times gnuplot’s default, and the font
size to 24, among other things. See the gnuplot documentation for set term
postscript for more information.

Example:

All the figures in the examples for the plot2d function in this manual were ob-
tained from Postscript files that were generated after setting gnuplot_ps_term_
command as:

[gnuplot_ps_term_command, "set size 1.3, 1.3; \
set term postscript eps color solid lw 2.5 30"]

Examples:

• Saves a plot of sin(x) to the file sin.eps.
(%i1) plot2d (sin(x), [x, 0, 2*%pi], [gnuplot_term, ps],

[gnuplot_out_file, "sin.eps"])$

• Uses the y option to chop off singularities and the gnuplot preamble option to
put the key at the bottom of the plot instead of the top.
(%i2) plot2d ([gamma(x), 1/gamma(x)], [x, -4.5, 5], [y, -10, 10],

Chapter 8: Plotting 115

[gnuplot_preamble, "set key bottom"])$

-10

-5

 0

 5

 10

-4 -3 -2 -1 0 1 2 3 4 5

x

gamma(x)
1/gamma(x)

• Uses a very complicated gnuplot_preamble to produce fancy x-axis labels. (Note
that the gnuplot_preamble string must be entered without any line breaks.)
(%i3) my_preamble: "set xzeroaxis; set xtics (’-2pi’ -6.283, \
’-3pi/2’ -4.712, ’-pi’ -3.1415, ’-pi/2’ -1.5708, ’0’ 0, \
’pi/2’ 1.5708, ’pi’ 3.1415,’3pi/2’ 4.712, ’2pi’ 6.283)"$

(%i4) plot2d([cos(x), sin(x), tan(x), cot(x)],
[x, -2*%pi, 2.1*%pi], [y, -2, 2],
[gnuplot_preamble, my_preamble]);

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

2pi3pi/2pipi/20-pi/2-pi-3pi/2-2pi

x

cos(x)
sin(x)
tan(x)
cot(x)

• Uses a very complicated gnuplot_preamble to produce fancy x-axis labels, and
produces PostScript output that takes advantage of the advanced text formatting
available in gnuplot. (Note that the gnuplot_preamble string must be entered
without any line breaks.)
(%i5) my_preamble: "set xzeroaxis; set xtics (’-2{/Symbol p}’ \
-6.283, ’-3{/Symbol p}/2’ -4.712, ’-{/Symbol p}’ -3.1415, \
’-{/Symbol p}/2’ -1.5708, ’0’ 0,’{/Symbol p}/2’ 1.5708, \
’{/Symbol p}’ 3.1415,’3{/Symbol p}/2’ 4.712, ’2{/Symbol p}’ \

116 Maxima Manual

6.283)"$

(%i6) plot2d ([cos(x), sin(x), tan(x)], [x, -2*%pi, 2*%pi],
[y, -2, 2], [gnuplot_preamble, my_preamble],
[gnuplot_term, ps], [gnuplot_out_file, "trig.eps"]);

• A three-dimensional plot using the gnuplot pm3d terminal.
(%i7) plot3d (atan (-x^2 + y^3/4), [x, -4, 4], [y, -4, 4],

[grid, 50, 50], [gnuplot_pm3d, true])$

-2
-1.5
-1
-0.5
 0
 0.5
 1
 1.5
 2

-4 -3 -2 -1 0 1 2 3 4 5
-3 -2 -1 0 1 2 3 4 5

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

atan(y3/4-x2)

• A three-dimensional plot without a mesh and with contours projected on the
bottom plane.
(%i8) my_preamble: "set pm3d at s;unset surface;set contour;\
set cntrparam levels 20;unset key"$
(%i9) plot3d(atan(-x^2 + y^3/4), [x, -4, 4], [y, -4, 4],

[grid, 50, 50], [gnuplot_pm3d, true],
[gnuplot_preamble, my_preamble])$

-2
-1.5
-1
-0.5
 0
 0.5
 1
 1.5
 2

-4 -3 -2 -1 0 1 2 3 4 5
-3 -2 -1 0 1 2 3 4 5

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

• A plot where the z-axis is represented by color only. (Note that the gnuplot_
preamble string must be entered without any line breaks.)

Chapter 8: Plotting 117

(%i10) plot3d (cos (-x^2 + y^3/4), [x, -4, 4], [y, -4, 4],
[gnuplot_preamble, "set view map; unset surface"],
[gnuplot_pm3d, true], [grid, 150, 150])$

-1
-0.8
-0.6
-0.4
-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

 0

 1

 2

 3

 4

Functionplot3d ([expr 1, expr 2, expr 3], x range, y range, ..., options, ...)
Functionplot3d (expr, x range, y range, ..., options, ...)
Functionplot3d (name, x range, y range, ..., options, ...)
Functionplot3d ([expr 1, expr 2, expr 3], x rge, y rge)
Functionplot3d ([name 1, name 2, name 3], x range, y range, ..., options, ...)

Displays a plot of one or three expressions as functions of two variables.

(%i1) plot3d (2^(-u^2 + v^2), [u, -3, 3], [v, -2, 2]);

-3 -2 -1 0 1 2 3 4-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

 0
 2
 4
 6
 8

 10
 12
 14
 16

2(v2-u2)

plots z = 2^(-u^2+v^2) with u and v varying in [-3,3] and [-2,2] respectively, and
with u on the x axis, and v on the y axis.

The same graph can be plotted using openmath (if Xmaxima is installed):

(%i2) plot3d (2^(-u^2 + v^2), [u, -3, 3], [v, -2, 2],

118 Maxima Manual

[plot_format, openmath]);

in this case the mouse can be used to rotate the plot to look at the surface from
different sides.
An example of the third pattern of arguments is

(%i3) plot3d ([cos(x)*(3 + y*cos(x/2)), sin(x)*(3 + y*cos(x/2)),
y*sin(x/2)], [x, -%pi, %pi], [y, -1, 1], [’grid, 50, 15]);

-4 -3 -2 -1 0 1 2 3 4-4
-3

-2
-1

 0
 1

 2
 3

 4

-1

-0.5

 0

 0.5

 1

Function

which plots a Moebius band, parametrized by the three expressions given as the first
argument to plot3d. An additional optional argument [’grid, 50, 15] gives the
grid number of rectangles in the x direction and y direction.

Chapter 8: Plotting 119

The function to be plotted may be specified as the name of a Maxima or Lisp function
or operator, a Maxima lambda expression, or a general Maxima expression. In the
form plot3d (f, ...) where f is the name of a function or a lambda expression,
the function must be a function of two arguments. In the form plot3d ([f 1, f 2,
f 3], ...) where f 1, f 2, and f 3 are names of functions or lambda expressions, each
function must be a function of three arguments.

This example shows a plot of the real part of z^1/3.
(%i4) plot3d (r^.33*cos(th/3), [r, 0, 1], [th, 0, 6*%pi],

[’grid, 12, 80], [’transform_xy, polar_to_xy]);

-1
-0.5

 0
 0.5

 1-1

-0.5

 0

 0.5

 1

-1

-0.5

 0

 0.5

 1

r0.33*cos(th/3)

Other examples are the Klein bottle:
(%i5) expr_1: 5*cos(x)*(cos(x/2)*cos(y) + sin(x/2)*sin(2*y)

+ 3.0) - 10.0$
(%i6) expr_2: -5*sin(x)*(cos(x/2)*cos(y) + sin(x/2)*sin(2*y)

+ 3.0)$
(%i7) expr_3: 5*(-sin(x/2)*cos(y) + cos(x/2)*sin(2*y))$

(%i8) plot3d ([expr_1, expr_2, expr_3], [x, -%pi, %pi],
[y, -%pi, %pi], [’grid, 40, 40]);

-35 -30 -25 -20 -15 -10 -5 0 5 10-25
-20

-15
-10

-5
 0

 5
 10

 15
 20

 25

-8
-6
-4
-2
 0
 2
 4
 6
 8

Function

120 Maxima Manual

and a torus:
(%i9) expr_1: cos(y)*(10.0+6*cos(x))$
(%i10) expr_2: sin(y)*(10.0+6*cos(x))$
(%i11) expr_3: -6*sin(x)$
(%i12) plot3d ([expr_1, expr_2, expr_3], [x, 0, 2*%pi],

[y, 0, 2*%pi], [’grid, 40, 40]);

-20 -15 -10 -5 0 5 10 15 20-20
-15

-10
-5

 0
 5

 10
 15

 20

-6
-4
-2
 0
 2
 4
 6

Function

Sometimes it is necessary to define a function to plot the expression. All the arguments
to plot3d are evaluated before being passed to plot3d, and so trying to make an
expression which does just what is needed may be difficult, and it is just easier to
make a function.

(%i13) M: matrix([1, 2, 3, 4], [1, 2, 3, 2], [1, 2, 3, 4],
[1, 2, 3, 3])$

(%i14) f(x, y) := float (M [?round(x), ?round(y)])$
(%i15) plot3d (f, [x, 1, 4], [y, 1, 4], [’grid, 4, 4])$

 1
 1.5

 2
 2.5

 3
 3.5

 4 1
 1.5

 2
 2.5

 3
 3.5

 4

 1
 1.5

 2
 2.5

 3
 3.5

 4

f

See plot_options for more examples.

Functionmake transform (vars, fx, fy, fz)
Returns a function suitable for the transform function in plot3d. Use with the plot
option transform_xy.

Chapter 8: Plotting 121

make_transform ([r, th, z], r*cos(th), r*sin(th), z)$

is a transformation to polar coordinates.

Functionset plot option (option)
Assigns one of the global variables for plotting. option is specified as a list of two or
more elements, in which the first element is one of the keywords on the plot_options
list.

set_plot_option evaluates its argument and returns the complete list plot_options
(after modifying one of its elements).

See also plot_options, plot2d, and plot3d.

Examples:

Modify the grid and x values. When a plot_options keyword has an assigned value,
quote it to prevent evaluation.

(%i1) set_plot_option ([grid, 30, 40]);
(%o1) [[x, - 1.755559702014E+305, 1.755559702014E+305],
[y, - 1.755559702014E+305, 1.755559702014E+305], [t, - 3, 3],
[grid, 30, 40], [transform_xy, false], [run_viewer, true],
[plot_format, gnuplot], [gnuplot_term, default],
[gnuplot_out_file, false], [nticks, 10], [adapt_depth, 10],
[gnuplot_pm3d, false], [gnuplot_preamble,],
[gnuplot_curve_titles, [default]],
[gnuplot_curve_styles, [with lines 3, with lines 1,
with lines 2, with lines 5, with lines 4, with lines 6,
with lines 7]], [gnuplot_default_term_command,],
[gnuplot_dumb_term_command, set term dumb 79 22],
[gnuplot_ps_term_command, set size 1.5, 1.5;set term postscript #
eps enhanced color solid 24]]
(%i2) x: 42;
(%o2) 42
(%i3) set_plot_option ([’x, -100, 100]);
(%o3) [[x, - 100.0, 100.0], [y, - 1.755559702014E+305,
1.755559702014E+305], [t, - 3, 3], [grid, 30, 40],
[transform_xy, false], [run_viewer, true],
[plot_format, gnuplot], [gnuplot_term, default],
[gnuplot_out_file, false], [nticks, 10], [adapt_depth, 10],
[gnuplot_pm3d, false], [gnuplot_preamble,],
[gnuplot_curve_titles, [default]],
[gnuplot_curve_styles, [with lines 3, with lines 1,
with lines 2, with lines 5, with lines 4, with lines 6,
with lines 7]], [gnuplot_default_term_command,],
[gnuplot_dumb_term_command, set term dumb 79 22],
[gnuplot_ps_term_command, set size 1.5, 1.5;set term postscript #
eps enhanced color solid 24]]

8.1.1 Functions for working with the gnuplot pipes format

122 Maxima Manual

Functiongnuplot start ()
Opens the pipe to gnuplot used for plotting with the gnuplot_pipes format. Is not
necessary to manually open the pipe before plotting.

Functiongnuplot close ()
Closes the pipe to gnuplot which is used with the gnuplot_pipes format.

Functiongnuplot restart ()
Closes the pipe to gnuplot which is used with the gnuplot_pipes format and opens
a new pipe.

Functiongnuplot replot ()
Functiongnuplot replot (s)

Updates the gnuplot window. If gnuplot_replot is called with a gnuplot command
in a string s, then s is sent to gnuplot before reploting the window.

Functiongnuplot reset ()
Resets the state of gnuplot used with the gnuplot_pipes format. To update the
gnuplot window call gnuplot_replot after gnuplot_reset.

Chapter 9: Input and Output 123

9 Input and Output

9.1 Comments

A comment in Maxima input is any text between /* and */.
The Maxima parser treats a comment as whitespace for the purpose of finding tokens

in the input stream; a token always ends at a comment. An input such as a/* foo */b
contains two tokens, a and b, and not a single token ab. Comments are otherwise ignored
by Maxima; neither the content nor the location of comments is stored in parsed input
expressions.

Comments can be nested to arbitrary depth. The /* and */ delimiters form matching
pairs. There must be the same number of /* as there are */.

Examples:
(%i1) /* aa is a variable of interest */ aa : 1234;
(%o1) 1234
(%i2) /* Value of bb depends on aa */ bb : aa^2;
(%o2) 1522756
(%i3) /* User-defined infix operator */ infix ("b");
(%o3) b
(%i4) /* Parses same as a b c, not abc */ a/* foo */b/* bar */c;
(%o4) a b c
(%i5) /* Comments /* can be nested /* to any depth */ */ */ 1 + xyz;
(%o5) xyz + 1

9.2 Files

A file is simply an area on a particular storage device which contains data or text. Files
on the disks are figuratively grouped into "directories". A directory is just a list of files.
Commands which deal with files are: save, load,

loadfile, stringout, batch, demo, writefile, closefile, and appendfile.

9.3 Functions and Variables for Input and Output

System variable
__ is the input expression currently being evaluated. That is, while an input expres-
sion expr is being evaluated, __ is expr.
__ is assigned the input expression before the input is simplified or evaluated. How-
ever, the value of __ is simplified (but not evaluated) when it is displayed.
__ is recognized by batch and load. In a file processed by batch, __ has the same
meaning as at the interactive prompt. In a file processed by load, __ is bound to the
input expression most recently entered at the interactive prompt or in a batch file;
__ is not bound to the input expressions in the file being processed. In particular,
when load (filename) is called from the interactive prompt, __ is bound to load
(filename) while the file is being processed.

124 Maxima Manual

See also _ and %.
Examples:

(%i1) print ("I was called as", __);
I was called as print(I was called as, __)
(%o1) print(I was called as, __)
(%i2) foo (__);
(%o2) foo(foo(__))
(%i3) g (x) := (print ("Current input expression =", __), 0);
(%o3) g(x) := (print("Current input expression =", __), 0)
(%i4) [aa : 1, bb : 2, cc : 3];
(%o4) [1, 2, 3]
(%i5) (aa + bb + cc)/(dd + ee + g(x));

cc + bb + aa
Current input expression = --------------

g(x) + ee + dd
6

(%o5) -------
ee + dd

System variable
_ is the most recent input expression (e.g., %i1, %i2, %i3, ...).
_ is assigned the input expression before the input is simplified or evaluated. However,
the value of _ is simplified (but not evaluated) when it is displayed.
_ is recognized by batch and load. In a file processed by batch, _ has the same
meaning as at the interactive prompt. In a file processed by load, _ is bound to the
input expression most recently evaluated at the interactive prompt or in a batch file;
_ is not bound to the input expressions in the file being processed.
See also __ and %.
Examples:

(%i1) 13 + 29;
(%o1) 42
(%i2) :lisp $_
((MPLUS) 13 29)
(%i2) _;
(%o2) 42
(%i3) sin (%pi/2);
(%o3) 1
(%i4) :lisp $_
((%SIN) ((MQUOTIENT) $%PI 2))
(%i4) _;
(%o4) 1
(%i5) a: 13$
(%i6) b: 29$
(%i7) a + b;
(%o7) 42
(%i8) :lisp $_
((MPLUS) $A $B)

Chapter 9: Input and Output 125

(%i8) _;
(%o8) b + a
(%i9) a + b;
(%o9) 42
(%i10) ev (_);
(%o10) 42

System variable%
% is the output expression (e.g., %o1, %o2, %o3, ...) most recently computed by
Maxima, whether or not it was displayed.

% is recognized by batch and load. In a file processed by batch, % has the same
meaning as at the interactive prompt. In a file processed by load, % is bound to the
output expression most recently computed at the interactive prompt or in a batch
file; % is not bound to output expressions in the file being processed.

See also _, %%, and %th.

System variable%%
In compound statements, namely block, lambda, or (s 1, ..., s n), %% is the value
of the previous statement. For example,

block (integrate (x^5, x), ev (%%, x=2) - ev (%%, x=1));
block ([prev], prev: integrate (x^5, x),

ev (prev, x=2) - ev (prev, x=1));

yield the same result, namely 21/2.

A compound statement may comprise other compound statements. Whether a state-
ment be simple or compound, %% is the value of the previous statement. For example,

block (block (a^n, %%*42), %%/6)

yields 7*a^n.

Within a compound statement, the value of %% may be inspected at a break prompt,
which is opened by executing the break function. For example, at the break prompt
opened by

block (a: 42, break ())$

entering %%; yields 42.

At the first statement in a compound statement, or outside of a compound statement,
%% is undefined.

%% is recognized by batch and load, and it has the same meaning as at the interactive
prompt.

See also %.

Option variable%edispflag
Default value: false

When %edispflag is true, Maxima displays %e to a negative exponent as a quotient.
For example, %e^-x is displayed as 1/%e^x.

126 Maxima Manual

Function%th (i)
The value of the i’th previous output expression. That is, if the next expression to
be computed is the n’th output, %th (m) is the (n - m)’th output.
%th is useful in batch files or for referring to a group of output expressions. For
example,

block (s: 0, for i:1 thru 10 do s: s + %th (i))$

sets s to the sum of the last ten output expressions.
%th is recognized by batch and load. In a file processed by batch, %th has the same
meaning as at the interactive prompt. In a file processed by load, %th refers to output
expressions most recently computed at the interactive prompt or in a batch file; %th
does not refer to output expressions in the file being processed.
See also %.

Special symbol?
As prefix to a function or variable name, ? signifies that the name is a Lisp name,
not a Maxima name. For example, ?round signifies the Lisp function ROUND. See
Section 3.1 [Lisp and Maxima], page 7 for more on this point.
The notation ? word (a question mark followed a word, separated by whitespace) is
equivalent to describe("word"). The question mark must occur at the beginning of
an input line; otherwise it is not recognized as a request for documentation.

Special symbol??
The notation ?? word (?? followed a word, separated by whitespace) is equivalent to
describe("word", inexact). The question mark must occur at the beginning of an
input line; otherwise it is not recognized as a request for documentation.

Option variableabsboxchar
Default value: !
absboxchar is the character used to draw absolute value signs around expressions
which are more than one line tall.

Option variablefile output append
Default value: false
file_output_append governs whether file output functions append or truncate their
output file. When file_output_append is true, such functions append to their
output file. Otherwise, the output file is truncated.
save, stringout, and with_stdout respect file_output_append. Other functions
which write output files do not respect file_output_append. In particular, plotting
and translation functions always truncate their output file, and tex and appendfile
always append.

Functionappendfile (filename)
Appends a console transcript to filename. appendfile is the same as writefile,
except that the transcript file, if it exists, is always appended.
closefile closes the transcript file opened by appendfile or writefile.

Chapter 9: Input and Output 127

Functionbatch (filename)
Reads Maxima expressions from filename and evaluates them. batch searches for
filename in the list file_search_maxima. See file_search.

filename comprises a sequence of Maxima expressions, each terminated with ; or $.
The special variable % and the function %th refer to previous results within the file.
The file may include :lisp constructs. Spaces, tabs, and newlines in the file are
ignored. A suitable input file may be created by a text editor or by the stringout
function.

batch reads each input expression from filename, displays the input to the console,
computes the corresponding output expression, and displays the output expression.
Input labels are assigned to the input expressions and output labels are assigned to
the output expressions. batch evaluates every input expression in the file unless there
is an error. If user input is requested (by asksign or askinteger, for example) batch
pauses to collect the requisite input and then continue.

It may be possible to halt batch by typing control-C at the console. The effect of
control-C depends on the underlying Lisp implementation.

batch has several uses, such as to provide a reservoir for working command lines, to
give error-free demonstrations, or to help organize one’s thinking in solving complex
problems.

batch evaluates its argument. batch has no return value.

See also load, batchload, and demo.

Functionbatchload (filename)
Reads Maxima expressions from filename and evaluates them, without displaying
the input or output expressions and without assigning labels to output expressions.
Printed output (such as produced by print or describe) is displayed, however.

The special variable % and the function %th refer to previous results from the interac-
tive interpreter, not results within the file. The file cannot include :lisp constructs.

batchload returns the path of filename, as a string. batchload evaluates its argu-
ment.

See also batch and load.

Functionclosefile ()
Closes the transcript file opened by writefile or appendfile.

Functioncollapse (expr)
Collapses expr by causing all of its common (i.e., equal) subexpressions to share (i.e.,
use the same cells), thereby saving space. (collapse is a subroutine used by the
optimize command.) Thus, calling collapse may be useful after loading in a save
file. You can collapse several expressions together by using collapse ([expr 1, ...,
expr n]). Similarly, you can collapse the elements of the array A by doing collapse
(listarray (’A)).

128 Maxima Manual

Functionconcat (arg 1, arg 2, ...)
Concatenates its arguments. The arguments must evaluate to atoms. The return
value is a symbol if the first argument is a symbol and a string otherwise.
concat evaluates its arguments. The single quote ’ prevents evaluation.

(%i1) y: 7$
(%i2) z: 88$
(%i3) concat (y, z/2);
(%o3) 744
(%i4) concat (’y, z/2);
(%o4) y44

A symbol constructed by concat may be assigned a value and appear in expressions.
The :: (double colon) assignment operator evaluates its left-hand side.

(%i5) a: concat (’y, z/2);
(%o5) y44
(%i6) a:: 123;
(%o6) 123
(%i7) y44;
(%o7) 123
(%i8) b^a;

y44
(%o8) b
(%i9) %, numer;

123
(%o9) b

Note that although concat (1, 2) looks like a number, it is a string.
(%i10) concat (1, 2) + 3;
(%o10) 12 + 3

Functionsconcat (arg 1, arg 2, ...)
Concatenates its arguments into a string. Unlike concat, the arguments do not need
to be atoms.

(%i1) sconcat ("xx[", 3, "]:", expand ((x+y)^3));
(%o1) xx[3]:y^3+3*x*y^2+3*x^2*y+x^3

Functiondisp (expr 1, expr 2, ...)
is like display but only the value of the arguments are displayed rather than equa-
tions. This is useful for complicated arguments which don’t have names or where only
the value of the argument is of interest and not the name.

Functiondispcon (tensor 1, tensor 2, ...)
Functiondispcon (all)

Displays the contraction properties of its arguments as were given to defcon. dispcon
(all) displays all the contraction properties which were defined.

Functiondisplay (expr 1, expr 2, ...)
Displays equations whose left side is expr i unevaluated, and whose right side is the
value of the expression centered on the line. This function is useful in blocks and

Chapter 9: Input and Output 129

for statements in order to have intermediate results displayed. The arguments to
display are usually atoms, subscripted variables, or function calls. See also disp.

(%i1) display(B[1,2]);
2

B = X - X
1, 2

(%o1) done

Option variabledisplay2d
Default value: true
When display2d is false, the console display is a string (1-dimensional) form rather
than a display (2-dimensional) form.

Option variabledisplay format internal
Default value: false
When display_format_internal is true, expressions are displayed without being
transformed in ways that hide the internal mathematical representation. The display
then corresponds to what inpart returns rather than part.
Examples:

User part inpart
a-b; a - b a + (- 1) b

a - 1
a/b; - a b

b
1/2

sqrt(x); sqrt(x) x

4 X 4
X*4/3; --- - X

3 3

Functiondispterms (expr)
Displays expr in parts one below the other. That is, first the operator of expr is
displayed, then each term in a sum, or factor in a product, or part of a more general
expression is displayed separately. This is useful if expr is too large to be otherwise
displayed. For example if P1, P2, ... are very large expressions then the display
program may run out of storage space in trying to display P1 + P2 + ... all at once.
However, dispterms (P1 + P2 + ...) displays P1, then below it P2, etc. When not
using dispterms, if an exponential expression is too wide to be displayed as A^B it
appears as expt (A, B) (or as ncexpt (A, B) in the case of A^^B).

Option variableerror size
Default value: 10
error_size modifies error messages according to the size of expressions which appear
in them. If the size of an expression (as determined by the Lisp function ERROR-SIZE)

130 Maxima Manual

is greater than error_size, the expression is replaced in the message by a symbol,
and the symbol is assigned the expression. The symbols are taken from the list
error_syms.
Otherwise, the expression is smaller than error_size, and the expression is displayed
in the message.
See also error and error_syms.
Example:
The size of U, as determined by ERROR-SIZE, is 24.

(%i1) U: (C^D^E + B + A)/(cos(X-1) + 1)$

(%i2) error_size: 20$

(%i3) error ("Example expression is", U);

Example expression is errexp1
-- an error. Quitting. To debug this try debugmode(true);
(%i4) errexp1;

E
D
C + B + A

(%o4) --------------
cos(X - 1) + 1

(%i5) error_size: 30$

(%i6) error ("Example expression is", U);

E
D
C + B + A

Example expression is --------------
cos(X - 1) + 1

-- an error. Quitting. To debug this try debugmode(true);

Option variableerror syms
Default value: [errexp1, errexp2, errexp3]

In error messages, expressions larger than error_size are replaced by symbols, and
the symbols are set to the expressions. The symbols are taken from the list error_
syms. The first too-large expression is replaced by error_syms[1], the second by
error_syms[2], and so on.
If there are more too-large expressions than there are elements of error_syms,
symbols are constructed automatically, with the n-th symbol equivalent to concat
(’errexp, n).
See also error and error_size.

Functionexpt (a, b)
If an exponential expression is too wide to be displayed as a^b it appears as expt (a,
b) (or as ncexpt (a, b) in the case of a^^b).

Chapter 9: Input and Output 131

expt and ncexpt are not recognized in input.

Option variableexptdispflag
Default value: true
When exptdispflag is true, Maxima displays expressions with negative exponents
using quotients, e.g., X^(-1) as 1/X.

Functionfilename merge (path, filename)
Constructs a modified path from path and filename. If the final component of path
is of the form ###.something , the component is replaced with filename.something .
Otherwise, the final component is simply replaced by filename.
The result is a Lisp pathname object.

Functionfile search (filename)
Functionfile search (filename, pathlist)

file_search searches for the file filename and returns the path to the file (as a string)
if it can be found; otherwise file_search returns false. file_search (filename)
searches in the default search directories, which are specified by the file_search_
maxima, file_search_lisp, and file_search_demo variables.
file_search first checks if the actual name passed exists, before attempting to match
it to “wildcard” file search patterns. See file_search_maxima concerning file search
patterns.
The argument filename can be a path and file name, or just a file name, or, if a file
search directory includes a file search pattern, just the base of the file name (without
an extension). For example,

file_search ("/home/wfs/special/zeta.mac");
file_search ("zeta.mac");
file_search ("zeta");

all find the same file, assuming the file exists and /home/wfs/special/###.mac is in
file_search_maxima.
file_search (filename, pathlist) searches only in the directories specified by path-
list, which is a list of strings. The argument pathlist supersedes the default search
directories, so if the path list is given, file_search searches only the ones specified,
and not any of the default search directories. Even if there is only one directory in
pathlist, it must still be given as a one-element list.
The user may modify the default search directories. See file_search_maxima.
file_search is invoked by load with file_search_maxima and file_search_lisp
as the search directories.

Option variablefile search maxima
Option variablefile search lisp
Option variablefile search demo

These variables specify lists of directories to be searched by load, demo, and some
other Maxima functions. The default values of these variables name various directories
in the Maxima installation.

132 Maxima Manual

The user can modify these variables, either to replace the default values or to append
additional directories. For example,

file_search_maxima: ["/usr/local/foo/###.mac",
"/usr/local/bar/###.mac"]$

replaces the default value of file_search_maxima, while
file_search_maxima: append (file_search_maxima,

["/usr/local/foo/###.mac", "/usr/local/bar/###.mac"])$

appends two additional directories. It may be convenient to put such an expression in
the file maxima-init.mac so that the file search path is assigned automatically when
Maxima starts.

Multiple filename extensions and multiple paths can be specified by special “wildcard”
constructions. The string ### expands into the sought-after name, while a comma-
separated list enclosed in curly braces {foo,bar,baz} expands into multiple strings.
For example, supposing the sought-after name is neumann,

"/home/{wfs,gcj}/###.{lisp,mac}"

expands into /home/wfs/neumann.lisp, /home/gcj/neumann.lisp,
/home/wfs/neumann.mac, and /home/gcj/neumann.mac.

Functionfile type (filename)
Returns a guess about the content of filename, based on the filename extension.
filename need not refer to an actual file; no attempt is made to open the file and
inspect the content.

The return value is a symbol, either object, lisp, or maxima. If the extension starts
with m or d, file_type returns maxima. If the extension starts with l, file_type
returns lisp. If none of the above, file_type returns object.

Functiongrind (expr)
Option variablegrind

The function grind prints expr to the console in a form suitable for input to Maxima.
grind always returns done.

When expr is the name of a function or macro, grind prints the function or macro
definition instead of just the name.

See also string, which returns a string instead of printing its output. grind attempts
to print the expression in a manner which makes it slightly easier to read than the
output of string.

When the variable grind is true, the output of string and stringout has the same
format as that of grind; otherwise no attempt is made to specially format the output
of those functions. The default value of the variable grind is false.

grind can also be specified as an argument of playback. When grind is present,
playback prints input expressions in the same format as the grind function. Other-
wise, no attempt is made to specially format input expressions.

grind evaluates its argument.

Examples:

Chapter 9: Input and Output 133

(%i1) aa + 1729;
(%o1) aa + 1729
(%i2) grind (%);
aa+1729$
(%o2) done
(%i3) [aa, 1729, aa + 1729];
(%o3) [aa, 1729, aa + 1729]
(%i4) grind (%);
[aa,1729,aa+1729]$
(%o4) done
(%i5) matrix ([aa, 17], [29, bb]);

[aa 17]
(%o5) []

[29 bb]
(%i6) grind (%);
matrix([aa,17],[29,bb])$
(%o6) done
(%i7) set (aa, 17, 29, bb);
(%o7) {17, 29, aa, bb}
(%i8) grind (%);
{17,29,aa,bb}$
(%o8) done
(%i9) exp (aa / (bb + 17)^29);

aa

29
(bb + 17)

(%o9) %e
(%i10) grind (%);
%e^(aa/(bb+17)^29)$
(%o10) done
(%i11) expr: expand ((aa + bb)^10);

10 9 2 8 3 7 4 6
(%o11) bb + 10 aa bb + 45 aa bb + 120 aa bb + 210 aa bb

5 5 6 4 7 3 8 2
+ 252 aa bb + 210 aa bb + 120 aa bb + 45 aa bb

9 10
+ 10 aa bb + aa
(%i12) grind (expr);
bb^10+10*aa*bb^9+45*aa^2*bb^8+120*aa^3*bb^7+210*aa^4*bb^6

+252*aa^5*bb^5+210*aa^6*bb^4+120*aa^7*bb^3+45*aa^8*bb^2
+10*aa^9*bb+aa^10$

(%o12) done
(%i13) string (expr);
(%o13) bb^10+10*aa*bb^9+45*aa^2*bb^8+120*aa^3*bb^7+210*aa^4*bb^6\
+252*aa^5*bb^5+210*aa^6*bb^4+120*aa^7*bb^3+45*aa^8*bb^2+10*aa^9*\
bb+aa^10
(%i14) cholesky (A):= block ([n : length (A), L : copymatrix (A),
p : makelist (0, i, 1, length (A))], for i thru n do

134 Maxima Manual

for j : i thru n do
(x : L[i, j], x : x - sum (L[j, k] * L[i, k], k, 1, i - 1),
if i = j then p[i] : 1 / sqrt(x) else L[j, i] : x * p[i]),
for i thru n do L[i, i] : 1 / p[i],
for i thru n do for j : i + 1 thru n do L[i, j] : 0, L)$

(%i15) grind (cholesky);
cholesky(A):=block(

[n:length(A),L:copymatrix(A),
p:makelist(0,i,1,length(A))],
for i thru n do

(for j from i thru n do
(x:L[i,j],x:x-sum(L[j,k]*L[i,k],k,1,i-1),
if i = j then p[i]:1/sqrt(x)

else L[j,i]:x*p[i])),
for i thru n do L[i,i]:1/p[i],
for i thru n do (for j from i+1 thru n do L[i,j]:0),L)$

(%o15) done
(%i16) string (fundef (cholesky));
(%o16) cholesky(A):=block([n:length(A),L:copymatrix(A),p:makelis\
t(0,i,1,length(A))],for i thru n do (for j from i thru n do (x:L\
[i,j],x:x-sum(L[j,k]*L[i,k],k,1,i-1),if i = j then p[i]:1/sqrt(x\
) else L[j,i]:x*p[i])),for i thru n do L[i,i]:1/p[i],for i thru \
n do (for j from i+1 thru n do L[i,j]:0),L)

Option variableibase
Default value: 10

Integers entered into Maxima are interpreted with respect to the base ibase.

ibase may be assigned any integer between 2 and 35 (decimal), inclusive. When
ibase is greater than 10, the numerals comprise the decimal numerals 0 through 9
plus capital letters of the alphabet A, B, C, ..., as needed. The numerals for base 35,
the largest acceptable base, comprise 0 through 9 and A through Y.

See also obase.

Option variableinchar
Default value: %i

inchar is the prefix of the labels of expressions entered by the user. Maxima auto-
matically constructs a label for each input expression by concatenating inchar and
linenum. inchar may be assigned any string or symbol, not necessarily a single
character.

(%i1) inchar: "input";
(%o1) input
(input1) expand ((a+b)^3);

3 2 2 3
(%o1) b + 3 a b + 3 a b + a
(input2)

See also labels.

Chapter 9: Input and Output 135

Functionldisp (expr 1, ..., expr n)
Displays expressions expr 1, ..., expr n to the console as printed output. ldisp assigns
an intermediate expression label to each argument and returns the list of labels.
See also disp.

(%i1) e: (a+b)^3;
3

(%o1) (b + a)
(%i2) f: expand (e);

3 2 2 3
(%o2) b + 3 a b + 3 a b + a
(%i3) ldisp (e, f);

3
(%t3) (b + a)

3 2 2 3
(%t4) b + 3 a b + 3 a b + a

(%o4) [%t3, %t4]
(%i4) %t3;

3
(%o4) (b + a)
(%i5) %t4;

3 2 2 3
(%o5) b + 3 a b + 3 a b + a

Functionldisplay (expr 1, ..., expr n)
Displays expressions expr 1, ..., expr n to the console as printed output. Each ex-
pression is printed as an equation of the form lhs = rhs in which lhs is one of the
arguments of ldisplay and rhs is its value. Typically each argument is a variable.
ldisp assigns an intermediate expression label to each equation and returns the list
of labels.
See also display.

(%i1) e: (a+b)^3;
3

(%o1) (b + a)
(%i2) f: expand (e);

3 2 2 3
(%o2) b + 3 a b + 3 a b + a
(%i3) ldisplay (e, f);

3
(%t3) e = (b + a)

3 2 2 3
(%t4) f = b + 3 a b + 3 a b + a

(%o4) [%t3, %t4]
(%i4) %t3;

3

136 Maxima Manual

(%o4) e = (b + a)
(%i5) %t4;

3 2 2 3
(%o5) f = b + 3 a b + 3 a b + a

Option variablelinechar
Default value: %t

linechar is the prefix of the labels of intermediate expressions generated by Maxima.
Maxima constructs a label for each intermediate expression (if displayed) by concate-
nating linechar and linenum. linechar may be assigned any string or symbol, not
necessarily a single character.

Intermediate expressions might or might not be displayed. See programmode and
labels.

Option variablelinel
Default value: 79

linel is the assumed width (in characters) of the console display for the purpose
of displaying expressions. linel may be assigned any value by the user, although
very small or very large values may be impractical. Text printed by built-in Maxima
functions, such as error messages and the output of describe, is not affected by
linel.

Option variablelispdisp
Default value: false

When lispdisp is true, Lisp symbols are displayed with a leading question mark ?.
Otherwise, Lisp symbols are displayed with no leading mark.

Examples:
(%i1) lispdisp: false$
(%i2) ?foo + ?bar;
(%o2) foo + bar
(%i3) lispdisp: true$
(%i4) ?foo + ?bar;
(%o4) ?foo + ?bar

Functionload (filename)
Evaluates expressions in filename, thus bringing variables, functions, and other objects
into Maxima. The binding of any existing object is clobbered by the binding recovered
from filename. To find the file, load calls file_search with file_search_maxima
and file_search_lisp as the search directories. If load succeeds, it returns the
name of the file. Otherwise load prints an error message.

load works equally well for Lisp code and Maxima code. Files created by save,
translate_file, and compile_file, which create Lisp code, and stringout, which
creates Maxima code, can all be processed by load. load calls loadfile to load Lisp
files and batchload to load Maxima files.

Chapter 9: Input and Output 137

load does not recognize :lisp constructs in Maxima files, and while processing file-
name, the global variables _, __, %, and %th have whatever bindings they had when
load was called.
See also loadfile, batch, batchload, and demo. loadfile processes Lisp files;
batch, batchload, and demo process Maxima files.
See file_search for more detail about the file search mechanism.
load evaluates its argument.

Functionloadfile (filename)
Evaluates Lisp expressions in filename. loadfile does not invoke file_search, so
filename must include the file extension and as much of the path as needed to find
the file.
loadfile can process files created by save, translate_file, and compile_file.
The user may find it more convenient to use load instead of loadfile.

Option variableloadprint
Default value: true
loadprint tells whether to print a message when a file is loaded.
• When loadprint is true, always print a message.
• When loadprint is ’loadfile, print a message only if a file is loaded by the

function loadfile.
• When loadprint is ’autoload, print a message only if a file is automatically

loaded. See setup_autoload.
• When loadprint is false, never print a message.

Option variableobase
Default value: 10
obase is the base for integers displayed by Maxima.
obase may be assigned any integer between 2 and 35 (decimal), inclusive. When
obase is greater than 10, the numerals comprise the decimal numerals 0 through 9
plus capital letters of the alphabet A, B, C, ..., as needed. The numerals for base 35,
the largest acceptable base, comprise 0 through 9, and A through Y.
See also ibase.

Option variableoutchar
Default value: %o
outchar is the prefix of the labels of expressions computed by Maxima. Maxima auto-
matically constructs a label for each computed expression by concatenating outchar
and linenum. outchar may be assigned any string or symbol, not necessarily a single
character.

(%i1) outchar: "output";
(output1) output
(%i2) expand ((a+b)^3);

138 Maxima Manual

3 2 2 3
(output2) b + 3 a b + 3 a b + a
(%i3)

See also labels.

Option variablepackagefile
Default value: false
Package designers who use save or translate to create packages (files) for others to
use may want to set packagefile: true to prevent information from being added to
Maxima’s information-lists (e.g. values, functions) except where necessary when
the file is loaded in. In this way, the contents of the package will not get in the user’s
way when he adds his own data. Note that this will not solve the problem of possible
name conflicts. Also note that the flag simply affects what is output to the package
file. Setting the flag to true is also useful for creating Maxima init files.

Option variablepfeformat
Default value: false
When pfeformat is true, a ratio of integers is displayed with the solidus (forward
slash) character, and an integer denominator n is displayed as a leading multiplicative
term 1/n.

(%i1) pfeformat: false$
(%i2) 2^16/7^3;

65536
(%o2) -----

343
(%i3) (a+b)/8;

b + a
(%o3) -----

8
(%i4) pfeformat: true$
(%i5) 2^16/7^3;
(%o5) 65536/343
(%i6) (a+b)/8;
(%o6) 1/8 (b + a)

Functionprint (expr 1, ..., expr n)
Evaluates and displays expr 1, ..., expr n one after another, from left to right, starting
at the left edge of the console display.
The value returned by print is the value of its last argument. print does not generate
intermediate expression labels.
See also display, disp, ldisplay, and ldisp. Those functions display one expression
per line, while print attempts to display two or more expressions per line.
To display the contents of a file, see printfile.

(%i1) r: print ("(a+b)^3 is", expand ((a+b)^3), "log (a^10/b) is",
radcan (log (a^10/b)))$

3 2 2 3

Chapter 9: Input and Output 139

(a+b)^3 is b + 3 a b + 3 a b + a log (a^10/b) is

10 log(a) - log(b)
(%i2) r;
(%o2) 10 log(a) - log(b)
(%i3) disp ("(a+b)^3 is", expand ((a+b)^3), "log (a^10/b) is",

radcan (log (a^10/b)))$
(a+b)^3 is

3 2 2 3
b + 3 a b + 3 a b + a

log (a^10/b) is

10 log(a) - log(b)

Functionprintfile (path)
Prints the file named by path to the console. path may be a string or a symbol; if it
is a symbol, it is converted to a string.
If path names a file which is accessible from the current working directory, that file is
printed to the console. Otherwise, printfile attempts to locate the file by appending
path to each of the elements of file_search_usage via filename_merge.
printfile returns path if it names an existing file, or otherwise the result of a
successful filename merge.

Functiontcl output (list, i0, skip)
Functiontcl output (list, i0)
Functiontcl output ([list 1, ..., list n], i)

Prints elements of a list enclosed by curly braces { }, suitable as part of a program
in the Tcl/Tk language.
tcl_output (list, i0, skip) prints list, beginning with element i0 and printing ele-
ments i0 + skip, i0 + 2 skip, etc.
tcl_output (list, i0) is equivalent to tcl_output (list, i0, 2).
tcl_output ([list 1, ..., list n], i) prints the i’th elements of list 1, ..., list n.
Examples:

(%i1) tcl_output ([1, 2, 3, 4, 5, 6], 1, 3)$

{1.000000000 4.000000000
}
(%i2) tcl_output ([1, 2, 3, 4, 5, 6], 2, 3)$

{2.000000000 5.000000000
}
(%i3) tcl_output ([3/7, 5/9, 11/13, 13/17], 1)$

{((RAT SIMP) 3 7) ((RAT SIMP) 11 13)

140 Maxima Manual

}
(%i4) tcl_output ([x1, y1, x2, y2, x3, y3], 2)$

{$Y1 $Y2 $Y3
}
(%i5) tcl_output ([[1, 2, 3], [11, 22, 33]], 1)$

{SIMP 1.000000000 11.00000000
}

Functionread (expr 1, ..., expr n)
Prints expr 1, ..., expr n, then reads one expression from the console and returns the
evaluated expression. The expression is terminated with a semicolon ; or dollar sign
$.
See also readonly.

(%i1) foo: 42$
(%i2) foo: read ("foo is", foo, " -- enter new value.")$
foo is 42 -- enter new value.
(a+b)^3;
(%i3) foo;

3
(%o3) (b + a)

Functionreadonly (expr 1, ..., expr n)
Prints expr 1, ..., expr n, then reads one expression from the console and returns the
expression (without evaluation). The expression is terminated with a ; (semicolon)
or $ (dollar sign).

(%i1) aa: 7$
(%i2) foo: readonly ("Enter an expression:");
Enter an expression:
2^aa;

aa
(%o2) 2
(%i3) foo: read ("Enter an expression:");
Enter an expression:
2^aa;
(%o3) 128

See also read.

Functionreveal (expr, depth)
Replaces parts of expr at the specified integer depth with descriptive summaries.
• Sums and differences are replaced by Sum(n) where n is the number of operands

of the sum.
• Products are replaced by Product(n) where n is the number of operands of the

product.
• Exponentials are replaced by Expt.

Chapter 9: Input and Output 141

• Quotients are replaced by Quotient.

• Unary negation is replaced by Negterm.

When depth is greater than or equal to the maximum depth of expr, reveal (expr,
depth) returns expr unmodified.

reveal evaluates its arguments. reveal returns the summarized expression.

Example:
(%i1) e: expand ((a - b)^2)/expand ((exp(a) + exp(b))^2);

2 2
b - 2 a b + a

(%o1) -------------------------
b + a 2 b 2 a

2 %e + %e + %e
(%i2) reveal (e, 1);
(%o2) Quotient
(%i3) reveal (e, 2);

Sum(3)
(%o3) ------

Sum(3)
(%i4) reveal (e, 3);

Expt + Negterm + Expt
(%o4) ------------------------

Product(2) + Expt + Expt
(%i5) reveal (e, 4);

2 2
b - Product(3) + a

(%o5) ------------------------------------
Product(2) Product(2)

2 Expt + %e + %e
(%i6) reveal (e, 5);

2 2
b - 2 a b + a

(%o6) --------------------------
Sum(2) 2 b 2 a

2 %e + %e + %e
(%i7) reveal (e, 6);

2 2
b - 2 a b + a

(%o7) -------------------------
b + a 2 b 2 a

2 %e + %e + %e

Option variablermxchar
Default value:]

rmxchar is the character drawn on the right-hand side of a matrix.

See also lmxchar.

142 Maxima Manual

Functionsave (filename, name 1, name 2, name 3, ...)
Functionsave (filename, values, functions, labels, ...)
Functionsave (filename, [m, n])
Functionsave (filename, name 1=expr 1, ...)
Functionsave (filename, all)
Functionsave (filename, name 1=expr 1, name 2=expr 2, ...)

Stores the current values of name 1, name 2, name 3, ..., in filename. The arguments
are the names of variables, functions, or other objects. If a name has no value or
function associated with it, it is ignored. save returns filename.
save stores data in the form of Lisp expressions. The data stored by save may be
recovered by load (filename).
The global flag file_output_append governs whether save appends or truncates the
output file. When file_output_append is true, save appends to the output file.
Otherwise, save truncates the output file. In either case, save creates the file if it
does not yet exist.
The special form save (filename, values, functions, labels, ...) stores the
items named by values, functions, labels, etc. The names may be any specified
by the variable infolists. values comprises all user-defined variables.
The special form save (filename, [m, n]) stores the values of input and output la-
bels m through n. Note that m and n must be literal integers. Input and output labels
may also be stored one by one, e.g., save ("foo.1", %i42, %o42). save (filename,
labels) stores all input and output labels. When the stored labels are recovered,
they clobber existing labels.
The special form save (filename, name 1=expr 1, name 2=expr 2, ...) stores the
values of expr 1, expr 2, ..., with names name 1, name 2, It is useful to apply this
form to input and output labels, e.g., save ("foo.1", aa=%o88). The right-hand
side of the equality in this form may be any expression, which is evaluated. This form
does not introduce the new names into the current Maxima environment, but only
stores them in filename.
These special forms and the general form of save may be mixed at will. For example,
save (filename, aa, bb, cc=42, functions, [11, 17]).
The special form save (filename, all) stores the current state of Maxima. This
includes all user-defined variables, functions, arrays, etc., as well as some auto-
matically defined items. The saved items include system variables, such as file_
search_maxima or showtime, if they have been assigned new values by the user; see
myoptions.
save evaluates filename and quotes all other arguments.

Option variablesavedef
Default value: true
When savedef is true, the Maxima version of a user function is preserved when the
function is translated. This permits the definition to be displayed by dispfun and
allows the function to be edited.
When savedef is false, the names of translated functions are removed from the
functions list.

Chapter 9: Input and Output 143

Functionshow (expr)
Displays expr with the indexed objects in it shown having covariant indices as sub-
scripts, contravariant indices as superscripts. The derivative indices are displayed as
subscripts, separated from the covariant indices by a comma.

Functionshowratvars (expr)
Returns a list of the canonical rational expression (CRE) variables in expression expr.

See also ratvars.

Option variablestardisp
Default value: false

When stardisp is true, multiplication is displayed with an asterisk * between
operands.

Functionstring (expr)
Converts expr to Maxima’s linear notation just as if it had been typed in.

The return value of string is a string, and thus it cannot be used in a computation.

Option variablestringdisp
Default value: false

When stringdisp is true, strings are displayed enclosed in double quote marks.
Otherwise, quote marks are not displayed.

stringdisp is always true when displaying a function definition.

Examples:
(%i1) stringdisp: false$
(%i2) "This is an example string.";
(%o2) This is an example string.
(%i3) foo () :=

print ("This is a string in a function definition.");
(%o3) foo() :=

print("This is a string in a function definition.")
(%i4) stringdisp: true$
(%i5) "This is an example string.";
(%o5) "This is an example string."

Functionstringout (filename, expr 1, expr 2, expr 3, ...)
Functionstringout (filename, [m, n])
Functionstringout (filename, input)
Functionstringout (filename, functions)
Functionstringout (filename, values)

stringout writes expressions to a file in the same form the expressions would be
typed for input. The file can then be used as input for the batch or demo commands,
and it may be edited for any purpose. stringout can be executed while writefile
is in progress.

144 Maxima Manual

The global flag file_output_append governs whether stringout appends or trun-
cates the output file. When file_output_append is true, stringout appends to
the output file. Otherwise, stringout truncates the output file. In either case,
stringout creates the file if it does not yet exist.

The general form of stringout writes the values of one or more expressions to the
output file. Note that if an expression is a variable, only the value of the variable is
written and not the name of the variable. As a useful special case, the expressions
may be input labels (%i1, %i2, %i3, ...) or output labels (%o1, %o2, %o3, ...).

If grind is true, stringout formats the output using the grind format. Otherwise
the string format is used. See grind and string.

The special form stringout (filename, [m, n]) writes the values of input labels m
through n, inclusive.

The special form stringout (filename, input) writes all input labels to the file.

The special form stringout (filename, functions) writes all user-defined functions
(named by the global list functions) to the file.

The special form stringout (filename, values) writes all user-assigned variables
(named by the global list values) to the file. Each variable is printed as an assignment
statement, with the name of the variable, a colon, and its value. Note that the general
form of stringout does not print variables as assignment statements.

Functiontex (expr)
Functiontex (expr, destination)
Functiontex (expr, false)
Functiontex (label)
Functiontex (label, destination)
Functiontex (label, false)

Prints a representation of an expression suitable for the TeX document preparation
system. The result is a fragment of a document, which can be copied into a larger
document but not processed by itself.

tex (expr) prints a TeX representation of expr on the console.

tex (label) prints a TeX representation of the expression named by label and assigns
it an equation label (to be displayed to the left of the expression). The TeX equation
label is the same as the Maxima label.

destination may be an output stream or file name. When destination is a file name,
tex appends its output to the file. The functions openw and opena create output
streams.

tex (expr, false) and tex (label, false) return their TeX output as a string.

tex evaluates its first argument after testing it to see if it is a label. Quote-quote
’’ forces evaluation of the argument, thereby defeating the test and preventing the
label.

See also texput.

Examples:

Chapter 9: Input and Output 145

(%i1) integrate (1/(1+x^3), x);
2 x - 1

2 atan(-------)
log(x - x + 1) sqrt(3) log(x + 1)

(%o1) - --------------- + ------------- + ----------
6 sqrt(3) 3

(%i2) tex (%o1);
$$-{{\log \left(x^2-x+1\right)}\over{6}}+{{\arctan \left({{2\,x-1
}\over{\sqrt{3}}}\right)}\over{\sqrt{3}}}+{{\log \left(x+1\right)
}\over{3}}\leqno{\tt (\%o1)}$$
(%o2) (\%o1)
(%i3) tex (integrate (sin(x), x));
$$-\cos x$$
(%o3) false
(%i4) tex (%o1, "foo.tex");
(%o4) (\%o1)

tex (expr, false) returns its TeX output as a string.
(%i1) S : tex (x * y * z, false);
(%o1) $$x\,y\,z$$
(%i2) S;
(%o2) $$x\,y\,z$$

Functiontexput (a, s)
Functiontexput (a, s, operator type)
Functiontexput (a, [s 1, s 2], matchfix)
Functiontexput (a, [s 1, s 2, s 3], matchfix)

Assign the TeX output for the atom a, which can be a symbol or the name of an
operator.
texput (a, s) causes the tex function to interpolate the string s into the TeX output
in place of a.
texput (a, s, operator type), where operator type is prefix, infix, postfix,
nary, or nofix, causes the tex function to interpolate s into the TeX output in place
of a, and to place the interpolated text in the appropriate position.
texput (a, [s 1, s 2], matchfix) causes the tex function to interpolate s 1 and s 2
into the TeX output on either side of the arguments of a. The arguments (if more
than one) are separated by commas.
texput (a, [s 1, s 2, s 3], matchfix) causes the tex function to interpolate s 1
and s 2 into the TeX output on either side of the arguments of a, with s 3 separating
the arguments.
Examples:
Assign TeX output for a variable.

(%i1) texput (me,"\\mu_e");
(%o1) \mu_e
(%i2) tex (me);
$$\mu_e$$
(%o2) false

146 Maxima Manual

Assign TeX output for an ordinary function (not an operator).
(%i1) texput (lcm, "\\mathrm{lcm}");
(%o1) \mathrm{lcm}
(%i2) tex (lcm (a, b));
$$\mathrm{lcm}\left(a , b\right)$$
(%o2) false

Assign TeX output for a prefix operator.
(%i1) prefix ("grad");
(%o1) grad
(%i2) texput ("grad", " \\nabla ", prefix);
(%o2) \nabla
(%i3) tex (grad f);
$$ \nabla f$$
(%o3) false

Assign TeX output for an infix operator.
(%i1) infix ("~");
(%o1) ~
(%i2) texput ("~", " \\times ", infix);
(%o2) \times
(%i3) tex (a ~ b);
$$a \times b$$
(%o3) false

Assign TeX output for a postfix operator.
(%i1) postfix ("##");
(%o1) ##
(%i2) texput ("##", "!!", postfix);
(%o2) !!
(%i3) tex (x ##);
$$x!!$$
(%o3) false

Assign TeX output for a nary operator.
(%i1) nary ("@@");
(%o1) @@
(%i2) texput ("@@", " \\circ ", nary);
(%o2) \circ
(%i3) tex (a @@ b @@ c @@ d);
$$a \circ b \circ c \circ d$$
(%o3) false

Assign TeX output for a nofix operator.
(%i1) nofix ("foo");
(%o1) foo
(%i2) texput ("foo", "\\mathsc{foo}", nofix);
(%o2) \mathsc{foo}
(%i3) tex (foo);
$$\mathsc{foo}$$
(%o3) false

Assign TeX output for a matchfix operator.

Chapter 9: Input and Output 147

(%i1) matchfix ("<<", ">>");
(%o1) <<
(%i2) texput ("<<", [" \\langle ", " \\rangle "], matchfix);
(%o2) [\langle , \rangle]
(%i3) tex (<<a>>);
$$ \langle a \rangle $$
(%o3) false
(%i4) tex (<<a, b>>);
$$ \langle a , b \rangle $$
(%o4) false
(%i5) texput ("<<", [" \\langle ", " \\rangle ", " \\, | \\,"],

matchfix);
(%o5) [\langle , \rangle , \, | \,]
(%i6) tex (<<a>>);
$$ \langle a \rangle $$
(%o6) false
(%i7) tex (<<a, b>>);
$$ \langle a \, | \,b \rangle $$
(%o7) false

Functionget tex environment (op)
Functionset tex environment (op, before, after)

Customize the TeX environment output by tex. As maintained by these functions,
the TeX environment comprises two strings: one is printed before any other TeX
output, and the other is printed after.

Only the TeX environment of the top-level operator in an expression is output; TeX
environments associated with other operators are ignored.

get_tex_environment returns the TeX enviroment which is applied to the operator
op; returns the default if no other environment has been assigned.

set_tex_environment assigns the TeX environment for the operator op.

Examples:
(%i1) get_tex_environment (":=");
(%o1) [
\begin{verbatim}
, ;
\end{verbatim}
]
(%i2) tex (f (x) := 1 - x);

\begin{verbatim}
f(x):=1-x;
\end{verbatim}

(%o2) false
(%i3) set_tex_environment (":=", "$$", "$$");
(%o3) [$$, $$]
(%i4) tex (f (x) := 1 - x);

148 Maxima Manual

$$f(x):=1-x$$
(%o4) false

Functionget tex environment default ()
Functionset tex environment default (before, after)

Customize the TeX environment output by tex. As maintained by these functions,
the TeX environment comprises two strings: one is printed before any other TeX
output, and the other is printed after.
get_tex_environment_default returns the TeX environment which is applied to
expressions for which the top-level operator has no specific TeX environment (as
assigned by set_tex_environment).
set_tex_environment_default assigns the default TeX environment.
Examples:

(%i1) get_tex_environment_default ();
(%o1) [$$, $$]
(%i2) tex (f(x) + g(x));
$$g\left(x\right)+f\left(x\right)$$
(%o2) false
(%i3) set_tex_environment_default ("\\begin{equation}
", "
\\end{equation}");
(%o3) [\begin{equation}
,
\end{equation}]
(%i4) tex (f(x) + g(x));
\begin{equation}
g\left(x\right)+f\left(x\right)
\end{equation}
(%o4) false

Functionsystem (command)
Executes command as a separate process. The command is passed to the default shell
for execution. system is not supported by all operating systems, but generally exists
in Unix and Unix-like environments.
Supposing _hist.out is a list of frequencies which you wish to plot as a bar graph
using xgraph.

(%i1) (with_stdout("_hist.out",
for i:1 thru length(hist) do (

print(i,hist[i]))),
system("xgraph -bar -brw .7 -nl < _hist.out"));

In order to make the plot be done in the background (returning control to Maxima)
and remove the temporary file after it is done do:

system("(xgraph -bar -brw .7 -nl < _hist.out; rm -f _hist.out)&")

Option variablettyoff
Default value: false

Chapter 9: Input and Output 149

When ttyoff is true, output expressions are not displayed. Output expressions are
still computed and assigned labels. See labels.
Text printed by built-in Maxima functions, such as error messages and the output of
describe, is not affected by ttyoff.

Functionwith stdout (f, expr 1, expr 2, expr 3, ...)
Functionwith stdout (s, expr 1, expr 2, expr 3, ...)

Evaluates expr 1, expr 2, expr 3, ... and writes any output thus generated to a file f
or output stream s. The evaluated expressions are not written to the output. Output
may be generated by print, display, grind, among other functions.
The global flag file_output_append governs whether with_stdout appends or trun-
cates the output file f. When file_output_append is true, with_stdout appends
to the output file. Otherwise, with_stdout truncates the output file. In either case,
with_stdout creates the file if it does not yet exist.
with_stdout returns the value of its final argument.
See also writefile.

(%i1) with_stdout ("tmp.out", for i:5 thru 10 do
print (i, "! yields", i!))$

(%i2) printfile ("tmp.out")$
5 ! yields 120
6 ! yields 720
7 ! yields 5040
8 ! yields 40320
9 ! yields 362880
10 ! yields 3628800

Functionwritefile (filename)
Begins writing a transcript of the Maxima session to filename. All interaction between
the user and Maxima is then recorded in this file, just as it appears on the console.
As the transcript is printed in the console output format, it cannot be reloaded into
Maxima. To make a file containing expressions which can be reloaded, see save and
stringout. save stores expressions in Lisp form, while stringout stores expressions
in Maxima form.
The effect of executing writefile when filename already exists depends on the un-
derlying Lisp implementation; the transcript file may be clobbered, or the file may be
appended. appendfile always appends to the transcript file.
It may be convenient to execute playback after writefile to save the display of
previous interactions. As playback displays only the input and output variables
(%i1, %o1, etc.), any output generated by a print statement in a function (as opposed
to a return value) is not displayed by playback.
closefile closes the transcript file opened by writefile or appendfile.

150 Maxima Manual

Chapter 10: Floating Point 151

10 Floating Point

10.1 Functions and Variables for Floating Point

Functionbffac (expr, n)
Bigfloat version of the factorial (shifted gamma) function. The second argument is
how many digits to retain and return, it’s a good idea to request a couple of extra.

Option variablealgepsilon
Default value: 10^8

algepsilon is used by algsys.

Functionbfloat (expr)
Converts all numbers and functions of numbers in expr to bigfloat numbers. The
number of significant digits in the resulting bigfloats is specified by the global variable
fpprec.

When float2bf is false a warning message is printed when a floating point number
is converted into a bigfloat number (since this may lead to loss of precision).

Functionbfloatp (expr)
Returns true if expr is a bigfloat number, otherwise false.

Functionbfpsi (n, z, fpprec)
Functionbfpsi0 (z, fpprec)

bfpsi is the polygamma function of real argument z and integer order n. bfpsi0 is
the digamma function. bfpsi0 (z, fpprec) is equivalent to bfpsi (0, z, fpprec).

These functions return bigfloat values. fpprec is the bigfloat precision of the return
value.

Option variablebftorat
Default value: false

bftorat controls the conversion of bfloats to rational numbers. When bftorat is
false, ratepsilon will be used to control the conversion (this results in relatively
small rational numbers). When bftorat is true, the rational number generated will
accurately represent the bfloat.

Option variablebftrunc
Default value: true

bftrunc causes trailing zeroes in non-zero bigfloat numbers not to be displayed. Thus,
if bftrunc is false, bfloat (1) displays as 1.000000000000000B0. Otherwise, this
is displayed as 1.0B0.

152 Maxima Manual

Functioncbffac (z, fpprec)
Complex bigfloat factorial.
load ("bffac") loads this function.

Functionfloat (expr)
Converts integers, rational numbers and bigfloats in expr to floating point numbers.
It is also an evflag, float causes non-integral rational numbers and bigfloat numbers
to be converted to floating point.

Option variablefloat2bf
Default value: false
When float2bf is false, a warning message is printed when a floating point number
is converted into a bigfloat number (since this may lead to loss of precision).

Functionfloatnump (expr)
Returns true if expr is a floating point number, otherwise false.

Option variablefpprec
Default value: 16
fpprec is the number of significant digits for arithmetic on bigfloat numbers. fpprec
does not affect computations on ordinary floating point numbers.
See also bfloat and fpprintprec.

Option variablefpprintprec
Default value: 0
fpprintprec is the number of digits to print when printing an ordinary float or
bigfloat number.
For ordinary floating point numbers, when fpprintprec has a value between 2 and
16 (inclusive), the number of digits printed is equal to fpprintprec. Otherwise,
fpprintprec is 0, or greater than 16, and the number of digits printed is 16.
For bigfloat numbers, when fpprintprec has a value between 2 and fpprec (inclu-
sive), the number of digits printed is equal to fpprintprec. Otherwise, fpprintprec
is 0, or greater than fpprec, and the number of digits printed is equal to fpprec.
fpprintprec cannot be 1.

Chapter 11: Contexts 153

11 Contexts

11.1 Functions and Variables for Contexts

Functionactivate (context 1, ..., context n)
Activates the contexts context 1, ..., context n. The facts in these contexts are then
available to make deductions and retrieve information. The facts in these contexts
are not listed by facts ().
The variable activecontexts is the list of contexts which are active by way of the
activate function.

System variableactivecontexts
Default value: []
activecontexts is a list of the contexts which are active by way of the activate
function, as opposed to being active because they are subcontexts of the current
context.

Functionassume (pred 1, ..., pred n)
Adds predicates pred 1, ..., pred n to the current context. If a predicate is inconsistent
or redundant with the predicates in the current context, it is not added to the context.
The context accumulates predicates from each call to assume.
assume returns a list whose elements are the predicates added to the context or the
atoms redundant or inconsistent where applicable.
The predicates pred 1, ..., pred n can only be expressions with the relational operators
< <= equal notequal >= and >. Predicates cannot be literal equality = or literal
inequality # expressions, nor can they be predicate functions such as integerp.
Compound predicates of the form pred 1 and ... and pred n are recognized, but not
pred 1 or ... or pred n. not pred k is recognized if pred k is a relational predicate.
Expressions of the form not (pred 1 and pred 2) and not (pred 1 or pred 2) are
not recognized.
Maxima’s deduction mechanism is not very strong; there are many obvious conse-
quences which cannot be determined by is. This is a known weakness.
assume evaluates its arguments.
See also is, facts, forget, context, and declare.
Examples:

(%i1) assume (xx > 0, yy < -1, zz >= 0);
(%o1) [xx > 0, yy < - 1, zz >= 0]
(%i2) assume (aa < bb and bb < cc);
(%o2) [bb > aa, cc > bb]
(%i3) facts ();
(%o3) [xx > 0, - 1 > yy, zz >= 0, bb > aa, cc > bb]
(%i4) is (xx > yy);
(%o4) true

154 Maxima Manual

(%i5) is (yy < -yy);
(%o5) true
(%i6) is (sinh (bb - aa) > 0);
(%o6) true
(%i7) forget (bb > aa);
(%o7) [bb > aa]
(%i8) prederror : false;
(%o8) false
(%i9) is (sinh (bb - aa) > 0);
(%o9) unknown
(%i10) is (bb^2 < cc^2);
(%o10) unknown

Option variableassumescalar
Default value: true
assumescalar helps govern whether expressions expr for which nonscalarp (expr)
is false are assumed to behave like scalars for certain transformations.
Let expr represent any expression other than a list or a matrix, and let [1, 2, 3]
represent any list or matrix. Then expr . [1, 2, 3] yields [expr, 2 expr, 3 expr]
if assumescalar is true, or scalarp (expr) is true, or constantp (expr) is true.
If assumescalar is true, such expressions will behave like scalars only for commuta-
tive operators, but not for noncommutative multiplication ..
When assumescalar is false, such expressions will behave like non-scalars.
When assumescalar is all, such expressions will behave like scalars for all the op-
erators listed above.

Option variableassume pos
Default value: false
When assume_pos is true and the sign of a parameter x cannot be determined from
the current context or other considerations, sign and asksign (x) return true. This
may forestall some automatically-generated asksign queries, such as may arise from
integrate or other computations.
By default, a parameter is x such that symbolp (x) or subvarp (x). The class of
expressions considered parameters can be modified to some extent via the variable
assume_pos_pred.
sign and asksign attempt to deduce the sign of expressions from the sign of operands
within the expression. For example, if a and b are both positive, then a + b is also
positive.
However, there is no way to bypass all asksign queries. In particular, when the
asksign argument is a difference x - y or a logarithm log(x), asksign always re-
quests an input from the user, even when assume_pos is true and assume_pos_pred
is a function which returns true for all arguments.

Option variableassume pos pred
Default value: false

Chapter 11: Contexts 155

When assume_pos_pred is assigned the name of a function or a lambda expression
of one argument x, that function is called to determine whether x is considered a
parameter for the purpose of assume_pos. assume_pos_pred is ignored when assume_
pos is false.
The assume_pos_pred function is called by sign and asksign with an argument x
which is either an atom, a subscripted variable, or a function call expression. If the
assume_pos_pred function returns true, x is considered a parameter for the purpose
of assume_pos.
By default, a parameter is x such that symbolp (x) or subvarp (x).
See also assume and assume_pos.
Examples:

(%i1) assume_pos: true$
(%i2) assume_pos_pred: symbolp$
(%i3) sign (a);
(%o3) pos
(%i4) sign (a[1]);
(%o4) pnz
(%i5) assume_pos_pred: lambda ([x], display (x), true)$
(%i6) asksign (a);

x = a

(%o6) pos
(%i7) asksign (a[1]);

x = a
1

(%o7) pos
(%i8) asksign (foo (a));

x = foo(a)

(%o8) pos
(%i9) asksign (foo (a) + bar (b));

x = foo(a)

x = bar(b)

(%o9) pos
(%i10) asksign (log (a));

x = a

Is a - 1 positive, negative, or zero?

p;
(%o10) pos
(%i11) asksign (a - b);

x = a

x = b

156 Maxima Manual

x = a

x = b

Is b - a positive, negative, or zero?

p;
(%o11) neg

Option variablecontext
Default value: initial

context names the collection of facts maintained by assume and forget. assume
adds facts to the collection named by context, while forget removes facts.

Binding context to a name foo changes the current context to foo. If the specified
context foo does not yet exist, it is created automatically by a call to newcontext.
The specified context is activated automatically.

See contexts for a general description of the context mechanism.

Option variablecontexts
Default value: [initial, global]

contexts is a list of the contexts which currently exist, including the currently active
context.

The context mechanism makes it possible for a user to bind together and name a
collection of facts, called a context. Once this is done, the user can have Maxima
assume or forget large numbers of facts merely by activating or deactivating their
context.

Any symbolic atom can be a context, and the facts contained in that context will be
retained in storage until destroyed one by one by calling forget or destroyed as a
whole by calling kill to destroy the context to which they belong.

Contexts exist in a hierarchy, with the root always being the context global, which
contains information about Maxima that some functions need. When in a given
context, all the facts in that context are "active" (meaning that they are used in
deductions and retrievals) as are all the facts in any context which is a subcontext of
the active context.

When a fresh Maxima is started up, the user is in a context called initial, which
has global as a subcontext.

See also facts, newcontext, supcontext, killcontext, activate, deactivate,
assume, and forget.

Functiondeactivate (context 1, ..., context n)
Deactivates the specified contexts context 1, ..., context n.

Chapter 11: Contexts 157

Functionfacts (item)
Functionfacts ()

If item is the name of a context, facts (item) returns a list of the facts in the specified
context.
If item is not the name of a context, facts (item) returns a list of the facts known
about item in the current context. Facts that are active, but in a different context,
are not listed.
facts () (i.e., without an argument) lists the current context.

Declarationfeatures
Maxima recognizes certain mathematical properties of functions and variables. These
are called "features".
declare (x, foo) gives the property foo to the function or variable x.
declare (foo, feature) declares a new feature foo. For example, declare ([red,
green, blue], feature) declares three new features, red, green, and blue.
The predicate featurep (x, foo) returns true if x has the foo property, and false
otherwise.
The infolist features is a list of known features. These are integer, noninteger,
even, odd, rational, irrational, real, imaginary, complex, analytic,
increasing, decreasing, oddfun, evenfun, posfun, commutative, lassociative,
rassociative, symmetric, and antisymmetric, plus any user-defined features.
features is a list of mathematical features. There is also a list of non-mathematical,
system-dependent features. See status.

Functionforget (pred 1, ..., pred n)
Functionforget (L)

Removes predicates established by assume. The predicates may be expressions equiv-
alent to (but not necessarily identical to) those previously assumed.
forget (L), where L is a list of predicates, forgets each item on the list.

Functionkillcontext (context 1, ..., context n)
Kills the contexts context 1, ..., context n.
If one of the contexts is the current context, the new current context will become the
first available subcontext of the current context which has not been killed. If the first
available unkilled context is global then initial is used instead. If the initial
context is killed, a new, empty initial context is created.
killcontext refuses to kill a context which is currently active, either because it is a
subcontext of the current context, or by use of the function activate.
killcontext evaluates its arguments. killcontext returns done.

Functionnewcontext (name)
Creates a new, empty context, called name, which has global as its only subcontext.
The newly-created context becomes the currently active context.
newcontext evaluates its argument. newcontext returns name.

158 Maxima Manual

Functionsupcontext (name, context)
Functionsupcontext (name)

Creates a new context, called name, which has context as a subcontext. context must
exist.
If context is not specified, the current context is assumed.

Chapter 12: Polynomials 159

12 Polynomials

12.1 Introduction to Polynomials

Polynomials are stored in Maxima either in General Form or as Cannonical Rational
Expressions (CRE) form. The latter is a standard form, and is used internally by operations
such as factor, ratsimp, and so on.

Canonical Rational Expressions constitute a kind of representation which is especially
suitable for expanded polynomials and rational functions (as well as for partially factored
polynomials and rational functions when RATFAC is set to true). In this CRE form an
ordering of variables (from most to least main) is assumed for each expression. Polynomials
are represented recursively by a list consisting of the main variable followed by a series of
pairs of expressions, one for each term of the polynomial. The first member of each pair is
the exponent of the main variable in that term and the second member is the coefficient of
that term which could be a number or a polynomial in another variable again represented
in this form. Thus the principal part of the CRE form of 3*X^2-1 is (X 2 3 0 -1) and that of
2*X*Y+X-3 is (Y 1 (X 1 2) 0 (X 1 1 0 -3)) assuming Y is the main variable, and is (X 1 (Y 1
2 0 1) 0 -3) assuming X is the main variable. "Main"-ness is usually determined by reverse
alphabetical order. The "variables" of a CRE expression needn’t be atomic. In fact any
subexpression whose main operator is not + - * / or ^ with integer power will be considered
a "variable" of the expression (in CRE form) in which it occurs. For example the CRE
variables of the expression X+SIN(X+1)+2*SQRT(X)+1 are X, SQRT(X), and SIN(X+1). If
the user does not specify an ordering of variables by using the RATVARS function Maxima
will choose an alphabetic one. In general, CRE’s represent rational expressions, that is,
ratios of polynomials, where the numerator and denominator have no common factors,
and the denominator is positive. The internal form is essentially a pair of polynomials
(the numerator and denominator) preceded by the variable ordering list. If an expression
to be displayed is in CRE form or if it contains any subexpressions in CRE form, the
symbol /R/ will follow the line label. See the RAT function for converting an expression
to CRE form. An extended CRE form is used for the representation of Taylor series. The
notion of a rational expression is extended so that the exponents of the variables can be
positive or negative rational numbers rather than just positive integers and the coefficients
can themselves be rational expressions as described above rather than just polynomials.
These are represented internally by a recursive polynomial form which is similar to and
is a generalization of CRE form, but carries additional information such as the degree of
truncation. As with CRE form, the symbol /T/ follows the line label of such expressions.

12.2 Functions and Variables for Polynomials

Option variablealgebraic
Default value: false

algebraic must be set to true in order for the simplification of algebraic integers to
take effect.

160 Maxima Manual

Option variableberlefact
Default value: true

When berlefact is false then the Kronecker factoring algorithm will be used oth-
erwise the Berlekamp algorithm, which is the default, will be used.

Functionbezout (p1, p2, x)
an alternative to the resultant command. It returns a matrix. determinant of this
matrix is the desired resultant.

Functionbothcoef (expr, x)
Returns a list whose first member is the coefficient of x in expr (as found by ratcoef if
expr is in CRE form otherwise by coeff) and whose second member is the remaining
part of expr. That is, [A, B] where expr = A*x + B.

Example:
(%i1) islinear (expr, x) := block ([c],

c: bothcoef (rat (expr, x), x),
is (freeof (x, c) and c[1] # 0))$

(%i2) islinear ((r^2 - (x - r)^2)/x, x);
(%o2) true

Functioncoeff (expr, x, n)
Returns the coefficient of x^n in expr. n may be omitted if it is 1. x may be an
atom, or complete subexpression of expr e.g., sin(x), a[i+1], x + y, etc. (In the last
case the expression (x + y) should occur in expr). Sometimes it may be necessary to
expand or factor expr in order to make x^n explicit. This is not done automatically
by coeff.

Examples:
(%i1) coeff (2*a*tan(x) + tan(x) + b = 5*tan(x) + 3, tan(x));
(%o1) 2 a + 1 = 5
(%i2) coeff (y + x*%e^x + 1, x, 0);
(%o2) y + 1

Functioncombine (expr)
Simplifies the sum expr by combining terms with the same denominator into a single
term.

Functioncontent (p 1, x 1, ..., x n)
Returns a list whose first element is the greatest common divisor of the coefficients
of the terms of the polynomial p 1 in the variable x n (this is the content) and whose
second element is the polynomial p 1 divided by the content.

Examples:
(%i1) content (2*x*y + 4*x^2*y^2, y);

2
(%o1) [2 x, 2 x y + y]

Chapter 12: Polynomials 161

Functiondenom (expr)
Returns the denominator of the rational expression expr.

Functiondivide (p 1, p 2, x 1, ..., x n)
computes the quotient and remainder of the polynomial p 1 divided by the polynomial
p 2, in a main polynomial variable, x n. The other variables are as in the ratvars
function. The result is a list whose first element is the quotient and whose second
element is the remainder.
Examples:

(%i1) divide (x + y, x - y, x);
(%o1) [1, 2 y]
(%i2) divide (x + y, x - y);
(%o2) [- 1, 2 x]

Note that y is the main variable in the second example.

Functioneliminate ([eqn 1, ..., eqn n], [x 1, ..., x k])
Eliminates variables from equations (or expressions assumed equal to zero) by taking
successive resultants. This returns a list of n - k expressions with the k variables
x 1, ..., x k eliminated. First x 1 is eliminated yielding n - 1 expressions, then x_2
is eliminated, etc. If k = n then a single expression in a list is returned free of the
variables x 1, ..., x k. In this case solve is called to solve the last resultant for the
last variable.
Example:

(%i1) expr1: 2*x^2 + y*x + z;
2

(%o1) z + x y + 2 x
(%i2) expr2: 3*x + 5*y - z - 1;
(%o2) - z + 5 y + 3 x - 1
(%i3) expr3: z^2 + x - y^2 + 5;

2 2
(%o3) z - y + x + 5
(%i4) eliminate ([expr3, expr2, expr1], [y, z]);

8 7 6 5 4
(%o4) [7425 x - 1170 x + 1299 x + 12076 x + 22887 x

3 2
- 5154 x - 1291 x + 7688 x + 15376]

Functionezgcd (p 1, p 2, p 3, ...)
Returns a list whose first element is the g.c.d of the polynomials p 1, p 2, p 3, ... and
whose remaining elements are the polynomials divided by the g.c.d. This always uses
the ezgcd algorithm.

Option variablefacexpand
Default value: true
facexpand controls whether the irreducible factors returned by factor are in ex-
panded (the default) or recursive (normal CRE) form.

162 Maxima Manual

Functionfactcomb (expr)
Tries to combine the coefficients of factorials in expr with the factorials themselves
by converting, for example, (n + 1)*n! into (n + 1)!.
sumsplitfact if set to false will cause minfactorial to be applied after a factcomb.

Functionfactor (expr)
Functionfactor (expr, p)

Factors the expression expr, containing any number of variables or functions, into
factors irreducible over the integers. factor (expr, p) factors expr over the field of
integers with an element adjoined whose minimum polynomial is p.
factor uses ifactors function for factoring integers.
factorflag if false suppresses the factoring of integer factors of rational expressions.
dontfactor may be set to a list of variables with respect to which factoring is not
to occur. (It is initially empty). Factoring also will not take place with respect to
any variables which are less important (using the variable ordering assumed for CRE
form) than those on the dontfactor list.
savefactors if true causes the factors of an expression which is a product of factors
to be saved by certain functions in order to speed up later factorizations of expressions
containing some of the same factors.
berlefact if false then the Kronecker factoring algorithm will be used otherwise
the Berlekamp algorithm, which is the default, will be used.
intfaclim if true maxima will give up factorization of integers if no factor is found
after trial divisions and Pollard’s rho method. If set to false (this is the case when the
user calls factor explicitly), complete factorization of the integer will be attempted.
The user’s setting of intfaclim is used for internal calls to factor. Thus, intfaclim
may be reset to prevent Maxima from taking an inordinately long time factoring large
integers.
Examples:

(%i1) factor (2^63 - 1);
2

(%o1) 7 73 127 337 92737 649657
(%i2) factor (-8*y - 4*x + z^2*(2*y + x));
(%o2) (2 y + x) (z - 2) (z + 2)
(%i3) -1 - 2*x - x^2 + y^2 + 2*x*y^2 + x^2*y^2;

2 2 2 2 2
(%o3) x y + 2 x y + y - x - 2 x - 1
(%i4) block ([dontfactor: [x]], factor (%/36/(1 + 2*y + y^2)));

2
(x + 2 x + 1) (y - 1)

(%o4) ----------------------
36 (y + 1)

(%i5) factor (1 + %e^(3*x));
x 2 x x

(%o5) (%e + 1) (%e - %e + 1)
(%i6) factor (1 + x^4, a^2 - 2);

2 2

Chapter 12: Polynomials 163

(%o6) (x - a x + 1) (x + a x + 1)
(%i7) factor (-y^2*z^2 - x*z^2 + x^2*y^2 + x^3);

2
(%o7) - (y + x) (z - x) (z + x)
(%i8) (2 + x)/(3 + x)/(b + x)/(c + x)^2;

x + 2
(%o8) ------------------------

2
(x + 3) (x + b) (x + c)

(%i9) ratsimp (%);
4 3

(%o9) (x + 2)/(x + (2 c + b + 3) x

2 2 2 2
+ (c + (2 b + 6) c + 3 b) x + ((b + 3) c + 6 b c) x + 3 b c)
(%i10) partfrac (%, x);

2 4 3
(%o10) - (c - 4 c - b + 6)/((c + (- 2 b - 6) c

2 2 2 2
+ (b + 12 b + 9) c + (- 6 b - 18 b) c + 9 b) (x + c))

c - 2
- ---------------------------------

2 2
(c + (- b - 3) c + 3 b) (x + c)

b - 2
+ ---

2 2 3 2
((b - 3) c + (6 b - 2 b) c + b - 3 b) (x + b)

1
- --

2
((b - 3) c + (18 - 6 b) c + 9 b - 27) (x + 3)

(%i11) map (’factor, %);
2
c - 4 c - b + 6 c - 2

(%o11) - ------------------------- - ------------------------
2 2 2

(c - 3) (c - b) (x + c) (c - 3) (c - b) (x + c)

b - 2 1
+ ------------------------ - ------------------------

2 2
(b - 3) (c - b) (x + b) (b - 3) (c - 3) (x + 3)

(%i12) ratsimp ((x^5 - 1)/(x - 1));
4 3 2

164 Maxima Manual

(%o12) x + x + x + x + 1
(%i13) subst (a, x, %);

4 3 2
(%o13) a + a + a + a + 1
(%i14) factor (%th(2), %);

2 3 3 2
(%o14) (x - a) (x - a) (x - a) (x + a + a + a + 1)
(%i15) factor (1 + x^12);

4 8 4
(%o15) (x + 1) (x - x + 1)
(%i16) factor (1 + x^99);

2 6 3
(%o16) (x + 1) (x - x + 1) (x - x + 1)

10 9 8 7 6 5 4 3 2
(x - x + x - x + x - x + x - x + x - x + 1)

20 19 17 16 14 13 11 10 9 7 6
(x + x - x - x + x + x - x - x - x + x + x

4 3 60 57 51 48 42 39 33
- x - x + x + 1) (x + x - x - x + x + x - x

30 27 21 18 12 9 3
- x - x + x + x - x - x + x + 1)

Option variablefactorflag
Default value: false

When factorflag is false, suppresses the factoring of integer factors of rational
expressions.

Functionfactorout (expr, x 1, x 2, ...)
Rearranges the sum expr into a sum of terms of the form f (x 1, x 2, ...)*g where
g is a product of expressions not containing any x i and f is factored.

Functionfactorsum (expr)
Tries to group terms in factors of expr which are sums into groups of terms such that
their sum is factorable. factorsum can recover the result of expand ((x + y)^2 + (z
+ w)^2) but it can’t recover expand ((x + 1)^2 + (x + y)^2) because the terms have
variables in common.

Example:
(%i1) expand ((x + 1)*((u + v)^2 + a*(w + z)^2));

2 2 2 2
(%o1) a x z + a z + 2 a w x z + 2 a w z + a w x + v x

2 2 2 2
+ 2 u v x + u x + a w + v + 2 u v + u

Chapter 12: Polynomials 165

(%i2) factorsum (%);
2 2

(%o2) (x + 1) (a (z + w) + (v + u))

Functionfasttimes (p 1, p 2)
Returns the product of the polynomials p 1 and p 2 by using a special algorithm for
multiplication of polynomials. p_1 and p_2 should be multivariate, dense, and nearly
the same size. Classical multiplication is of order n_1 n_2 where n_1 is the degree of
p_1 and n_2 is the degree of p_2. fasttimes is of order max (n_1, n_2)^1.585.

Functionfullratsimp (expr)
fullratsimp repeatedly applies ratsimp followed by non-rational simplification to
an expression until no further change occurs, and returns the result.

When non-rational expressions are involved, one call to ratsimp followed as is usual
by non-rational ("general") simplification may not be sufficient to return a simplified
result. Sometimes, more than one such call may be necessary. fullratsimp makes
this process convenient.

fullratsimp (expr, x 1, ..., x n) takes one or more arguments similar to ratsimp
and rat.

Example:
(%i1) expr: (x^(a/2) + 1)^2*(x^(a/2) - 1)^2/(x^a - 1);

a/2 2 a/2 2
(x - 1) (x + 1)

(%o1) -----------------------
a
x - 1

(%i2) ratsimp (expr);
2 a a
x - 2 x + 1

(%o2) ---------------
a
x - 1

(%i3) fullratsimp (expr);
a

(%o3) x - 1
(%i4) rat (expr);

a/2 4 a/2 2
(x) - 2 (x) + 1

(%o4)/R/ -----------------------
a
x - 1

Functionfullratsubst (a, b, c)
is the same as ratsubst except that it calls itself recursively on its result until that
result stops changing. This function is useful when the replacement expression and
the replaced expression have one or more variables in common.

166 Maxima Manual

fullratsubst will also accept its arguments in the format of lratsubst. That is,
the first argument may be a single substitution equation or a list of such equations,
while the second argument is the expression being processed.

load ("lrats") loads fullratsubst and lratsubst.

Examples:
(%i1) load ("lrats")$

• subst can carry out multiple substitutions. lratsubst is analogous to subst.
(%i2) subst ([a = b, c = d], a + c);
(%o2) d + b
(%i3) lratsubst ([a^2 = b, c^2 = d], (a + e)*c*(a + c));
(%o3) (d + a c) e + a d + b c

• If only one substitution is desired, then a single equation may be given as first
argument.
(%i4) lratsubst (a^2 = b, a^3);
(%o4) a b

• fullratsubst is equivalent to ratsubst except that it recurses until its result
stops changing.
(%i5) ratsubst (b*a, a^2, a^3);

2
(%o5) a b
(%i6) fullratsubst (b*a, a^2, a^3);

2
(%o6) a b

• fullratsubst also accepts a list of equations or a single equation as first argu-
ment.
(%i7) fullratsubst ([a^2 = b, b^2 = c, c^2 = a], a^3*b*c);
(%o7) b
(%i8) fullratsubst (a^2 = b*a, a^3);

2
(%o8) a b

• fullratsubst may cause an indefinite recursion.
(%i9) errcatch (fullratsubst (b*a^2, a^2, a^3));

*** - Lisp stack overflow. RESET

Functiongcd (p 1, p 2, x 1, ...)
Returns the greatest common divisor of p 1 and p 2. The flag gcd determines which
algorithm is employed. Setting gcd to ez, subres, red, or spmod selects the ezgcd,
subresultant prs, reduced, or modular algorithm, respectively. If gcd false then gcd
(p 1, p 2, x) always returns 1 for all x. Many functions (e.g. ratsimp, factor, etc.)
cause gcd’s to be taken implicitly. For homogeneous polynomials it is recommended
that gcd equal to subres be used. To take the gcd when an algebraic is present,
e.g., gcd (x^2 - 2*sqrt(2)*x + 2, x - sqrt(2)), algebraic must be true and gcd
must not be ez.

Chapter 12: Polynomials 167

The gcd flag, default: spmod, if false will also prevent the greatest common divisor
from being taken when expressions are converted to canonical rational expression
(CRE) form. This will sometimes speed the calculation if gcds are not required.

Functiongcdex (f, g)
Functiongcdex (f, g, x)

Returns a list [a, b, u] where u is the greatest common divisor (gcd) of f and g, and
u is equal to a f + b g . The arguments f and g should be univariate polynomials,
or else polynomials in x a supplied main variable since we need to be in a principal
ideal domain for this to work. The gcd means the gcd regarding f and g as univariate
polynomials with coefficients being rational functions in the other variables.

gcdex implements the Euclidean algorithm, where we have a sequence of L[i]:
[a[i], b[i], r[i]] which are all perpendicular to [f, g, -1] and the next one
is built as if q = quotient(r[i]/r[i+1]) then L[i+2]: L[i] - q L[i+1], and it ter-
minates at L[i+1] when the remainder r[i+2] is zero.

(%i1) gcdex (x^2 + 1, x^3 + 4);
2
x + 4 x - 1 x + 4

(%o1)/R/ [- ------------, -----, 1]
17 17

(%i2) % . [x^2 + 1, x^3 + 4, -1];
(%o2)/R/ 0

Note that the gcd in the following is 1 since we work in k(y)[x], not the y+1 we
would expect in k[y, x].

(%i1) gcdex (x*(y + 1), y^2 - 1, x);
1

(%o1)/R/ [0, ------, 1]
2
y - 1

Functiongcfactor (n)
Factors the Gaussian integer n over the Gaussian integers, i.e., numbers of the form
a + b %i where a and b are rational integers (i.e., ordinary integers). Factors are
normalized by making a and b non-negative.

Functiongfactor (expr)
Factors the polynomial expr over the Gaussian integers (that is, the integers with the
imaginary unit %i adjoined). This is like factor (expr, a^2+1) where a is %i.

Example:

(%i1) gfactor (x^4 - 1);
(%o1) (x - 1) (x + 1) (x - %i) (x + %i)

Functiongfactorsum (expr)
is similar to factorsum but applies gfactor instead of factor.

168 Maxima Manual

Functionhipow (expr, x)
Returns the highest explicit exponent of x in expr. x may be a variable or a general
expression. If x does not appear in expr, hipow returns 0.

hipow does not consider expressions equivalent to expr. In particular, hipow does not
expand expr, so hipow (expr, x) and hipow (expand (expr, x)) may yield different
results.

Examples:
(%i1) hipow (y^3 * x^2 + x * y^4, x);
(%o1) 2
(%i2) hipow ((x + y)^5, x);
(%o2) 1
(%i3) hipow (expand ((x + y)^5), x);
(%o3) 5
(%i4) hipow ((x + y)^5, x + y);
(%o4) 5
(%i5) hipow (expand ((x + y)^5), x + y);
(%o5) 0

Option variableintfaclim
Default value: true

If true, maxima will give up factorization of integers if no factor is found after trial
divisions and Pollard’s rho method and factorization will not be complete.

When intfaclim is false (this is the case when the user calls factor explicitly),
complete factorization will be attempted. intfaclim is set to false when factors are
computed in divisors, divsum and totient.

Internal calls to factor respect the user-specified value of intfaclim. Setting
intfaclim to true may reduce the time spent factoring large integers.

Option variablekeepfloat
Default value: false

When keepfloat is true, prevents floating point numbers from being rationalized
when expressions which contain them are converted to canonical rational expression
(CRE) form.

Functionlratsubst (L, expr)
is analogous to subst (L, expr) except that it uses ratsubst instead of subst.

The first argument of lratsubst is an equation or a list of equations identical in
format to that accepted by subst. The substitutions are made in the order given by
the list of equations, that is, from left to right.

load ("lrats") loads fullratsubst and lratsubst.

Examples:
(%i1) load ("lrats")$

• subst can carry out multiple substitutions. lratsubst is analogous to subst.

Chapter 12: Polynomials 169

(%i2) subst ([a = b, c = d], a + c);
(%o2) d + b
(%i3) lratsubst ([a^2 = b, c^2 = d], (a + e)*c*(a + c));
(%o3) (d + a c) e + a d + b c

• If only one substitution is desired, then a single equation may be given as first
argument.
(%i4) lratsubst (a^2 = b, a^3);
(%o4) a b

Option variablemodulus
Default value: false
When modulus is a positive number p, operations on rational numbers (as returned by
rat and related functions) are carried out modulo p, using the so-called "balanced"
modulus system in which n modulo p is defined as an integer k in [-(p-1)/2, ...,
0, ..., (p-1)/2] when p is odd, or [-(p/2 - 1), ..., 0,, p/2] when p is
even, such that a p + k equals n for some integer a.
If expr is already in canonical rational expression (CRE) form when modulus is reset,
then you may need to re-rat expr, e.g., expr: rat (ratdisrep (expr)), in order to
get correct results.
Typically modulus is set to a prime number. If modulus is set to a positive non-prime
integer, this setting is accepted, but a warning message is displayed. Maxima will
allow zero or a negative integer to be assigned to modulus, although it is not clear if
that has any useful consequences.

Functionnum (expr)
Returns the numerator of expr if it is a ratio. If expr is not a ratio, expr is returned.
num evaluates its argument.

Functionpolydecomp (p, x)
Decomposes the polynomial p in the variable x into the functional composition of
polynomials in x. polydecomp returns a list [p 1, ..., p n] such that

lambda ([x], p_1) (lambda ([x], p_2) (... (lambda ([x], p_n) (x))
...))

is equal to p. The degree of p i is greater than 1 for i less than n.
Such a decomposition is not unique.
Examples:

(%i1) polydecomp (x^210, x);
7 5 3 2

(%o1) [x , x , x , x]
(%i2) p : expand (subst (x^3 - x - 1, x, x^2 - a));

6 4 3 2
(%o2) x - 2 x - 2 x + x + 2 x - a + 1
(%i3) polydecomp (p, x);

2 3
(%o3) [x - a, x - x - 1]

170 Maxima Manual

The following function composes L = [e_1, ..., e_n] as functions in x; it is the
inverse of polydecomp:

compose (L, x) :=
block ([r : x], for e in L do r : subst (e, x, r), r) $

Re-express above example using compose:
(%i3) polydecomp (compose ([x^2 - a, x^3 - x - 1], x), x);

2 3
(%o3) [x - a, x - x - 1]

Note that though compose (polydecomp (p, x), x) always returns p (unexpanded),
polydecomp (compose ([p 1, ..., p n], x), x) does not necessarily return [p 1,
..., p n]:

(%i4) polydecomp (compose ([x^2 + 2*x + 3, x^2], x), x);
2 2

(%o4) [x + 2, x + 1]
(%i5) polydecomp (compose ([x^2 + x + 1, x^2 + x + 1], x), x);

2 2
x + 3 x + 5

(%o5) [------, ------, 2 x + 1]
4 2

Functionquotient (p 1, p 2)
Functionquotient (p 1, p 2, x 1, ..., x n)

Returns the polynomial p 1 divided by the polynomial p 2. The arguments x 1, ...,
x n are interpreted as in ratvars.
quotient returns the first element of the two-element list returned by divide.

Functionrat (expr)
Functionrat (expr, x 1, ..., x n)

Converts expr to canonical rational expression (CRE) form by expanding and com-
bining all terms over a common denominator and cancelling out the greatest common
divisor of the numerator and denominator, as well as converting floating point num-
bers to rational numbers within a tolerance of ratepsilon. The variables are ordered
according to the x 1, ..., x n, if specified, as in ratvars.
rat does not generally simplify functions other than addition +, subtraction -, mul-
tiplication *, division /, and exponentiation to an integer power, whereas ratsimp
does handle those cases. Note that atoms (numbers and variables) in CRE form are
not the same as they are in the general form. For example, rat(x)- x yields rat(0)
which has a different internal representation than 0.
When ratfac is true, rat yields a partially factored form for CRE. During ratio-
nal operations the expression is maintained as fully factored as possible without an
actual call to the factor package. This should always save space and may save some
time in some computations. The numerator and denominator are still made rela-
tively prime (e.g. rat ((x^2 - 1)^4/(x + 1)^2) yields (x - 1)^4 (x + 1)^2), but
the factors within each part may not be relatively prime.
ratprint if false suppresses the printout of the message informing the user of the
conversion of floating point numbers to rational numbers.

Chapter 12: Polynomials 171

keepfloat if true prevents floating point numbers from being converted to rational
numbers.

See also ratexpand and ratsimp.

Examples:

(%i1) ((x - 2*y)^4/(x^2 - 4*y^2)^2 + 1)*(y + a)*(2*y + x) /
(4*y^2 + x^2);

4
(x - 2 y)

(y + a) (2 y + x) (------------ + 1)
2 2 2

(x - 4 y)
(%o1) ------------------------------------

2 2
4 y + x

(%i2) rat (%, y, a, x);
2 a + 2 y

(%o2)/R/ ---------
x + 2 y

Option variableratalgdenom
Default value: true

When ratalgdenom is true, allows rationalization of denominators with respect to
radicals to take effect. ratalgdenom has an effect only when canonical rational ex-
pressions (CRE) are used in algebraic mode.

Functionratcoef (expr, x, n)
Functionratcoef (expr, x)

Returns the coefficient of the expression x^n in the expression expr. If omitted, n is
assumed to be 1.

The return value is free (except possibly in a non-rational sense) of the variables in
x. If no coefficient of this type exists, 0 is returned.

ratcoef expands and rationally simplifies its first argument and thus it may produce
answers different from those of coeff which is purely syntactic. Thus ratcoef ((x +
1)/y + x, x) returns (y + 1)/y whereas coeff returns 1.

ratcoef (expr, x, 0), viewing expr as a sum, returns a sum of those terms which
do not contain x. Therefore if x occurs to any negative powers, ratcoef should not
be used.

Since expr is rationally simplified before it is examined, coefficients may not appear
quite the way they were envisioned.

Example:

(%i1) s: a*x + b*x + 5$
(%i2) ratcoef (s, a + b);
(%o2) x

172 Maxima Manual

Functionratdenom (expr)
Returns the denominator of expr, after coercing expr to a canonical rational expres-
sion (CRE). The return value is a CRE.

expr is coerced to a CRE by rat if it is not already a CRE. This conversion may
change the form of expr by putting all terms over a common denominator.

denom is similar, but returns an ordinary expression instead of a CRE. Also, denom
does not attempt to place all terms over a common denominator, and thus some
expressions which are considered ratios by ratdenom are not considered ratios by
denom.

Option variableratdenomdivide
Default value: true

When ratdenomdivide is true, ratexpand expands a ratio in which the numerator is
a sum into a sum of ratios, all having a common denominator. Otherwise, ratexpand
collapses a sum of ratios into a single ratio, the numerator of which is the sum of the
numerators of each ratio.

Examples:
(%i1) expr: (x^2 + x + 1)/(y^2 + 7);

2
x + x + 1

(%o1) ----------
2
y + 7

(%i2) ratdenomdivide: true$
(%i3) ratexpand (expr);

2
x x 1

(%o3) ------ + ------ + ------
2 2 2

y + 7 y + 7 y + 7
(%i4) ratdenomdivide: false$
(%i5) ratexpand (expr);

2
x + x + 1

(%o5) ----------
2
y + 7

(%i6) expr2: a^2/(b^2 + 3) + b/(b^2 + 3);
2

b a
(%o6) ------ + ------

2 2
b + 3 b + 3

(%i7) ratexpand (expr2);
2

b + a
(%o7) ------

Chapter 12: Polynomials 173

2
b + 3

Functionratdiff (expr, x)
Differentiates the rational expression expr with respect to x. expr must be a ra-
tio of polynomials or a polynomial in x. The argument x may be a variable or a
subexpression of expr.
The result is equivalent to diff, although perhaps in a different form. ratdiff may
be faster than diff, for rational expressions.
ratdiff returns a canonical rational expression (CRE) if expr is a CRE. Otherwise,
ratdiff returns a general expression.
ratdiff considers only the dependence of expr on x, and ignores any dependencies
established by depends.
Example:

(%i1) expr: (4*x^3 + 10*x - 11)/(x^5 + 5);
3

4 x + 10 x - 11
(%o1) ----------------

5
x + 5

(%i2) ratdiff (expr, x);
7 5 4 2

8 x + 40 x - 55 x - 60 x - 50
(%o2) - ---------------------------------

10 5
x + 10 x + 25

(%i3) expr: f(x)^3 - f(x)^2 + 7;
3 2

(%o3) f (x) - f (x) + 7
(%i4) ratdiff (expr, f(x));

2
(%o4) 3 f (x) - 2 f(x)
(%i5) expr: (a + b)^3 + (a + b)^2;

3 2
(%o5) (b + a) + (b + a)
(%i6) ratdiff (expr, a + b);

2 2
(%o6) 3 b + (6 a + 2) b + 3 a + 2 a

Functionratdisrep (expr)
Returns its argument as a general expression. If expr is a general expression, it is
returned unchanged.
Typically ratdisrep is called to convert a canonical rational expression (CRE) into
a general expression. This is sometimes convenient if one wishes to stop the "conta-
gion", or use rational functions in non-rational contexts.
See also totaldisrep.

174 Maxima Manual

Option variableratepsilon
Default value: 2.0e-8
ratepsilon is the tolerance used in the conversion of floating point numbers to ra-
tional numbers.

Functionratexpand (expr)
Option variableratexpand

Expands expr by multiplying out products of sums and exponentiated sums, com-
bining fractions over a common denominator, cancelling the greatest common divisor
of the numerator and denominator, then splitting the numerator (if a sum) into its
respective terms divided by the denominator.
The return value of ratexpand is a general expression, even if expr is a canonical
rational expression (CRE).
The switch ratexpand if true will cause CRE expressions to be fully expanded when
they are converted back to general form or displayed, while if it is false then they
will be put into a recursive form. See also ratsimp.
When ratdenomdivide is true, ratexpand expands a ratio in which the numerator is
a sum into a sum of ratios, all having a common denominator. Otherwise, ratexpand
collapses a sum of ratios into a single ratio, the numerator of which is the sum of the
numerators of each ratio.
When keepfloat is true, prevents floating point numbers from being rationalized
when expressions which contain them are converted to canonical rational expression
(CRE) form.
Examples:

(%i1) ratexpand ((2*x - 3*y)^3);
3 2 2 3

(%o1) - 27 y + 54 x y - 36 x y + 8 x
(%i2) expr: (x - 1)/(x + 1)^2 + 1/(x - 1);

x - 1 1
(%o2) -------- + -----

2 x - 1
(x + 1)

(%i3) expand (expr);
x 1 1

(%o3) ------------ - ------------ + -----
2 2 x - 1
x + 2 x + 1 x + 2 x + 1

(%i4) ratexpand (expr);
2

2 x 2
(%o4) --------------- + ---------------

3 2 3 2
x + x - x - 1 x + x - x - 1

Option variableratfac
Default value: false

Chapter 12: Polynomials 175

When ratfac is true, canonical rational expressions (CRE) are manipulated in a
partially factored form.
During rational operations the expression is maintained as fully factored as possi-
ble without calling factor. This should always save space and may save time in
some computations. The numerator and denominator are made relatively prime, for
example rat ((x^2 - 1)^4/(x + 1)^2) yields (x - 1)^4 (x + 1)^2), but the factors
within each part may not be relatively prime.
In the ctensr (Component Tensor Manipulation) package, Ricci, Einstein, Riemann,
and Weyl tensors and the scalar curvature are factored automatically when ratfac is
true. ratfac should only be set for cases where the tensorial components are known
to consist of few terms.
The ratfac and ratweight schemes are incompatible and may not both be used at
the same time.

Functionratnumer (expr)
Returns the numerator of expr, after coercing expr to a canonical rational expression
(CRE). The return value is a CRE.
expr is coerced to a CRE by rat if it is not already a CRE. This conversion may
change the form of expr by putting all terms over a common denominator.
num is similar, but returns an ordinary expression instead of a CRE. Also, num does not
attempt to place all terms over a common denominator, and thus some expressions
which are considered ratios by ratnumer are not considered ratios by num.

Functionratnump (expr)
Returns true if expr is a literal integer or ratio of literal integers, otherwise false.

Functionratp (expr)
Returns true if expr is a canonical rational expression (CRE) or extended CRE,
otherwise false.
CRE are created by rat and related functions. Extended CRE are created by taylor
and related functions.

Option variableratprint
Default value: true
When ratprint is true, a message informing the user of the conversion of floating
point numbers to rational numbers is displayed.

Functionratsimp (expr)
Functionratsimp (expr, x 1, ..., x n)

Simplifies the expression expr and all of its subexpressions, including the arguments
to non-rational functions. The result is returned as the quotient of two polynomials
in a recursive form, that is, the coefficients of the main variable are polynomials in
the other variables. Variables may include non-rational functions (e.g., sin (x^2 +
1)) and the arguments to any such functions are also rationally simplified.

176 Maxima Manual

ratsimp (expr, x 1, ..., x n) enables rational simplification with the specification
of variable ordering as in ratvars.
When ratsimpexpons is true, ratsimp is applied to the exponents of expressions
during simplification.
See also ratexpand. Note that ratsimp is affected by some of the flags which affect
ratexpand.
Examples:

(%i1) sin (x/(x^2 + x)) = exp ((log(x) + 1)^2 - log(x)^2);
2 2

x (log(x) + 1) - log (x)
(%o1) sin(------) = %e

2
x + x

(%i2) ratsimp (%);
1 2

(%o2) sin(-----) = %e x
x + 1

(%i3) ((x - 1)^(3/2) - (x + 1)*sqrt(x - 1))/sqrt((x - 1)*(x + 1));
3/2

(x - 1) - sqrt(x - 1) (x + 1)
(%o3) --------------------------------

sqrt((x - 1) (x + 1))
(%i4) ratsimp (%);

2 sqrt(x - 1)
(%o4) - -------------

2
sqrt(x - 1)

(%i5) x^(a + 1/a), ratsimpexpons: true;
2

a + 1

a

(%o5) x

Option variableratsimpexpons
Default value: false
When ratsimpexpons is true, ratsimp is applied to the exponents of expressions
during simplification.

Functionratsubst (a, b, c)
Substitutes a for b in c and returns the resulting expression. b may be a sum, product,
power, etc.
ratsubst knows something of the meaning of expressions whereas subst does a purely
syntactic substitution. Thus subst (a, x + y, x + y + z) returns x + y + z whereas
ratsubst returns z + a.
When radsubstflag is true, ratsubst makes substitutions for radicals in expressions
which don’t explicitly contain them.

Chapter 12: Polynomials 177

Examples:
(%i1) ratsubst (a, x*y^2, x^4*y^3 + x^4*y^8);

3 4
(%o1) a x y + a
(%i2) cos(x)^4 + cos(x)^3 + cos(x)^2 + cos(x) + 1;

4 3 2
(%o2) cos (x) + cos (x) + cos (x) + cos(x) + 1
(%i3) ratsubst (1 - sin(x)^2, cos(x)^2, %);

4 2 2
(%o3) sin (x) - 3 sin (x) + cos(x) (2 - sin (x)) + 3
(%i4) ratsubst (1 - cos(x)^2, sin(x)^2, sin(x)^4);

4 2
(%o4) cos (x) - 2 cos (x) + 1
(%i5) radsubstflag: false$
(%i6) ratsubst (u, sqrt(x), x);
(%o6) x
(%i7) radsubstflag: true$
(%i8) ratsubst (u, sqrt(x), x);

2
(%o8) u

Functionratvars (x 1, ..., x n)
Functionratvars ()

System variableratvars
Declares main variables x 1, ..., x n for rational expressions. x n, if present in a
rational expression, is considered the main variable. Otherwise, x [n-1] is considered
the main variable if present, and so on through the preceding variables to x 1, which
is considered the main variable only if none of the succeeding variables are present.
If a variable in a rational expression is not present in the ratvars list, it is given a
lower priority than x 1.
The arguments to ratvars can be either variables or non-rational functions such as
sin(x).
The variable ratvars is a list of the arguments of the function ratvars when it was
called most recently. Each call to the function ratvars resets the list. ratvars ()
clears the list.

Functionratweight (x 1, w 1, ..., x n, w n)
Functionratweight ()

Assigns a weight w i to the variable x i. This causes a term to be replaced by 0 if
its weight exceeds the value of the variable ratwtlvl (default yields no truncation).
The weight of a term is the sum of the products of the weight of a variable in the
term times its power. For example, the weight of 3 x_1^2 x_2 is 2 w_1 + w_2. Trun-
cation according to ratwtlvl is carried out only when multiplying or exponentiating
canonical rational expressions (CRE).
ratweight () returns the cumulative list of weight assignments.
Note: The ratfac and ratweight schemes are incompatible and may not both be
used at the same time.

178 Maxima Manual

Examples:
(%i1) ratweight (a, 1, b, 1);
(%o1) [a, 1, b, 1]
(%i2) expr1: rat(a + b + 1)$
(%i3) expr1^2;

2 2
(%o3)/R/ b + (2 a + 2) b + a + 2 a + 1
(%i4) ratwtlvl: 1$
(%i5) expr1^2;
(%o5)/R/ 2 b + 2 a + 1

System variableratweights
Default value: []
ratweights is the list of weights assigned by ratweight. The list is cumulative: each
call to ratweight places additional items in the list.
kill (ratweights) and save (ratweights) both work as expected.

Option variableratwtlvl
Default value: false
ratwtlvl is used in combination with the ratweight function to control the trun-
cation of canonical rational expressions (CRE). For the default value of false, no
truncation occurs.

Functionremainder (p 1, p 2)
Functionremainder (p 1, p 2, x 1, ..., x n)

Returns the remainder of the polynomial p 1 divided by the polynomial p 2. The
arguments x 1, ..., x n are interpreted as in ratvars.
remainder returns the second element of the two-element list returned by divide.

Functionresultant (p 1, p 2, x)
Variableresultant

Computes the resultant of the two polynomials p 1 and p 2, eliminating the variable
x. The resultant is a determinant of the coefficients of x in p 1 and p 2, which equals
zero if and only if p 1 and p 2 have a non-constant factor in common.
If p 1 or p 2 can be factored, it may be desirable to call factor before calling
resultant.
The variable resultant controls which algorithm will be used to compute the re-
sultant. subres for subresultant prs, mod for modular resultant algorithm, and red
for reduced prs. On most problems subres should be best. On some large degree
univariate or bivariate problems mod may be better.
The function bezout takes the same arguments as resultant and returns a matrix.
The determinant of the return value is the desired resultant.

Option variablesavefactors
Default value: false

Chapter 12: Polynomials 179

When savefactors is true, causes the factors of an expression which is a product
of factors to be saved by certain functions in order to speed up later factorizations of
expressions containing some of the same factors.

Functionsqfr (expr)
is similar to factor except that the polynomial factors are "square-free." That is,
they have factors only of degree one. This algorithm, which is also used by the first
stage of factor, utilizes the fact that a polynomial has in common with its n’th
derivative all its factors of degree greater than n. Thus by taking greatest common
divisors with the polynomial of the derivatives with respect to each variable in the
polynomial, all factors of degree greater than 1 can be found.
Example:

(%i1) sqfr (4*x^4 + 4*x^3 - 3*x^2 - 4*x - 1);
2 2

(%o1) (2 x + 1) (x - 1)

Functiontellrat (p 1, ..., p n)
Functiontellrat ()

Adds to the ring of algebraic integers known to Maxima the elements which are the
solutions of the polynomials p 1, ..., p n. Each argument p i is a polynomial with
integer coefficients.
tellrat (x) effectively means substitute 0 for x in rational functions.
tellrat () returns a list of the current substitutions.
algebraic must be set to true in order for the simplification of algebraic integers to
take effect.
Maxima initially knows about the imaginary unit %i and all roots of integers.
There is a command untellrat which takes kernels and removes tellrat properties.
When tellrat’ing a multivariate polynomial, e.g., tellrat (x^2 - y^2), there would
be an ambiguity as to whether to substitute y^2 for x^2 or vice versa. Maxima picks
a particular ordering, but if the user wants to specify which, e.g. tellrat (y^2 =
x^2) provides a syntax which says replace y^2 by x^2.
Examples:

(%i1) 10*(%i + 1)/(%i + 3^(1/3));
10 (%i + 1)

(%o1) -----------
1/3

%i + 3
(%i2) ev (ratdisrep (rat(%)), algebraic);

2/3 1/3 2/3 1/3
(%o2) (4 3 - 2 3 - 4) %i + 2 3 + 4 3 - 2
(%i3) tellrat (1 + a + a^2);

2
(%o3) [a + a + 1]
(%i4) 1/(a*sqrt(2) - 1) + a/(sqrt(3) + sqrt(2));

1 a

180 Maxima Manual

(%o4) ------------- + -----------------
sqrt(2) a - 1 sqrt(3) + sqrt(2)

(%i5) ev (ratdisrep (rat(%)), algebraic);
(7 sqrt(3) - 10 sqrt(2) + 2) a - 2 sqrt(2) - 1

(%o5) --
7

(%i6) tellrat (y^2 = x^2);
2 2 2

(%o6) [y - x , a + a + 1]

Functiontotaldisrep (expr)
Converts every subexpression of expr from canonical rational expressions (CRE) to
general form and returns the result. If expr is itself in CRE form then totaldisrep
is identical to ratdisrep.
totaldisrep may be useful for ratdisrepping expressions such as equations, lists,
matrices, etc., which have some subexpressions in CRE form.

Functionuntellrat (x 1, ..., x n)
Removes tellrat properties from x 1, ..., x n.

Chapter 13: Constants 181

13 Constants

13.1 Functions and Variables for Constants

Constant%e
%e represents the base of the natural logarithm, also known as Euler’s number. The
numeric value of %e is the double-precision floating-point value 2.718281828459045d0.

Constant%i
%i represents the imaginary unit, sqrt(−1).

Constantfalse
false represents the Boolean constant of the same name. Maxima implements false
by the value NIL in Lisp.

Constantind
ind represents a bounded, indefinite result.

See also limit.

Example:
(%i1) limit (sin(1/x), x, 0);
(%o1) ind

Constantinf
inf represents real positive infinity.

Constantinfinity
infinity represents complex infinity.

Constantminf
minf represents real minus (i.e., negative) infinity.

Constant%phi
%phi represents the so-called golden mean, (1+sqrt(5))/2. The numeric value of %phi
is the double-precision floating-point value 1.618033988749895d0.

fibtophi expresses Fibonacci numbers fib(n) in terms of %phi.

By default, Maxima does not know the algebraic properties of %phi. After evaluat-
ing tellrat(%phi^2 - %phi - 1) and algebraic: true, ratsimp can simplify some
expressions containing %phi.

Examples:

fibtophi expresses Fibonacci numbers fib(n) in terms of %phi.

182 Maxima Manual

(%i1) fibtophi (fib (n));
n n

%phi - (1 - %phi)
(%o1) -------------------

2 %phi - 1
(%i2) fib (n-1) + fib (n) - fib (n+1);
(%o2) - fib(n + 1) + fib(n) + fib(n - 1)
(%i3) fibtophi (%);

n + 1 n + 1 n n
%phi - (1 - %phi) %phi - (1 - %phi)

(%o3) - --------------------------- + -------------------
2 %phi - 1 2 %phi - 1

n - 1 n - 1
%phi - (1 - %phi)

+ ---------------------------
2 %phi - 1

(%i4) ratsimp (%);
(%o4) 0

By default, Maxima does not know the algebraic properties of %phi. After evaluat-
ing tellrat (%phi^2 - %phi - 1) and algebraic: true, ratsimp can simplify some
expressions containing %phi.

(%i1) e : expand ((%phi^2 - %phi - 1) * (A + 1));
2 2

(%o1) %phi A - %phi A - A + %phi - %phi - 1
(%i2) ratsimp (e);

2 2
(%o2) (%phi - %phi - 1) A + %phi - %phi - 1
(%i3) tellrat (%phi^2 - %phi - 1);

2
(%o3) [%phi - %phi - 1]
(%i4) algebraic : true;
(%o4) true
(%i5) ratsimp (e);
(%o5) 0

Constant%pi
%pi represents the ratio of the perimeter of a circle to its diameter. The numeric
value of %pi is the double-precision floating-point value 3.141592653589793d0.

Constanttrue
true represents the Boolean constant of the same name. Maxima implements true
by the value T in Lisp.

Constantund
und represents an undefined result.
See also limit.
Example:

Chapter 13: Constants 183

(%i1) limit (1/x, x, 0);
(%o1) und

184 Maxima Manual

Chapter 14: Logarithms 185

14 Logarithms

14.1 Functions and Variables for Logarithms

Option variable%e to numlog
Default value: false
When true, r some rational number, and x some expression, %e^(r*log(x)) will
be simplified into x^r . It should be noted that the radcan command also does
this transformation, and more complicated transformations of this ilk as well. The
logcontract command "contracts" expressions containing log.

Functionli [s] (z)
Represents the polylogarithm function of order s and argument z, defined by the
infinite series

inf
==== k
\ z

Li (z) = > --
s / s

==== k
k = 1

li [1] is - log (1 - z). li [2] and li [3] are the dilogarithm and trilogarithm
functions, respectively.
When the order is 1, the polylogarithm simplifies to - log (1 - z), which in turn
simplifies to a numerical value if z is a real or complex floating point number or the
numer evaluation flag is present.
When the order is 2 or 3, the polylogarithm simplifies to a numerical value if z is a
real floating point number or the numer evaluation flag is present.
Examples:

(%i1) assume (x > 0);
(%o1) [x > 0]
(%i2) integrate ((log (1 - t)) / t, t, 0, x);
(%o2) - li (x)

2
(%i3) li [2] (7);
(%o3) li (7)

2
(%i4) li [2] (7), numer;
(%o4) 1.24827317833392 - 6.113257021832577 %i
(%i5) li [3] (7);
(%o5) li (7)

3
(%i6) li [2] (7), numer;
(%o6) 1.24827317833392 - 6.113257021832577 %i
(%i7) L : makelist (i / 4.0, i, 0, 8);

186 Maxima Manual

(%o7) [0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0]
(%i8) map (lambda ([x], li [2] (x)), L);
(%o8) [0, .2676526384986274, .5822405249432515,
.9784693966661848, 1.64493407, 2.190177004178597
- .7010261407036192 %i, 2.374395264042415
- 1.273806203464065 %i, 2.448686757245154
- 1.758084846201883 %i, 2.467401098097648
- 2.177586087815347 %i]
(%i9) map (lambda ([x], li [3] (x)), L);
(%o9) [0, .2584613953442624, 0.537213192678042,
.8444258046482203, 1.2020569, 1.642866878950322
- .07821473130035025 %i, 2.060877505514697
- .2582419849982037 %i, 2.433418896388322
- .4919260182322965 %i, 2.762071904015935
- .7546938285978846 %i]

Functionlog (x)
Represents the natural (base e) logarithm of x.

Maxima does not have a built-in function for the base 10 logarithm or other bases.
log10(x) := log(x) / log(10) is a useful definition.

Simplification and evaluation of logarithms is governed by several global flags:

logexpand - causes log(a^b) to become b*log(a). If it is set to all, log(a*b) will
also simplify to log(a)+log(b). If it is set to super, then log(a/b) will also simplify
to log(a)-log(b) for rational numbers a/b, a#1. (log(1/b), for b integer, always
simplifies.) If it is set to false, all of these simplifications will be turned off.

logsimp - if false then no simplification of %e to a power containing log’s is done.

lognumer - if true then negative floating point arguments to log will always be
converted to their absolute value before the log is taken. If numer is also true, then
negative integer arguments to log will also be converted to their absolute value.

lognegint - if true implements the rule log(-n) -> log(n)+%i*%pi for n a positive
integer.

%e_to_numlog - when true, r some rational number, and x some expression,
%e^(r*log(x)) will be simplified into x^r . It should be noted that the radcan
command also does this transformation, and more complicated transformations of
this ilk as well. The logcontract command "contracts" expressions containing log.

Option variablelogabs
Default value: false

When doing indefinite integration where logs are generated, e.g. integrate(1/x,x),
the answer is given in terms of log(abs(...)) if logabs is true, but in terms of
log(...) if logabs is false. For definite integration, the logabs:true setting is
used, because here "evaluation" of the indefinite integral at the endpoints is often
needed.

Chapter 14: Logarithms 187

Option variablelogarc
Functionlogarc (expr)

When the global variable logarc is true, inverse circular and hyperbolic functions are
replaced by equivalent logarithmic functions. The default value of logarc is false.
The function logarc(expr) carries out that replacement for an expression expr with-
out setting the global variable logarc.

Option variablelogconcoeffp
Default value: false
Controls which coefficients are contracted when using logcontract. It may be set to
the name of a predicate function of one argument. E.g. if you like to generate SQRTs,
you can do logconcoeffp:’logconfun$ logconfun(m):=featurep(m,integer) or
ratnump(m)$. Then logcontract(1/2*log(x)); will give log(sqrt(x)).

Functionlogcontract (expr)
Recursively scans the expression expr, transforming subexpressions of the form
a1*log(b1) + a2*log(b2) + c into log(ratsimp(b1^a1 * b2^a2)) + c

(%i1) 2*(a*log(x) + 2*a*log(y))$
(%i2) logcontract(%);

2 4
(%o2) a log(x y)

If you do declare(n,integer); then logcontract(2*a*n*log(x)); gives
a*log(x^(2*n)). The coefficients that "contract" in this manner are those such
as the 2 and the n here which satisfy featurep(coeff,integer). The user can
control which coefficients are contracted by setting the option logconcoeffp to the
name of a predicate function of one argument. E.g. if you like to generate SQRTs,
you can do logconcoeffp:’logconfun$ logconfun(m):=featurep(m,integer) or
ratnump(m)$. Then logcontract(1/2*log(x)); will give log(sqrt(x)).

Option variablelogexpand
Default value: true
Causes log(a^b) to become b*log(a). If it is set to all, log(a*b) will also simplify
to log(a)+log(b). If it is set to super, then log(a/b) will also simplify to log(a)-
log(b) for rational numbers a/b, a#1. (log(1/b), for integer b, always simplifies.)
If it is set to false, all of these simplifications will be turned off.

Option variablelognegint
Default value: false
If true implements the rule log(-n) -> log(n)+%i*%pi for n a positive integer.

Option variablelognumer
Default value: false
If true then negative floating point arguments to log will always be converted to
their absolute value before the log is taken. If numer is also true, then negative
integer arguments to log will also be converted to their absolute value.

188 Maxima Manual

Option variablelogsimp
Default value: true
If false then no simplification of %e to a power containing log’s is done.

Functionplog (x)
Represents the principal branch of the complex-valued natural logarithm with -%pi
< carg(x) <= +%pi .

Chapter 15: Trigonometric 189

15 Trigonometric

15.1 Introduction to Trigonometric

Maxima has many trigonometric functions defined. Not all trigonometric identities are
programmed, but it is possible for the user to add many of them using the pattern matching
capabilities of the system. The trigonometric functions defined in Maxima are: acos,
acosh, acot, acoth, acsc, acsch, asec, asech, asin, asinh, atan, atanh, cos, cosh,
cot, coth, csc, csch, sec, sech, sin, sinh, tan, and tanh. There are a number of
commands especially for handling trigonometric functions, see trigexpand, trigreduce,
and the switch trigsign. Two share packages extend the simplification rules built into
Maxima, ntrig and atrig1. Do describe(command) for details.

15.2 Functions and Variables for Trigonometric

Option variable%piargs
Default value: true
When %piargs is true, trigonometric functions are simplified to algebraic constants
when the argument is an integer multiple of π, π/2, π/3, π/4, or π/6.
Maxima knows some identities which can be applied when π, etc., are multiplied by
an integer variable (that is, a symbol declared to be integer).
Examples:

(%i1) %piargs : false;
(%o1) false
(%i2) [sin (%pi), sin (%pi/2), sin (%pi/3)];

%pi %pi
(%o2) [sin(%pi), sin(---), sin(---)]

2 3
(%i3) [sin (%pi/4), sin (%pi/5), sin (%pi/6)];

%pi %pi %pi
(%o3) [sin(---), sin(---), sin(---)]

4 5 6
(%i4) %piargs : true;
(%o4) true
(%i5) [sin (%pi), sin (%pi/2), sin (%pi/3)];

sqrt(3)
(%o5) [0, 1, -------]

2
(%i6) [sin (%pi/4), sin (%pi/5), sin (%pi/6)];

1 %pi 1
(%o6) [-------, sin(---), -]

sqrt(2) 5 2
(%i7) [cos (%pi/3), cos (10*%pi/3), tan (10*%pi/3), cos (sqrt(2)*%pi/3)];

1 1 sqrt(2) %pi
(%o7) [-, - -, sqrt(3), cos(-----------)]

190 Maxima Manual

2 2 3

Some identities are applied when π and π/2 are multiplied by an integer variable.
(%i1) declare (n, integer, m, even);
(%o1) done
(%i2) [sin (%pi * n), cos (%pi * m), sin (%pi/2 * m), cos (%pi/2 * m)];

m/2
(%o2) [0, 1, 0, (- 1)]

Option variable%iargs
Default value: true
When %iargs is true, trigonometric functions are simplified to hyperbolic functions
when the argument is apparently a multiple of the imaginary unit i.
Even when the argument is demonstrably real, the simplification is applied; Maxima
considers only whether the argument is a literal multiple of i.
Examples:

(%i1) %iargs : false;
(%o1) false
(%i2) [sin (%i * x), cos (%i * x), tan (%i * x)];
(%o2) [sin(%i x), cos(%i x), tan(%i x)]
(%i3) %iargs : true;
(%o3) true
(%i4) [sin (%i * x), cos (%i * x), tan (%i * x)];
(%o4) [%i sinh(x), cosh(x), %i tanh(x)]

Even when the argument is demonstrably real, the simplification is applied.
(%i1) declare (x, imaginary);
(%o1) done
(%i2) [featurep (x, imaginary), featurep (x, real)];
(%o2) [true, false]
(%i3) sin (%i * x);
(%o3) %i sinh(x)

Functionacos (x)
- Arc Cosine.

Functionacosh (x)
- Hyperbolic Arc Cosine.

Functionacot (x)
- Arc Cotangent.

Functionacoth (x)
- Hyperbolic Arc Cotangent.

Functionacsc (x)
- Arc Cosecant.

Chapter 15: Trigonometric 191

Functionacsch (x)
- Hyperbolic Arc Cosecant.

Functionasec (x)
- Arc Secant.

Functionasech (x)
- Hyperbolic Arc Secant.

Functionasin (x)
- Arc Sine.

Functionasinh (x)
- Hyperbolic Arc Sine.

Functionatan (x)
- Arc Tangent.

Functionatan2 (y, x)
- yields the value of atan(y/x) in the interval -%pi to %pi.

Functionatanh (x)
- Hyperbolic Arc Tangent.

Packageatrig1
The atrig1 package contains several additional simplification rules for inverse trigono-
metric functions. Together with rules already known to Maxima, the following angles
are fully implemented: 0, %pi/6, %pi/4, %pi/3, and %pi/2. Corresponding angles in
the other three quadrants are also available. Do load(atrig1); to use them.

Functioncos (x)
- Cosine.

Functioncosh (x)
- Hyperbolic Cosine.

Functioncot (x)
- Cotangent.

Functioncoth (x)
- Hyperbolic Cotangent.

Functioncsc (x)
- Cosecant.

192 Maxima Manual

Functioncsch (x)
- Hyperbolic Cosecant.

Option variablehalfangles
Default value: false

When halfangles is true, trigonometric functions of arguments expr/2 are simplified
to functions of expr.

Examples:

(%i1) halfangles : false;
(%o1) false
(%i2) sin (x / 2);

x
(%o2) sin(-)

2
(%i3) halfangles : true;
(%o3) true
(%i4) sin (x / 2);

sqrt(1 - cos(x))
(%o4) ----------------

sqrt(2)

Packagentrig
The ntrig package contains a set of simplification rules that are used to simplify
trigonometric function whose arguments are of the form f (n %pi/10) where f is any
of the functions sin, cos, tan, csc, sec and cot.

Functionsec (x)
- Secant.

Functionsech (x)
- Hyperbolic Secant.

Functionsin (x)
- Sine.

Functionsinh (x)
- Hyperbolic Sine.

Functiontan (x)
- Tangent.

Functiontanh (x)
- Hyperbolic Tangent.

Chapter 15: Trigonometric 193

Functiontrigexpand (expr)
Expands trigonometric and hyperbolic functions of sums of angles and of multiple
angles occurring in expr. For best results, expr should be expanded. To enhance user
control of simplification, this function expands only one level at a time, expanding
sums of angles or multiple angles. To obtain full expansion into sines and cosines
immediately, set the switch trigexpand: true.
trigexpand is governed by the following global flags:

trigexpand
If true causes expansion of all expressions containing sin’s and cos’s oc-
curring subsequently.

halfangles
If true causes half-angles to be simplified away.

trigexpandplus
Controls the "sum" rule for trigexpand, expansion of sums (e.g. sin(x
+ y)) will take place only if trigexpandplus is true.

trigexpandtimes
Controls the "product" rule for trigexpand, expansion of products (e.g.
sin(2 x)) will take place only if trigexpandtimes is true.

Examples:
(%i1) x+sin(3*x)/sin(x),trigexpand=true,expand;

2 2
(%o1) - sin (x) + 3 cos (x) + x
(%i2) trigexpand(sin(10*x+y));
(%o2) cos(10 x) sin(y) + sin(10 x) cos(y)

Option variabletrigexpandplus
Default value: true
trigexpandplus controls the "sum" rule for trigexpand. Thus, when the
trigexpand command is used or the trigexpand switch set to true, expansion of
sums (e.g. sin(x+y)) will take place only if trigexpandplus is true.

Option variabletrigexpandtimes
Default value: true
trigexpandtimes controls the "product" rule for trigexpand. Thus, when the
trigexpand command is used or the trigexpand switch set to true, expansion of
products (e.g. sin(2*x)) will take place only if trigexpandtimes is true.

Option variabletriginverses
Default value: all
triginverses controls the simplification of the composition of trigonometric and
hyperbolic functions with their inverse functions.
If all, both e.g. atan(tan(x)) and tan(atan(x)) simplify to x.
If true, the arcfun(fun(x)) simplification is turned off.
If false, both the arcfun(fun(x)) and fun(arcfun(x)) simplifications are turned off.

194 Maxima Manual

Functiontrigreduce (expr, x)
Functiontrigreduce (expr)

Combines products and powers of trigonometric and hyperbolic sin’s and cos’s of x
into those of multiples of x. It also tries to eliminate these functions when they occur
in denominators. If x is omitted then all variables in expr are used.
See also poissimp.

(%i1) trigreduce(-sin(x)^2+3*cos(x)^2+x);
cos(2 x) cos(2 x) 1 1

(%o1) -------- + 3 (-------- + -) + x - -
2 2 2 2

The trigonometric simplification routines will use declared information in some simple
cases. Declarations about variables are used as follows, e.g.

(%i1) declare(j, integer, e, even, o, odd)$
(%i2) sin(x + (e + 1/2)*%pi);
(%o2) cos(x)
(%i3) sin(x + (o + 1/2)*%pi);
(%o3) - cos(x)

Option variabletrigsign
Default value: true
When trigsign is true, it permits simplification of negative arguments to trigono-
metric functions. E.g., sin(-x) will become -sin(x) only if trigsign is true.

Functiontrigsimp (expr)
Employs the identities sin(x)2 + cos(x)2 = 1 and cosh(x)2− sinh(x)2 = 1 to simplify
expressions containing tan, sec, etc., to sin, cos, sinh, cosh.
trigreduce, ratsimp, and radcan may be able to further simplify the result.
demo ("trgsmp.dem") displays some examples of trigsimp.

Functiontrigrat (expr)
Gives a canonical simplifyed quasilinear form of a trigonometrical expression; expr is
a rational fraction of several sin, cos or tan, the arguments of them are linear forms
in some variables (or kernels) and %pi/n (n integer) with integer coefficients. The
result is a simplified fraction with numerator and denominator linear in sin and cos.
Thus trigrat linearize always when it is possible.

(%i1) trigrat(sin(3*a)/sin(a+%pi/3));
(%o1) sqrt(3) sin(2 a) + cos(2 a) - 1

The following example is taken from Davenport, Siret, and Tournier, Calcul Formel,
Masson (or in English, Addison-Wesley), section 1.5.5, Morley theorem.

(%i1) c: %pi/3 - a - b;
%pi

(%o1) - b - a + ---

Chapter 15: Trigonometric 195

3
(%i2) bc: sin(a)*sin(3*c)/sin(a+b);

sin(a) sin(3 b + 3 a)
(%o2) ---------------------

sin(b + a)
(%i3) ba: bc, c=a, a=c$
(%i4) ac2: ba^2 + bc^2 - 2*bc*ba*cos(b);

2 2
sin (a) sin (3 b + 3 a)

(%o4) -----------------------
2

sin (b + a)

%pi
2 sin(a) sin(3 a) cos(b) sin(b + a - ---) sin(3 b + 3 a)

3
- --

%pi
sin(a - ---) sin(b + a)

3

2 2 %pi
sin (3 a) sin (b + a - ---)

3
+ ---------------------------

2 %pi
sin (a - ---)

3
(%i5) trigrat (ac2);
(%o5) - (sqrt(3) sin(4 b + 4 a) - cos(4 b + 4 a)

- 2 sqrt(3) sin(4 b + 2 a) + 2 cos(4 b + 2 a)

- 2 sqrt(3) sin(2 b + 4 a) + 2 cos(2 b + 4 a)

+ 4 sqrt(3) sin(2 b + 2 a) - 8 cos(2 b + 2 a) - 4 cos(2 b - 2 a)

+ sqrt(3) sin(4 b) - cos(4 b) - 2 sqrt(3) sin(2 b) + 10 cos(2 b)

+ sqrt(3) sin(4 a) - cos(4 a) - 2 sqrt(3) sin(2 a) + 10 cos(2 a)

- 9)/4

196 Maxima Manual

Chapter 16: Special Functions 197

16 Special Functions

16.1 Introduction to Special Functions

Special function notation follows:

bessel_j (index, expr) Bessel function, 1st kind
bessel_y (index, expr) Bessel function, 2nd kind
bessel_i (index, expr) Modified Bessel function, 1st kind
bessel_k (index, expr) Modified Bessel function, 2nd kind
%he[n] (z) Hermite polynomial (Nota bene: he,

not h. See A&S 22.5.18)
assoc_legendre_p[v,u] (z) Legendre function of degree v and order u
assoc_legendre_q[v,u] (z) Legendre function, 2nd kind
hstruve[n] (z) Struve H function
lstruve[n] (z) Struve L function
%f[p,q] ([], [], expr) Generalized Hypergeometric function
gamma() Gamma function
gammagreek(a,z) Incomplete gamma function
gammaincomplete(a,z) Tail of incomplete gamma function
slommel
%m[u,k] (z) Whittaker function, 1st kind
%w[u,k] (z) Whittaker function, 2nd kind
erfc (z) Complement of the erf function
ei (z) Exponential integral (?)
kelliptic (z) Complete elliptic integral of the first

kind (K)
%d [n] (z) Parabolic cylinder function

16.2 Functions and Variables for Special Functions

Functionairy ai (x)
The Airy function Ai, as defined in Abramowitz and Stegun, Handbook of Mathemat-
ical Functions, Section 10.4.

The Airy equation diff (y(x), x, 2) - x y(x) = 0 has two linearly independent so-
lutions, y = Ai(x) and y = Bi(x). The derivative diff (airy_ai(x), x) is airy_
dai(x).

If the argument x is a real or complex floating point number, the numerical value of
airy_ai is returned when possible.

See also airy_bi, airy_dai, airy_dbi.

Functionairy dai (x)
The derivative of the Airy function Ai airy_ai(x).

See airy_ai.

198 Maxima Manual

Functionairy bi (x)
The Airy function Bi, as defined in Abramowitz and Stegun, Handbook of Mathemat-
ical Functions, Section 10.4, is the second solution of the Airy equation diff (y(x),
x, 2) - x y(x) = 0.
If the argument x is a real or complex floating point number, the numerical value
of airy_bi is returned when possible. In other cases the unevaluated expression is
returned.
The derivative diff (airy_bi(x), x) is airy_dbi(x).
See airy_ai, airy_dbi.

Functionairy dbi (x)
The derivative of the Airy Bi function airy_bi(x).
See airy_ai and airy_bi.

Functionasympa
asympa is a package for asymptotic analysis. The package contains simplification
functions for asymptotic analysis, including the “big O” and “little o” functions that
are widely used in complexity analysis and numerical analysis.
load ("asympa") loads this package.

Functionbessel (z, a)
The Bessel function of the first kind.
This function is deprecated. Write bessel_j (z, a) instead.

Functionbessel j (v, z)
The Bessel function of the first kind of order v and argument z.
bessel_j computes the array besselarray such that besselarray [i] = bessel_j
[i + v - int(v)] (z) for i from zero to int(v).
bessel_j is defined as

∞∑
k=0

(−1)k
(
z
2

)v+2 k

k! Γ (v + k + 1)

although the infinite series is not used for computations.

Functionbessel y (v, z)
The Bessel function of the second kind of order v and argument z.
bessel_y computes the array besselarray such that besselarray [i] = bessel_y
[i + v - int(v)] (z) for i from zero to int(v).
bessel_y is defined as

cos (π v) Jv(z)− J−v(z)
sin (π v)

when v is not an integer. When v is an integer n, the limit as v approaches n is taken.

Chapter 16: Special Functions 199

Functionbessel i (v, z)
The modified Bessel function of the first kind of order v and argument z.
bessel_i computes the array besselarray such that besselarray [i] = bessel_i
[i + v - int(v)] (z) for i from zero to int(v).
bessel_i is defined as

∞∑
k=0

1
k! Γ (v + k + 1)

(
z

2

)v+2 k

although the infinite series is not used for computations.

Functionbessel k (v, z)
The modified Bessel function of the second kind of order v and argument z.
bessel_k computes the array besselarray such that besselarray [i] = bessel_k
[i + v - int(v)] (z) for i from zero to int(v).
bessel_k is defined as

π csc (π v) (I−v(z)− Iv(z))
2

when v is not an integer. If v is an integer n, then the limit as v approaches n is
taken.

Option variablebesselexpand
Default value: false
Controls expansion of the Bessel functions when the order is half of an odd integer. In
this case, the Bessel functions can be expanded in terms of other elementary functions.
When besselexpand is true, the Bessel function is expanded.

(%i1) besselexpand: false$
(%i2) bessel_j (3/2, z);

3
(%o2) bessel_j(-, z)

2
(%i3) besselexpand: true$
(%i4) bessel_j (3/2, z);

2 z sin(z) cos(z)
(%o4) sqrt(---) (------ - ------)

%pi 2 z
z

Functionscaled bessel i (v, z)
The scaled modified Bessel function of the first kind of order v and argument z. That
is, scaledbesseli(v, z) = exp(−abs(z)) ∗ besseli(v, z). This function is particularly
useful for calculating besseli for large z, which is large. However, maxima does not
otherwise know much about this function. For symbolic work, it is probably preferable
to work with the expression exp(-abs(z))*bessel_i(v, z).

200 Maxima Manual

Functionscaled bessel i0 (z)
Identical to scaled_bessel_i(0,z).

Functionscaled bessel i1 (z)
Identical to scaled_bessel_i(1,z).

Functionbeta (x, y)
The beta function, defined as gamma(x) gamma(y)/gamma(x + y).

Functiongamma (x)
The gamma function.
See also makegamma.
The variable gammalim controls simplification of the gamma function.
The Euler-Mascheroni constant is %gamma.

Option variablegammalim
Default value: 1000000
gammalim controls simplification of the gamma function for integral and rational num-
ber arguments. If the absolute value of the argument is not greater than gammalim,
then simplification will occur. Note that the factlim switch controls simplification
of the result of gamma of an integer argument as well.

Functionintopois (a)
Converts a into a Poisson encoding.

Functionmakefact (expr)
Transforms instances of binomial, gamma, and beta functions in expr into factorials.
See also makegamma.

Functionmakegamma (expr)
Transforms instances of binomial, factorial, and beta functions in expr into gamma
functions.
See also makefact.

Functionnumfactor (expr)
Returns the numerical factor multiplying the expression expr, which should be a single
term.
content returns the greatest common divisor (gcd) of all terms in a sum.

(%i1) gamma (7/2);
15 sqrt(%pi)

(%o1) ------------
8

(%i2) numfactor (%);
15

(%o2) --
8

Chapter 16: Special Functions 201

Functionoutofpois (a)
Converts a from Poisson encoding to general representation. If a is not in Pois-
son form, outofpois carries out the conversion, i.e., the return value is outofpois
(intopois (a)). This function is thus a canonical simplifier for sums of powers of
sine and cosine terms of a particular type.

Functionpoisdiff (a, b)
Differentiates a with respect to b. b must occur only in the trig arguments or only in
the coefficients.

Functionpoisexpt (a, b)
Functionally identical to intopois (a^b). b must be a positive integer.

Functionpoisint (a, b)
Integrates in a similarly restricted sense (to poisdiff). Non-periodic terms in b are
dropped if b is in the trig arguments.

Option variablepoislim
Default value: 5
poislim determines the domain of the coefficients in the arguments of the trig func-
tions. The initial value of 5 corresponds to the interval [-2^(5-1)+1,2^(5-1)], or [-15,16],
but it can be set to [-2^(n-1)+1, 2^(n-1)].

Functionpoismap (series, sinfn, cosfn)
will map the functions sinfn on the sine terms and cosfn on the cosine terms of the
Poisson series given. sinfn and cosfn are functions of two arguments which are a
coefficient and a trigonometric part of a term in series respectively.

Functionpoisplus (a, b)
Is functionally identical to intopois (a + b).

Functionpoissimp (a)
Converts a into a Poisson series for a in general representation.

Special symbolpoisson
The symbol /P/ follows the line label of Poisson series expressions.

Functionpoissubst (a, b, c)
Substitutes a for b in c. c is a Poisson series.
(1) Where B is a variable u, v, w, x, y, or z, then a must be an expression linear in
those variables (e.g., 6*u + 4*v).
(2) Where b is other than those variables, then a must also be free of those variables,
and furthermore, free of sines or cosines.
poissubst (a, b, c, d, n) is a special type of substitution which operates on a and
b as in type (1) above, but where d is a Poisson series, expands cos(d) and sin(d)
to order n so as to provide the result of substituting a + d for b in c. The idea is
that d is an expansion in terms of a small parameter. For example, poissubst (u,
v, cos(v), %e, 3) yields cos(u)*(1 - %e^2/2) - sin(u)*(%e - %e^3/6).

202 Maxima Manual

Functionpoistimes (a, b)
Is functionally identical to intopois (a*b).

Functionpoistrim ()
is a reserved function name which (if the user has defined it) gets applied during Pois-
son multiplication. It is a predicate function of 6 arguments which are the coefficients
of the u, v, ..., z in a term. Terms for which poistrim is true (for the coefficients of
that term) are eliminated during multiplication.

Functionprintpois (a)
Prints a Poisson series in a readable format. In common with outofpois, it will
convert a into a Poisson encoding first, if necessary.

Functionpsi [n](x)
The derivative of log (gamma (x)) of order n+1. Thus, psi[0](x) is the first deriva-
tive, psi[1](x) is the second derivative, etc.
Maxima does not know how, in general, to compute a numerical value of psi, but
it can compute some exact values for rational args. Several variables control what
range of rational args psi will return an exact value, if possible. See maxpsiposint,
maxpsinegint, maxpsifracnum, and maxpsifracdenom. That is, x must lie between
maxpsinegint and maxpsiposint. If the absolute value of the fractional part of x is
rational and has a numerator less than maxpsifracnum and has a denominator less
than maxpsifracdenom, psi will return an exact value.
The function bfpsi in the bffac package can compute numerical values.

Option variablemaxpsiposint
Default value: 20
maxpsiposint is the largest positive value for which psi[n](x) will try to compute
an exact value.

Option variablemaxpsinegint
Default value: -10
maxpsinegint is the most negative value for which psi[n](x) will try to compute an
exact value. That is if x is less than maxnegint, psi[n](x) will not return simplified
answer, even if it could.

Option variablemaxpsifracnum
Default value: 6
Let x be a rational number less than one of the form p/q. If p is greater than
maxpsifracnum, then psi[n](x) will not try to return a simplified value.

Option variablemaxpsifracdenom
Default value: 6
Let x be a rational number less than one of the form p/q. If q is greater than
maxpsifracdenom, then psi[n](x) will not try to return a simplified value.

Chapter 16: Special Functions 203

Functionspecint (exp(- s*t) * expr, t)
Compute the Laplace transform of expr with respect to the variable t. The integrand
expr may contain special functions.
If specint cannot compute the integral, the return value may contain various
Lisp symbols, including other-defint-to-follow-negtest, other-lt-
exponential-to-follow, product-of-y-with-nofract-indices, etc.; this is a
bug.
demo(hypgeo) displays several examples of Laplace transforms computed by specint.
Examples:

(%i1) assume (p > 0, a > 0);
(%o1) [p > 0, a > 0]
(%i2) specint (t^(1/2) * exp(-a*t/4) * exp(-p*t), t);

sqrt(%pi)
(%o2) ------------

a 3/2
2 (p + -)

4
(%i3) specint (t^(1/2) * bessel_j(1, 2 * a^(1/2) * t^(1/2))

* exp(-p*t), t);
- a/p

sqrt(a) %e
(%o3) ---------------

2
p

Functionhgfred (a, b, t)
Simplify the generalized hypergeometric function in terms of other, simpler, forms. a
is a list of numerator parameters and b is a list of the denominator parameters.
If hgfred cannot simplify the hypergeometric function, it returns an expression of
the form %f[p,q]([a], [b], x) where p is the number of elements in a, and q is the
number of elements in b. This is the usual pFq generalized hypergeometric function.

(%i1) assume(not(equal(z,0)));
(%o1) [notequal(z, 0)]
(%i2) hgfred([v+1/2],[2*v+1],2*%i*z);

v/2 %i z
4 bessel_j(v, z) gamma(v + 1) %e

(%o2) ---------------------------------------
v
z

(%i3) hgfred([1,1],[2],z);

log(1 - z)
(%o3) - ----------

z
(%i4) hgfred([a,a+1/2],[3/2],z^2);

204 Maxima Manual

1 - 2 a 1 - 2 a
(z + 1) - (1 - z)

(%o4) -------------------------------
2 (1 - 2 a) z

It can be beneficial to load orthopoly too as the following example shows. Note that
L is the generalized Laguerre polynomial.

(%i5) load(orthopoly)$
(%i6) hgfred([-2],[a],z);

(a - 1)
2 L (z)

2
(%o6) -------------

a (a + 1)
(%i7) ev(%);

2
z 2 z

(%o7) --------- - --- + 1
a (a + 1) a

Chapter 17: Elliptic Functions 205

17 Elliptic Functions

17.1 Introduction to Elliptic Functions and Integrals

Maxima includes support for Jacobian elliptic functions and for complete and incomplete
elliptic integrals. This includes symbolic manipulation of these functions and numerical
evaluation as well. Definitions of these functions and many of their properties can by found
in Abramowitz and Stegun, Chapter 16–17. As much as possible, we use the definitions and
relationships given there.

In particular, all elliptic functions and integrals use the parameter m instead of the
modulus k or the modular angle α. This is one area where we differ from Abramowitz and
Stegun who use the modular angle for the elliptic functions. The following relationships are
true:

m = k2

and
k = sinα

The elliptic functions and integrals are primarily intended to support symbolic compu-
tation. Therefore, most of derivatives of the functions and integrals are known. However,
if floating-point values are given, a floating-point result is returned.

Support for most of the other properties of elliptic functions and integrals other than
derivatives has not yet been written.

Some examples of elliptic functions:
(%i1) jacobi_sn (u, m);
(%o1) jacobi_sn(u, m)
(%i2) jacobi_sn (u, 1);
(%o2) tanh(u)
(%i3) jacobi_sn (u, 0);
(%o3) sin(u)
(%i4) diff (jacobi_sn (u, m), u);
(%o4) jacobi_cn(u, m) jacobi_dn(u, m)
(%i5) diff (jacobi_sn (u, m), m);
(%o5) jacobi_cn(u, m) jacobi_dn(u, m)

elliptic_e(asin(jacobi_sn(u, m)), m)
(u - ------------------------------------)/(2 m)

1 - m

2
jacobi_cn (u, m) jacobi_sn(u, m)

+ --------------------------------
2 (1 - m)

Some examples of elliptic integrals:
(%i1) elliptic_f (phi, m);
(%o1) elliptic_f(phi, m)

206 Maxima Manual

(%i2) elliptic_f (phi, 0);
(%o2) phi
(%i3) elliptic_f (phi, 1);

phi %pi
(%o3) log(tan(--- + ---))

2 4
(%i4) elliptic_e (phi, 1);
(%o4) sin(phi)
(%i5) elliptic_e (phi, 0);
(%o5) phi
(%i6) elliptic_kc (1/2);

1
(%o6) elliptic_kc(-)

2
(%i7) makegamma (%);

2 1
gamma (-)

4
(%o7) -----------

4 sqrt(%pi)
(%i8) diff (elliptic_f (phi, m), phi);

1
(%o8) ---------------------

2
sqrt(1 - m sin (phi))

(%i9) diff (elliptic_f (phi, m), m);
elliptic_e(phi, m) - (1 - m) elliptic_f(phi, m)

(%o9) (---
m

cos(phi) sin(phi)
- ---------------------)/(2 (1 - m))

2
sqrt(1 - m sin (phi))

Support for elliptic functions and integrals was written by Raymond Toy. It is placed
under the terms of the General Public License (GPL) that governs the distribution of
Maxima.

17.2 Functions and Variables for Elliptic Functions

Functionjacobi sn (u, m)
The Jacobian elliptic function sn(u,m).

Functionjacobi cn (u, m)
The Jacobian elliptic function cn(u,m).

Functionjacobi dn (u, m)
The Jacobian elliptic function dn(u,m).

Chapter 17: Elliptic Functions 207

Functionjacobi ns (u, m)
The Jacobian elliptic function ns(u,m) = 1/sn(u,m).

Functionjacobi sc (u, m)
The Jacobian elliptic function sc(u,m) = sn(u,m)/cn(u,m).

Functionjacobi sd (u, m)
The Jacobian elliptic function sd(u,m) = sn(u,m)/dn(u,m).

Functionjacobi nc (u, m)
The Jacobian elliptic function nc(u,m) = 1/cn(u,m).

Functionjacobi cs (u, m)
The Jacobian elliptic function cs(u,m) = cn(u,m)/sn(u,m).

Functionjacobi cd (u, m)
The Jacobian elliptic function cd(u,m) = cn(u,m)/dn(u,m).

Functionjacobi nd (u, m)
The Jacobian elliptic function nc(u,m) = 1/cn(u,m).

Functionjacobi ds (u, m)
The Jacobian elliptic function ds(u,m) = dn(u,m)/sn(u,m).

Functionjacobi dc (u, m)
The Jacobian elliptic function dc(u,m) = dn(u,m)/cn(u,m).

Functioninverse jacobi sn (u, m)
The inverse of the Jacobian elliptic function sn(u,m).

Functioninverse jacobi cn (u, m)
The inverse of the Jacobian elliptic function cn(u,m).

Functioninverse jacobi dn (u, m)
The inverse of the Jacobian elliptic function dn(u,m).

Functioninverse jacobi ns (u, m)
The inverse of the Jacobian elliptic function ns(u,m).

Functioninverse jacobi sc (u, m)
The inverse of the Jacobian elliptic function sc(u,m).

Functioninverse jacobi sd (u, m)
The inverse of the Jacobian elliptic function sd(u,m).

208 Maxima Manual

Functioninverse jacobi nc (u, m)
The inverse of the Jacobian elliptic function nc(u,m).

Functioninverse jacobi cs (u, m)
The inverse of the Jacobian elliptic function cs(u,m).

Functioninverse jacobi cd (u, m)
The inverse of the Jacobian elliptic function cd(u,m).

Functioninverse jacobi nd (u, m)
The inverse of the Jacobian elliptic function nc(u,m).

Functioninverse jacobi ds (u, m)
The inverse of the Jacobian elliptic function ds(u,m).

Functioninverse jacobi dc (u, m)
The inverse of the Jacobian elliptic function dc(u,m).

17.3 Functions and Variables for Elliptic Integrals

Functionelliptic f (phi, m)
The incomplete elliptic integral of the first kind, defined as

∫ φ

0

dθ√
1−m sin2 θ

See also [elliptic e], page 208 and [elliptic kc], page 209.

Functionelliptic e (phi, m)
The incomplete elliptic integral of the second kind, defined as

∫ φ

0

√
1−m sin2 θdθ

See also [elliptic e], page 208 and [elliptic ec], page 209.

Functionelliptic eu (u, m)
The incomplete elliptic integral of the second kind, defined as

∫ u

0

dn(v,m)dv =
∫ τ

0

√
1−mt2
1− t2

dt

where τ = sn(u,m)
This is related to elliptice by

E(u,m) = E(φ,m)

where φ = sin−1 sn(u,m) See also [elliptic e], page 208.

Chapter 17: Elliptic Functions 209

Functionelliptic pi (n, phi, m)
The incomplete elliptic integral of the third kind, defined as

∫ φ

0

dθ

(1− n sin2 θ)
√

1−m sin2 θ

Only the derivative with respect to phi is known by Maxima.

Functionelliptic kc (m)
The complete elliptic integral of the first kind, defined as

∫ π
2

0

dθ√
1−m sin2 θ

For certain values of m, the value of the integral is known in terms of Gamma func-
tions. Use makegamma to evaluate them.

Functionelliptic ec (m)
The complete elliptic integral of the second kind, defined as

∫ π
2

0

√
1−m sin2 θdθ

For certain values of m, the value of the integral is known in terms of Gamma func-
tions. Use makegamma to evaluate them.

210 Maxima Manual

Chapter 18: Limits 211

18 Limits

18.1 Functions and Variables for Limits

Option variablelhospitallim
Default: 4

lhospitallim is the maximum number of times L’Hospital’s rule is used in limit.
This prevents infinite looping in cases like limit (cot(x)/csc(x), x, 0).

Functionlimit (expr, x, val, dir)
Functionlimit (expr, x, val)
Functionlimit (expr)

Computes the limit of expr as the real variable x approaches the value val from the
direction dir. dir may have the value plus for a limit from above, minus for a limit
from below, or may be omitted (implying a two-sided limit is to be computed).

limit uses the following special symbols: inf (positive infinity) and minf (negative
infinity). On output it may also use und (undefined), ind (indefinite but bounded)
and infinity (complex infinity).

lhospitallim is the maximum number of times L’Hospital’s rule is used in limit.
This prevents infinite looping in cases like limit (cot(x)/csc(x), x, 0).

tlimswitch when true will allow the limit command to use Taylor series expansion
when necessary.

limsubst prevents limit from attempting substitutions on unknown forms. This is
to avoid bugs like limit (f(n)/f(n+1), n, inf) giving 1. Setting limsubst to true
will allow such substitutions.

limit with one argument is often called upon to simplify constant expressions, for
example, limit (inf-1).

example (limit) displays some examples.

For the method see Wang, P., "Evaluation of Definite Integrals by Symbolic Manip-
ulation", Ph.D. thesis, MAC TR-92, October 1971.

Option variablelimsubst
default value: false - prevents limit from attempting substitutions on unknown
forms. This is to avoid bugs like limit (f(n)/f(n+1), n, inf) giving 1. Setting
limsubst to true will allow such substitutions.

Functiontlimit (expr, x, val, dir)
Functiontlimit (expr, x, val)
Functiontlimit (expr)

Take the limit of the Taylor series expansion of expr in x at val from direction dir.

212 Maxima Manual

Option variabletlimswitch
Default value: true
When tlimswitch is true, the limit command will use a Taylor series expansion if
the limit of the input expression cannot be computed directly. This allows evaluation
of limits such as limit(x/(x-1)-1/log(x),x,1,plus). When tlimswitch is false
and the limit of input expression cannot be computed directly, limit will return an
unevaluated limit expression.

Chapter 19: Differentiation 213

19 Differentiation

19.1 Functions and Variables for Differentiation

Functionantid (expr, x, u(x))
Returns a two-element list, such that an antiderivative of expr with respect to x can
be constructed from the list. The expression expr may contain an unknown function
u and its derivatives.
Let L, a list of two elements, be the return value of antid. Then L[1] + ’integrate
(L[2], x) is an antiderivative of expr with respect to x.
When antid succeeds entirely, the second element of the return value is zero. Other-
wise, the second element is nonzero, and the first element is nonzero or zero. If antid
cannot make any progress, the first element is zero and the second nonzero.
load ("antid") loads this function. The antid package also defines the functions
nonzeroandfreeof and linear.
antid is related to antidiff as follows. Let L, a list of two elements, be the return
value of antid. Then the return value of antidiff is equal to L[1] + ’integrate
(L[2], x) where x is the variable of integration.
Examples:

(%i1) load ("antid")$
(%i2) expr: exp (z(x)) * diff (z(x), x) * y(x);

z(x) d
(%o2) y(x) %e (-- (z(x)))

dx
(%i3) a1: antid (expr, x, z(x));

z(x) z(x) d
(%o3) [y(x) %e , - %e (-- (y(x)))]

dx
(%i4) a2: antidiff (expr, x, z(x));

/
z(x) [z(x) d

(%o4) y(x) %e - I %e (-- (y(x))) dx
] dx
/

(%i5) a2 - (first (a1) + ’integrate (second (a1), x));
(%o5) 0
(%i6) antid (expr, x, y(x));

z(x) d
(%o6) [0, y(x) %e (-- (z(x)))]

dx
(%i7) antidiff (expr, x, y(x));

/
[z(x) d

(%o7) I y(x) %e (-- (z(x))) dx
] dx
/

214 Maxima Manual

Functionantidiff (expr, x, u(x))
Returns an antiderivative of expr with respect to x. The expression expr may contain
an unknown function u and its derivatives.

When antidiff succeeds entirely, the resulting expression is free of integral signs
(that is, free of the integrate noun). Otherwise, antidiff returns an expression
which is partly or entirely within an integral sign. If antidiff cannot make any
progress, the return value is entirely within an integral sign.

load ("antid") loads this function. The antid package also defines the functions
nonzeroandfreeof and linear.

antidiff is related to antid as follows. Let L, a list of two elements, be the return
value of antid. Then the return value of antidiff is equal to L[1] + ’integrate
(L[2], x) where x is the variable of integration.

Examples:

(%i1) load ("antid")$
(%i2) expr: exp (z(x)) * diff (z(x), x) * y(x);

z(x) d
(%o2) y(x) %e (-- (z(x)))

dx
(%i3) a1: antid (expr, x, z(x));

z(x) z(x) d
(%o3) [y(x) %e , - %e (-- (y(x)))]

dx
(%i4) a2: antidiff (expr, x, z(x));

/
z(x) [z(x) d

(%o4) y(x) %e - I %e (-- (y(x))) dx
] dx
/

(%i5) a2 - (first (a1) + ’integrate (second (a1), x));
(%o5) 0
(%i6) antid (expr, x, y(x));

z(x) d
(%o6) [0, y(x) %e (-- (z(x)))]

dx
(%i7) antidiff (expr, x, y(x));

/
[z(x) d

(%o7) I y(x) %e (-- (z(x))) dx
] dx
/

Propertyatomgrad
atomgrad is the atomic gradient property of an expression. This property is assigned
by gradef.

Chapter 19: Differentiation 215

Functionatvalue (expr, [x 1 = a 1, ..., x m = a m], c)
Functionatvalue (expr, x 1 = a 1, c)

Assigns the value c to expr at the point x = a. Typically boundary values are estab-
lished by this mechanism.

expr is a function evaluation, f (x 1, ..., x m), or a derivative, diff (f (x 1, ...,
x m), x 1, n 1, ..., x n, n m) in which the function arguments explicitly appear.
n i is the order of differentiation with respect to x i.

The point at which the atvalue is established is given by the list of equations [x 1
= a 1, ..., x m = a m]. If there is a single variable x 1, the sole equation may be
given without enclosing it in a list.

printprops ([f 1, f 2, ...], atvalue) displays the atvalues of the functions f 1,
f 2, ... as specified by calls to atvalue. printprops (f, atvalue) displays the
atvalues of one function f. printprops (all, atvalue) displays the atvalues of all
functions for which atvalues are defined.

The symbols @1, @2, ... represent the variables x 1, x 2, ... when atvalues are dis-
played.

atvalue evaluates its arguments. atvalue returns c, the atvalue.

Examples:

(%i1) atvalue (f(x,y), [x = 0, y = 1], a^2);
2

(%o1) a
(%i2) atvalue (’diff (f(x,y), x), x = 0, 1 + y);
(%o2) @2 + 1
(%i3) printprops (all, atvalue);

!
d !
--- (f(@1, @2))! = @2 + 1
d@1 !

!@1 = 0

2
f(0, 1) = a

(%o3) done
(%i4) diff (4*f(x,y)^2 - u(x,y)^2, x);

d d
(%o4) 8 f(x, y) (-- (f(x, y))) - 2 u(x, y) (-- (u(x, y)))

dx dx
(%i5) at (%, [x = 0, y = 1]);

!
2 d !

(%o5) 16 a - 2 u(0, 1) (-- (u(x, y))!)
dx !

!x = 0, y = 1

216 Maxima Manual

Functioncartan -
The exterior calculus of differential forms is a basic tool of differential geometry
developed by Elie Cartan and has important applications in the theory of partial
differential equations. The cartan package implements the functions ext_diff and
lie_diff, along with the operators ~ (wedge product) and | (contraction of a form
with a vector.) Type demo (tensor) to see a brief description of these commands
along with examples.
cartan was implemented by F.B. Estabrook and H.D. Wahlquist.

Functiondel (x)
del (x) represents the differential of the variable x.
diff returns an expression containing del if an independent variable is not specified.
In this case, the return value is the so-called "total differential".
Examples:

(%i1) diff (log (x));
del(x)

(%o1) ------
x

(%i2) diff (exp (x*y));
x y x y

(%o2) x %e del(y) + y %e del(x)
(%i3) diff (x*y*z);
(%o3) x y del(z) + x z del(y) + y z del(x)

Functiondelta (t)
The Dirac Delta function.
Currently only laplace knows about the delta function.
Example:

(%i1) laplace (delta (t - a) * sin(b*t), t, s);
Is a positive, negative, or zero?

p;
- a s

(%o1) sin(a b) %e

System variabledependencies
Default value: []
dependencies is the list of atoms which have functional dependencies, assigned by
depends or gradef. The dependencies list is cumulative: each call to depends or
gradef appends additional items.
See depends and gradef.

Functiondepends (f 1, x 1, ..., f n, x n)
Declares functional dependencies among variables for the purpose of computing
derivatives. In the absence of declared dependence, diff (f, x) yields zero. If

Chapter 19: Differentiation 217

depends (f, x) is declared, diff (f, x) yields a symbolic derivative (that is, a
diff noun).
Each argument f 1, x 1, etc., can be the name of a variable or array, or a list of names.
Every element of f i (perhaps just a single element) is declared to depend on every
element of x i (perhaps just a single element). If some f i is the name of an array or
contains the name of an array, all elements of the array depend on x i.
diff recognizes indirect dependencies established by depends and applies the chain
rule in these cases.
remove (f, dependency) removes all dependencies declared for f.
depends returns a list of the dependencies established. The dependencies are ap-
pended to the global variable dependencies. depends evaluates its arguments.
diff is the only Maxima command which recognizes dependencies established by
depends. Other functions (integrate, laplace, etc.) only recognize dependencies
explicitly represented by their arguments. For example, integrate does not recognize
the dependence of f on x unless explicitly represented as integrate (f(x), x).

(%i1) depends ([f, g], x);
(%o1) [f(x), g(x)]
(%i2) depends ([r, s], [u, v, w]);
(%o2) [r(u, v, w), s(u, v, w)]
(%i3) depends (u, t);
(%o3) [u(t)]
(%i4) dependencies;
(%o4) [f(x), g(x), r(u, v, w), s(u, v, w), u(t)]
(%i5) diff (r.s, u);

dr ds
(%o5) -- . s + r . --

du du

(%i6) diff (r.s, t);
dr du ds du

(%o6) -- -- . s + r . -- --
du dt du dt

(%i7) remove (r, dependency);
(%o7) done
(%i8) diff (r.s, t);

ds du
(%o8) r . -- --

du dt

Option variablederivabbrev
Default value: false
When derivabbrev is true, symbolic derivatives (that is, diff nouns) are displayed
as subscripts. Otherwise, derivatives are displayed in the Leibniz notation dy/dx.

Functionderivdegree (expr, y, x)
Returns the highest degree of the derivative of the dependent variable y with respect
to the independent variable x occuring in expr.

218 Maxima Manual

Example:
(%i1) ’diff (y, x, 2) + ’diff (y, z, 3) + ’diff (y, x) * x^2;

3 2
d y d y 2 dy

(%o1) --- + --- + x --
3 2 dx

dz dx
(%i2) derivdegree (%, y, x);
(%o2) 2

Functionderivlist (var 1, ..., var k)
Causes only differentiations with respect to the indicated variables, within the ev
command.

Option variablederivsubst
Default value: false
When derivsubst is true, a non-syntactic substitution such as subst (x, ’diff (y,
t), ’diff (y, t, 2)) yields ’diff (x, t).

Functiondiff (expr, x 1, n 1, ..., x m, n m)
Functiondiff (expr, x, n)
Functiondiff (expr, x)
Functiondiff (expr)

Returns the derivative or differential of expr with respect to some or all variables in
expr.
diff (expr, x, n) returns the n’th derivative of expr with respect to x.
diff (expr, x 1, n 1, ..., x m, n m) returns the mixed partial derivative of expr
with respect to x 1, ..., x m. It is equivalent to diff (... (diff (expr, x m, n m)
...), x 1, n 1).
diff (expr, x) returns the first derivative of expr with respect to the variable x.
diff (expr) returns the total differential of expr, that is, the sum of the derivatives
of expr with respect to each its variables times the differential del of each variable.
No further simplification of del is offered.
The noun form of diff is required in some contexts, such as stating a differential
equation. In these cases, diff may be quoted (as ’diff) to yield the noun form
instead of carrying out the differentiation.
When derivabbrev is true, derivatives are displayed as subscripts. Otherwise,
derivatives are displayed in the Leibniz notation, dy/dx.
Examples:

(%i1) diff (exp (f(x)), x, 2);
2

f(x) d f(x) d 2
(%o1) %e (--- (f(x))) + %e (-- (f(x)))

2 dx
dx

Chapter 19: Differentiation 219

(%i2) derivabbrev: true$
(%i3) ’integrate (f(x, y), y, g(x), h(x));

h(x)
/
[

(%o3) I f(x, y) dy
]
/
g(x)

(%i4) diff (%, x);
h(x)

/
[

(%o4) I f(x, y) dy + f(x, h(x)) h(x) - f(x, g(x)) g(x)
] x x x
/
g(x)

For the tensor package, the following modifications have been incorporated:
(1) The derivatives of any indexed objects in expr will have the variables x i appended
as additional arguments. Then all the derivative indices will be sorted.
(2) The x i may be integers from 1 up to the value of the variable dimension [default
value: 4]. This will cause the differentiation to be carried out with respect to the
x i’th member of the list coordinates which should be set to a list of the names of
the coordinates, e.g., [x, y, z, t]. If coordinates is bound to an atomic variable,
then that variable subscripted by x i will be used for the variable of differentiation.
This permits an array of coordinate names or subscripted names like X[1], X[2], ...
to be used. If coordinates has not been assigned a value, then the variables will be
treated as in (1) above.

Special symboldiff
When diff is present as an evflag in call to ev, all differentiations indicated in expr
are carried out.

Functiondscalar (f)
Applies the scalar d’Alembertian to the scalar function f.
load ("ctensor") loads this function.

Functionexpress (expr)
Expands differential operator nouns into expressions in terms of partial derivatives.
express recognizes the operators grad, div, curl, laplacian. express also expands
the cross product ~.
Symbolic derivatives (that is, diff nouns) in the return value of express may be
evaluated by including diff in the ev function call or command line. In this context,
diff acts as an evfun.
load ("vect") loads this function.
Examples:

220 Maxima Manual

(%i1) load ("vect")$
(%i2) grad (x^2 + y^2 + z^2);

2 2 2
(%o2) grad (z + y + x)
(%i3) express (%);

d 2 2 2 d 2 2 2 d 2 2 2
(%o3) [-- (z + y + x), -- (z + y + x), -- (z + y + x)]

dx dy dz
(%i4) ev (%, diff);
(%o4) [2 x, 2 y, 2 z]
(%i5) div ([x^2, y^2, z^2]);

2 2 2
(%o5) div [x , y , z]
(%i6) express (%);

d 2 d 2 d 2
(%o6) -- (z) + -- (y) + -- (x)

dz dy dx
(%i7) ev (%, diff);
(%o7) 2 z + 2 y + 2 x
(%i8) curl ([x^2, y^2, z^2]);

2 2 2
(%o8) curl [x , y , z]
(%i9) express (%);

d 2 d 2 d 2 d 2 d 2 d 2
(%o9) [-- (z) - -- (y), -- (x) - -- (z), -- (y) - -- (x)]

dy dz dz dx dx dy
(%i10) ev (%, diff);
(%o10) [0, 0, 0]
(%i11) laplacian (x^2 * y^2 * z^2);

2 2 2
(%o11) laplacian (x y z)
(%i12) express (%);

2 2 2
d 2 2 2 d 2 2 2 d 2 2 2

(%o12) --- (x y z) + --- (x y z) + --- (x y z)
2 2 2

dz dy dx
(%i13) ev (%, diff);

2 2 2 2 2 2
(%o13) 2 y z + 2 x z + 2 x y
(%i14) [a, b, c] ~ [x, y, z];
(%o14) [a, b, c] ~ [x, y, z]
(%i15) express (%);
(%o15) [b z - c y, c x - a z, a y - b x]

Functiongradef (f (x 1, ..., x n), g 1, ..., g m)
Functiongradef (a, x, expr)

Defines the partial derivatives (i.e., the components of the gradient) of the function f
or variable a.

Chapter 19: Differentiation 221

gradef (f (x 1, ..., x n), g 1, ..., g m) defines df /dx i as g i, where g i is an
expression; g i may be a function call, but not the name of a function. The number
of partial derivatives m may be less than the number of arguments n, in which case
derivatives are defined with respect to x 1 through x m only.

gradef (a, x, expr) defines the derivative of variable a with respect to x as expr.
This also establishes the dependence of a on x (via depends (a, x)).

The first argument f (x 1, ..., x n) or a is quoted, but the remaining arguments
g 1, ..., g m are evaluated. gradef returns the function or variable for which the
partial derivatives are defined.

gradef can redefine the derivatives of Maxima’s built-in functions. For example,
gradef (sin(x), sqrt (1 - sin(x)^2)) redefines the derivative of sin.

gradef cannot define partial derivatives for a subscripted function.

printprops ([f 1, ..., f n], gradef) displays the partial derivatives of the func-
tions f 1, ..., f n, as defined by gradef.

printprops ([a n, ..., a n], atomgrad) displays the partial derivatives of the
variables a n, ..., a n, as defined by gradef.

gradefs is the list of the functions for which partial derivatives have been defined by
gradef. gradefs does not include any variables for which partial derivatives have
been defined by gradef.

Gradients are needed when, for example, a function is not known explicitly but its
first derivatives are and it is desired to obtain higher order derivatives.

System variablegradefs
Default value: []

gradefs is the list of the functions for which partial derivatives have been defined by
gradef. gradefs does not include any variables for which partial derivatives have
been defined by gradef.

Functionlaplace (expr, t, s)
Attempts to compute the Laplace transform of expr with respect to the variable t
and transform parameter s. If laplace cannot find a solution, a noun ’laplace is
returned.

laplace recognizes in expr the functions delta, exp, log, sin, cos, sinh, cosh, and
erf, as well as derivative, integrate, sum, and ilt. If some other functions are
present, laplace may not be able to compute the transform.

expr may also be a linear, constant coefficient differential equation in which case
atvalue of the dependent variable is used. The required atvalue may be supplied
either before or after the transform is computed. Since the initial conditions must
be specified at zero, if one has boundary conditions imposed elsewhere he can im-
pose these on the general solution and eliminate the constants by solving the general
solution for them and substituting their values back.

laplace recognizes convolution integrals of the form integrate (f(x) * g(t - x),
x, 0, t); other kinds of convolutions are not recognized.

222 Maxima Manual

Functional relations must be explicitly represented in expr; implicit relations, estab-
lished by depends, are not recognized. That is, if f depends on x and y, f (x, y)
must appear in expr.
See also ilt, the inverse Laplace transform.
Examples:

(%i1) laplace (exp (2*t + a) * sin(t) * t, t, s);
a

%e (2 s - 4)
(%o1) ---------------

2 2
(s - 4 s + 5)

(%i2) laplace (’diff (f (x), x), x, s);
(%o2) s laplace(f(x), x, s) - f(0)
(%i3) diff (diff (delta (t), t), t);

2
d

(%o3) --- (delta(t))
2

dt
(%i4) laplace (%, t, s);

!
d ! 2

(%o4) - -- (delta(t))! + s - delta(0) s
dt !

!t = 0

Chapter 20: Integration 223

20 Integration

20.1 Introduction to Integration

Maxima has several routines for handling integration. The integrate function makes
use of most of them. There is also the antid package, which handles an unspecified func-
tion (and its derivatives, of course). For numerical uses, there is a set of adaptive inte-
grators from QUADPACK, named quad_qag, quad_qags, etc., which are described under
the heading QUADPACK. Hypergeometric functions are being worked on, see specint for
details. Generally speaking, Maxima only handles integrals which are integrable in terms of
the "elementary functions" (rational functions, trigonometrics, logs, exponentials, radicals,
etc.) and a few extensions (error function, dilogarithm). It does not handle integrals in
terms of unknown functions such as g(x) and h(x).

20.2 Functions and Variables for Integration

Functionchangevar (expr, f(x,y), y, x)
Makes the change of variable given by f(x,y) = 0 in all integrals occurring in expr with
integration with respect to x. The new variable is y.

(%i1) assume(a > 0)$
(%i2) ’integrate (%e**sqrt(a*y), y, 0, 4);

4
/
[sqrt(a) sqrt(y)

(%o2) I %e dy
]
/
0

(%i3) changevar (%, y-z^2/a, z, y);
0
/
[abs(z)

2 I z %e dz
]
/
- 2 sqrt(a)

(%o3) - ----------------------------
a

An expression containing a noun form, such as the instances of ’integrate above,
may be evaluated by ev with the nouns flag. For example, the expression returned
by changevar above may be evaluated by ev (%o3, nouns).

changevar may also be used to changes in the indices of a sum or product. However,
it must be realized that when a change is made in a sum or product, this change must
be a shift, i.e., i = j+ ..., not a higher degree function. E.g.,

224 Maxima Manual

(%i4) sum (a[i]*x^(i-2), i, 0, inf);
inf
====
\ i - 2

(%o4) > a x
/ i
====
i = 0

(%i5) changevar (%, i-2-n, n, i);
inf
====
\ n

(%o5) > a x
/ n + 2
====
n = - 2

Functiondblint (f, r, s, a, b)
A double-integral routine which was written in top-level Maxima and then translated
and compiled to machine code. Use load (dblint) to access this package. It uses
the Simpson’s rule method in both the x and y directions to calculate

/b /s(x)
| |
| | f(x,y) dy dx
| |
/a /r(x)

The function f must be a translated or compiled function of two variables, and r and
s must each be a translated or compiled function of one variable, while a and b must
be floating point numbers. The routine has two global variables which determine
the number of divisions of the x and y intervals: dblint_x and dblint_y, both of
which are initially 10, and can be changed independently to other integer values (there
are 2*dblint_x+1 points computed in the x direction, and 2*dblint_y+1 in the y
direction). The routine subdivides the X axis and then for each value of X it first
computes r(x) and s(x); then the Y axis between r(x) and s(x) is subdivided and
the integral along the Y axis is performed using Simpson’s rule; then the integral
along the X axis is done using Simpson’s rule with the function values being the Y-
integrals. This procedure may be numerically unstable for a great variety of reasons,
but is reasonably fast: avoid using it on highly oscillatory functions and functions
with singularities (poles or branch points in the region). The Y integrals depend on
how far apart r(x) and s(x) are, so if the distance s(x) - r(x) varies rapidly with
X, there may be substantial errors arising from truncation with different step-sizes
in the various Y integrals. One can increase dblint_x and dblint_y in an effort to
improve the coverage of the region, at the expense of computation time. The function
values are not saved, so if the function is very time-consuming, you will have to wait
for re-computation if you change anything (sorry). It is required that the functions
f, r, and s be either translated or compiled prior to calling dblint. This will result
in orders of magnitude speed improvement over interpreted code in many cases!

Chapter 20: Integration 225

demo (dblint) executes a demonstration of dblint applied to an example problem.

Functiondefint (expr, x, a, b)
Attempts to compute a definite integral. defint is called by integrate when limits
of integration are specified, i.e., when integrate is called as integrate (expr, x,
a, b). Thus from the user’s point of view, it is sufficient to call integrate.
defint returns a symbolic expression, either the computed integral or the noun form
of the integral. See quad_qag and related functions for numerical approximation of
definite integrals.

Functionerf (x)
Represents the error function, whose derivative is: 2*exp(-x^2)/sqrt(%pi).

Option variableerfflag
Default value: true
When erfflag is false, prevents risch from introducing the erf function in the
answer if there were none in the integrand to begin with.

Functionilt (expr, t, s)
Computes the inverse Laplace transform of expr with respect to t and parameter s.
expr must be a ratio of polynomials whose denominator has only linear and quadratic
factors. By using the functions laplace and ilt together with the solve or linsolve
functions the user can solve a single differential or convolution integral equation or a
set of them.

(%i1) ’integrate (sinh(a*x)*f(t-x), x, 0, t) + b*f(t) = t**2;
t
/
[2

(%o1) I f(t - x) sinh(a x) dx + b f(t) = t
]
/
0

(%i2) laplace (%, t, s);
a laplace(f(t), t, s) 2

(%o2) b laplace(f(t), t, s) + --------------------- = --
2 2 3
s - a s

(%i3) linsolve ([%], [’laplace(f(t), t, s)]);
2 2

2 s - 2 a
(%o3) [laplace(f(t), t, s) = --------------------]

5 2 3
b s + (a - a b) s

(%i4) ilt (rhs (first (%)), s, t);
Is a b (a b - 1) positive, negative, or zero?

pos;

226 Maxima Manual

sqrt(a b (a b - 1)) t
2 cosh(---------------------) 2

b a t
(%o4) - ----------------------------- + -------

3 2 2 a b - 1
a b - 2 a b + a

2
+ ------------------

3 2 2
a b - 2 a b + a

Functionintegrate (expr, x)
Functionintegrate (expr, x, a, b)

Attempts to symbolically compute the integral of expr with respect to x. integrate
(expr, x) is an indefinite integral, while integrate (expr, x, a, b) is a definite
integral, with limits of integration a and b. The limits should not contain x, although
integrate does not enforce this restriction. a need not be less than b. If b is equal
to a, integrate returns zero.
See quad_qag and related functions for numerical approximation of definite integrals.
See residue for computation of residues (complex integration). See antid for an
alternative means of computing indefinite integrals.
The integral (an expression free of integrate) is returned if integrate succeeds.
Otherwise the return value is the noun form of the integral (the quoted operator
’integrate) or an expression containing one or more noun forms. The noun form of
integrate is displayed with an integral sign.
In some circumstances it is useful to construct a noun form by hand, by quoting
integrate with a single quote, e.g., ’integrate (expr, x). For example, the integral
may depend on some parameters which are not yet computed. The noun may be
applied to its arguments by ev (i, nouns) where i is the noun form of interest.
integrate handles definite integrals separately from indefinite, and employs a range
of heuristics to handle each case. Special cases of definite integrals include limits of
integration equal to zero or infinity (inf or minf), trigonometric functions with limits
of integration equal to zero and %pi or 2 %pi, rational functions, integrals related to
the definitions of the beta and psi functions, and some logarithmic and trigonometric
integrals. Processing rational functions may include computation of residues. If an
applicable special case is not found, an attempt will be made to compute the indefinite
integral and evaluate it at the limits of integration. This may include taking a limit
as a limit of integration goes to infinity or negative infinity; see also ldefint.
Special cases of indefinite integrals include trigonometric functions, exponential and
logarithmic functions, and rational functions. integrate may also make use of a
short table of elementary integrals.
integrate may carry out a change of variable if the integrand has the form f(g(x))
* diff(g(x), x). integrate attempts to find a subexpression g(x) such that the
derivative of g(x) divides the integrand. This search may make use of derivatives
defined by the gradef function. See also changevar and antid.

Chapter 20: Integration 227

If none of the preceding heuristics find the indefinite integral, the Risch algorithm is
executed. The flag risch may be set as an evflag, in a call to ev or on the com-
mand line, e.g., ev (integrate (expr, x), risch) or integrate (expr, x), risch.
If risch is present, integrate calls the risch function without attempting heuristics
first. See also risch.
integrate works only with functional relations represented explicitly with the f(x)
notation. integrate does not respect implicit dependencies established by the
depends function.
integrate may need to know some property of a parameter in the integrand.
integrate will first consult the assume database, and, if the variable of interest
is not there, integrate will ask the user. Depending on the question, suitable
responses are yes; or no;, or pos;, zero;, or neg;.
integrate is not, by default, declared to be linear. See declare and linear.
integrate attempts integration by parts only in a few special cases.
Examples:
• Elementary indefinite and definite integrals.

(%i1) integrate (sin(x)^3, x);
3

cos (x)
(%o1) ------- - cos(x)

3
(%i2) integrate (x/ sqrt (b^2 - x^2), x);

2 2
(%o2) - sqrt(b - x)
(%i3) integrate (cos(x)^2 * exp(x), x, 0, %pi);

%pi
3 %e 3

(%o3) ------- - -
5 5

(%i4) integrate (x^2 * exp(-x^2), x, minf, inf);
sqrt(%pi)

(%o4) ---------
2

• Use of assume and interactive query.
(%i1) assume (a > 1)$
(%i2) integrate (x**a/(x+1)**(5/2), x, 0, inf);

2 a + 2
Is ------- an integer?

5

no;
Is 2 a - 3 positive, negative, or zero?

neg;
3

(%o2) beta(a + 1, - - a)
2

228 Maxima Manual

• Change of variable. There are two changes of variable in this example: one using
a derivative established by gradef, and one using the derivation diff(r(x)) of
an unspecified function r(x).

(%i3) gradef (q(x), sin(x**2));
(%o3) q(x)
(%i4) diff (log (q (r (x))), x);

d 2
(-- (r(x))) sin(r (x))
dx

(%o4) ----------------------
q(r(x))

(%i5) integrate (%, x);
(%o5) log(q(r(x)))

• Return value contains the ’integrate noun form. In this example, Maxima can
extract one factor of the denominator of a rational function, but cannot factor the
remainder or otherwise find its integral. grind shows the noun form ’integrate
in the result. See also integrate_use_rootsof for more on integrals of rational
functions.

(%i1) expand ((x-4) * (x^3+2*x+1));
4 3 2

(%o1) x - 4 x + 2 x - 7 x - 4
(%i2) integrate (1/%, x);

/ 2
[x + 4 x + 18
I ------------- dx
] 3

log(x - 4) / x + 2 x + 1
(%o2) ---------- - ------------------

73 73
(%i3) grind (%);
log(x-4)/73-(’integrate((x^2+4*x+18)/(x^3+2*x+1),x))/73$

• Defining a function in terms of an integral. The body of a function is not evalu-
ated when the function is defined. Thus the body of f_1 in this example contains
the noun form of integrate. The quote-quote operator ’’ causes the integral
to be evaluated, and the result becomes the body of f_2.

(%i1) f_1 (a) := integrate (x^3, x, 1, a);
3

(%o1) f_1(a) := integrate(x , x, 1, a)
(%i2) ev (f_1 (7), nouns);
(%o2) 600
(%i3) /* Note parentheses around integrate(...) here */

f_2 (a) := ’’(integrate (x^3, x, 1, a));
4
a 1

(%o3) f_2(a) := -- - -
4 4

(%i4) f_2 (7);
(%o4) 600

Chapter 20: Integration 229

System variableintegration constant
Default value: %c
When a constant of integration is introduced by indefinite integration of an equation,
the name of the constant is constructed by concatenating integration_constant
and integration_constant_counter.
integration_constant may be assigned any symbol.
Examples:

(%i1) integrate (x^2 = 1, x);
3
x

(%o1) -- = x + %c1
3

(%i2) integration_constant : ’k;
(%o2) k
(%i3) integrate (x^2 = 1, x);

3
x

(%o3) -- = x + k2
3

System variableintegration constant counter
Default value: 0
When a constant of integration is introduced by indefinite integration of an equation,
the name of the constant is constructed by concatenating integration_constant
and integration_constant_counter.
integration_constant_counter is incremented before constructing the next inte-
gration constant.
Examples:

(%i1) integrate (x^2 = 1, x);
3
x

(%o1) -- = x + %c1
3

(%i2) integrate (x^2 = 1, x);
3
x

(%o2) -- = x + %c2
3

(%i3) integrate (x^2 = 1, x);
3
x

(%o3) -- = x + %c3
3

(%i4) reset (integration_constant_counter);
(%o4) [integration_constant_counter]
(%i5) integrate (x^2 = 1, x);

3

230 Maxima Manual

x
(%o5) -- = x + %c1

3

Option variableintegrate use rootsof
Default value: false
When integrate_use_rootsof is true and the denominator of a rational function
cannot be factored, integrate returns the integral in a form which is a sum over the
roots (not yet known) of the denominator.
For example, with integrate_use_rootsof set to false, integrate returns an un-
solved integral of a rational function in noun form:

(%i1) integrate_use_rootsof: false$
(%i2) integrate (1/(1+x+x^5), x);

/ 2
[x - 4 x + 5
I ------------ dx 2 x + 1
] 3 2 2 5 atan(-------)
/ x - x + 1 log(x + x + 1) sqrt(3)

(%o2) ----------------- - --------------- + ---------------
7 14 7 sqrt(3)

Now we set the flag to be true and the unsolved part of the integral will be expressed
as a summation over the roots of the denominator of the rational function:

(%i3) integrate_use_rootsof: true$
(%i4) integrate (1/(1+x+x^5), x);

==== 2
\ (%r4 - 4 %r4 + 5) log(x - %r4)
> -------------------------------

/ 2
==== 3 %r4 - 2 %r4

3 2
%r4 in rootsof(x - x + 1)

(%o4) --
7

2 x + 1
2 5 atan(-------)

log(x + x + 1) sqrt(3)
- --------------- + ---------------

14 7 sqrt(3)

Alternatively the user may compute the roots of the denominator separately, and
then express the integrand in terms of these roots, e.g., 1/((x - a)*(x - b)*(x -
c)) or 1/((x^2 - (a+b)*x + a*b)*(x - c)) if the denominator is a cubic polynomial.
Sometimes this will help Maxima obtain a more useful result.

Functionldefint (expr, x, a, b)
Attempts to compute the definite integral of expr by using limit to evaluate the
indefinite integral of expr with respect to x at the upper limit b and at the lower

Chapter 20: Integration 231

limit a. If it fails to compute the definite integral, ldefint returns an expression
containing limits as noun forms.
ldefint is not called from integrate, so executing ldefint (expr, x, a, b) may
yield a different result than integrate (expr, x, a, b). ldefint always uses the
same method to evaluate the definite integral, while integrate may employ various
heuristics and may recognize some special cases.

Functionpotential (givengradient)
The calculation makes use of the global variable potentialzeroloc[0] which must
be nonlist or of the form

[indeterminatej=expressionj, indeterminatek=expressionk, ...]

the former being equivalent to the nonlist expression for all right-hand sides in the lat-
ter. The indicated right-hand sides are used as the lower limit of integration. The suc-
cess of the integrations may depend upon their values and order. potentialzeroloc
is initially set to 0.

Functionresidue (expr, z, z 0)
Computes the residue in the complex plane of the expression expr when the variable z
assumes the value z 0. The residue is the coefficient of (z - z 0)^(-1) in the Laurent
series for expr.

(%i1) residue (s/(s**2+a**2), s, a*%i);
1

(%o1) -
2

(%i2) residue (sin(a*x)/x**4, x, 0);
3
a

(%o2) - --
6

Functionrisch (expr, x)
Integrates expr with respect to x using the transcendental case of the Risch algo-
rithm. (The algebraic case of the Risch algorithm has not been implemented.) This
currently handles the cases of nested exponentials and logarithms which the main
part of integrate can’t do. integrate will automatically apply risch if given these
cases.
erfflag, if false, prevents risch from introducing the erf function in the answer
if there were none in the integrand to begin with.

(%i1) risch (x^2*erf(x), x);
2

3 2 - x
%pi x erf(x) + (sqrt(%pi) x + sqrt(%pi)) %e

(%o1) ---
3 %pi

(%i2) diff(%, x), ratsimp;
2

(%o2) x erf(x)

232 Maxima Manual

Functiontldefint (expr, x, a, b)
Equivalent to ldefint with tlimswitch set to true.

20.3 Introduction to QUADPACK

QUADPACK is a collection of functions for the numerical computation of one-
dimensional definite integrals. It originated from a joint project of R. Piessens1, E. de
Doncker2, C. Ueberhuber3, and D. Kahaner4.

The QUADPACK library included in Maxima is an automatic translation (via the pro-
gram f2cl) of the Fortran source code of QUADPACK as it appears in the SLATEC
Common Mathematical Library, Version 4.15. The SLATEC library is dated July 1993, but
the QUADPACK functions were written some years before. There is another version of
QUADPACK at Netlib6; it is not clear how that version differs from the SLATEC version.

The QUADPACK functions included in Maxima are all automatic, in the sense that
these functions attempt to compute a result to a specified accuracy, requiring an unspecified
number of function evaluations. Maxima’s Lisp translation of QUADPACK also includes
some non-automatic functions, but they are not exposed at the Maxima level.

Further information about QUADPACK can be found in the QUADPACK book7.

20.3.1 Overview

quad_qag Integration of a general function over a finite interval. quad_qag implements a
simple globally adaptive integrator using the strategy of Aind (Piessens, 1973).
The caller may choose among 6 pairs of Gauss-Kronrod quadrature formulae for
the rule evaluation component. The high-degree rules are suitable for strongly
oscillating integrands.

quad_qags
Integration of a general function over a finite interval. quad_qags implements
globally adaptive interval subdivision with extrapolation (de Doncker, 1978) by
the Epsilon algorithm (Wynn, 1956).

quad_qagi
Integration of a general function over an infinite or semi-infinite interval. The
interval is mapped onto a finite interval and then the same strategy as in quad_
qags is applied.

quad_qawo
Integration of cos(omegax)f(x) or sin(omegax)f(x) over a finite interval,
where omega is a constant. The rule evaluation component is based on the

1 Applied Mathematics and Programming Division, K.U. Leuven
2 Applied Mathematics and Programming Division, K.U. Leuven
3 Institut für Mathematik, T.U. Wien
4 National Bureau of Standards, Washington, D.C., U.S.A
5 http://www.netlib.org/slatec
6 http://www.netlib.org/quadpack
7 R. Piessens, E. de Doncker-Kapenga, C.W. Uberhuber, and D.K. Kahaner. QUADPACK: A Subroutine

Package for Automatic Integration. Berlin: Springer-Verlag, 1983, ISBN 0387125531.

Chapter 20: Integration 233

modified Clenshaw-Curtis technique. quad_qawo applies adaptive subdivision
with extrapolation, similar to quad_qags.

quad_qawf
Calculates a Fourier cosine or Fourier sine transform on a semi-infinite interval.
The same approach as in quad_qawo is applied on successive finite intervals,
and convergence acceleration by means of the Epsilon algorithm (Wynn, 1956)
is applied to the series of the integral contributions.

quad_qaws
Integration of w(x)f(x) over a finite interval [a, b], where w is a function of
the form (x − a)alpha(b − x)betav(x) and v(x) is 1 or log(x − a) or log(b − x)
or log(x − a)log(b − x), and alpha > −1 and beta > −1. A globally adaptive
subdivision strategy is applied, with modified Clenshaw-Curtis integration on
the subintervals which contain a or b.

quad_qawc
Computes the Cauchy principal value of f(x)/(x−c) over a finite interval (a, b)
and specified c. The strategy is globally adaptive, and modified Clenshaw-
Curtis integration is used on the subranges which contain the point x = c.

20.4 Functions and Variables for QUADPACK

Functionquad qag (f(x), x, a, b, key, [epsrel, epsabs, limit])
Functionquad qag (f, x, a, b, key, [epsrel, epsabs, limit])

Integration of a general function over a finite interval. quad_qag implements a simple
globally adaptive integrator using the strategy of Aind (Piessens, 1973). The caller
may choose among 6 pairs of Gauss-Kronrod quadrature formulae for the rule evalua-
tion component. The high-degree rules are suitable for strongly oscillating integrands.
quad_qag computes the integral

∫ b

a

f(x)dx

The function to be integrated is f(x), with dependent variable x, and the function is to
be integrated between the limits a and b. key is the integrator to be used and should
be an integer between 1 and 6, inclusive. The value of key selects the order of the
Gauss-Kronrod integration rule. High-order rules are suitable for strongly oscillating
integrands.
The integrand may be specified as the name of a Maxima or Lisp function or operator,
a Maxima lambda expression, or a general Maxima expression.
The numerical integration is done adaptively by subdividing the integration region
into sub-intervals until the desired accuracy is achieved.
The keyword arguments are optional and may be specified in any order. They all
take the form key=val. The keyword arguments are:

epsrel Desired relative error of approximation. Default is 1d-10.

234 Maxima Manual

epsabs Desired absolute error of approximation. Default is 0.

limit Size of internal work array. (limit - limlst)/2 is the maximum number of
subintervals to use. Default is 200.

quad_qag returns a list of four elements:
an approximation to the integral,
the estimated absolute error of the approximation,
the number integrand evaluations,
an error code.

The error code (fourth element of the return value) can have the values:

0 if no problems were encountered;

1 if too many sub-intervals were done;

2 if excessive roundoff error is detected;

3 if extremely bad integrand behavior occurs;

6 if the input is invalid.

Examples:
(%i1) quad_qag (x^(1/2)*log(1/x), x, 0, 1, 3, ’epsrel=5d-8);
(%o1) [.4444444444492108, 3.1700968502883E-9, 961, 0]
(%i2) integrate (x^(1/2)*log(1/x), x, 0, 1);

4
(%o2) -

9

Functionquad qags (f(x), x, a, b, [epsrel, epsabs, limit])
Functionquad qags (f, x, a, b, [epsrel, epsabs, limit])

Integration of a general function over a finite interval. quad_qags implements globally
adaptive interval subdivision with extrapolation (de Doncker, 1978) by the Epsilon
algorithm (Wynn, 1956).
quad_qags computes the integral

∫ b

a

f(x)dx

The function to be integrated is f(x), with dependent variable x, and the function is
to be integrated between the limits a and b.
The integrand may be specified as the name of a Maxima or Lisp function or operator,
a Maxima lambda expression, or a general Maxima expression.
The keyword arguments are optional and may be specified in any order. They all
take the form key=val. The keyword arguments are:

epsrel Desired relative error of approximation. Default is 1d-10.

epsabs Desired absolute error of approximation. Default is 0.

Chapter 20: Integration 235

limit Size of internal work array. (limit - limlst)/2 is the maximum number of
subintervals to use. Default is 200.

quad_qags returns a list of four elements:
an approximation to the integral,
the estimated absolute error of the approximation,
the number integrand evaluations,
an error code.

The error code (fourth element of the return value) can have the values:

0 no problems were encountered;

1 too many sub-intervals were done;

2 excessive roundoff error is detected;

3 extremely bad integrand behavior occurs;

4 failed to converge

5 integral is probably divergent or slowly convergent

6 if the input is invalid.

Examples:
(%i1) quad_qags (x^(1/2)*log(1/x), x, 0, 1, ’epsrel=1d-10);
(%o1) [.4444444444444448, 1.11022302462516E-15, 315, 0]

Note that quad_qags is more accurate and efficient than quad_qag for this integrand.

Functionquad qagi (f(x), x, a, inftype, [epsrel, epsabs, limit])
Functionquad qagi (f, x, a, inftype, [epsrel, epsabs, limit])

Integration of a general function over an infinite or semi-infinite interval. The interval
is mapped onto a finite interval and then the same strategy as in quad_qags is applied.
quad_qagi evaluates one of the following integrals∫ ∞

a

f(x)dx

∫ a

∞
f(x)dx

∫ ∞
−∞

f(x)dx

using the Quadpack QAGI routine. The function to be integrated is f(x), with de-
pendent variable x, and the function is to be integrated over an infinite range.
The integrand may be specified as the name of a Maxima or Lisp function or operator,
a Maxima lambda expression, or a general Maxima expression.
The parameter inftype determines the integration interval as follows:

inf The interval is from a to positive infinity.

236 Maxima Manual

minf The interval is from negative infinity to a.

both The interval is the entire real line.

The keyword arguments are optional and may be specified in any order. They all
take the form key=val. The keyword arguments are:

epsrel Desired relative error of approximation. Default is 1d-10.

epsabs Desired absolute error of approximation. Default is 0.

limit Size of internal work array. (limit - limlst)/2 is the maximum number of
subintervals to use. Default is 200.

quad_qagi returns a list of four elements:

an approximation to the integral,
the estimated absolute error of the approximation,
the number integrand evaluations,
an error code.

The error code (fourth element of the return value) can have the values:

0 no problems were encountered;

1 too many sub-intervals were done;

2 excessive roundoff error is detected;

3 extremely bad integrand behavior occurs;

4 failed to converge

5 integral is probably divergent or slowly convergent

6 if the input is invalid.

Examples:
(%i1) quad_qagi (x^2*exp(-4*x), x, 0, inf, ’epsrel=1d-8);
(%o1) [0.03125, 2.95916102995002E-11, 105, 0]
(%i2) integrate (x^2*exp(-4*x), x, 0, inf);

1
(%o2) --

32

Functionquad qawc (f(x), x, c, a, b, [epsrel, epsabs, limit])
Functionquad qawc (f, x, c, a, b, [epsrel, epsabs, limit])

Computes the Cauchy principal value of f(x)/(x − c) over a finite interval. The
strategy is globally adaptive, and modified Clenshaw-Curtis integration is used on
the subranges which contain the point x = c.

quad_qawc computes the Cauchy principal value of

∫ b

a

f (x)
x− c

dx

Chapter 20: Integration 237

using the Quadpack QAWC routine. The function to be integrated is f(x)/(x - c),
with dependent variable x, and the function is to be integrated over the interval a to
b.
The integrand may be specified as the name of a Maxima or Lisp function or operator,
a Maxima lambda expression, or a general Maxima expression.
The keyword arguments are optional and may be specified in any order. They all
take the form key=val. The keyword arguments are:

epsrel Desired relative error of approximation. Default is 1d-10.

epsabs Desired absolute error of approximation. Default is 0.

limit Size of internal work array. (limit - limlst)/2 is the maximum number of
subintervals to use. Default is 200.

quad_qawc returns a list of four elements:
an approximation to the integral,
the estimated absolute error of the approximation,
the number integrand evaluations,
an error code.

The error code (fourth element of the return value) can have the values:

0 no problems were encountered;

1 too many sub-intervals were done;

2 excessive roundoff error is detected;

3 extremely bad integrand behavior occurs;

6 if the input is invalid.

Examples:
(%i1) quad_qawc (2^(-5)*((x-1)^2+4^(-5))^(-1), x, 2, 0, 5, ’epsrel=1d-7);
(%o1) [- 3.130120337415925, 1.306830140249558E-8, 495, 0]
(%i2) integrate (2^(-alpha)*(((x-1)^2 + 4^(-alpha))*(x-2))^(-1),

x, 0, 5);
Principal Value

alpha
alpha 9 4 9
4 log(------------- + -------------)

alpha alpha
64 4 + 4 64 4 + 4

(%o2) (---
alpha

2 4 + 2

3 alpha 3 alpha
------- -------

2 alpha/2 2 alpha/2
2 4 atan(4 4) 2 4 atan(4) alpha

238 Maxima Manual

- --------------------------- - -------------------------)/2
alpha alpha

2 4 + 2 2 4 + 2
(%i3) ev (%, alpha=5, numer);
(%o3) - 3.130120337415917

Functionquad qawf (f(x), x, a, omega, trig, [epsabs, limit, maxp1, limlst])
Functionquad qawf (f, x, a, omega, trig, [epsabs, limit, maxp1, limlst])

Calculates a Fourier cosine or Fourier sine transform on a semi-infinite interval us-
ing the Quadpack QAWF function. The same approach as in quad_qawo is applied
on successive finite intervals, and convergence acceleration by means of the Epsilon
algorithm (Wynn, 1956) is applied to the series of the integral contributions.
quad_qawf computes the integral∫ ∞

a

f(x)w(x)dx

The weight function w is selected by trig :

cos w(x) = cos(omegax)

sin w(x) = sin(omegax)

The integrand may be specified as the name of a Maxima or Lisp function or operator,
a Maxima lambda expression, or a general Maxima expression.
The keyword arguments are optional and may be specified in any order. They all
take the form key=val. The keyword arguments are:

epsabs Desired absolute error of approximation. Default is 1d-10.

limit Size of internal work array. (limit - limlst)/2 is the maximum number of
subintervals to use. Default is 200.

maxp1 Maximum number of Chebyshev moments. Must be greater than 0. De-
fault is 100.

limlst Upper bound on the number of cycles. Must be greater than or equal to
3. Default is 10.

quad_qawf returns a list of four elements:
an approximation to the integral,
the estimated absolute error of the approximation,
the number integrand evaluations,
an error code.

The error code (fourth element of the return value) can have the values:

0 no problems were encountered;

1 too many sub-intervals were done;

2 excessive roundoff error is detected;

3 extremely bad integrand behavior occurs;

Chapter 20: Integration 239

6 if the input is invalid.

Examples:
(%i1) quad_qawf (exp(-x^2), x, 0, 1, ’cos, ’epsabs=1d-9);
(%o1) [.6901942235215714, 2.84846300257552E-11, 215, 0]
(%i2) integrate (exp(-x^2)*cos(x), x, 0, inf);

- 1/4
%e sqrt(%pi)

(%o2) -----------------
2

(%i3) ev (%, numer);
(%o3) .6901942235215714

Functionquad qawo (f(x), x, a, b, omega, trig, [epsrel, epsabs, limit, maxp1,
limlst])

Functionquad qawo (f, x, a, b, omega, trig, [epsrel, epsabs, limit, maxp1, limlst])
Integration of cos(omegax)f(x) or sin(omegax)f(x) over a finite interval, where
omega is a constant. The rule evaluation component is based on the modified
Clenshaw-Curtis technique. quad_qawo applies adaptive subdivision with extrapo-
lation, similar to quad_qags.
quad_qawo computes the integral using the Quadpack QAWO routine:

∫ b

a

f(x)w(x)dx

The weight function w is selected by trig :

cos w(x) = cos(omegax)

sin w(x) = sin(omegax)

The integrand may be specified as the name of a Maxima or Lisp function or operator,
a Maxima lambda expression, or a general Maxima expression.
The keyword arguments are optional and may be specified in any order. They all
take the form key=val. The keyword arguments are:

epsrel Desired relative error of approximation. Default is 1d-10.

epsabs Desired absolute error of approximation. Default is 0.

limit Size of internal work array. (limit - limlst)/2 is the maximum number of
subintervals to use. Default is 200.

maxp1 Maximum number of Chebyshev moments. Must be greater than 0. De-
fault is 100.

limlst Upper bound on the number of cycles. Must be greater than or equal to
3. Default is 10.

quad_qawo returns a list of four elements:
an approximation to the integral,
the estimated absolute error of the approximation,

240 Maxima Manual

the number integrand evaluations,
an error code.

The error code (fourth element of the return value) can have the values:

0 no problems were encountered;

1 too many sub-intervals were done;

2 excessive roundoff error is detected;

3 extremely bad integrand behavior occurs;

6 if the input is invalid.

Examples:
(%i1) quad_qawo (x^(-1/2)*exp(-2^(-2)*x), x, 1d-8, 20*2^2, 1, cos);
(%o1) [1.376043389877692, 4.72710759424899E-11, 765, 0]
(%i2) rectform (integrate (x^(-1/2)*exp(-2^(-alpha)*x) * cos(x),

x, 0, inf));
alpha/2 - 1/2 2 alpha

sqrt(%pi) 2 sqrt(sqrt(2 + 1) + 1)
(%o2) ---

2 alpha
sqrt(2 + 1)

(%i3) ev (%, alpha=2, numer);
(%o3) 1.376043390090716

Functionquad qaws (f(x), x, a, b, alpha, beta, wfun, [epsrel, epsabs, limit])
Functionquad qaws (f, x, a, b, alpha, beta, wfun, [epsrel, epsabs, limit])

Integration of w(x)f(x) over a finite interval, where w(x) is a certain algebraic or log-
arithmic function. A globally adaptive subdivision strategy is applied, with modified
Clenshaw-Curtis integration on the subintervals which contain the endpoints of the
interval of integration.
quad_qaws computes the integral using the Quadpack QAWS routine:

∫ b

a

f(x)w(x)dx

The weight function w is selected by wfun:

1 w(x) = (x− a)alpha(b− x)beta

2 w(x) = (x− a)alpha(b− x)betalog(x− a)

3 w(x) = (x− a)alpha(b− x)betalog(b− x)

4 w(x) = (x− a)alpha(b− x)betalog(x− a)log(b− x)

The integrand may be specified as the name of a Maxima or Lisp function or operator,
a Maxima lambda expression, or a general Maxima expression.
The keyword arguments are optional and may be specified in any order. They all
take the form key=val. The keyword arguments are:

Chapter 20: Integration 241

epsrel Desired relative error of approximation. Default is 1d-10.

epsabs Desired absolute error of approximation. Default is 0.

limit Size of internal work array. limitis the maximum number of subintervals
to use. Default is 200.

quad_qaws returns a list of four elements:
an approximation to the integral,
the estimated absolute error of the approximation,
the number integrand evaluations,
an error code.

The error code (fourth element of the return value) can have the values:

0 no problems were encountered;

1 too many sub-intervals were done;

2 excessive roundoff error is detected;

3 extremely bad integrand behavior occurs;

6 if the input is invalid.

Examples:
(%i1) quad_qaws (1/(x+1+2^(-4)), x, -1, 1, -0.5, -0.5, 1, ’epsabs=1d-9);
(%o1) [8.750097361672832, 1.24321522715422E-10, 170, 0]
(%i2) integrate ((1-x*x)^(-1/2)/(x+1+2^(-alpha)), x, -1, 1);

alpha
Is 4 2 - 1 positive, negative, or zero?

pos;
alpha alpha

2 %pi 2 sqrt(2 2 + 1)
(%o2) -------------------------------

alpha
4 2 + 2

(%i3) ev (%, alpha=4, numer);
(%o3) 8.750097361672829

242 Maxima Manual

Chapter 21: Equations 243

21 Equations

21.1 Functions and Variables for Equations

System variable%rnum list
Default value: []
%rnum_list is the list of variables introduced in solutions by solve and algsys. %r
variables are added to %rnum_list in the order they are created. This is convenient
for doing substitutions into the solution later on. It’s recommended to use this list
rather than doing concat (’%r, j).

Option variablealgexact
Default value: false
algexact affects the behavior of algsys as follows:
If algexact is true, algsys always calls solve and then uses realroots on solve’s
failures.
If algexact is false, solve is called only if the eliminant was not univariate, or if it
was a quadratic or biquadratic.
Thus algexact: true doesn’t guarantee only exact solutions, just that algsys will
first try as hard as it can to give exact solutions, and only yield approximations when
all else fails.

Functionalgsys ([expr 1, ..., expr m], [x 1, ..., x n])
Functionalgsys ([eqn 1, ..., eqn m], [x 1, ..., x n])

Solves the simultaneous polynomials expr 1, ..., expr m or polynomial equations
eqn 1, ..., eqn m for the variables x 1, ..., x n. An expression expr is equivalent
to an equation expr = 0. There may be more equations than variables or vice versa.
algsys returns a list of solutions, with each solution given as a list of equations stating
values of the variables x 1, ..., x n which satisfy the system of equations. If algsys
cannot find a solution, an empty list [] is returned.
The symbols %r1, %r2, ..., are introduced as needed to represent arbitrary parameters
in the solution; these variables are also appended to the list %rnum_list.
The method is as follows:
(1) First the equations are factored and split into subsystems.
(2) For each subsystem S i, an equation E and a variable x are selected. The variable
is chosen to have lowest nonzero degree. Then the resultant of E and E j with respect
to x is computed for each of the remaining equations E j in the subsystem S i. This
yields a new subsystem S i’ in one fewer variables, as x has been eliminated. The
process now returns to (1).
(3) Eventually, a subsystem consisting of a single equation is obtained. If the equation
is multivariate and no approximations in the form of floating point numbers have been
introduced, then solve is called to find an exact solution.

244 Maxima Manual

In some cases, solve is not be able to find a solution, or if it does the solution may
be a very large expression.
If the equation is univariate and is either linear, quadratic, or biquadratic, then again
solve is called if no approximations have been introduced. If approximations have
been introduced or the equation is not univariate and neither linear, quadratic, or
biquadratic, then if the switch realonly is true, the function realroots is called to
find the real-valued solutions. If realonly is false, then allroots is called which
looks for real and complex-valued solutions.
If algsys produces a solution which has fewer significant digits than required, the
user can change the value of algepsilon to a higher value.
If algexact is set to true, solve will always be called.
(4) Finally, the solutions obtained in step (3) are substituted into previous levels and
the solution process returns to (1).
When algsys encounters a multivariate equation which contains floating point ap-
proximations (usually due to its failing to find exact solutions at an earlier stage),
then it does not attempt to apply exact methods to such equations and instead prints
the message: "algsys cannot solve - system too complicated."
Interactions with radcan can produce large or complicated expressions. In that case,
it may be possible to isolate parts of the result with pickapart or reveal.
Occasionally, radcan may introduce an imaginary unit %i into a solution which is
actually real-valued.
Examples:

(%i1) e1: 2*x*(1 - a1) - 2*(x - 1)*a2;
(%o1) 2 (1 - a1) x - 2 a2 (x - 1)
(%i2) e2: a2 - a1;
(%o2) a2 - a1
(%i3) e3: a1*(-y - x^2 + 1);

2
(%o3) a1 (- y - x + 1)
(%i4) e4: a2*(y - (x - 1)^2);

2
(%o4) a2 (y - (x - 1))
(%i5) algsys ([e1, e2, e3, e4], [x, y, a1, a2]);
(%o5) [[x = 0, y = %r1, a1 = 0, a2 = 0],

[x = 1, y = 0, a1 = 1, a2 = 1]]
(%i6) e1: x^2 - y^2;

2 2
(%o6) x - y
(%i7) e2: -1 - y + 2*y^2 - x + x^2;

2 2
(%o7) 2 y - y + x - x - 1
(%i8) algsys ([e1, e2], [x, y]);

1 1
(%o8) [[x = - -------, y = -------],

sqrt(3) sqrt(3)

Chapter 21: Equations 245

1 1 1 1
[x = -------, y = - -------], [x = - -, y = - -], [x = 1, y = 1]]

sqrt(3) sqrt(3) 3 3

Functionallroots (expr)
Functionallroots (eqn)

Computes numerical approximations of the real and complex roots of the polynomial
expr or polynomial equation eqn of one variable.
The flag polyfactor when true causes allroots to factor the polynomial over the
real numbers if the polynomial is real, or over the complex numbers, if the polynomial
is complex.
allroots may give inaccurate results in case of multiple roots. If the polynomial
is real, allroots (%i*p)) may yield more accurate approximations than allroots
(p), as allroots invokes a different algorithm in that case.
allroots rejects non-polynomials. It requires that the numerator after rat’ing should
be a polynomial, and it requires that the denominator be at most a complex number.
As a result of this allroots will always return an equivalent (but factored) expression,
if polyfactor is true.
For complex polynomials an algorithm by Jenkins and Traub is used (Algorithm 419,
Comm. ACM, vol. 15, (1972), p. 97). For real polynomials the algorithm used is due
to Jenkins (Algorithm 493, ACM TOMS, vol. 1, (1975), p.178).
Examples:

(%i1) eqn: (1 + 2*x)^3 = 13.5*(1 + x^5);
3 5

(%o1) (2 x + 1) = 13.5 (x + 1)
(%i2) soln: allroots (eqn);
(%o2) [x = .8296749902129361, x = - 1.015755543828121,

x = .9659625152196369 %i - .4069597231924075,

x = - .9659625152196369 %i - .4069597231924075, x = 1.0]
(%i3) for e in soln

do (e2: subst (e, eqn), disp (expand (lhs(e2) - rhs(e2))));
- 3.5527136788005E-15

- 5.32907051820075E-15

4.44089209850063E-15 %i - 4.88498130835069E-15

- 4.44089209850063E-15 %i - 4.88498130835069E-15

3.5527136788005E-15

(%o3) done
(%i4) polyfactor: true$
(%i5) allroots (eqn);

246 Maxima Manual

(%o5) - 13.5 (x - 1.0) (x - .8296749902129361)

2
(x + 1.015755543828121) (x + .8139194463848151 x

+ 1.098699797110288)

Option variablebacksubst
Default value: true
When backsubst is false, prevents back substitution after the equations have been
triangularized. This may be helpful in very big problems where back substitution
would cause the generation of extremely large expressions.

Option variablebreakup
Default value: true
When breakup is true, solve expresses solutions of cubic and quartic equations in
terms of common subexpressions, which are assigned to intermediate expression labels
(%t1, %t2, etc.). Otherwise, common subexpressions are not identified.
breakup: true has an effect only when programmode is false.
Examples:

(%i1) programmode: false$
(%i2) breakup: true$
(%i3) solve (x^3 + x^2 - 1);

sqrt(23) 25 1/3
(%t3) (--------- + --)

6 sqrt(3) 54
Solution:

sqrt(3) %i 1
---------- - -

sqrt(3) %i 1 2 2 1
(%t4) x = (- ---------- - -) %t3 + -------------- - -

2 2 9 %t3 3

sqrt(3) %i 1
- ---------- - -

sqrt(3) %i 1 2 2 1
(%t5) x = (---------- - -) %t3 + ---------------- - -

2 2 9 %t3 3

1 1
(%t6) x = %t3 + ----- - -

9 %t3 3
(%o6) [%t4, %t5, %t6]
(%i6) breakup: false$
(%i7) solve (x^3 + x^2 - 1);

Chapter 21: Equations 247

Solution:

sqrt(3) %i 1
---------- - -

2 2 sqrt(23) 25 1/3
(%t7) x = --------------------- + (--------- + --)

sqrt(23) 25 1/3 6 sqrt(3) 54
9 (--------- + --)

6 sqrt(3) 54

sqrt(3) %i 1 1
(- ---------- - -) - -

2 2 3

sqrt(23) 25 1/3 sqrt(3) %i 1
(%t8) x = (--------- + --) (---------- - -)

6 sqrt(3) 54 2 2

sqrt(3) %i 1
- ---------- - -

2 2 1
+ --------------------- - -

sqrt(23) 25 1/3 3
9 (--------- + --)

6 sqrt(3) 54

sqrt(23) 25 1/3 1 1
(%t9) x = (--------- + --) + --------------------- - -

6 sqrt(3) 54 sqrt(23) 25 1/3 3
9 (--------- + --)

6 sqrt(3) 54
(%o9) [%t7, %t8, %t9]

Functiondimension (eqn)
Functiondimension (eqn 1, ..., eqn n)

dimen is a package for dimensional analysis. load ("dimen") loads this package.
demo ("dimen") displays a short demonstration.

Option variabledispflag
Default value: true
If set to false within a block will inhibit the display of output generated by the
solve functions called from within the block. Termination of the block with a dollar
sign, $, sets dispflag to false.

Functionfuncsolve (eqn, g(t))
Returns [g(t) = ...] or [], depending on whether or not there exists a rational
function g(t) satisfying eqn, which must be a first order, linear polynomial in (for
this case) g(t) and g(t+1)

248 Maxima Manual

(%i1) eqn: (n + 1)*f(n) - (n + 3)*f(n + 1)/(n + 1) =
(n - 1)/(n + 2);

(n + 3) f(n + 1) n - 1
(%o1) (n + 1) f(n) - ---------------- = -----

n + 1 n + 2
(%i2) funcsolve (eqn, f(n));

Dependent equations eliminated: (4 3)
n

(%o2) f(n) = ---------------
(n + 1) (n + 2)

Warning: this is a very rudimentary implementation – many safety checks and obvious
generalizations are missing.

Option variableglobalsolve
Default value: false
When globalsolve is true, solved-for variables are assigned the solution values found
by linsolve, and by solve when solving two or more linear equations.
When globalsolve is false, solutions found by linsolve and by solve when solving
two or more linear equations are expressed as equations, and the solved-for variables
are not assigned.
When solving anything other than two or more linear equations, solve ignores
globalsolve. Other functions which solve equations (e.g., algsys) always ignore
globalsolve.
Examples:

(%i1) globalsolve: true$
(%i2) solve ([x + 3*y = 2, 2*x - y = 5], [x, y]);
Solution

17
(%t2) x : --

7

1
(%t3) y : - -

7
(%o3) [[%t2, %t3]]
(%i3) x;

17
(%o3) --

7
(%i4) y;

1
(%o4) - -

7
(%i5) globalsolve: false$
(%i6) kill (x, y)$

Chapter 21: Equations 249

(%i7) solve ([x + 3*y = 2, 2*x - y = 5], [x, y]);
Solution

17
(%t7) x = --

7

1
(%t8) y = - -

7
(%o8) [[%t7, %t8]]
(%i8) x;
(%o8) x
(%i9) y;
(%o9) y

Functionieqn (ie, unk, tech, n, guess)
inteqn is a package for solving integral equations. load ("inteqn") loads this pack-
age.
ie is the integral equation; unk is the unknown function; tech is the technique to
be tried from those given above (tech = first means: try the first technique which
finds a solution; tech = all means: try all applicable techniques); n is the maximum
number of terms to take for taylor, neumann, firstkindseries, or fredseries (it
is also the maximum depth of recursion for the differentiation method); guess is the
initial guess for neumann or firstkindseries.
Default values for the 2nd thru 5th parameters are:
unk: p(x), where p is the first function encountered in an integrand which is unknown
to Maxima and x is the variable which occurs as an argument to the first occurrence of
p found outside of an integral in the case of secondkind equations, or is the only other
variable besides the variable of integration in firstkind equations. If the attempt
to search for x fails, the user will be asked to supply the independent variable.
tech: first
n: 1
guess: none which will cause neumann and firstkindseries to use f (x) as an initial
guess.

Option variableieqnprint
Default value: true
ieqnprint governs the behavior of the result returned by the ieqn command. When
ieqnprint is false, the lists returned by the ieqn function are of the form
[solution, technique used, nterms, flag]
where flag is absent if the solution is exact.
Otherwise, it is the word approximate or incomplete corresponding to an inexact
or non-closed form solution, respectively. If a series method was used, nterms gives
the number of terms taken (which could be less than the n given to ieqn if an error
prevented generation of further terms).

250 Maxima Manual

Functionlhs (expr)
Returns the left-hand side (that is, the first argument) of the expression expr, when
the operator of expr is one of the relational operators < <= = # equal notequal >= >,
one of the assignment operators := ::= : ::, or a user-defined binary infix operator,
as declared by infix.

When expr is an atom or its operator is something other than the ones listed above,
lhs returns expr.

See also rhs.

Examples:
(%i1) e: aa + bb = cc;
(%o1) bb + aa = cc
(%i2) lhs (e);
(%o2) bb + aa
(%i3) rhs (e);
(%o3) cc
(%i4) [lhs (aa < bb), lhs (aa <= bb), lhs (aa >= bb),

lhs (aa > bb)];
(%o4) [aa, aa, aa, aa]
(%i5) [lhs (aa = bb), lhs (aa # bb), lhs (equal (aa, bb)),

lhs (notequal (aa, bb))];
(%o5) [aa, aa, aa, aa]
(%i6) e1: ’(foo(x) := 2*x);
(%o6) foo(x) := 2 x
(%i7) e2: ’(bar(y) ::= 3*y);
(%o7) bar(y) ::= 3 y
(%i8) e3: ’(x : y);
(%o8) x : y
(%i9) e4: ’(x :: y);
(%o9) x :: y
(%i10) [lhs (e1), lhs (e2), lhs (e3), lhs (e4)];
(%o10) [foo(x), bar(y), x, x]
(%i11) infix ("][");
(%o11)][
(%i12) lhs (aa][bb);
(%o12) aa

Functionlinsolve ([expr 1, ..., expr m], [x 1, ..., x n])
Solves the list of simultaneous linear equations for the list of variables. The expressions
must each be polynomials in the variables and may be equations.

When globalsolve is true, each solved-for variable is bound to its value in the
solution of the equations.

When backsubst is false, linsolve does not carry out back substitution after the
equations have been triangularized. This may be necessary in very big problems
where back substitution would cause the generation of extremely large expressions.

When linsolve_params is true, linsolve also generates the %r symbols used to
represent arbitrary parameters described in the manual under algsys. Otherwise,

Chapter 21: Equations 251

linsolve solves an under-determined system of equations with some variables ex-
pressed in terms of others.
When programmode is false, linsolve displays the solution with intermediate ex-
pression (%t) labels, and returns the list of labels.

(%i1) e1: x + z = y;
(%o1) z + x = y
(%i2) e2: 2*a*x - y = 2*a^2;

2
(%o2) 2 a x - y = 2 a
(%i3) e3: y - 2*z = 2;
(%o3) y - 2 z = 2
(%i4) [globalsolve: false, programmode: true];
(%o4) [false, true]
(%i5) linsolve ([e1, e2, e3], [x, y, z]);
(%o5) [x = a + 1, y = 2 a, z = a - 1]
(%i6) [globalsolve: false, programmode: false];
(%o6) [false, false]
(%i7) linsolve ([e1, e2, e3], [x, y, z]);
Solution

(%t7) z = a - 1

(%t8) y = 2 a

(%t9) x = a + 1
(%o9) [%t7, %t8, %t9]
(%i9) ’’%;
(%o9) [z = a - 1, y = 2 a, x = a + 1]
(%i10) [globalsolve: true, programmode: false];
(%o10) [true, false]
(%i11) linsolve ([e1, e2, e3], [x, y, z]);
Solution

(%t11) z : a - 1

(%t12) y : 2 a

(%t13) x : a + 1
(%o13) [%t11, %t12, %t13]
(%i13) ’’%;
(%o13) [z : a - 1, y : 2 a, x : a + 1]
(%i14) [x, y, z];
(%o14) [a + 1, 2 a, a - 1]
(%i15) [globalsolve: true, programmode: true];
(%o15) [true, true]
(%i16) linsolve ([e1, e2, e3], ’[x, y, z]);
(%o16) [x : a + 1, y : 2 a, z : a - 1]
(%i17) [x, y, z];
(%o17) [a + 1, 2 a, a - 1]

252 Maxima Manual

Option variablelinsolvewarn
Default value: true

When linsolvewarn is true, linsolve prints a message "Dependent equations elim-
inated".

Option variablelinsolve params
Default value: true

When linsolve_params is true, linsolve also generates the %r symbols used to
represent arbitrary parameters described in the manual under algsys. Otherwise,
linsolve solves an under-determined system of equations with some variables ex-
pressed in terms of others.

System variablemultiplicities
Default value: not_set_yet

multiplicities is set to a list of the multiplicities of the individual solutions returned
by solve or realroots.

Functionnroots (p, low, high)
Returns the number of real roots of the real univariate polynomial p in the half-open
interval (low, high]. The endpoints of the interval may be minf or inf. infinity and
plus infinity.

nroots uses the method of Sturm sequences.
(%i1) p: x^10 - 2*x^4 + 1/2$
(%i2) nroots (p, -6, 9.1);
(%o2) 4

Functionnthroot (p, n)
where p is a polynomial with integer coefficients and n is a positive integer returns q,
a polynomial over the integers, such that q^n=p or prints an error message indicating
that p is not a perfect nth power. This routine is much faster than factor or even
sqfr.

Option variableprogrammode
Default value: true

When programmode is true, solve, realroots, allroots, and linsolve return
solutions as elements in a list. (Except when backsubst is set to false, in which
case programmode: false is assumed.)

When programmode is false, solve, etc. create intermediate expression labels %t1,
t2, etc., and assign the solutions to them.

Option variablerealonly
Default value: false

When realonly is true, algsys returns only those solutions which are free of %i.

Chapter 21: Equations 253

Functionrealroots (expr, bound)
Functionrealroots (eqn, bound)
Functionrealroots (expr)
Functionrealroots (eqn)

Computes rational approximations of the real roots of the polynomial expr or poly-
nomial equation eqn of one variable, to within a tolerance of bound. Coefficients of
expr or eqn must be literal numbers; symbol constants such as %pi are rejected.
realroots assigns the multiplicities of the roots it finds to the global variable
multiplicities.
realroots constructs a Sturm sequence to bracket each root, and then applies bisec-
tion to refine the approximations. All coefficients are converted to rational equivalents
before searching for roots, and computations are carried out by exact rational arith-
metic. Even if some coefficients are floating-point numbers, the results are rational
(unless coerced to floats by the float or numer flags).
When bound is less than 1, all integer roots are found exactly. When bound is
unspecified, it is assumed equal to the global variable rootsepsilon.
When the global variable programmode is true, realroots returns a list of the form [x
= x 1, x = x 2, ...]. When programmode is false, realroots creates intermediate
expression labels %t1, %t2, ..., assigns the results to them, and returns the list of
labels.
Examples:

(%i1) realroots (-1 - x + x^5, 5e-6);
612003

(%o1) [x = ------]
524288

(%i2) ev (%[1], float);
(%o2) x = 1.167303085327148
(%i3) ev (-1 - x + x^5, %);
(%o3) - 7.396496210176905E-6

(%i1) realroots (expand ((1 - x)^5 * (2 - x)^3 * (3 - x)), 1e-20);
(%o1) [x = 1, x = 2, x = 3]
(%i2) multiplicities;
(%o2) [5, 3, 1]

Functionrhs (expr)
Returns the right-hand side (that is, the second argument) of the expression expr,
when the operator of expr is one of the relational operators < <= = # equal notequal
>= >, one of the assignment operators := ::= : ::, or a user-defined binary infix
operator, as declared by infix.
When expr is an atom or its operator is something other than the ones listed above,
rhs returns 0.
See also lhs.
Examples:

(%i1) e: aa + bb = cc;
(%o1) bb + aa = cc

254 Maxima Manual

(%i2) lhs (e);
(%o2) bb + aa
(%i3) rhs (e);
(%o3) cc
(%i4) [rhs (aa < bb), rhs (aa <= bb), rhs (aa >= bb),

rhs (aa > bb)];
(%o4) [bb, bb, bb, bb]
(%i5) [rhs (aa = bb), rhs (aa # bb), rhs (equal (aa, bb)),

rhs (notequal (aa, bb))];
(%o5) [bb, bb, bb, bb]
(%i6) e1: ’(foo(x) := 2*x);
(%o6) foo(x) := 2 x
(%i7) e2: ’(bar(y) ::= 3*y);
(%o7) bar(y) ::= 3 y
(%i8) e3: ’(x : y);
(%o8) x : y
(%i9) e4: ’(x :: y);
(%o9) x :: y
(%i10) [rhs (e1), rhs (e2), rhs (e3), rhs (e4)];
(%o10) [2 x, 3 y, y, y]
(%i11) infix ("][");
(%o11)][
(%i12) rhs (aa][bb);
(%o12) bb

Option variablerootsconmode
Default value: true
rootsconmode governs the behavior of the rootscontract command. See
rootscontract for details.

Functionrootscontract (expr)
Converts products of roots into roots of products. For example, rootscontract
(sqrt(x)*y^(3/2)) yields sqrt(x*y^3).
When radexpand is true and domain is real, rootscontract converts abs into sqrt,
e.g., rootscontract (abs(x)*sqrt(y)) yields sqrt(x^2*y).
There is an option rootsconmode affecting rootscontract as follows:

Problem Value of Result of applying
rootsconmode rootscontract

x^(1/2)*y^(3/2) false (x*y^3)^(1/2)
x^(1/2)*y^(1/4) false x^(1/2)*y^(1/4)
x^(1/2)*y^(1/4) true (x*y^(1/2))^(1/2)
x^(1/2)*y^(1/3) true x^(1/2)*y^(1/3)
x^(1/2)*y^(1/4) all (x^2*y)^(1/4)
x^(1/2)*y^(1/3) all (x^3*y^2)^(1/6)

When rootsconmode is false, rootscontract contracts only with respect to rational
number exponents whose denominators are the same. The key to the rootsconmode:

Chapter 21: Equations 255

true examples is simply that 2 divides into 4 but not into 3. rootsconmode: all
involves taking the least common multiple of the denominators of the exponents.

rootscontract uses ratsimp in a manner similar to logcontract.

Examples:

(%i1) rootsconmode: false$
(%i2) rootscontract (x^(1/2)*y^(3/2));

3
(%o2) sqrt(x y)
(%i3) rootscontract (x^(1/2)*y^(1/4));

1/4
(%o3) sqrt(x) y
(%i4) rootsconmode: true$
(%i5) rootscontract (x^(1/2)*y^(1/4));
(%o5) sqrt(x sqrt(y))
(%i6) rootscontract (x^(1/2)*y^(1/3));

1/3
(%o6) sqrt(x) y
(%i7) rootsconmode: all$
(%i8) rootscontract (x^(1/2)*y^(1/4));

2 1/4
(%o8) (x y)
(%i9) rootscontract (x^(1/2)*y^(1/3));

3 2 1/6
(%o9) (x y)
(%i10) rootsconmode: false$
(%i11) rootscontract (sqrt(sqrt(x) + sqrt(1 + x))

*sqrt(sqrt(1 + x) - sqrt(x)));
(%o11) 1
(%i12) rootsconmode: true$
(%i13) rootscontract (sqrt(5+sqrt(5)) - 5^(1/4)*sqrt(1+sqrt(5)));
(%o13) 0

Option variablerootsepsilon
Default value: 1.0e-7

rootsepsilon is the tolerance which establishes the confidence interval for the roots
found by the realroots function.

Functionsolve (expr, x)
Functionsolve (expr)
Functionsolve ([eqn 1, ..., eqn n], [x 1, ..., x n])

Solves the algebraic equation expr for the variable x and returns a list of solution
equations in x. If expr is not an equation, the equation expr = 0 is assumed in its
place. x may be a function (e.g. f(x)), or other non-atomic expression except a sum
or product. x may be omitted if expr contains only one variable. expr may be a
rational expression, and may contain trigonometric functions, exponentials, etc.

The following method is used:

256 Maxima Manual

Let E be the expression and X be the variable. If E is linear in X then it is trivially
solved for X. Otherwise if E is of the form A*X^N + B then the result is (-B/A)^1/N)
times the N’th roots of unity.
If E is not linear in X then the gcd of the exponents of X in E (say N) is divided
into the exponents and the multiplicity of the roots is multiplied by N. Then solve
is called again on the result. If E factors then solve is called on each of the factors.
Finally solve will use the quadratic, cubic, or quartic formulas where necessary.
In the case where E is a polynomial in some function of the variable to be solved for,
say F(X), then it is first solved for F(X) (call the result C), then the equation F(X)=C
can be solved for X provided the inverse of the function F is known.
breakup if false will cause solve to express the solutions of cubic or quartic equa-
tions as single expressions rather than as made up of several common subexpressions
which is the default.
multiplicities - will be set to a list of the multiplicities of the individual solutions
returned by solve, realroots, or allroots. Try apropos (solve) for the switches
which affect solve. describe may then by used on the individual switch names if
their purpose is not clear.
solve ([eqn 1, ..., eqn n], [x 1, ..., x n]) solves a system of simultaneous (lin-
ear or non-linear) polynomial equations by calling linsolve or algsys and returns
a list of the solution lists in the variables. In the case of linsolve this list would
contain a single list of solutions. It takes two lists as arguments. The first list rep-
resents the equations to be solved; the second list is a list of the unknowns to be
determined. If the total number of variables in the equations is equal to the number
of equations, the second argument-list may be omitted. For linear systems if the given
equations are not compatible, the message inconsistent will be displayed (see the
solve_inconsistent_error switch); if no unique solution exists, then singular will
be displayed.
When programmode is false, solve displays solutions with intermediate expression
(%t) labels, and returns the list of labels.
When globalsolve is true and the problem is to solve two or more linear equations,
each solved-for variable is bound to its value in the solution of the equations.
Examples:

(%i1) solve (asin (cos (3*x))*(f(x) - 1), x);

SOLVE is using arc-trig functions to get a solution.
Some solutions will be lost.

%pi
(%o1) [x = ---, f(x) = 1]

6
(%i2) ev (solve (5^f(x) = 125, f(x)), solveradcan);

log(125)
(%o2) [f(x) = --------]

log(5)
(%i3) [4*x^2 - y^2 = 12, x*y - x = 2];

2 2
(%o3) [4 x - y = 12, x y - x = 2]

Chapter 21: Equations 257

(%i4) solve (%, [x, y]);
(%o4) [[x = 2, y = 2], [x = .5202594388652008 %i

- .1331240357358706, y = .0767837852378778

- 3.608003221870287 %i], [x = - .5202594388652008 %i

- .1331240357358706, y = 3.608003221870287 %i

+ .0767837852378778], [x = - 1.733751846381093,

y = - .1535675710019696]]
(%i5) solve (1 + a*x + x^3, x);

3
sqrt(3) %i 1 sqrt(4 a + 27) 1 1/3

(%o5) [x = (- ---------- - -) (--------------- - -)
2 2 6 sqrt(3) 2

sqrt(3) %i 1
(---------- - -) a

2 2
- --------------------------, x =

3
sqrt(4 a + 27) 1 1/3

3 (--------------- - -)
6 sqrt(3) 2

3
sqrt(3) %i 1 sqrt(4 a + 27) 1 1/3
(---------- - -) (--------------- - -)

2 2 6 sqrt(3) 2

sqrt(3) %i 1
(- ---------- - -) a

2 2
- --------------------------, x =

3
sqrt(4 a + 27) 1 1/3

3 (--------------- - -)
6 sqrt(3) 2

3
sqrt(4 a + 27) 1 1/3 a
(--------------- - -) - --------------------------]

6 sqrt(3) 2 3
sqrt(4 a + 27) 1 1/3

3 (--------------- - -)
6 sqrt(3) 2

(%i6) solve (x^3 - 1);

258 Maxima Manual

sqrt(3) %i - 1 sqrt(3) %i + 1
(%o6) [x = --------------, x = - --------------, x = 1]

2 2
(%i7) solve (x^6 - 1);

sqrt(3) %i + 1 sqrt(3) %i - 1
(%o7) [x = --------------, x = --------------, x = - 1,

2 2

sqrt(3) %i + 1 sqrt(3) %i - 1
x = - --------------, x = - --------------, x = 1]

2 2
(%i8) ev (x^6 - 1, %[1]);

6
(sqrt(3) %i + 1)

(%o8) ----------------- - 1
64

(%i9) expand (%);
(%o9) 0
(%i10) x^2 - 1;

2
(%o10) x - 1
(%i11) solve (%, x);
(%o11) [x = - 1, x = 1]
(%i12) ev (%th(2), %[1]);
(%o12) 0

Option variablesolvedecomposes
Default value: true

When solvedecomposes is true, solve calls polydecomp if asked to solve polynomi-
als.

Option variablesolveexplicit
Default value: false

When solveexplicit is true, inhibits solve from returning implicit solutions, that
is, solutions of the form F(x) = 0 where F is some function.

Option variablesolvefactors
Default value: true

When solvefactors is false, solve does not try to factor the expression. The
false setting may be desired in some cases where factoring is not necessary.

Option variablesolvenullwarn
Default value: true

When solvenullwarn is true, solve prints a warning message if called with either
a null equation list or a null variable list. For example, solve ([], []) would print
two warning messages and return [].

Chapter 21: Equations 259

Option variablesolveradcan
Default value: false
When solveradcan is true, solve calls radcan which makes solve slower but will
allow certain problems containing exponentials and logarithms to be solved.

Option variablesolvetrigwarn
Default value: true
When solvetrigwarn is true, solve may print a message saying that it is using
inverse trigonometric functions to solve the equation, and thereby losing solutions.

Option variablesolve inconsistent error
Default value: true
When solve_inconsistent_error is true, solve and linsolve give an error if the
equations to be solved are inconsistent.
If false, solve and linsolve return an empty list [] if the equations are inconsistent.
Example:

(%i1) solve_inconsistent_error: true$
(%i2) solve ([a + b = 1, a + b = 2], [a, b]);
Inconsistent equations: (2)
-- an error. Quitting. To debug this try debugmode(true);
(%i3) solve_inconsistent_error: false$
(%i4) solve ([a + b = 1, a + b = 2], [a, b]);
(%o4) []

260 Maxima Manual

Chapter 22: Differential Equations 261

22 Differential Equations

22.1 Introduction to Differential Equations

This section describes the functions available in Maxima to obtain analytic solutions
for some specific types of first and second-order equations. To obtain a numerical solution
for a system of differential equations, see the additional package dynamics. For graphical
representations in phase space, see the additional package plotdf.

22.2 Functions and Variables for Differential Equations

Functionbc2 (solution, xval1, yval1, xval2, yval2)
Solves a boundary value problem for a second order differential equation. Here:
solution is a general solution to the equation, as found by ode2; xval1 specifies the
value of the independent variable in a first point, in the form x = x1, and yval1 gives
the value of the dependent variable in that point, in the form y = y1. The expressions
xval2 and yval2 give the values for these variables at a second point, using the same
form.
See ode2 for an example of its usage.

Functiondesolve (eqn, x)
Functiondesolve ([eqn 1, ..., eqn n], [x 1, ..., x n])

The function desolve solves systems of linear ordinary differential equations using
Laplace transform. Here the eqn’s are differential equations in the dependent variables
x 1, ..., x n. The functional dependence of x 1, ..., x n on an independent variable,
for instance x, must be explicitly indicated in the variables and its derivatives. For
example, this would not be the correct way to define two equations:

eqn_1: ’diff(f,x,2) = sin(x) + ’diff(g,x);
eqn_2: ’diff(f,x) + x^2 - f = 2*’diff(g,x,2);

The correct way would be:
eqn_1: ’diff(f(x),x,2) = sin(x) + ’diff(g(x),x);
eqn_2: ’diff(f(x),x) + x^2 - f(x) = 2*’diff(g(x),x,2);

The call to the function desolve would then be
desolve([eqn_1, eqn_2], [f(x),g(x)]);

If initial conditions at x=0 are known, they can be supplied before calling desolve
by using atvalue.

(%i1) ’diff(f(x),x)=’diff(g(x),x)+sin(x);
d d

(%o1) -- (f(x)) = -- (g(x)) + sin(x)
dx dx

(%i2) ’diff(g(x),x,2)=’diff(f(x),x)-cos(x);
2
d d

(%o2) --- (g(x)) = -- (f(x)) - cos(x)

262 Maxima Manual

2 dx
dx

(%i3) atvalue(’diff(g(x),x),x=0,a);
(%o3) a
(%i4) atvalue(f(x),x=0,1);
(%o4) 1
(%i5) desolve([%o1,%o2],[f(x),g(x)]);

x
(%o5) [f(x) = a %e - a + 1, g(x) =

x
cos(x) + a %e - a + g(0) - 1]

(%i6) [%o1,%o2],%o5,diff;
x x x x

(%o6) [a %e = a %e , a %e - cos(x) = a %e - cos(x)]

If desolve cannot obtain a solution, it returns false.

Functionic1 (solution, xval, yval)
Solves initial value problems for first order differential equations. Here solution is
a general solution to the equation, as found by ode2, xval gives an initial value for
the independent variable in the form x = x0, and yval gives the initial value for the
dependent variable in the form y = y0.
See ode2 for an example of its usage.

Functionic2 (solution, xval, yval, dval)
Solves initial value problems for second-order differential equations. Here solution is a
general solution to the equation, as found by ode2, xval gives the initial value for the
independent variable in the form x = x0, yval gives the initial value of the dependent
variable in the form y = y0, and dval gives the initial value for the first derivative of
the dependent variable with respect to independent variable, in the form diff(y,x)
= dy0 (diff does not have to be quoted).
See ode2 for an example of its usage.

Functionode2 (eqn, dvar, ivar)
The function ode2 solves an ordinary differential equation (ODE) of first or second
order. It takes three arguments: an ODE given by eqn, the dependent variable dvar,
and the independent variable ivar. When successful, it returns either an explicit or
implicit solution for the dependent variable. %c is used to represent the integra-
tion constant in the case of first-order equations, and %k1 and %k2 the constants for
second-order equations. The dependence of the dependent variable on the indepen-
dent variable does not have to be written explicitly, as in the case of desolve, but
the independent variable must always be given as the third argument.

If ode2 cannot obtain a solution for whatever reason, it returns false, after perhaps
printing out an error message. The methods implemented for first order equations in
the order in which they are tested are: linear, separable, exact - perhaps requiring

Chapter 22: Differential Equations 263

an integrating factor, homogeneous, Bernoulli’s equation, and a generalized homoge-
neous method. The types of second-order equations which can be solved are: constant
coefficients, exact, linear homogeneous with non-constant coefficients which can be
transformed to constant coefficients, the Euler or equi-dimensional equation, equa-
tions solvable by the method of variation of parameters, and equations which are free
of either the independent or of the dependent variable so that they can be reduced to
two first order linear equations to be solved sequentially.
In the course of solving ODE’s, several variables are set purely for informational pur-
poses: method denotes the method of solution used (e.g., linear), intfactor denotes
any integrating factor used, odeindex denotes the index for Bernoulli’s method or for
the generalized homogeneous method, and yp denotes the particular solution for the
variation of parameters technique.
In order to solve initial value problems (IVP) functions ic1 and ic2 are available for
first and second order equations, and to solve second-order boundary value problems
(BVP) the function bc2 can be used.
Example:

(%i1) x^2*’diff(y,x) + 3*y*x = sin(x)/x;
2 dy sin(x)

(%o1) x -- + 3 x y = ------
dx x

(%i2) ode2(%,y,x);
%c - cos(x)

(%o2) y = -----------
3
x

(%i3) ic1(%o2,x=%pi,y=0);
cos(x) + 1

(%o3) y = - ----------
3
x

(%i4) ’diff(y,x,2) + y*’diff(y,x)^3 = 0;
2
d y dy 3

(%o4) --- + y (--) = 0
2 dx

dx
(%i5) ode2(%,y,x);

3
y + 6 %k1 y

(%o5) ------------ = x + %k2
6

(%i6) ratsimp(ic2(%o5,x=0,y=0,’diff(y,x)=2));
3

2 y - 3 y
(%o6) - ---------- = x

6
(%i7) bc2(%o5,x=0,y=1,x=1,y=3);

3

264 Maxima Manual

y - 10 y 3
(%o7) --------- = x - -

6 2

Chapter 23: Numerical 265

23 Numerical

23.1 Introduction to fast Fourier transform

The fft package comprises functions for the numerical (not symbolic) computation of
the fast Fourier transform.

23.2 Functions and Variables for fast Fourier transform

Functionpolartorect (magnitude array, phase array)
Translates complex values of the form r %e^(%i t) to the form a + b %i. load
("fft") loads this function into Maxima. See also fft.

The magnitude and phase, r and t, are taken from magnitude array and phase array,
respectively. The original values of the input arrays are replaced by the real and
imaginary parts, a and b, on return. The outputs are calculated as

a: r cos (t)
b: r sin (t)

The input arrays must be the same size and 1-dimensional. The array size need not
be a power of 2.

polartorect is the inverse function of recttopolar.

Functionrecttopolar (real array, imaginary array)
Translates complex values of the form a + b %i to the form r %e^(%i t). load
("fft") loads this function into Maxima. See also fft.

The real and imaginary parts, a and b, are taken from real array and imaginary array,
respectively. The original values of the input arrays are replaced by the magnitude
and angle, r and t, on return. The outputs are calculated as

r: sqrt (a^2 + b^2)
t: atan2 (b, a)

The computed angle is in the range -%pi to %pi.

The input arrays must be the same size and 1-dimensional. The array size need not
be a power of 2.

recttopolar is the inverse function of polartorect.

Functionift (real array, imaginary array)
Fast inverse discrete Fourier transform. load ("fft") loads this function into Max-
ima.

ift carries out the inverse complex fast Fourier transform on 1-dimensional floating
point arrays. The inverse transform is defined as

x[j]: sum (y[j] exp (+2 %i %pi j k / n), k, 0, n-1)

See fft for more details.

266 Maxima Manual

Functionfft (real array, imaginary array)
Functionift (real array, imaginary array)
Functionrecttopolar (real array, imaginary array)
Functionpolartorect (magnitude array, phase array)

Fast Fourier transform and related functions. load ("fft") loads these functions
into Maxima.

fft and ift carry out the complex fast Fourier transform and inverse transform,
respectively, on 1-dimensional floating point arrays. The size of imaginary array
must equal the size of real array.

fft and ift operate in-place. That is, on return from fft or ift, the original content
of the input arrays is replaced by the output. The fillarray function can make a
copy of an array, should it be necessary.

The discrete Fourier transform and inverse transform are defined as follows. Let x be
the original data, with

x[i]: real_array[i] + %i imaginary_array[i]

Let y be the transformed data. The forward and inverse transforms are
y[k]: (1/n) sum (x[j] exp (-2 %i %pi j k / n), j, 0, n-1)

x[j]: sum (y[j] exp (+2 %i %pi j k / n), k, 0, n-1)

Suitable arrays can be allocated by the array function. For example:
array (my_array, float, n-1)$

declares a 1-dimensional array with n elements, indexed from 0 through n-1 inclusive.
The number of elements n must be equal to 2^m for some m.

fft can be applied to real data (imaginary array all zeros) to obtain sine and cosine
coefficients. After calling fft, the sine and cosine coefficients, say a and b, can be
calculated as

a[0]: real_array[0]
b[0]: 0

and
a[j]: real_array[j] + real_array[n-j]
b[j]: imaginary_array[j] - imaginary_array[n-j]

for j equal to 1 through n/2-1, and
a[n/2]: real_array[n/2]
b[n/2]: 0

recttopolar translates complex values of the form a + b %i to the form r %e^(%i
t). See recttopolar.

polartorect translates complex values of the form r %e^(%i t) to the form a + b
%i. See polartorect.

demo ("fft") displays a demonstration of the fft package.

Option variablefortindent
Default value: 0

Chapter 23: Numerical 267

fortindent controls the left margin indentation of expressions printed out by the
fortran command. 0 gives normal printout (i.e., 6 spaces), and positive values will
causes the expressions to be printed farther to the right.

Functionfortran (expr)
Prints expr as a Fortran statement. The output line is indented with spaces. If the
line is too long, fortran prints continuation lines. fortran prints the exponentiation
operator ^ as **, and prints a complex number a + b %i in the form (a,b).

expr may be an equation. If so, fortran prints an assignment statement, assigning the
right-hand side of the equation to the left-hand side. In particular, if the right-hand
side of expr is the name of a matrix, then fortran prints an assignment statement
for each element of the matrix.

If expr is not something recognized by fortran, the expression is printed in grind
format without complaint. fortran does not know about lists, arrays, or functions.

fortindent controls the left margin of the printed lines. 0 is the normal margin (i.e.,
indented 6 spaces). Increasing fortindent causes expressions to be printed further
to the right.

When fortspaces is true, fortran fills out each printed line with spaces to 80
columns.

fortran evaluates its arguments; quoting an argument defeats evaluation. fortran
always returns done.

Examples:

(%i1) expr: (a + b)^12$
(%i2) fortran (expr);

(b+a)**12
(%o2) done
(%i3) fortran (’x=expr);

x = (b+a)**12
(%o3) done
(%i4) fortran (’x=expand (expr));

x = b**12+12*a*b**11+66*a**2*b**10+220*a**3*b**9+495*a**4*b**8+792
1 *a**5*b**7+924*a**6*b**6+792*a**7*b**5+495*a**8*b**4+220*a**9*b
2 **3+66*a**10*b**2+12*a**11*b+a**12

(%o4) done
(%i5) fortran (’x=7+5*%i);

x = (7,5)
(%o5) done
(%i6) fortran (’x=[1,2,3,4]);

x = [1,2,3,4]
(%o6) done
(%i7) f(x) := x^2$
(%i8) fortran (f);

f
(%o8) done

268 Maxima Manual

Option variablefortspaces
Default value: false
When fortspaces is true, fortran fills out each printed line with spaces to 80
columns.

Functionhorner (expr, x)
Functionhorner (expr)

Returns a rearranged representation of expr as in Horner’s rule, using x as the main
variable if it is specified. x may be omitted in which case the main variable of the
canonical rational expression form of expr is used.
horner sometimes improves stability if expr is to be numerically evaluated. It is
also useful if Maxima is used to generate programs to be run in Fortran. See also
stringout.

(%i1) expr: 1e-155*x^2 - 5.5*x + 5.2e155;
2

(%o1) 1.0E-155 x - 5.5 x + 5.2E+155
(%i2) expr2: horner (%, x), keepfloat: true;
(%o2) (1.0E-155 x - 5.5) x + 5.2E+155
(%i3) ev (expr, x=1e155);
Maxima encountered a Lisp error:

floating point overflow

Automatically continuing.
To reenable the Lisp debugger set *debugger-hook* to nil.
(%i4) ev (expr2, x=1e155);
(%o4) 7.0E+154

Functionfind root (expr, x, a, b)
Functionfind root (f, a, b)

Option variablefind root error
Option variablefind root abs
Option variablefind root rel

Finds a root of the expression expr or the function f over the closed interval [a, b].
The expression expr may be an equation, in which case find_root seeks a root of
lhs(expr) - rhs(expr).
Given that Maxima can evaluate expr or f over [a,b] and that expr or f is continuous,
find_root is guaranteed to find the root, or one of the roots if there is more than
one.
find_root initially applies binary search. If the function in question appears to be
smooth enough, find_root applies linear interpolation instead.
The accuracy of find_root is governed by find_root_abs and find_root_rel.
find_root stops when the function in question evaluates to something less than or
equal to find_root_abs, or if successive approximants x 0, x 1 differ by no more than
find_root_rel * max(abs(x_0), abs(x_1)). The default values of find_root_abs
and find_root_rel are both zero.

Chapter 23: Numerical 269

find_root expects the function in question to have a different sign at the endpoints
of the search interval. If this condition is not met, the behavior of find_root is
governed by find_root_error. When find_root_error is true, find_root prints
an error message. Otherwise find_root returns the value of find_root_error. The
default value of find_root_error is true.
If f evaluates to something other than a number at any step in the search algorithm,
find_root returns a partially-evaluated find_root expression.
The order of a and b is ignored; the region in which a root is sought is
[min(a,b),max(a,b)].
Examples:

(%i1) f(x) := sin(x) - x/2;
x

(%o1) f(x) := sin(x) - -
2

(%i2) find_root (sin(x) - x/2, x, 0.1, %pi);
(%o2) 1.895494267033981
(%i3) find_root (sin(x) = x/2, x, 0.1, %pi);
(%o3) 1.895494267033981
(%i4) find_root (f(x), x, 0.1, %pi);
(%o4) 1.895494267033981
(%i5) find_root (f, 0.1, %pi);
(%o5) 1.895494267033981
(%i6) find_root (exp(x) = y, x, 0, 100);

x
(%o6) find_root(%e = y, x, 0.0, 100.0)
(%i7) find_root (exp(x) = y, x, 0, 100), y = 10;
(%o7) 2.302585092994046
(%i8) log (10.0);
(%o8) 2.302585092994046

Functionnewton (expr, x, x 0, eps)
Returns an approximate solution of expr = 0 by Newton’s method, considering expr
to be a function of one variable, x. The search begins with x = x 0 and proceeds until
abs(expr) < eps (with expr evaluated at the current value of x).
newton allows undefined variables to appear in expr, so long as the termination test
abs(expr) < eps evaluates to true or false. Thus it is not necessary that expr
evaluate to a number.
load(newton1) loads this function.
See also realroots, allroots, find_root, and mnewton.
Examples:

(%i1) load (newton1);
(%o1) /usr/share/maxima/5.10.0cvs/share/numeric/newton1.mac
(%i2) newton (cos (u), u, 1, 1/100);
(%o2) 1.570675277161251
(%i3) ev (cos (u), u = %);
(%o3) 1.2104963335033528E-4

270 Maxima Manual

(%i4) assume (a > 0);
(%o4) [a > 0]
(%i5) newton (x^2 - a^2, x, a/2, a^2/100);
(%o5) 1.00030487804878 a
(%i6) ev (x^2 - a^2, x = %);

2
(%o6) 6.098490481853958E-4 a

23.3 Introduction to Fourier series

The fourie package comprises functions for the symbolic computation of Fourier series.
There are functions in the fourie package to calculate Fourier integral coefficients and some
functions for manipulation of expressions.

23.4 Functions and Variables for Fourier series

Functionequalp (x, y)
Returns true if equal (x, y) otherwise false (doesn’t give an error message like
equal (x, y) would do in this case).

Functionremfun (f, expr)
Functionremfun (f, expr, x)

remfun (f, expr) replaces all occurrences of f (arg) by arg in expr.
remfun (f, expr, x) replaces all occurrences of f (arg) by arg in expr only if arg
contains the variable x.

Functionfunp (f, expr)
Functionfunp (f, expr, x)

funp (f, expr) returns true if expr contains the function f.
funp (f, expr, x) returns true if expr contains the function f and the variable x is
somewhere in the argument of one of the instances of f.

Functionabsint (f, x, halfplane)
Functionabsint (f, x)
Functionabsint (f, x, a, b)

absint (f, x, halfplane) returns the indefinite integral of f with respect to x in the
given halfplane (pos, neg, or both). f may contain expressions of the form abs (x),
abs (sin (x)), abs (a) * exp (-abs (b) * abs (x)).
absint (f, x) is equivalent to absint (f, x, pos).
absint (f, x, a, b) returns the definite integral of f with respect to x from a to b.
f may include absolute values.

Functionfourier (f, x, p)
Returns a list of the Fourier coefficients of f (x) defined on the interval [-p, p].

Chapter 23: Numerical 271

Functionfoursimp (l)
Simplifies sin (n %pi) to 0 if sinnpiflag is true and cos (n %pi) to (-1)^n if
cosnpiflag is true.

Option variablesinnpiflag
Default value: true
See foursimp.

Option variablecosnpiflag
Default value: true
See foursimp.

Functionfourexpand (l, x, p, limit)
Constructs and returns the Fourier series from the list of Fourier coefficients l up
through limit terms (limit may be inf). x and p have same meaning as in fourier.

Functionfourcos (f, x, p)
Returns the Fourier cosine coefficients for f (x) defined on [0, p].

Functionfoursin (f, x, p)
Returns the Fourier sine coefficients for f (x) defined on [0, p].

Functiontotalfourier (f, x, p)
Returns fourexpand (foursimp (fourier (f, x, p)), x, p, ’inf).

Functionfourint (f, x)
Constructs and returns a list of the Fourier integral coefficients of f (x) defined on
[minf, inf].

Functionfourintcos (f, x)
Returns the Fourier cosine integral coefficients for f (x) on [0, inf].

Functionfourintsin (f, x)
Returns the Fourier sine integral coefficients for f (x) on [0, inf].

272 Maxima Manual

Chapter 24: Arrays 273

24 Arrays

24.1 Functions and Variables for Arrays

Functionarray (name, dim 1, ..., dim n)
Functionarray (name, type, dim 1, ..., dim n)
Functionarray ([name 1, ..., name m], dim 1, ..., dim n)

Creates an n-dimensional array. n may be less than or equal to 5. The subscripts for
the i’th dimension are the integers running from 0 to dim i.
array (name, dim 1, ..., dim n) creates a general array.
array (name, type, dim 1, ..., dim n) creates an array, with elements of a speci-
fied type. type can be fixnum for integers of limited size or flonum for floating-point
numbers.
array ([name 1, ..., name m], dim 1, ..., dim n) creates m arrays, all of the
same dimensions.
If the user assigns to a subscripted variable before declaring the corresponding array,
an undeclared array is created. Undeclared arrays, otherwise known as hashed arrays
(because hash coding is done on the subscripts), are more general than declared
arrays. The user does not declare their maximum size, and they grow dynamically
by hashing as more elements are assigned values. The subscripts of undeclared arrays
need not even be numbers. However, unless an array is rather sparse, it is probably
more efficient to declare it when possible than to leave it undeclared. The array
function can be used to transform an undeclared array into a declared array.

Functionarrayapply (A, [i 1, ..., i n])
Evaluates A [i 1, ..., i n], where A is an array and i 1, ..., i n are integers.
This is reminiscent of apply, except the first argument is an array instead of a func-
tion.

Functionarrayinfo (A)
Returns information about the array A. The argument A may be a declared array,
an undeclared (hashed) array, an array function, or a subscripted function.
For declared arrays, arrayinfo returns a list comprising the atom declared, the
number of dimensions, and the size of each dimension. The elements of the array,
both bound and unbound, are returned by listarray.
For undeclared arrays (hashed arrays), arrayinfo returns a list comprising the atom
hashed, the number of subscripts, and the subscripts of every element which has a
value. The values are returned by listarray.
For array functions, arrayinfo returns a list comprising the atom hashed, the number
of subscripts, and any subscript values for which there are stored function values. The
stored function values are returned by listarray.
For subscripted functions, arrayinfo returns a list comprising the atom hashed, the
number of subscripts, and any subscript values for which there are lambda expressions.
The lambda expressions are returned by listarray.

274 Maxima Manual

Examples:

arrayinfo and listarray applied to a declared array.
(%i1) array (aa, 2, 3);
(%o1) aa
(%i2) aa [2, 3] : %pi;
(%o2) %pi
(%i3) aa [1, 2] : %e;
(%o3) %e
(%i4) arrayinfo (aa);
(%o4) [declared, 2, [2, 3]]
(%i5) listarray (aa);
(%o5) [#####, #####, #####, #####, #####, #####, %e, #####,

#####, #####, #####, %pi]

arrayinfo and listarray applied to an undeclared (hashed) array.
(%i1) bb [FOO] : (a + b)^2;

2
(%o1) (b + a)
(%i2) bb [BAR] : (c - d)^3;

3
(%o2) (c - d)
(%i3) arrayinfo (bb);
(%o3) [hashed, 1, [BAR], [FOO]]
(%i4) listarray (bb);

3 2
(%o4) [(c - d) , (b + a)]

arrayinfo and listarray applied to an array function.
(%i1) cc [x, y] := y / x;

y
(%o1) cc := -

x, y x
(%i2) cc [u, v];

v
(%o2) -

u
(%i3) cc [4, z];

z
(%o3) -

4
(%i4) arrayinfo (cc);
(%o4) [hashed, 2, [4, z], [u, v]]
(%i5) listarray (cc);

z v
(%o5) [-, -]

4 u

arrayinfo and listarray applied to a subscripted function.
(%i1) dd [x] (y) := y ^ x;

x

Chapter 24: Arrays 275

(%o1) dd (y) := y
x

(%i2) dd [a + b];
b + a

(%o2) lambda([y], y)
(%i3) dd [v - u];

v - u
(%o3) lambda([y], y)
(%i4) arrayinfo (dd);
(%o4) [hashed, 1, [b + a], [v - u]]
(%i5) listarray (dd);

b + a v - u
(%o5) [lambda([y], y), lambda([y], y)]

Functionarraymake (A, [i 1, ..., i n])
Returns the expression A[i 1, ..., i n]. The result is an unevaluated array refer-
ence.

arraymake is reminiscent of funmake, except the return value is an unevaluated array
reference instead of an unevaluated function call.

Examples:
(%i1) arraymake (A, [1]);
(%o1) A

1
(%i2) arraymake (A, [k]);
(%o2) A

k
(%i3) arraymake (A, [i, j, 3]);
(%o3) A

i, j, 3
(%i4) array (A, fixnum, 10);
(%o4) A
(%i5) fillarray (A, makelist (i^2, i, 1, 11));
(%o5) A
(%i6) arraymake (A, [5]);
(%o6) A

5
(%i7) ’’%;
(%o7) 36
(%i8) L : [a, b, c, d, e];
(%o8) [a, b, c, d, e]
(%i9) arraymake (’L, [n]);
(%o9) L

n
(%i10) ’’%, n = 3;
(%o10) c
(%i11) A2 : make_array (fixnum, 10);
(%o11) {Array: #(0 0 0 0 0 0 0 0 0 0)}
(%i12) fillarray (A2, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);

276 Maxima Manual

(%o12) {Array: #(1 2 3 4 5 6 7 8 9 10)}
(%i13) arraymake (’A2, [8]);
(%o13) A2

8
(%i14) ’’%;
(%o14) 9

System variablearrays
Default value: []
arrays is a list of arrays that have been allocated. These comprise arrays declared
by array, hashed arrays constructed by implicit definition (assigning something to
an array element), and array functions defined by := and define. Arrays defined by
make_array are not included.
See also array, arrayapply, arrayinfo, arraymake, fillarray, listarray, and
rearray.
Examples:

(%i1) array (aa, 5, 7);
(%o1) aa
(%i2) bb [FOO] : (a + b)^2;

2
(%o2) (b + a)
(%i3) cc [x] := x/100;

x
(%o3) cc := ---

x 100
(%i4) dd : make_array (’any, 7);
(%o4) {Array: #(NIL NIL NIL NIL NIL NIL NIL)}
(%i5) arrays;
(%o5) [aa, bb, cc]

Functionbashindices (expr)
Transforms the expression expr by giving each summation and product a unique in-
dex. This gives changevar greater precision when it is working with summations or
products. The form of the unique index is jnumber. The quantity number is deter-
mined by referring to gensumnum, which can be changed by the user. For example,
gensumnum:0$ resets it.

Functionfillarray (A, B)
Fills array A from B, which is a list or an array.
If a specific type was declared for A when it was created, it can only be filled with
elements of that same type; it is an error if an attempt is made to copy an element
of a different type.
If the dimensions of the arrays A and B are different, A is filled in row-major order.
If there are not enough elements in B the last element is used to fill out the rest of
A. If there are too many, the remaining ones are ignored.
fillarray returns its first argument.

Chapter 24: Arrays 277

Examples:

Create an array of 9 elements and fill it from a list.

(%i1) array (a1, fixnum, 8);
(%o1) a1
(%i2) listarray (a1);
(%o2) [0, 0, 0, 0, 0, 0, 0, 0, 0]
(%i3) fillarray (a1, [1, 2, 3, 4, 5, 6, 7, 8, 9]);
(%o3) a1
(%i4) listarray (a1);
(%o4) [1, 2, 3, 4, 5, 6, 7, 8, 9]

When there are too few elements to fill the array, the last element is repeated. When
there are too many elements, the extra elements are ignored.

(%i1) a2 : make_array (fixnum, 8);
(%o1) {Array: #(0 0 0 0 0 0 0 0)}
(%i2) fillarray (a2, [1, 2, 3, 4, 5]);
(%o2) {Array: #(1 2 3 4 5 5 5 5)}
(%i3) fillarray (a2, [4]);
(%o3) {Array: #(4 4 4 4 4 4 4 4)}
(%i4) fillarray (a2, makelist (i, i, 1, 100));
(%o4) {Array: #(1 2 3 4 5 6 7 8)}

Multple-dimension arrays are filled in row-major order.

(%i1) a3 : make_array (fixnum, 2, 5);
(%o1) {Array: #2A((0 0 0 0 0) (0 0 0 0 0))}
(%i2) fillarray (a3, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
(%o2) {Array: #2A((1 2 3 4 5) (6 7 8 9 10))}
(%i3) a4 : make_array (fixnum, 5, 2);
(%o3) {Array: #2A((0 0) (0 0) (0 0) (0 0) (0 0))}
(%i4) fillarray (a4, a3);
(%o4) {Array: #2A((1 2) (3 4) (5 6) (7 8) (9 10))}

Functionlistarray (A)
Returns a list of the elements of the array A. The argument A may be a declared
array, an undeclared (hashed) array, an array function, or a subscripted function.

Elements are listed in row-major order. That is, elements are sorted according to the
first index, then according to the second index, and so on. The sorting order of index
values is the same as the order established by orderless.

For undeclared arrays, array functions, and subscripted functions, the elements cor-
respond to the index values returned by arrayinfo.

Unbound elements of declared general arrays (that is, not fixnum and not flonum)
are returned as #####. Unbound elements of declared fixnum or flonum arrays are
returned as 0 or 0.0, respectively. Unbound elements of undeclared arrays, array
functions, and subscripted functions are not returned.

Examples:

listarray and arrayinfo applied to a declared array.

278 Maxima Manual

(%i1) array (aa, 2, 3);
(%o1) aa
(%i2) aa [2, 3] : %pi;
(%o2) %pi
(%i3) aa [1, 2] : %e;
(%o3) %e
(%i4) listarray (aa);
(%o4) [#####, #####, #####, #####, #####, #####, %e, #####,

#####, #####, #####, %pi]
(%i5) arrayinfo (aa);
(%o5) [declared, 2, [2, 3]]

listarray and arrayinfo applied to an undeclared (hashed) array.
(%i1) bb [FOO] : (a + b)^2;

2
(%o1) (b + a)
(%i2) bb [BAR] : (c - d)^3;

3
(%o2) (c - d)
(%i3) listarray (bb);

3 2
(%o3) [(c - d) , (b + a)]
(%i4) arrayinfo (bb);
(%o4) [hashed, 1, [BAR], [FOO]]

listarray and arrayinfo applied to an array function.
(%i1) cc [x, y] := y / x;

y
(%o1) cc := -

x, y x
(%i2) cc [u, v];

v
(%o2) -

u
(%i3) cc [4, z];

z
(%o3) -

4
(%i4) listarray (cc);

z v
(%o4) [-, -]

4 u
(%i5) arrayinfo (cc);
(%o5) [hashed, 2, [4, z], [u, v]]

listarray and arrayinfo applied to a subscripted function.
(%i1) dd [x] (y) := y ^ x;

x
(%o1) dd (y) := y

x
(%i2) dd [a + b];

Chapter 24: Arrays 279

b + a
(%o2) lambda([y], y)
(%i3) dd [v - u];

v - u
(%o3) lambda([y], y)
(%i4) listarray (dd);

b + a v - u
(%o4) [lambda([y], y), lambda([y], y)]
(%i5) arrayinfo (dd);
(%o5) [hashed, 1, [b + a], [v - u]]

Functionmake array (type, dim 1, ..., dim n)
Creates and returns a Lisp array. type may be any, flonum, fixnum, hashed or
functional. There are n indices, and the i’th index runs from 0 to dim i − 1.
The advantage of make_array over array is that the return value doesn’t have a
name, and once a pointer to it goes away, it will also go away. For example, if y:
make_array (...) then y points to an object which takes up space, but after y:
false, y no longer points to that object, so the object can be garbage collected.
Examples:

(%i1) A1 : make_array (fixnum, 10);
(%o1) {Array: #(0 0 0 0 0 0 0 0 0 0)}
(%i2) A1 [8] : 1729;
(%o2) 1729
(%i3) A1;
(%o3) {Array: #(0 0 0 0 0 0 0 0 1729 0)}
(%i4) A2 : make_array (flonum, 10);
(%o4) {Array: #(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0)}
(%i5) A2 [2] : 2.718281828;
(%o5) 2.718281828
(%i6) A2;
(%o6)

{Array: #(0.0 0.0 2.718281828 0.0 0.0 0.0 0.0 0.0 0.0 0.0)}
(%i7) A3 : make_array (any, 10);
(%o7) {Array: #(NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL)}
(%i8) A3 [4] : x - y - z;
(%o8) - z - y + x
(%i9) A3;
(%o9) {Array: #(NIL NIL NIL NIL ((MPLUS SIMP) $X ((MTIMES SIMP)\
-1 $Y) ((MTIMES SIMP) -1 $Z))
NIL NIL NIL NIL NIL)}

(%i10) A4 : make_array (fixnum, 2, 3, 5);
(%o10) {Array: #3A(((0 0 0 0 0) (0 0 0 0 0) (0 0 0 0 0)) ((0 0 \
0 0 0) (0 0 0 0 0) (0 0 0 0 0)))}
(%i11) fillarray (A4, makelist (i, i, 1, 2*3*5));
(%o11) {Array: #3A(((1 2 3 4 5) (6 7 8 9 10) (11 12 13 14 15))

((16 17 18 19 20) (21 22 23 24 25) (26 27 28 29 30)))}
(%i12) A4 [0, 2, 1];
(%o12) 12

280 Maxima Manual

Functionrearray (A, dim 1, ..., dim n)
Changes the dimensions of an array. The new array will be filled with the elements of
the old one in row-major order. If the old array was too small, the remaining elements
are filled with false, 0.0 or 0, depending on the type of the array. The type of the
array cannot be changed.

Functionremarray (A 1, ..., A n)
Functionremarray (all)

Removes arrays and array associated functions and frees the storage occupied. The
arguments may be declared arrays, undeclared (hashed) arrays, array functions, and
subscripted functions.
remarray (all) removes all items in the global list arrays.
It may be necessary to use this function if it is desired to redefine the values in a
hashed array.
remarray returns the list of arrays removed.

Functionsubvar (x, i)
Evaluates the subscripted expression x[i].
subvar evaluates its arguments.
arraymake (x, [i] constructs the expression x[i], but does not evaluate it.
Examples:

(%i1) x : foo $

(%i2) i : 3 $

(%i3) subvar (x, i);
(%o3) foo

3
(%i4) foo : [aa, bb, cc, dd, ee]$

(%i5) subvar (x, i);
(%o5) cc
(%i6) arraymake (x, [i]);
(%o6) foo

3
(%i7) ’’%;
(%o7) cc

Option variableuse fast arrays
- if true then only two types of arrays are recognized.
1) The art-q array (t in Common Lisp) which may have several dimensions indexed
by integers, and may hold any Lisp or Maxima object as an entry. To construct such
an array, enter a:make_array(any,3,4); then a will have as value, an array with
twelve slots, and the indexing is zero based.
2) The Hash table array which is the default type of array created if one does
b[x+1]:y^2 (and b is not already an array, a list, or a matrix – if it were one of

Chapter 24: Arrays 281

these an error would be caused since x+1 would not be a valid subscript for an art-q
array, a list or a matrix). Its indices (also known as keys) may be any object. It only
takes one key at a time (b[x+1,u]:y would ignore the u). Referencing is done by
b[x+1] ==> y^2. Of course the key may be a list, e.g. b[[x+1,u]]:y would be valid.
This is incompatible with the old Maxima hash arrays, but saves consing.
An advantage of storing the arrays as values of the symbol is that the usual conven-
tions about local variables of a function apply to arrays as well. The Hash table type
also uses less consing and is more efficient than the old type of Maxima hashar. To
obtain consistent behaviour in translated and compiled code set translate_fast_
arrays to be true.

282 Maxima Manual

Chapter 25: Matrices and Linear Algebra 283

25 Matrices and Linear Algebra

25.1 Introduction to Matrices and Linear Algebra

25.1.1 Dot

The operator . represents noncommutative multiplication and scalar product. When
the operands are 1-column or 1-row matrices a and b, the expression a.b is equivalent to
sum (a[i]*b[i], i, 1, length(a)). If a and b are not complex, this is the scalar product,
also called the inner product or dot product, of a and b. The scalar product is defined as
conjugate(a).b when a and b are complex; innerproduct in the eigen package provides
the complex scalar product.

When the operands are more general matrices, the product is the matrix product a and
b. The number of rows of b must equal the number of columns of a, and the result has
number of rows equal to the number of rows of a and number of columns equal to the
number of columns of b.

To distinguish . as an arithmetic operator from the decimal point in a floating point
number, it may be necessary to leave spaces on either side. For example, 5.e3 is 5000.0
but 5 . e3 is 5 times e3.

There are several flags which govern the simplification of expressions involving .,
namely dot, dot0nscsimp, dot0simp, dot1simp, dotassoc, dotconstrules, dotdistrib,
dotexptsimp, dotident, and dotscrules.

25.1.2 Vectors

vect is a package of functions for vector analysis. load ("vect") loads this package,
and demo ("vect") displays a demonstration.

The vector analysis package can combine and simplify symbolic expressions including dot
products and cross products, together with the gradient, divergence, curl, and Laplacian
operators. The distribution of these operators over sums or products is governed by several
flags, as are various other expansions, including expansion into components in any specific
orthogonal coordinate systems. There are also functions for deriving the scalar or vector
potential of a field.

The vect package contains these functions: vectorsimp, scalefactors, express,
potential, and vectorpotential.

Warning: the vect package declares the dot operator . to be a commutative operator.

25.1.3 eigen

The package eigen contains several functions devoted to the symbolic computation
of eigenvalues and eigenvectors. Maxima loads the package automatically if one of the
functions eigenvalues or eigenvectors is invoked. The package may be loaded explicitly
as load ("eigen").

284 Maxima Manual

demo ("eigen") displays a demonstration of the capabilities of this package. batch
("eigen") executes the same demonstration, but without the user prompt between succes-
sive computations.

The functions in the eigen package are innerproduct, unitvector,
columnvector, gramschmidt, eigenvalues, eigenvectors, uniteigenvectors,
and similaritytransform.

25.2 Functions and Variables for Matrices and Linear
Algebra

Functionaddcol (M, list 1, ..., list n)
Appends the column(s) given by the one or more lists (or matrices) onto the matrix
M.

Functionaddrow (M, list 1, ..., list n)
Appends the row(s) given by the one or more lists (or matrices) onto the matrix M.

Functionadjoint (M)
Returns the adjoint of the matrix M. The adjoint matrix is the transpose of the matrix
of cofactors of M.

Functionaugcoefmatrix ([eqn 1, ..., eqn m], [x 1, ..., x n])
Returns the augmented coefficient matrix for the variables x 1, ..., x n of the system
of linear equations eqn 1, ..., eqn m. This is the coefficient matrix with a column
adjoined for the constant terms in each equation (i.e., those terms not dependent
upon x 1, ..., x n).

(%i1) m: [2*x - (a - 1)*y = 5*b, c + b*y + a*x = 0]$
(%i2) augcoefmatrix (m, [x, y]);

[2 1 - a - 5 b]
(%o2) []

[a b c]

Functioncharpoly (M, x)
Returns the characteristic polynomial for the matrix M with respect to variable x.
That is, determinant (M - diagmatrix (length (M), x)).

(%i1) a: matrix ([3, 1], [2, 4]);
[3 1]

(%o1) []
[2 4]

(%i2) expand (charpoly (a, lambda));
2

(%o2) lambda - 7 lambda + 10
(%i3) (programmode: true, solve (%));
(%o3) [lambda = 5, lambda = 2]
(%i4) matrix ([x1], [x2]);

Chapter 25: Matrices and Linear Algebra 285

[x1]
(%o4) []

[x2]
(%i5) ev (a . % - lambda*%, %th(2)[1]);

[x2 - 2 x1]
(%o5) []

[2 x1 - x2]
(%i6) %[1, 1] = 0;
(%o6) x2 - 2 x1 = 0
(%i7) x2^2 + x1^2 = 1;

2 2
(%o7) x2 + x1 = 1
(%i8) solve ([%th(2), %], [x1, x2]);

1 2
(%o8) [[x1 = - -------, x2 = - -------],

sqrt(5) sqrt(5)

1 2
[x1 = -------, x2 = -------]]

sqrt(5) sqrt(5)

Functioncoefmatrix ([eqn 1, ..., eqn m], [x 1, ..., x n])
Returns the coefficient matrix for the variables x 1, ..., x n of the system of linear
equations eqn 1, ..., eqn m.

(%i1) coefmatrix([2*x-(a-1)*y+5*b = 0, b*y+a*x = 3], [x,y]);
[2 1 - a]

(%o1) []
[a b]

Functioncol (M, i)
Returns the i’th column of the matrix M. The return value is a matrix.

Functioncolumnvector (L)
Functioncovect (L)

Returns a matrix of one column and length (L) rows, containing the elements of the
list L.
covect is a synonym for columnvector.
load ("eigen") loads this function.
This is useful if you want to use parts of the outputs of the functions in this package
in matrix calculations.
Example:

(%i1) load ("eigen")$
Warning - you are redefining the Macsyma function eigenvalues
Warning - you are redefining the Macsyma function eigenvectors
(%i2) columnvector ([aa, bb, cc, dd]);

[aa]
[]

286 Maxima Manual

[bb]
(%o2) []

[cc]
[]
[dd]

Functionconjugate (x)
Returns the complex conjugate of x.

(%i1) declare ([aa, bb], real, cc, complex, ii, imaginary);

(%o1) done
(%i2) conjugate (aa + bb*%i);

(%o2) aa - %i bb
(%i3) conjugate (cc);

(%o3) conjugate(cc)
(%i4) conjugate (ii);

(%o4) - ii
(%i5) conjugate (xx + yy);

(%o5) conjugate(yy) + conjugate(xx)

Functioncopymatrix (M)
Returns a copy of the matrix M. This is the only way to make a copy aside from
copying M element by element.

Note that an assignment of one matrix to another, as in m2: m1, does not copy m1. An
assignment m2 [i,j]: x or setelmx (x, i, j, m2 also modifies m1 [i,j]. Creating
a copy with copymatrix and then using assignment creates a separate, modified copy.

Functiondeterminant (M)
Computes the determinant of M by a method similar to Gaussian elimination.

The form of the result depends upon the setting of the switch ratmx.

There is a special routine for computing sparse determinants which is called when the
switches ratmx and sparse are both true.

Option variabledetout
Default value: false

When detout is true, the determinant of a matrix whose inverse is computed is
factored out of the inverse.

For this switch to have an effect doallmxops and doscmxops should be false (see
their descriptions). Alternatively this switch can be given to ev which causes the
other two to be set correctly.

Example:

Chapter 25: Matrices and Linear Algebra 287

(%i1) m: matrix ([a, b], [c, d]);
[a b]

(%o1) []
[c d]

(%i2) detout: true$
(%i3) doallmxops: false$
(%i4) doscmxops: false$
(%i5) invert (m);

[d - b]
[]
[- c a]

(%o5) ------------
a d - b c

Functiondiagmatrix (n, x)
Returns a diagonal matrix of size n by n with the diagonal elements all equal to x.
diagmatrix (n, 1) returns an identity matrix (same as ident (n)).
n must evaluate to an integer, otherwise diagmatrix complains with an error message.
x can be any kind of expression, including another matrix. If x is a matrix, it is not
copied; all diagonal elements refer to the same instance, x.

Option variabledoallmxops
Default value: true
When doallmxops is true, all operations relating to matrices are carried out. When
it is false then the setting of the individual dot switches govern which operations
are performed.

Option variabledomxexpt
Default value: true
When domxexpt is true, a matrix exponential, exp (M) where M is a matrix, is
interpreted as a matrix with element [i,j equal to exp (m[i,j]). Otherwise exp
(M) evaluates to exp (ev(M).
domxexpt affects all expressions of the form base^power where base is an expression
assumed scalar or constant, and power is a list or matrix.
Example:

(%i1) m: matrix ([1, %i], [a+b, %pi]);
[1 %i]

(%o1) []
[b + a %pi]

(%i2) domxexpt: false$
(%i3) (1 - c)^m;

[1 %i]
[]
[b + a %pi]

(%o3) (1 - c)
(%i4) domxexpt: true$

288 Maxima Manual

(%i5) (1 - c)^m;
[%i]
[1 - c (1 - c)]

(%o5) []
[b + a %pi]
[(1 - c) (1 - c)]

Option variabledomxmxops
Default value: true

When domxmxops is true, all matrix-matrix or matrix-list operations are carried out
(but not scalar-matrix operations); if this switch is false such operations are not
carried out.

Option variabledomxnctimes
Default value: false

When domxnctimes is true, non-commutative products of matrices are carried out.

Option variabledontfactor
Default value: []

dontfactor may be set to a list of variables with respect to which factoring is not to
occur. (The list is initially empty.) Factoring also will not take place with respect to
any variables which are less important, according the variable ordering assumed for
canonical rational expression (CRE) form, than those on the dontfactor list.

Option variabledoscmxops
Default value: false

When doscmxops is true, scalar-matrix operations are carried out.

Option variabledoscmxplus
Default value: false

When doscmxplus is true, scalar-matrix operations yield a matrix result. This switch
is not subsumed under doallmxops.

Option variabledot0nscsimp
Default value: true

When dot0nscsimp is true, a non-commutative product of zero and a nonscalar term
is simplified to a commutative product.

Option variabledot0simp
Default value: true

When dot0simp is true, a non-commutative product of zero and a scalar term is
simplified to a commutative product.

Chapter 25: Matrices and Linear Algebra 289

Option variabledot1simp
Default value: true
When dot1simp is true, a non-commutative product of one and another term is
simplified to a commutative product.

Option variabledotassoc
Default value: true
When dotassoc is true, an expression (A.B).C simplifies to A.(B.C).

Option variabledotconstrules
Default value: true
When dotconstrules is true, a non-commutative product of a constant and another
term is simplified to a commutative product. Turning on this flag effectively turns on
dot0simp, dot0nscsimp, and dot1simp as well.

Option variabledotdistrib
Default value: false
When dotdistrib is true, an expression A.(B + C) simplifies to A.B + A.C.

Option variabledotexptsimp
Default value: true
When dotexptsimp is true, an expression A.A simplifies to A^^2.

Option variabledotident
Default value: 1
dotident is the value returned by X^^0.

Option variabledotscrules
Default value: false
When dotscrules is true, an expression A.SC or SC.A simplifies to SC*A and
A.(SC*B) simplifies to SC*(A.B).

Functionechelon (M)
Returns the echelon form of the matrix M, as produced by Gaussian elimination. The
echelon form is computed from M by elementary row operations such that the first
non-zero element in each row in the resulting matrix is one and the column elements
under the first one in each row are all zero.
triangularize also carries out Gaussian elimination, but it does not normalize the
leading non-zero element in each row.
lu_factor and cholesky are other functions which yield triangularized matrices.

(%i1) M: matrix ([3, 7, aa, bb], [-1, 8, 5, 2], [9, 2, 11, 4]);
[3 7 aa bb]
[]

(%o1) [- 1 8 5 2]

290 Maxima Manual

[]
[9 2 11 4]

(%i2) echelon (M);
[1 - 8 - 5 - 2]
[]
[28 11]
[0 1 -- --]

(%o2) [37 37]
[]
[37 bb - 119]
[0 0 1 -----------]
[37 aa - 313]

Functioneigenvalues (M)
Functioneivals (M)

Returns a list of two lists containing the eigenvalues of the matrix M. The first sublist
of the return value is the list of eigenvalues of the matrix, and the second sublist is
the list of the multiplicities of the eigenvalues in the corresponding order.
eivals is a synonym for eigenvalues.
eigenvalues calls the function solve to find the roots of the characteristic polynomial
of the matrix. Sometimes solve may not be able to find the roots of the polynomial;
in that case some other functions in this package (except innerproduct, unitvector,
columnvector and gramschmidt) will not work.
In some cases the eigenvalues found by solve may be complicated expressions. (This
may happen when solve returns a not-so-obviously real expression for an eigenvalue
which is known to be real.) It may be possible to simplify the eigenvalues using some
other functions.
The package eigen.mac is loaded automatically when eigenvalues or eigenvectors
is referenced. If eigen.mac is not already loaded, load ("eigen") loads it. After
loading, all functions and variables in the package are available.

Functioneigenvectors (M)
Functioneivects (M)

takes a matrix M as its argument and returns a list of lists the first sublist of which
is the output of eigenvalues and the other sublists of which are the eigenvectors of
the matrix corresponding to those eigenvalues respectively.
eivects is a synonym for eigenvectors.
The package eigen.mac is loaded automatically when eigenvalues or eigenvectors
is referenced. If eigen.mac is not already loaded, load ("eigen") loads it. After
loading, all functions and variables in the package are available.
The flags that affect this function are:
nondiagonalizable is set to true or false depending on whether the matrix is
nondiagonalizable or diagonalizable after eigenvectors returns.
hermitianmatrix when true, causes the degenerate eigenvectors of the Hermitian
matrix to be orthogonalized using the Gram-Schmidt algorithm.

Chapter 25: Matrices and Linear Algebra 291

knowneigvals when true causes the eigen package to assume the eigenvalues of
the matrix are known to the user and stored under the global name listeigvals.
listeigvals should be set to a list similar to the output eigenvalues.

The function algsys is used here to solve for the eigenvectors. Sometimes if the
eigenvalues are messy, algsys may not be able to find a solution. In some cases, it
may be possible to simplify the eigenvalues by first finding them using eigenvalues
command and then using other functions to reduce them to something simpler. Fol-
lowing simplification, eigenvectors can be called again with the knowneigvals flag
set to true.

Functionematrix (m, n, x, i, j)
Returns an m by n matrix, all elements of which are zero except for the [i, j] element
which is x.

Functionentermatrix (m, n)
Returns an m by n matrix, reading the elements interactively.

If n is equal to m, Maxima prompts for the type of the matrix (diagonal, symmetric,
antisymmetric, or general) and for each element. Each response is terminated by a
semicolon ; or dollar sign $.

If n is not equal to m, Maxima prompts for each element.

The elements may be any expressions, which are evaluated. entermatrix evaluates
its arguments.

(%i1) n: 3$
(%i2) m: entermatrix (n, n)$

Is the matrix 1. Diagonal 2. Symmetric 3. Antisymmetric
4. General
Answer 1, 2, 3 or 4 :
1$
Row 1 Column 1:
(a+b)^n$
Row 2 Column 2:
(a+b)^(n+1)$
Row 3 Column 3:
(a+b)^(n+2)$

Matrix entered.
(%i3) m;

[3]
[(b + a) 0 0]
[]

(%o3) [4]
[0 (b + a) 0]
[]
[5]
[0 0 (b + a)]

292 Maxima Manual

Functiongenmatrix (a, i 2, j 2, i 1, j 1)
Functiongenmatrix (a, i 2, j 2, i 1)
Functiongenmatrix (a, i 2, j 2)

Returns a matrix generated from a, taking element a[i 1,j 1] as the upper-left ele-
ment and a[i 2,j 2] as the lower-right element of the matrix. Here a is a declared
array (created by array but not by make_array) or an undeclared array, or an array
function, or a lambda expression of two arguments. (An array function is created like
other functions with := or define, but arguments are enclosed in square brackets
instead of parentheses.)
If j 1 is omitted, it is assumed equal to i 1. If both j 1 and i 1 are omitted, both are
assumed equal to 1.
If a selected element i,j of the array is undefined, the matrix will contain a symbolic
element a[i,j].
Examples:

(%i1) h [i, j] := 1 / (i + j - 1);
1

(%o1) h := ---------
i, j i + j - 1

(%i2) genmatrix (h, 3, 3);
[1 1]
[1 - -]
[2 3]
[]
[1 1 1]

(%o2) [- - -]
[2 3 4]
[]
[1 1 1]
[- - -]
[3 4 5]

(%i3) array (a, fixnum, 2, 2);
(%o3) a
(%i4) a [1, 1] : %e;
(%o4) %e
(%i5) a [2, 2] : %pi;
(%o5) %pi
(%i6) genmatrix (a, 2, 2);

[%e 0]
(%o6) []

[0 %pi]
(%i7) genmatrix (lambda ([i, j], j - i), 3, 3);

[0 1 2]
[]

(%o7) [- 1 0 1]
[]
[- 2 - 1 0]

(%i8) genmatrix (B, 2, 2);
[B B]

Chapter 25: Matrices and Linear Algebra 293

[1, 1 1, 2]
(%o8) []

[B B]
[2, 1 2, 2]

Functiongramschmidt (x)
Functiongramschmidt (x, F)

Carries out the Gram-Schmidt orthogonalization algorithm on x, which is either a
matrix or a list of lists. x is not modified by gramschmidt. The inner product
employed by gramschmidt is F, if present, otherwise the inner product is the function
innerproduct.

If x is a matrix, the algorithm is applied to the rows of x. If x is a list of lists, the
algorithm is applied to the sublists, which must have equal numbers of elements. In
either case, the return value is a list of lists, the sublists of which are orthogonal and
span the same space as x. If the dimension of the span of x is less than the number
of rows or sublists, some sublists of the return value are zero.

factor is called at each stage of the algorithm to simplify intermediate results. As a
consequence, the return value may contain factored integers.

load(eigen) loads this function.

Example:

Gram-Schmidt algorithm using default inner product function.

(%i1) load (eigen)$
(%i2) x: matrix ([1, 2, 3], [9, 18, 30], [12, 48, 60]);

[1 2 3]
[]

(%o2) [9 18 30]
[]
[12 48 60]

(%i3) y: gramschmidt (x);
2 2 4 3
3 3 3 5 2 3 2 3

(%o3) [[1, 2, 3], [- ---, - --, ---], [- ----, ----, 0]]
2 7 7 2 7 5 5

(%i4) map (innerproduct, [y[1], y[2], y[3]], [y[2], y[3], y[1]]);
(%o4) [0, 0, 0]

Gram-Schmidt algorithm using a specified inner product function.

(%i1) load (eigen)$
(%i2) ip (f, g) := integrate (f * g, u, a, b);
(%o2) ip(f, g) := integrate(f g, u, a, b)
(%i3) y : gramschmidt ([1, sin(u), cos(u)], ip), a= -%pi/2, b=%pi/2;

%pi cos(u) - 2
(%o3) [1, sin(u), --------------]

%pi
(%i4) map (ip, [y[1], y[2], y[3]], [y[2], y[3], y[1]]), a= -%pi/2, b=%pi/2;
(%o4) [0, 0, 0]

294 Maxima Manual

Functionident (n)
Returns an n by n identity matrix.

Functioninnerproduct (x, y)
Functioninprod (x, y)

Returns the inner product (also called the scalar product or dot product) of x and y,
which are lists of equal length, or both 1-column or 1-row matrices of equal length.
The return value is conjugate (x) . y, where . is the noncommutative multiplication
operator.

load ("eigen") loads this function.

inprod is a synonym for innerproduct.

Functioninvert (M)
Returns the inverse of the matrix M. The inverse is computed by the adjoint method.

This allows a user to compute the inverse of a matrix with bfloat entries or polynomials
with floating pt. coefficients without converting to cre-form.

Cofactors are computed by the determinant function, so if ratmx is false the inverse
is computed without changing the representation of the elements.

The current implementation is inefficient for matrices of high order.

When detout is true, the determinant is factored out of the inverse.

The elements of the inverse are not automatically expanded. If M has polynomial ele-
ments, better appearing output can be generated by expand (invert (m)), detout.
If it is desirable to then divide through by the determinant this can be accomplished
by xthru (%) or alternatively from scratch by

expand (adjoint (m)) / expand (determinant (m))
invert (m) := adjoint (m) / determinant (m)

See ^^ (noncommutative exponent) for another method of inverting a matrix.

Option variablelmxchar
Default value: [

lmxchar is the character displayed as the left delimiter of a matrix. See also rmxchar.

Example:
(%i1) lmxchar: "|"$
(%i2) matrix ([a, b, c], [d, e, f], [g, h, i]);

| a b c]
|]

(%o2) | d e f]
|]
| g h i]

Functionmatrix (row 1, ..., row n)
Returns a rectangular matrix which has the rows row 1, ..., row n. Each row is a list
of expressions. All rows must be the same length.

Chapter 25: Matrices and Linear Algebra 295

The operations + (addition), - (subtraction), * (multiplication), and / (division), are
carried out element by element when the operands are two matrices, a scalar and a
matrix, or a matrix and a scalar. The operation ^ (exponentiation, equivalently **) is
carried out element by element if the operands are a scalar and a matrix or a matrix
and a scalar, but not if the operands are two matrices. All operations are normally
carried out in full, including . (noncommutative multiplication).
Matrix multiplication is represented by the noncommutative multiplication operator
.. The corresponding noncommutative exponentiation operator is ^^. For a matrix
A, A.A = A^^2 and A^^-1 is the inverse of A, if it exists.
There are switches for controlling simplification of expressions involving dot and
matrix-list operations. These are doallmxops, domxexpt domxmxops, doscmxops,
and doscmxplus.
There are additional options which are related to matrices. These are: lmxchar,
rmxchar, ratmx, listarith, detout, scalarmatrix, and sparse.
There are a number of functions which take matrices as arguments or yield ma-
trices as return values. See eigenvalues, eigenvectors, determinant, charpoly,
genmatrix, addcol, addrow, copymatrix, transpose, echelon, and rank.
Examples:
• Construction of matrices from lists.

(%i1) x: matrix ([17, 3], [-8, 11]);
[17 3]

(%o1) []
[- 8 11]

(%i2) y: matrix ([%pi, %e], [a, b]);
[%pi %e]

(%o2) []
[a b]

• Addition, element by element.
(%i3) x + y;

[%pi + 17 %e + 3]
(%o3) []

[a - 8 b + 11]

• Subtraction, element by element.
(%i4) x - y;

[17 - %pi 3 - %e]
(%o4) []

[- a - 8 11 - b]

• Multiplication, element by element.
(%i5) x * y;

[17 %pi 3 %e]
(%o5) []

[- 8 a 11 b]

• Division, element by element.
(%i6) x / y;

[17 - 1]

296 Maxima Manual

[--- 3 %e]
[%pi]

(%o6) []
[8 11]
[- - --]
[a b]

• Matrix to a scalar exponent, element by element.
(%i7) x ^ 3;

[4913 27]
(%o7) []

[- 512 1331]

• Scalar base to a matrix exponent, element by element.
(%i8) exp(y);

[%pi %e]
[%e %e]

(%o8) []
[a b]
[%e %e]

• Matrix base to a matrix exponent. This is not carried out element by element.
(%i9) x ^ y;

[%pi %e]
[]
[a b]

[17 3]
(%o9) []

[- 8 11]

• Noncommutative matrix multiplication.
(%i10) x . y;

[3 a + 17 %pi 3 b + 17 %e]
(%o10) []

[11 a - 8 %pi 11 b - 8 %e]
(%i11) y . x;

[17 %pi - 8 %e 3 %pi + 11 %e]
(%o11) []

[17 a - 8 b 11 b + 3 a]

• Noncommutative matrix exponentiation. A scalar base b to a matrix power M
is carried out element by element and so b^^m is the same as b^m.
(%i12) x ^^ 3;

[3833 1719]
(%o12) []

[- 4584 395]
(%i13) %e ^^ y;

[%pi %e]
[%e %e]

(%o13) []
[a b]
[%e %e]

Chapter 25: Matrices and Linear Algebra 297

• A matrix raised to a -1 exponent with noncommutative exponentiation is the
matrix inverse, if it exists.
(%i14) x ^^ -1;

[11 3]
[--- - ---]
[211 211]

(%o14) []
[8 17]
[--- ---]
[211 211]

(%i15) x . (x ^^ -1);
[1 0]

(%o15) []
[0 1]

Functionmatrixmap (f, M)
Returns a matrix with element i,j equal to f (M[i,j]).
See also map, fullmap, fullmapl, and apply.

Functionmatrixp (expr)
Returns true if expr is a matrix, otherwise false.

Option variablematrix element add
Default value: +
matrix_element_add is the operation invoked in place of addition in a matrix mul-
tiplication. matrix_element_add can be assigned any n-ary operator (that is, a
function which handles any number of arguments). The assigned value may be the
name of an operator enclosed in quote marks, the name of a function, or a lambda
expression.
See also matrix_element_mult and matrix_element_transpose.
Example:

(%i1) matrix_element_add: "*"$
(%i2) matrix_element_mult: "^"$
(%i3) aa: matrix ([a, b, c], [d, e, f]);

[a b c]
(%o3) []

[d e f]
(%i4) bb: matrix ([u, v, w], [x, y, z]);

[u v w]
(%o4) []

[x y z]
(%i5) aa . transpose (bb);

[u v w x y z]
[a b c a b c]

(%o5) []
[u v w x y z]
[d e f d e f]

298 Maxima Manual

Option variablematrix element mult
Default value: *

matrix_element_mult is the operation invoked in place of multiplication in a matrix
multiplication. matrix_element_mult can be assigned any binary operator. The
assigned value may be the name of an operator enclosed in quote marks, the name of
a function, or a lambda expression.

The dot operator . is a useful choice in some contexts.

See also matrix_element_add and matrix_element_transpose.

Example:
(%i1) matrix_element_add: lambda ([[x]], sqrt (apply ("+", x)))$
(%i2) matrix_element_mult: lambda ([x, y], (x - y)^2)$
(%i3) [a, b, c] . [x, y, z];

2 2 2
(%o3) sqrt((c - z) + (b - y) + (a - x))
(%i4) aa: matrix ([a, b, c], [d, e, f]);

[a b c]
(%o4) []

[d e f]
(%i5) bb: matrix ([u, v, w], [x, y, z]);

[u v w]
(%o5) []

[x y z]
(%i6) aa . transpose (bb);

[2 2 2]
[sqrt((c - w) + (b - v) + (a - u))]

(%o6) Col 1 = []
[2 2 2]
[sqrt((f - w) + (e - v) + (d - u))]

[2 2 2]
[sqrt((c - z) + (b - y) + (a - x))]

Col 2 = []
[2 2 2]
[sqrt((f - z) + (e - y) + (d - x))]

Option variablematrix element transpose
Default value: false

matrix_element_transpose is the operation applied to each element of a matrix
when it is transposed. matrix_element_mult can be assigned any unary operator.
The assigned value may be the name of an operator enclosed in quote marks, the
name of a function, or a lambda expression.

When matrix_element_transpose equals transpose, the transpose function is ap-
plied to every element. When matrix_element_transpose equals nonscalars, the
transpose function is applied to every nonscalar element. If some element is an atom,
the nonscalars option applies transpose only if the atom is declared nonscalar, while
the transpose option always applies transpose.

Chapter 25: Matrices and Linear Algebra 299

The default value, false, means no operation is applied.
See also matrix_element_add and matrix_element_mult.
Examples:

(%i1) declare (a, nonscalar)$
(%i2) transpose ([a, b]);

[transpose(a)]
(%o2) []

[b]
(%i3) matrix_element_transpose: nonscalars$
(%i4) transpose ([a, b]);

[transpose(a)]
(%o4) []

[b]
(%i5) matrix_element_transpose: transpose$
(%i6) transpose ([a, b]);

[transpose(a)]
(%o6) []

[transpose(b)]
(%i7) matrix_element_transpose: lambda ([x], realpart(x)

- %i*imagpart(x))$
(%i8) m: matrix ([1 + 5*%i, 3 - 2*%i], [7*%i, 11]);

[5 %i + 1 3 - 2 %i]
(%o8) []

[7 %i 11]
(%i9) transpose (m);

[1 - 5 %i - 7 %i]
(%o9) []

[2 %i + 3 11]

Functionmattrace (M)
Returns the trace (that is, the sum of the elements on the main diagonal) of the
square matrix M.
mattrace is called by ncharpoly, an alternative to Maxima’s charpoly.
load ("nchrpl") loads this function.

Functionminor (M, i, j)
Returns the i, j minor of the matrix M. That is, M with row i and column j removed.

Functionncexpt (a, b)
If a non-commutative exponential expression is too wide to be displayed as a^^b it
appears as ncexpt (a,b).
ncexpt is not the name of a function or operator; the name only appears in output,
and is not recognized in input.

Functionncharpoly (M, x)
Returns the characteristic polynomial of the matrix M with respect to x. This is an
alternative to Maxima’s charpoly.

300 Maxima Manual

ncharpoly works by computing traces of powers of the given matrix, which are known
to be equal to sums of powers of the roots of the characteristic polynomial. From
these quantities the symmetric functions of the roots can be calculated, which are
nothing more than the coefficients of the characteristic polynomial. charpoly works
by forming the determinant of x * ident [n] - a. Thus ncharpoly wins, for example,
in the case of large dense matrices filled with integers, since it avoids polynomial
arithmetic altogether.

load ("nchrpl") loads this file.

Functionnewdet (M, n)
Computes the determinant of the matrix or array M by the Johnson-Gentleman tree
minor algorithm. The argument n is the order; it is optional if M is a matrix.

Declarationnonscalar
Makes atoms behave as does a list or matrix with respect to the dot operator.

Functionnonscalarp (expr)
Returns true if expr is a non-scalar, i.e., it contains atoms declared as non-scalars,
lists, or matrices.

Functionpermanent (M, n)
Computes the permanent of the matrix M. A permanent is like a determinant but
with no sign changes.

Functionrank (M)
Computes the rank of the matrix M. That is, the order of the largest non-singular
subdeterminant of M.

rank may return the wrong answer if it cannot determine that a matrix element that
is equivalent to zero is indeed so.

Option variableratmx
Default value: false

When ratmx is false, determinant and matrix addition, subtraction, and multiplica-
tion are performed in the representation of the matrix elements and cause the result
of matrix inversion to be left in general representation.

When ratmx is true, the 4 operations mentioned above are performed in CRE form
and the result of matrix inverse is in CRE form. Note that this may cause the elements
to be expanded (depending on the setting of ratfac) which might not always be
desired.

Functionrow (M, i)
Returns the i’th row of the matrix M. The return value is a matrix.

Chapter 25: Matrices and Linear Algebra 301

Option variablescalarmatrixp
Default value: true
When scalarmatrixp is true, then whenever a 1 x 1 matrix is produced as a result
of computing the dot product of matrices it is simplified to a scalar, namely the sole
element of the matrix.
When scalarmatrixp is all, then all 1 x 1 matrices are simplified to scalars.
When scalarmatrixp is false, 1 x 1 matrices are not simplified to scalars.

Functionscalefactors (coordinatetransform)
Here coordinatetransform evaluates to the form [[expression1, expression2, ...], in-
determinate1, indeterminat2, ...], where indeterminate1, indeterminate2, etc. are
the curvilinear coordinate variables and where a set of rectangular Cartesian compo-
nents is given in terms of the curvilinear coordinates by [expression1, expression2, ...].
coordinates is set to the vector [indeterminate1, indeterminate2,...], and dimension
is set to the length of this vector. SF[1], SF[2], ..., SF[DIMENSION] are set to the co-
ordinate scale factors, and sfprod is set to the product of these scale factors. Initially,
coordinates is [X, Y, Z], dimension is 3, and SF[1]=SF[2]=SF[3]=SFPROD=1, cor-
responding to 3-dimensional rectangular Cartesian coordinates. To expand an expres-
sion into physical components in the current coordinate system, there is a function
with usage of the form

Functionsetelmx (x, i, j, M)
Assigns x to the (i, j)’th element of the matrix M, and returns the altered matrix.
M [i, j]: x has the same effect, but returns x instead of M.

Functionsimilaritytransform (M)
Functionsimtran (M)

similaritytransform computes a similarity transform of the matrix M. It returns a
list which is the output of the uniteigenvectors command. In addition if the flag
nondiagonalizable is false two global matrices leftmatrix and rightmatrix are
computed. These matrices have the property that leftmatrix . M . rightmatrix is
a diagonal matrix with the eigenvalues of M on the diagonal. If nondiagonalizable
is true the left and right matrices are not computed.
If the flag hermitianmatrix is true then leftmatrix is the complex conjugate of
the transpose of rightmatrix. Otherwise leftmatrix is the inverse of rightmatrix.
rightmatrix is the matrix the columns of which are the unit eigenvectors of M.
The other flags (see eigenvalues and eigenvectors) have the same effects since
similaritytransform calls the other functions in the package in order to be able to
form rightmatrix.
load ("eigen") loads this function.
simtran is a synonym for similaritytransform.

Option variablesparse
Default value: false
When sparse is true, and if ratmx is true, then determinant will use special routines
for computing sparse determinants.

302 Maxima Manual

Functionsubmatrix (i 1, ..., i m, M, j 1, ..., j n)
Functionsubmatrix (i 1, ..., i m, M)
Functionsubmatrix (M, j 1, ..., j n)

Returns a new matrix composed of the matrix M with rows i 1, ..., i m deleted, and
columns j 1, ..., j n deleted.

Functiontranspose (M)
Returns the transpose of M.
If M is a matrix, the return value is another matrix N such that N[i,j] = M[j,i].
If M is a list, the return value is a matrix N of length (m) rows and 1 column, such
that N[i,1] = M[i].
Otherwise M is a symbol, and the return value is a noun expression ’transpose
(M).

Functiontriangularize (M)
Returns the upper triangular form of the matrix M, as produced by Gaussian elim-
ination. The return value is the same as echelon, except that the leading nonzero
coefficient in each row is not normalized to 1.
lu_factor and cholesky are other functions which yield triangularized matrices.

(%i1) M: matrix ([3, 7, aa, bb], [-1, 8, 5, 2], [9, 2, 11, 4]);
[3 7 aa bb]
[]

(%o1) [- 1 8 5 2]
[]
[9 2 11 4]

(%i2) triangularize (M);
[- 1 8 5 2]
[]

(%o2) [0 - 74 - 56 - 22]
[]
[0 0 626 - 74 aa 238 - 74 bb]

Functionuniteigenvectors (M)
Functionueivects (M)

Computes unit eigenvectors of the matrix M. The return value is a list of lists, the first
sublist of which is the output of the eigenvalues command, and the other sublists
of which are the unit eigenvectors of the matrix corresponding to those eigenvalues
respectively.
The flags mentioned in the description of the eigenvectors command have the same
effects in this one as well.
When knowneigvects is true, the eigen package assumes that the eigenvectors of the
matrix are known to the user and are stored under the global name listeigvects.
listeigvects should be set to a list similar to the output of the eigenvectors
command.
If knowneigvects is set to true and the list of eigenvectors is given the setting of the
flag nondiagonalizable may not be correct. If that is the case please set it to the

Chapter 25: Matrices and Linear Algebra 303

correct value. The author assumes that the user knows what he is doing and will not
try to diagonalize a matrix the eigenvectors of which do not span the vector space of
the appropriate dimension.
load ("eigen") loads this function.
ueivects is a synonym for uniteigenvectors.

Functionunitvector (x)
Functionuvect (x)

Returns x/norm(x); this is a unit vector in the same direction as x.
load ("eigen") loads this function.
uvect is a synonym for unitvector.

Functionvectorsimp (expr)
Applies simplifications and expansions according to the following global flags:
expandall, expanddot, expanddotplus, expandcross, expandcrossplus,
expandcrosscross, expandgrad, expandgradplus, expandgradprod, expanddiv,
expanddivplus, expanddivprod, expandcurl, expandcurlplus, expandcurlcurl,
expandlaplacian, expandlaplacianplus, and expandlaplacianprod.
All these flags have default value false. The plus suffix refers to employing additivity
or distributivity. The prod suffix refers to the expansion for an operand that is any
kind of product.

expandcrosscross
Simplifies p (q r) to (p.r) ∗ q − (p.q) ∗ r.

expandcurlcurl
Simplifies curlcurlp to graddivp+ divgradp.

expandlaplaciantodivgrad
Simplifies laplacianp to divgradp.

expandcross
Enables expandcrossplus and expandcrosscross.

expandplus
Enables expanddotplus, expandcrossplus, expandgradplus,
expanddivplus, expandcurlplus, and expandlaplacianplus.

expandprod
Enables expandgradprod, expanddivprod, and expandlaplacianprod.

These flags have all been declared evflag.

Option variablevect cross
Default value: false
When vect_cross is true, it allows DIFF(X~Y,T) to work where ~ is defined in
SHARE;VECT (where VECT CROSS is set to true, anyway.)

Functionzeromatrix (m, n)
Returns an m by n matrix, all elements of which are zero.

304 Maxima Manual

Special symbol[
Special symbol]

[and] mark the beginning and end, respectively, of a list.
[and] also enclose the subscripts of a list, array, hash array, or array function.
Examples:

(%i1) x: [a, b, c];
(%o1) [a, b, c]
(%i2) x[3];
(%o2) c
(%i3) array (y, fixnum, 3);
(%o3) y
(%i4) y[2]: %pi;
(%o4) %pi
(%i5) y[2];
(%o5) %pi
(%i6) z[’foo]: ’bar;
(%o6) bar
(%i7) z[’foo];
(%o7) bar
(%i8) g[k] := 1/(k^2+1);

1
(%o8) g := ------

k 2
k + 1

(%i9) g[10];
1

(%o9) ---
101

Chapter 26: Affine 305

26 Affine

26.1 Introduction to Affine

affine is a package to work with groups of polynomials.

26.2 Functions and Variables for Affine

Functionfast linsolve ([expr 1, ..., expr m], [x 1, ..., x n])
Solves the simultaneous linear equations expr 1, ..., expr m for the variables x 1, ...,
x n. Each expr i may be an equation or a general expression; if given as a general
expression, it is treated as an equation of the form expr i = 0.

The return value is a list of equations of the form [x 1 = a 1, ..., x n = a n] where
a 1, ..., a n are all free of x 1, ..., x n.

fast_linsolve is faster than linsolve for system of equations which are sparse.

load(affine) loads this function.

Functiongrobner basis ([expr 1, ..., expr m])
Returns a Groebner basis for the equations expr 1, ..., expr m. The function polysimp
can then be used to simplify other functions relative to the equations.

grobner_basis ([3*x^2+1, y*x])$

polysimp (y^2*x + x^3*9 + 2) ==> -3*x + 2

polysimp(f) yields 0 if and only if f is in the ideal generated by expr 1, ..., expr m,
that is, if and only if f is a polynomial combination of the elements of expr 1, ...,
expr m.

load(affine) loads this function.

Functionset up dot simplifications (eqns, check through degree)
Functionset up dot simplifications (eqns)

The eqns are polynomial equations in non commutative variables. The value of
current_variables is the list of variables used for computing degrees. The equations
must be homogeneous, in order for the procedure to terminate.

If you have checked overlapping simplifications in dot_simplifications above the
degree of f, then the following is true: dotsimp (f) yields 0 if and only if f is in the
ideal generated by the equations, i.e., if and only if f is a polynomial combination of
the elements of the equations.

The degree is that returned by nc_degree. This in turn is influenced by the weights
of individual variables.

load(affine) loads this function.

306 Maxima Manual

Functiondeclare weights (x 1, w 1, ..., x n, w n)
Assigns weights w 1, ..., w n to x 1, ..., x n, respectively. These are the weights used
in computing nc_degree.
load(affine) loads this function.

Functionnc degree (p)
Returns the degree of a noncommutative polynomial p. See declare_weights.
load(affine) loads this function.

Functiondotsimp (f)
Returns 0 if and only if f is in the ideal generated by the equations, i.e., if and only
if f is a polynomial combination of the elements of the equations.
load(affine) loads this function.

Functionfast central elements ([x 1, ..., x n], n)
If set_up_dot_simplifications has been previously done, finds the central polyno-
mials in the variables x 1, ..., x n in the given degree, n.
For example:

set_up_dot_simplifications ([y.x + x.y], 3);
fast_central_elements ([x, y], 2);
[y.y, x.x];

load(affine) loads this function.

Functioncheck overlaps (n, add to simps)
Checks the overlaps thru degree n, making sure that you have sufficient simplification
rules in each degree, for dotsimp to work correctly. This process can be speeded
up if you know before hand what the dimension of the space of monomials is. If it
is of finite global dimension, then hilbert should be used. If you don’t know the
monomial dimensions, do not specify a rank_function. An optional third argument
reset, false says don’t bother to query about resetting things.
load(affine) loads this function.

Functionmono ([x 1, ..., x n], n)
Returns the list of independent monomials relative to the current dot simplifications
of degree n in the variables x 1, ..., x n.
load(affine) loads this function.

Functionmonomial dimensions (n)
Compute the Hilbert series through degree n for the current algebra.
load(affine) loads this function.

Functionextract linear equations ([p 1, ..., p n], [m 1, ..., m n])
Makes a list of the coefficients of the noncommutative polynomials p 1, ..., p n of the
noncommutative monomials m 1, ..., m n. The coefficients should be scalars. Use
list_nc_monomials to build the list of monomials.
load(affine) loads this function.

Chapter 26: Affine 307

Functionlist nc monomials ([p 1, ..., p n])
Functionlist nc monomials (p)

Returns a list of the non commutative monomials occurring in a polynomial p or a
list of polynomials p 1, ..., p n.
load(affine) loads this function.

Option variableall dotsimp denoms
Default value: false
When all_dotsimp_denoms is a list, the denominators encountered by dotsimp are
appended to the list. all_dotsimp_denoms may be initialized to an empty list []
before calling dotsimp.
By default, denominators are not collected by dotsimp.

308 Maxima Manual

Chapter 27: itensor 309

27 itensor

27.1 Introduction to itensor

Maxima implements symbolic tensor manipulation of two distinct types: component ten-
sor manipulation (ctensor package) and indicial tensor manipulation (itensor package).

Nota bene: Please see the note on ’new tensor notation’ below.
Component tensor manipulation means that geometrical tensor objects are represented

as arrays or matrices. Tensor operations such as contraction or covariant differentiation are
carried out by actually summing over repeated (dummy) indices with do statements. That
is, one explicitly performs operations on the appropriate tensor components stored in an
array or matrix.

Indicial tensor manipulation is implemented by representing tensors as functions of their
covariant, contravariant and derivative indices. Tensor operations such as contraction or
covariant differentiation are performed by manipulating the indices themselves rather than
the components to which they correspond.

These two approaches to the treatment of differential, algebraic and analytic processes
in the context of Riemannian geometry have various advantages and disadvantages which
reveal themselves only through the particular nature and difficulty of the user’s problem.
However, one should keep in mind the following characteristics of the two implementations:

The representation of tensors and tensor operations explicitly in terms of their compo-
nents makes ctensor easy to use. Specification of the metric and the computation of the
induced tensors and invariants is straightforward. Although all of Maxima’s powerful sim-
plification capacity is at hand, a complex metric with intricate functional and coordinate
dependencies can easily lead to expressions whose size is excessive and whose structure is
hidden. In addition, many calculations involve intermediate expressions which swell causing
programs to terminate before completion. Through experience, a user can avoid many of
these difficulties.

Because of the special way in which tensors and tensor operations are represented in
terms of symbolic operations on their indices, expressions which in the component repre-
sentation would be unmanageable can sometimes be greatly simplified by using the special
routines for symmetrical objects in itensor. In this way the structure of a large expression
may be more transparent. On the other hand, because of the the special indicial represen-
tation in itensor, in some cases the user may find difficulty with the specification of the
metric, function definition, and the evaluation of differentiated "indexed" objects.

The itensor package can carry out differentiation with respect to an indexed vari-
able, which allows one to use the package when dealing with Lagrangian and Hamiltonian
formalisms. As it is possible to differentiate a field Lagrangian with respect to an (in-
dexed) field variable, one can use Maxima to derive the corresponding Euler-Lagrange
equations in indicial form. These equations can be translated into component tensor
(ctensor) programs using the ic_convert function, allowing us to solve the field equa-
tions in a particular coordinate representation, or to recast the equations of motion in
Hamiltonian form. See einhil.dem and bradic.dem for two comprehensive examples. The
first, einhil.dem, uses the Einstein-Hilbert action to derive the Einstein field tensor in

310 Maxima Manual

the homogeneous and isotropic case (Friedmann equations) and the spherically symmet-
ric, static case (Schwarzschild solution.) The second, bradic.dem, demonstrates how to
compute the Friedmann equations from the action of Brans-Dicke gravity theory, and also
derives the Hamiltonian associated with the theory’s scalar field.

27.1.1 New tensor notation

Earlier versions of the itensor package in Maxima used a notation that sometimes led
to incorrect index ordering. Consider the following, for instance:

(%i2) imetric(g);
(%o2) done
(%i3) ishow(g([],[j,k])*g([],[i,l])*a([i,j],[]))$

i l j k
(%t3) g g a

i j
(%i4) ishow(contract(%))$

k l
(%t4) a

This result is incorrect unless a happens to be a symmetric tensor. The reason why this
happens is that although itensor correctly maintains the order within the set of covariant
and contravariant indices, once an index is raised or lowered, its position relative to the
other set of indices is lost.

To avoid this problem, a new notation has been developed that remains fully compatible
with the existing notation and can be used interchangeably. In this notation, contravariant
indices are inserted in the appropriate positions in the covariant index list, but with a
minus sign prepended. Functions like contract and ishow are now aware of this new index
notation and can process tensors appropriately.

In this new notation, the previous example yields a correct result:
(%i5) ishow(g([-j,-k],[])*g([-i,-l],[])*a([i,j],[]))$

i l j k
(%t5) g a g

i j
(%i6) ishow(contract(%))$

l k
(%t6) a

Presently, the only code that makes use of this notation is the lc2kdt function. Through
this notation, it achieves consistent results as it applies the metric tensor to resolve Levi-
Civita symbols without resorting to numeric indices.

Since this code is brand new, it probably contains bugs. While it has been tested to make
sure that it doesn’t break anything using the "old" tensor notation, there is a considerable
chance that "new" tensors will fail to interoperate with certain functions or features. These
bugs will be fixed as they are encountered... until then, caveat emptor!

27.1.2 Indicial tensor manipulation

The indicial tensor manipulation package may be loaded by load(itensor). Demos are
also available: try demo(tensor).

Chapter 27: itensor 311

In itensor a tensor is represented as an "indexed object" . This is a function of 3
groups of indices which represent the covariant, contravariant and derivative indices. The
covariant indices are specified by a list as the first argument to the indexed object, and the
contravariant indices by a list as the second argument. If the indexed object lacks either
of these groups of indices then the empty list [] is given as the corresponding argument.
Thus, g([a,b],[c]) represents an indexed object called g which has two covariant indices
(a,b), one contravariant index (c) and no derivative indices.

The derivative indices, if they are present, are appended as additional arguments to the
symbolic function representing the tensor. They can be explicitly specified by the user or
be created in the process of differentiation with respect to some coordinate variable. Since
ordinary differentiation is commutative, the derivative indices are sorted alphanumerically,
unless iframe_flag is set to true, indicating that a frame metric is being used. This canon-
ical ordering makes it possible for Maxima to recognize that, for example, t([a],[b],i,j)
is the same as t([a],[b],j,i). Differentiation of an indexed object with respect to some
coordinate whose index does not appear as an argument to the indexed object would nor-
mally yield zero. This is because Maxima would not know that the tensor represented by
the indexed object might depend implicitly on the corresponding coordinate. By modify-
ing the existing Maxima function diff in itensor, Maxima now assumes that all indexed
objects depend on any variable of differentiation unless otherwise stated. This makes it
possible for the summation convention to be extended to derivative indices. It should be
noted that itensor does not possess the capabilities of raising derivative indices, and so
they are always treated as covariant.

The following functions are available in the tensor package for manipulating indexed
objects. At present, with respect to the simplification routines, it is assumed that indexed
objects do not by default possess symmetry properties. This can be overridden by setting the
variable allsym[false] to true, which will result in treating all indexed objects completely
symmetric in their lists of covariant indices and symmetric in their lists of contravariant
indices.

The itensor package generally treats tensors as opaque objects. Tensorial equations
are manipulated based on algebraic rules, specifically symmetry and contraction rules. In
addition, the itensor package understands covariant differentiation, curvature, and torsion.
Calculations can be performed relative to a metric of moving frame, depending on the setting
of the iframe_flag variable.

A sample session below demonstrates how to load the itensor package, specify the name
of the metric, and perform some simple calculations.

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) imetric(g);
(%o2) done
(%i3) components(g([i,j],[]),p([i,j],[])*e([],[]))$
(%i4) ishow(g([k,l],[]))$
(%t4) e p

k l
(%i5) ishow(diff(v([i],[]),t))$
(%t5) 0
(%i6) depends(v,t);

312 Maxima Manual

(%o6) [v(t)]
(%i7) ishow(diff(v([i],[]),t))$

d
(%t7) -- (v)

dt i
(%i8) ishow(idiff(v([i],[]),j))$
(%t8) v

i,j
(%i9) ishow(extdiff(v([i],[]),j))$
(%t9) v - v

j,i i,j

2
(%i10) ishow(liediff(v,w([i],[])))$

%3 %3
(%t10) v w + v w

i,%3 ,i %3
(%i11) ishow(covdiff(v([i],[]),j))$

%4
(%t11) v - v ichr2

i,j %4 i j
(%i12) ishow(ev(%,ichr2))$

%4 %5
(%t12) v - (g v (e p + e p - e p - e p

i,j %4 j %5,i ,i j %5 i j,%5 ,%5 i j

+ e p + e p))/2
i %5,j ,j i %5

(%i13) iframe_flag:true;
(%o13) true
(%i14) ishow(covdiff(v([i],[]),j))$

%6
(%t14) v - v icc2

i,j %6 i j
(%i15) ishow(ev(%,icc2))$

%6
(%t15) v - v ifc2

i,j %6 i j
(%i16) ishow(radcan(ev(%,ifc2,ifc1)))$

%6 %7 %6 %7
(%t16) - (ifg v ifb + ifg v ifb - 2 v

%6 j %7 i %6 i j %7 i,j

%6 %7
- ifg v ifb)/2

%6 %7 i j
(%i17) ishow(canform(s([i,j],[])-s([j,i])))$
(%t17) s - s

i j j i

Chapter 27: itensor 313

(%i18) decsym(s,2,0,[sym(all)],[]);
(%o18) done
(%i19) ishow(canform(s([i,j],[])-s([j,i])))$
(%t19) 0
(%i20) ishow(canform(a([i,j],[])+a([j,i])))$
(%t20) a + a

j i i j
(%i21) decsym(a,2,0,[anti(all)],[]);
(%o21) done
(%i22) ishow(canform(a([i,j],[])+a([j,i])))$
(%t22) 0

27.2 Functions and Variables for itensor

27.2.1 Managing indexed objects

Functionentertensor (name)
is a function which, by prompting, allows one to create an indexed object called name
with any number of tensorial and derivative indices. Either a single index or a list of
indices (which may be null) is acceptable input (see the example under covdiff).

Functionchangename (old, new, expr)
will change the name of all indexed objects called old to new in expr. old may be
either a symbol or a list of the form [name, m, n] in which case only those indexed
objects called name with m covariant and n contravariant indices will be renamed to
new.

Functionlistoftens
Lists all tensors in a tensorial expression, complete with their indices. E.g.,

(%i6) ishow(a([i,j],[k])*b([u],[],v)+c([x,y],[])*d([],[])*e)$
k

(%t6) d e c + a b
x y i j u,v

(%i7) ishow(listoftens(%))$
k

(%t7) [a , b , c , d]
i j u,v x y

Functionishow (expr)
displays expr with the indexed objects in it shown having their covariant indices
as subscripts and contravariant indices as superscripts. The derivative indices are
displayed as subscripts, separated from the covariant indices by a comma (see the
examples throughout this document).

314 Maxima Manual

Functionindices (expr)
Returns a list of two elements. The first is a list of the free indices in expr (those
that occur only once). The second is the list of the dummy indices in expr (those
that occur exactly twice) as the following example demonstrates.

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) ishow(a([i,j],[k,l],m,n)*b([k,o],[j,m,p],q,r))$

k l j m p
(%t2) a b

i j,m n k o,q r
(%i3) indices(%);
(%o3) [[l, p, i, n, o, q, r], [k, j, m]]

A tensor product containing the same index more than twice is syntactically illegal.
indices attempts to deal with these expressions in a reasonable manner; however,
when it is called to operate upon such an illegal expression, its behavior should be
considered undefined.

Functionrename (expr)
Functionrename (expr, count)

Returns an expression equivalent to expr but with the dummy indices in each term
chosen from the set [%1, %2,...], if the optional second argument is omitted. Oth-
erwise, the dummy indices are indexed beginning at the value of count. Each dummy
index in a product will be different. For a sum, rename will operate upon each term
in the sum resetting the counter with each term. In this way rename can serve as a
tensorial simplifier. In addition, the indices will be sorted alphanumerically (if allsym
is true) with respect to covariant or contravariant indices depending upon the value
of flipflag. If flipflag is false then the indices will be renamed according to
the order of the contravariant indices. If flipflag is true the renaming will occur
according to the order of the covariant indices. It often happens that the combined
effect of the two renamings will reduce an expression more than either one by itself.

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) allsym:true;
(%o2) true
(%i3) g([],[%4,%5])*g([],[%6,%7])*ichr2([%1,%4],[%3])*
ichr2([%2,%3],[u])*ichr2([%5,%6],[%1])*ichr2([%7,r],[%2])-
g([],[%4,%5])*g([],[%6,%7])*ichr2([%1,%2],[u])*
ichr2([%3,%5],[%1])*ichr2([%4,%6],[%3])*ichr2([%7,r],[%2]),noeval$
(%i4) expr:ishow(%)$

%4 %5 %6 %7 %3 u %1 %2
(%t4) g g ichr2 ichr2 ichr2 ichr2

%1 %4 %2 %3 %5 %6 %7 r

Chapter 27: itensor 315

%4 %5 %6 %7 u %1 %3 %2
- g g ichr2 ichr2 ichr2 ichr2

%1 %2 %3 %5 %4 %6 %7 r
(%i5) flipflag:true;
(%o5) true
(%i6) ishow(rename(expr))$

%2 %5 %6 %7 %4 u %1 %3
(%t6) g g ichr2 ichr2 ichr2 ichr2

%1 %2 %3 %4 %5 %6 %7 r

%4 %5 %6 %7 u %1 %3 %2
- g g ichr2 ichr2 ichr2 ichr2

%1 %2 %3 %4 %5 %6 %7 r
(%i7) flipflag:false;
(%o7) false
(%i8) rename(%th(2));
(%o8) 0
(%i9) ishow(rename(expr))$

%1 %2 %3 %4 %5 %6 %7 u
(%t9) g g ichr2 ichr2 ichr2 ichr2

%1 %6 %2 %3 %4 r %5 %7

%1 %2 %3 %4 %6 %5 %7 u
- g g ichr2 ichr2 ichr2 ichr2

%1 %3 %2 %6 %4 r %5 %7

Option variableflipflag
Default: false. If false then the indices will be renamed according to the order of
the contravariant indices, otherwise according to the order of the covariant indices.

If flipflag is false then rename forms a list of the contravariant indices as they
are encountered from left to right (if true then of the covariant indices). The first
dummy index in the list is renamed to %1, the next to %2, etc. Then sorting occurs
after the rename-ing (see the example under rename).

Functiondefcon (tensor 1)
Functiondefcon (tensor 1, tensor 2, tensor 3)

gives tensor 1 the property that the contraction of a product of tensor 1 and tensor 2
results in tensor 3 with the appropriate indices. If only one argument, tensor 1, is
given, then the contraction of the product of tensor 1 with any indexed object having
the appropriate indices (say my_tensor) will yield an indexed object with that name,
i.e. my_tensor, and with a new set of indices reflecting the contractions performed.
For example, if imetric:g, then defcon(g) will implement the raising and lowering
of indices through contraction with the metric tensor. More than one defcon can be
given for the same indexed object; the latest one given which applies in a particular
contraction will be used. contractions is a list of those indexed objects which have
been given contraction properties with defcon.

316 Maxima Manual

Functionremcon (tensor 1, ..., tensor n)
Functionremcon (all)

removes all the contraction properties from the tensor 1, ..., tensor n). remcon(all)
removes all contraction properties from all indexed objects.

Functioncontract (expr)
Carries out the tensorial contractions in expr which may be any combination of sums
and products. This function uses the information given to the defcon function. For
best results, expr should be fully expanded. ratexpand is the fastest way to expand
products and powers of sums if there are no variables in the denominators of the
terms. The gcd switch should be false if GCD cancellations are unnecessary.

Functionindexed tensor (tensor)
Must be executed before assigning components to a tensor for which a built in value
already exists as with ichr1, ichr2, icurvature. See the example under icurvature.

Functioncomponents (tensor, expr)
permits one to assign an indicial value to an expression expr giving the values of the
components of tensor. These are automatically substituted for the tensor whenever
it occurs with all of its indices. The tensor must be of the form t([...],[...])
where either list may be empty. expr can be any indexed expression involving other
objects with the same free indices as tensor. When used to assign values to the metric
tensor wherein the components contain dummy indices one must be careful to define
these indices to avoid the generation of multiple dummy indices. Removal of this
assignment is given to the function remcomps.
It is important to keep in mind that components cares only about the valence of a
tensor, not about any particular index ordering. Thus assigning components to, say,
x([i,-j],[]), x([-j,i],[]), or x([i],[j]) all produce the same result, namely
components being assigned to a tensor named x with valence (1,1).
Components can be assigned to an indexed expression in four ways, two of which
involve the use of the components command:
1) As an indexed expression. For instance:

(%i2) components(g([],[i,j]),e([],[i])*p([],[j]))$
(%i3) ishow(g([],[i,j]))$

i j
(%t3) e p

2) As a matrix:

(%i5) lg:-ident(4)$lg[1,1]:1$lg;
[1 0 0 0]
[]
[0 - 1 0 0]

(%o5) []
[0 0 - 1 0]

Chapter 27: itensor 317

[]
[0 0 0 - 1]

(%i6) components(g([i,j],[]),lg);
(%o6) done
(%i7) ishow(g([i,j],[]))$
(%t7) g

i j
(%i8) g([1,1],[]);
(%o8) 1
(%i9) g([4,4],[]);
(%o9) - 1

3) As a function. You can use a Maxima function to specify the components of a
tensor based on its indices. For instance, the following code assigns kdelta to h if h
has the same number of covariant and contravariant indices and no derivative indices,
and g otherwise:

(%i4) h(l1,l2,[l3]):=if length(l1)=length(l2) and length(l3)=0
then kdelta(l1,l2) else apply(g,append([l1,l2], l3))$

(%i5) ishow(h([i],[j]))$
j

(%t5) kdelta
i

(%i6) ishow(h([i,j],[k],l))$
k

(%t6) g
i j,l

4) Using Maxima’s pattern matching capabilities, specifically the defrule and
applyb1 commands:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) matchdeclare(l1,listp);
(%o2) done
(%i3) defrule(r1,m(l1,[]),(i1:idummy(),

g([l1[1],l1[2]],[])*q([i1],[])*e([],[i1])))$

(%i4) defrule(r2,m([],l1),(i1:idummy(),
w([],[l1[1],l1[2]])*e([i1],[])*q([],[i1])))$

(%i5) ishow(m([i,n],[])*m([],[i,m]))$
i m

(%t5) m m
i n

(%i6) ishow(rename(applyb1(%,r1,r2)))$
%1 %2 %3 m

318 Maxima Manual

(%t6) e q w q e g
%1 %2 %3 n

Functionremcomps (tensor)
Unbinds all values from tensor which were assigned with the components function.

Functionshowcomps (tensor)
Shows component assignments of a tensor, as made using the components command.
This function can be particularly useful when a matrix is assigned to an indicial tensor
using components, as demonstrated by the following example:

(%i1) load(ctensor);
(%o1) /share/tensor/ctensor.mac
(%i2) load(itensor);
(%o2) /share/tensor/itensor.lisp
(%i3) lg:matrix([sqrt(r/(r-2*m)),0,0,0],[0,r,0,0],

[0,0,sin(theta)*r,0],[0,0,0,sqrt((r-2*m)/r)]);
[r]
[sqrt(-------) 0 0 0]
[r - 2 m]
[]
[0 r 0 0]

(%o3) []
[0 0 r sin(theta) 0]
[]
[r - 2 m]
[0 0 0 sqrt(-------)]
[r]

(%i4) components(g([i,j],[]),lg);
(%o4) done
(%i5) showcomps(g([i,j],[]));

[r]
[sqrt(-------) 0 0 0]
[r - 2 m]
[]
[0 r 0 0]

(%t5) g = []
i j [0 0 r sin(theta) 0]

[]
[r - 2 m]
[0 0 0 sqrt(-------)]
[r]

(%o5) false

The showcomps command can also display components of a tensor of rank higher than
2.

Chapter 27: itensor 319

Functionidummy ()
Increments icounter and returns as its value an index of the form %n where n is
a positive integer. This guarantees that dummy indices which are needed in form-
ing expressions will not conflict with indices already in use (see the example under
indices).

Option variableidummyx
Default value: %

Is the prefix for dummy indices (see the example under indices).

Option variableicounter
Default value: 1

Determines the numerical suffix to be used in generating the next dummy index in
the tensor package. The prefix is determined by the option idummy (default: %).

Functionkdelta (L1, L2)
is the generalized Kronecker delta function defined in the itensor package with L1 the
list of covariant indices and L2 the list of contravariant indices. kdelta([i],[j])
returns the ordinary Kronecker delta. The command ev(expr,kdelta) causes the
evaluation of an expression containing kdelta([],[]) to the dimension of the man-
ifold.

In what amounts to an abuse of this notation, itensor also allows kdelta to have 2
covariant and no contravariant, or 2 contravariant and no covariant indices, in effect
providing a co(ntra)variant "unit matrix" capability. This is strictly considered a
programming aid and not meant to imply that kdelta([i,j],[]) is a valid tensorial
object.

Functionkdels (L1, L2)
Symmetricized Kronecker delta, used in some calculations. For instance:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) kdelta([1,2],[2,1]);
(%o2) - 1
(%i3) kdels([1,2],[2,1]);
(%o3) 1
(%i4) ishow(kdelta([a,b],[c,d]))$

c d d c
(%t4) kdelta kdelta - kdelta kdelta

a b a b
(%i4) ishow(kdels([a,b],[c,d]))$

c d d c
(%t4) kdelta kdelta + kdelta kdelta

a b a b

320 Maxima Manual

Functionlevi civita (L)
is the permutation (or Levi-Civita) tensor which yields 1 if the list L consists of an
even permutation of integers, -1 if it consists of an odd permutation, and 0 if some
indices in L are repeated.

Functionlc2kdt (expr)
Simplifies expressions containing the Levi-Civita symbol, converting these to
Kronecker-delta expressions when possible. The main difference between this
function and simply evaluating the Levi-Civita symbol is that direct evaluation
often results in Kronecker expressions containing numerical indices. This is often
undesirable as it prevents further simplification. The lc2kdt function avoids
this problem, yielding expressions that are more easily simplified with rename or
contract.

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) expr:ishow(’levi_civita([],[i,j])

*’levi_civita([k,l],[])*a([j],[k]))$
i j k

(%t2) levi_civita a levi_civita
j k l

(%i3) ishow(ev(expr,levi_civita))$
i j k 1 2

(%t3) kdelta a kdelta
1 2 j k l

(%i4) ishow(ev(%,kdelta))$
i j j i k

(%t4) (kdelta kdelta - kdelta kdelta) a
1 2 1 2 j

1 2 2 1
(kdelta kdelta - kdelta kdelta)

k l k l
(%i5) ishow(lc2kdt(expr))$

k i j k j i
(%t5) a kdelta kdelta - a kdelta kdelta

j k l j k l
(%i6) ishow(contract(expand(%)))$

i i
(%t6) a - a kdelta

l l

The lc2kdt function sometimes makes use of the metric tensor. If the metric tensor
was not defined previously with imetric, this results in an error.

(%i7) expr:ishow(’levi_civita([],[i,j])
*’levi_civita([],[k,l])*a([j,k],[]))$

i j k l

Chapter 27: itensor 321

(%t7) levi_civita levi_civita a
j k

(%i8) ishow(lc2kdt(expr))$
Maxima encountered a Lisp error:

Error in $IMETRIC [or a callee]:
$IMETRIC [or a callee] requires less than two arguments.

Automatically continuing.
To reenable the Lisp debugger set *debugger-hook* to nil.
(%i9) imetric(g);
(%o9) done
(%i10) ishow(lc2kdt(expr))$

%3 i k %4 j l %3 i l %4 j
(%t10) (g kdelta g kdelta - g kdelta g

%3 %4 %3
k

kdelta) a
%4 j k

(%i11) ishow(contract(expand(%)))$
l i l i j

(%t11) a - g a
j

Functionlc l
Simplification rule used for expressions containing the unevaluated Levi-Civita symbol
(levi_civita). Along with lc_u, it can be used to simplify many expressions more
efficiently than the evaluation of levi_civita. For example:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) el1:ishow(’levi_civita([i,j,k],[])*a([],[i])*a([],[j]))$

i j
(%t2) a a levi_civita

i j k
(%i3) el2:ishow(’levi_civita([],[i,j,k])*a([i])*a([j]))$

i j k
(%t3) levi_civita a a

i j
(%i4) canform(contract(expand(applyb1(el1,lc_l,lc_u))));
(%t4) 0
(%i5) canform(contract(expand(applyb1(el2,lc_l,lc_u))));
(%t5) 0

322 Maxima Manual

Functionlc u
Simplification rule used for expressions containing the unevaluated Levi-Civita symbol
(levi_civita). Along with lc_u, it can be used to simplify many expressions more
efficiently than the evaluation of levi_civita. For details, see lc_l.

Functioncanten (expr)
Simplifies expr by renaming (see rename) and permuting dummy indices. rename is
restricted to sums of tensor products in which no derivatives are present. As such
it is limited and should only be used if canform is not capable of carrying out the
required simplification.
The canten function returns a mathematically correct result only if its argument is
an expression that is fully symmetric in its indices. For this reason, canten returns
an error if allsym is not set to true.

Functionconcan (expr)
Similar to canten but also performs index contraction.

27.2.2 Tensor symmetries

Option variableallsym
Default: false. if true then all indexed objects are assumed symmetric in all of
their covariant and contravariant indices. If false then no symmetries of any kind
are assumed in these indices. Derivative indices are always taken to be symmetric
unless iframe_flag is set to true.

Functiondecsym (tensor, m, n, [cov 1, cov 2, ...], [contr 1, contr 2, ...])
Declares symmetry properties for tensor of m covariant and n contravariant
indices. The cov i and contr i are pseudofunctions expressing symmetry relations
among the covariant and contravariant indices respectively. These are of the form
symoper(index 1, index 2,...) where symoper is one of sym, anti or cyc and
the index i are integers indicating the position of the index in the tensor. This
will declare tensor to be symmetric, antisymmetric or cyclic respectively in the
index i. symoper(all) is also an allowable form which indicates all indices obey
the symmetry condition. For example, given an object b with 5 covariant indices,
decsym(b,5,3,[sym(1,2),anti(3,4)],[cyc(all)]) declares b symmetric in its
first and second and antisymmetric in its third and fourth covariant indices, and
cyclic in all of its contravariant indices. Either list of symmetry declarations may
be null. The function which performs the simplifications is canform as the example
below illustrates.

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) expr:contract(expand(a([i1, j1, k1], [])

*kdels([i, j, k], [i1, j1, k1])))$
(%i3) ishow(expr)$
(%t3) a + a + a + a + a + a

Chapter 27: itensor 323

k j i k i j j k i j i k i k j i j k
(%i4) decsym(a,3,0,[sym(all)],[]);
(%o4) done
(%i5) ishow(canform(expr))$
(%t5) 6 a

i j k
(%i6) remsym(a,3,0);
(%o6) done
(%i7) decsym(a,3,0,[anti(all)],[]);
(%o7) done
(%i8) ishow(canform(expr))$
(%t8) 0
(%i9) remsym(a,3,0);
(%o9) done
(%i10) decsym(a,3,0,[cyc(all)],[]);
(%o10) done
(%i11) ishow(canform(expr))$
(%t11) 3 a + 3 a

i k j i j k
(%i12) dispsym(a,3,0);
(%o12) [[cyc, [[1, 2, 3]], []]]

Functionremsym (tensor, m, n)
Removes all symmetry properties from tensor which has m covariant indices and n
contravariant indices.

Functioncanform (expr)
Functioncanform (expr, rename)

Simplifies expr by renaming dummy indices and reordering all indices as dictated by
symmetry conditions imposed on them. If allsym is true then all indices are assumed
symmetric, otherwise symmetry information provided by decsym declarations will
be used. The dummy indices are renamed in the same manner as in the rename
function. When canform is applied to a large expression the calculation may take a
considerable amount of time. This time can be shortened by calling rename on the
expression first. Also see the example under decsym. Note: canform may not be able
to reduce an expression completely to its simplest form although it will always return
a mathematically correct result.
The optional second parameter rename, if set to false, suppresses renaming.

27.2.3 Indicial tensor calculus

Functiondiff (expr, v 1, [n 1, [v 2, n 2] ...])
is the usual Maxima differentiation function which has been expanded in its abilities
for itensor. It takes the derivative of expr with respect to v 1 n 1 times, with
respect to v 2 n 2 times, etc. For the tensor package, the function has been modified
so that the v i may be integers from 1 up to the value of the variable dim. This will

324 Maxima Manual

cause the differentiation to be carried out with respect to the v ith member of the
list vect_coords. If vect_coords is bound to an atomic variable, then that variable
subscripted by v i will be used for the variable of differentiation. This permits an
array of coordinate names or subscripted names like x[1], x[2], ... to be used.
A further extension adds the ability to diff to compute derivatives with respect to
an indexed variable. In particular, the tensor package knows how to differentiate
expressions containing combinations of the metric tensor and its derivatives with
respect to the metric tensor and its first and second derivatives. This capability
is particularly useful when considering Lagrangian formulations of a gravitational
theory, allowing one to derive the Einstein tensor and field equations from the action
principle.

Functionidiff (expr, v 1, [n 1, [v 2, n 2] ...])
Indicial differentiation. Unlike diff, which differentiates with respect to an indepen-
dent variable, idiff) can be used to differentiate with respect to a coordinate. For an
indexed object, this amounts to appending the v i as derivative indices. Subsequently,
derivative indices will be sorted, unless iframe_flag is set to true.
idiff can also differentiate the determinant of the metric tensor. Thus, if
imetric has been bound to G then idiff(determinant(g),k) will return
2*determinant(g)*ichr2([%i,k],[%i]) where the dummy index %i is chosen
appropriately.

Functionliediff (v, ten)
Computes the Lie-derivative of the tensorial expression ten with respect to the vector
field v. ten should be any indexed tensor expression; v should be the name (without
indices) of a vector field. For example:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) ishow(liediff(v,a([i,j],[])*b([],[k],l)))$

k %2 %2 %2
(%t2) b (v a + v a + v a)

,l i j,%2 ,j i %2 ,i %2 j

%1 k %1 k %1 k
+ (v b - b v + v b) a

,%1 l ,l ,%1 ,l ,%1 i j

Functionrediff (ten)
Evaluates all occurrences of the idiff command in the tensorial expression ten.

Functionundiff (expr)
Returns an expression equivalent to expr but with all derivatives of indexed objects
replaced by the noun form of the idiff function. Its arguments would yield that
indexed object if the differentiation were carried out. This is useful when it is desired
to replace a differentiated indexed object with some function definition resulting in
expr and then carry out the differentiation by saying ev(expr, idiff).

Chapter 27: itensor 325

Functionevundiff (expr)
Equivalent to the execution of undiff, followed by ev and rediff.

The point of this operation is to easily evalute expressions that cannot be directly
evaluated in derivative form. For instance, the following causes an error:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) icurvature([i,j,k],[l],m);
Maxima encountered a Lisp error:

Error in $ICURVATURE [or a callee]:
$ICURVATURE [or a callee] requires less than three arguments.

Automatically continuing.
To reenable the Lisp debugger set *debugger-hook* to nil.

However, if icurvature is entered in noun form, it can be evaluated using evundiff:
(%i3) ishow(’icurvature([i,j,k],[l],m))$

l
(%t3) icurvature

i j k,m
(%i4) ishow(evundiff(%))$

l l %1 l %1
(%t4) - ichr2 - ichr2 ichr2 - ichr2 ichr2

i k,j m %1 j i k,m %1 j,m i k

l l %1 l %1
+ ichr2 + ichr2 ichr2 + ichr2 ichr2

i j,k m %1 k i j,m %1 k,m i j

Note: In earlier versions of Maxima, derivative forms of the Christoffel-symbols also
could not be evaluated. This has been fixed now, so evundiff is no longer necessary
for expressions like this:

(%i5) imetric(g);
(%o5) done
(%i6) ishow(ichr2([i,j],[k],l))$

k %3
g (g - g + g)

j %3,i l i j,%3 l i %3,j l
(%t6) ---

2

k %3
g (g - g + g)
,l j %3,i i j,%3 i %3,j

+ -----------------------------------
2

Functionflush (expr, tensor 1, tensor 2, ...)
Set to zero, in expr, all occurrences of the tensor i that have no derivative indices.

326 Maxima Manual

Functionflushd (expr, tensor 1, tensor 2, ...)
Set to zero, in expr, all occurrences of the tensor i that have derivative indices.

Functionflushnd (expr, tensor, n)
Set to zero, in expr, all occurrences of the differentiated object tensor that have n or
more derivative indices as the following example demonstrates.

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) ishow(a([i],[J,r],k,r)+a([i],[j,r,s],k,r,s))$

J r j r s
(%t2) a + a

i,k r i,k r s
(%i3) ishow(flushnd(%,a,3))$

J r
(%t3) a

i,k r

Functioncoord (tensor 1, tensor 2, ...)
Gives tensor i the coordinate differentiation property that the derivative of contravari-
ant vector whose name is one of the tensor i yields a Kronecker delta. For example, if
coord(x) has been done then idiff(x([],[i]),j) gives kdelta([i],[j]). coord
is a list of all indexed objects having this property.

Functionremcoord (tensor 1, tensor 2, ...)
Functionremcoord (all)

Removes the coordinate differentiation property from the tensor_i that was estab-
lished by the function coord. remcoord(all) removes this property from all indexed
objects.

Functionmakebox (expr)
Display expr in the same manner as show; however, any tensor d’Alembertian oc-
curring in expr will be indicated using the symbol []. For example, []p([m],[n])
represents g([],[i,j])*p([m],[n],i,j).

Functionconmetderiv (expr, tensor)
Simplifies expressions containing ordinary derivatives of both covariant and
contravariant forms of the metric tensor (the current restriction). For example,
conmetderiv can relate the derivative of the contravariant metric tensor with the
Christoffel symbols as seen from the following:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) ishow(g([],[a,b],c))$

a b
(%t2) g

,c

Chapter 27: itensor 327

(%i3) ishow(conmetderiv(%,g))$
%1 b a %1 a b

(%t3) - g ichr2 - g ichr2
%1 c %1 c

Functionsimpmetderiv (expr)
Functionsimpmetderiv (expr[, stop])

Simplifies expressions containing products of the derivatives of the metric tensor.
Specifically, simpmetderiv recognizes two identities:

ab ab ab a
g g + g g = (g g) = (kdelta) = 0
,d bc bc,d bc ,d c ,d

hence

ab ab
g g = - g g
,d bc bc,d

and

ab ab
g g = g g
,j ab,i ,i ab,j

which follows from the symmetries of the Christoffel symbols.
The simpmetderiv function takes one optional parameter which, when present, causes
the function to stop after the first successful substitution in a product expression. The
simpmetderiv function also makes use of the global variable flipflag which determines
how to apply a “canonical” ordering to the product indices.
Put together, these capabilities can be used to achieve powerful simplifications that
are difficult or impossible to accomplish otherwise. This is demonstrated through
the following example that explicitly uses the partial simplification features of
simpmetderiv to obtain a contractible expression:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) imetric(g);
(%o2) done
(%i3) ishow(g([],[a,b])*g([],[b,c])*g([a,b],[],d)*g([b,c],[],e))$

a b b c
(%t3) g g g g

a b,d b c,e
(%i4) ishow(canform(%))$

errexp1 has improper indices

328 Maxima Manual

-- an error. Quitting. To debug this try debugmode(true);
(%i5) ishow(simpmetderiv(%))$

a b b c
(%t5) g g g g

a b,d b c,e
(%i6) flipflag:not flipflag;
(%o6) true
(%i7) ishow(simpmetderiv(%th(2)))$

a b b c
(%t7) g g g g

,d ,e a b b c
(%i8) flipflag:not flipflag;
(%o8) false
(%i9) ishow(simpmetderiv(%th(2),stop))$

a b b c
(%t9) - g g g g

,e a b,d b c
(%i10) ishow(contract(%))$

b c
(%t10) - g g

,e c b,d

See also weyl.dem for an example that uses simpmetderiv and conmetderiv together
to simplify contractions of the Weyl tensor.

Functionflush1deriv (expr, tensor)
Set to zero, in expr, all occurrences of tensor that have exactly one derivative index.

27.2.4 Tensors in curved spaces

Functionimetric (g)
System variableimetric

Specifies the metric by assigning the variable imetric:g in addition, the
contraction properties of the metric g are set up by executing the commands
defcon(g),defcon(g,g,kdelta). The variable imetric (unbound by default), is
bound to the metric, assigned by the imetric(g) command.

Functionidim (n)
Sets the dimensions of the metric. Also initializes the antisymmetry properties of the
Levi-Civita symbols for the given dimension.

Functionichr1 ([i, j, k])
Yields the Christoffel symbol of the first kind via the definition

(g + g - g)/2 .
ik,j jk,i ij,k

To evaluate the Christoffel symbols for a particular metric, the variable imetric must
be assigned a name as in the example under chr2.

Chapter 27: itensor 329

Functionichr2 ([i, j], [k])
Yields the Christoffel symbol of the second kind defined by the relation

ks
ichr2([i,j],[k]) = g (g + g - g)/2

is,j js,i ij,s

Functionicurvature ([i, j, k], [h])
Yields the Riemann curvature tensor in terms of the Christoffel symbols of the second
kind (ichr2). The following notation is used:

h h h %1 h
icurvature = - ichr2 - ichr2 ichr2 + ichr2

i j k i k,j %1 j i k i j,k
h %1

+ ichr2 ichr2
%1 k i j

Functioncovdiff (expr, v 1, v 2, ...)
Yields the covariant derivative of expr with respect to the variables v i in terms of
the Christoffel symbols of the second kind (ichr2). In order to evaluate these, one
should use ev(expr,ichr2).

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) entertensor()$
Enter tensor name: a;
Enter a list of the covariant indices: [i,j];
Enter a list of the contravariant indices: [k];
Enter a list of the derivative indices: [];

k
(%t2) a

i j
(%i3) ishow(covdiff(%,s))$

k %1 k %1 k
(%t3) - a ichr2 - a ichr2 + a

i %1 j s %1 j i s i j,s

k %1
+ ichr2 a

%1 s i j
(%i4) imetric:g;
(%o4) g
(%i5) ishow(ev(%th(2),ichr2))$

%1 %4 k
g a (g - g + g)

i %1 s %4,j j s,%4 j %4,s
(%t5) - --

2
%1 %3 k

330 Maxima Manual

g a (g - g + g)
%1 j s %3,i i s,%3 i %3,s

- --
2

k %2 %1
g a (g - g + g)

i j s %2,%1 %1 s,%2 %1 %2,s k
+ --- + a

2 i j,s
(%i6)

Functionlorentz gauge (expr)
Imposes the Lorentz condition by substituting 0 for all indexed objects in expr that
have a derivative index identical to a contravariant index.

Functionigeodesic coords (expr, name)
Causes undifferentiated Christoffel symbols and first derivatives of the metric tensor
vanish in expr. The name in the igeodesic_coords function refers to the metric
name (if it appears in expr) while the connection coefficients must be called with the
names ichr1 and/or ichr2. The following example demonstrates the verification of
the cyclic identity satisfied by the Riemann curvature tensor using the igeodesic_
coords function.

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) ishow(icurvature([r,s,t],[u]))$

u u %1 u
(%t2) - ichr2 - ichr2 ichr2 + ichr2

r t,s %1 s r t r s,t

u %1
+ ichr2 ichr2

%1 t r s
(%i3) ishow(igeodesic_coords(%,ichr2))$

u u
(%t3) ichr2 - ichr2

r s,t r t,s
(%i4) ishow(igeodesic_coords(icurvature([r,s,t],[u]),ichr2)+

igeodesic_coords(icurvature([s,t,r],[u]),ichr2)+
igeodesic_coords(icurvature([t,r,s],[u]),ichr2))$
u u u u

(%t4) - ichr2 + ichr2 + ichr2 - ichr2
t s,r t r,s s t,r s r,t

u u
- ichr2 + ichr2

r t,s r s,t
(%i5) canform(%);

Chapter 27: itensor 331

(%o5) 0

27.2.5 Moving frames

Maxima now has the ability to perform calculations using moving frames. These can be
orthonormal frames (tetrads, vielbeins) or an arbitrary frame.

To use frames, you must first set iframe_flag to true. This causes the Christoffel-
symbols, ichr1 and ichr2, to be replaced by the more general frame connection coefficients
icc1 and icc2 in calculations. Speficially, the behavior of covdiff and icurvature is
changed.

The frame is defined by two tensors: the inverse frame field (ifri, the dual basis tetrad),
and the frame metric ifg. The frame metric is the identity matrix for orthonormal frames,
or the Lorentz metric for orthonormal frames in Minkowski spacetime. The inverse frame
field defines the frame base (unit vectors). Contraction properties are defined for the frame
field and the frame metric.

When iframe_flag is true, many itensor expressions use the frame metric ifg instead
of the metric defined by imetric for raising and lowerind indices.

IMPORTANT: Setting the variable iframe_flag to true does NOT undefine the con-
traction properties of a metric defined by a call to defcon or imetric. If a frame field is
used, it is best to define the metric by assigning its name to the variable imetric and NOT
invoke the imetric function.

Maxima uses these two tensors to define the frame coefficients (ifc1 and ifc2) which
form part of the connection coefficients (icc1 and icc2), as the following example demon-
strates:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) iframe_flag:true;
(%o2) true
(%i3) ishow(covdiff(v([],[i]),j))$

i i %1
(%t3) v + icc2 v

,j %1 j
(%i4) ishow(ev(%,icc2))$

%1 i i
(%t4) v ifc2 + v

%1 j ,j
(%i5) ishow(ev(%,ifc2))$

%1 i %2 i
(%t5) v ifg ifc1 + v

%1 j %2 ,j
(%i6) ishow(ev(%,ifc1))$

%1 i %2
v ifg (ifb - ifb + ifb)

j %2 %1 %2 %1 j %1 j %2 i
(%t6) -- + v

332 Maxima Manual

2 ,j
(%i7) ishow(ifb([a,b,c]))$

%3 %4
(%t7) (ifri - ifri) ifr ifr

a %3,%4 a %4,%3 b c

An alternate method is used to compute the frame bracket (ifb) if the iframe_bracket_
form flag is set to false:

(%i8) block([iframe_bracket_form:false],ishow(ifb([a,b,c])))$
%6 %5 %5 %6

(%t8) ifri (ifr ifr - ifr ifr)
a %5 b c,%6 b,%6 c

Functioniframes ()
Since in this version of Maxima, contraction identities for ifr and ifri are always
defined, as is the frame bracket (ifb), this function does nothing.

Variableifb
The frame bracket. The contribution of the frame metric to the connection coefficients
is expressed using the frame bracket:

- ifb + ifb + ifb
c a b b c a a b c

ifc1 = --------------------------------
abc 2

The frame bracket itself is defined in terms of the frame field and frame metric.
Two alternate methods of computation are used depending on the value of frame_
bracket_form. If true (the default) or if the itorsion_flag is true:

d e f
ifb = ifr ifr (ifri - ifri - ifri itr)

abc b c a d,e a e,d a f d e

Otherwise:

e d d e
ifb = (ifr ifr - ifr ifr) ifri

abc b c,e b,e c a d

Variableicc1
Connection coefficients of the first kind. In itensor, defined as

Chapter 27: itensor 333

icc1 = ichr1 - ikt1 - inmc1
abc abc abc abc

In this expression, if iframe_flag is true, the Christoffel-symbol ichr1 is replaced
with the frame connection coefficient ifc1. If itorsion_flag is false, ikt1 will be
omitted. It is also omitted if a frame base is used, as the torsion is already calculated
as part of the frame bracket. Lastly, of inonmet_flag is false, inmc1 will not be
present.

Variableicc2
Connection coefficients of the second kind. In itensor, defined as

c c c c
icc2 = ichr2 - ikt2 - inmc2

ab ab ab ab

In this expression, if iframe_flag is true, the Christoffel-symbol ichr2 is replaced
with the frame connection coefficient ifc2. If itorsion_flag is false, ikt2 will be
omitted. It is also omitted if a frame base is used, as the torsion is already calculated
as part of the frame bracket. Lastly, of inonmet_flag is false, inmc2 will not be
present.

Variableifc1
Frame coefficient of the first kind (also known as Ricci-rotation coefficients.) This
tensor represents the contribution of the frame metric to the connection coefficient of
the first kind. Defined as:

- ifb + ifb + ifb
c a b b c a a b c

ifc1 = --------------------------------
abc 2

Variableifc2
Frame coefficient of the first kind. This tensor represents the contribution of the frame
metric to the connection coefficient of the first kind. Defined as a permutation of the
frame bracket (ifb) with the appropriate indices raised and lowered as necessary:

c cd
ifc2 = ifg ifc1

ab abd

Variableifr
The frame field. Contracts with the inverse frame field (ifri) to form the frame
metric (ifg).

334 Maxima Manual

Variableifri
The inverse frame field. Specifies the frame base (dual basis vectors). Along with the
frame metric, it forms the basis of all calculations based on frames.

Variableifg
The frame metric. Defaults to kdelta, but can be changed using components.

Variableifgi
The inverse frame metric. Contracts with the frame metric (ifg) to kdelta.

Option variableiframe bracket form
Default value: true
Specifies how the frame bracket (ifb) is computed.

27.2.6 Torsion and nonmetricity

Maxima can now take into account torsion and nonmetricity. When the flag itorsion_
flag is set to true, the contribution of torsion is added to the connection coefficients.
Similarly, when the flag inonmet_flag is true, nonmetricity components are included.

Variableinm
The nonmetricity vector. Conformal nonmetricity is defined through the covariant
derivative of the metric tensor. Normally zero, the metric tensor’s covariant derivative
will evaluate to the following when inonmet_flag is set to true:

g =- g inm
ij;k ij k

Variableinmc1
Covariant permutation of the nonmetricity vector components. Defined as

g inm - inm g - g inm
ab c a bc ac b

inmc1 = ------------------------------
abc 2

(Substitute ifg in place of g if a frame metric is used.)

Variableinmc2
Contravariant permutation of the nonmetricity vector components. Used in the con-
nection coefficients if inonmet_flag is true. Defined as:

c c cd
-inm kdelta - kdelta inm + g inm g

c a b a b d ab

Chapter 27: itensor 335

inmc2 = ---
ab 2

(Substitute ifg in place of g if a frame metric is used.)

Variableikt1
Covariant permutation of the torsion tensor (also known as contorsion). Defined as:

d d d
-g itr - g itr - itr g

ad cb bd ca ab cd
ikt1 = ----------------------------------

abc 2

(Substitute ifg in place of g if a frame metric is used.)

Variableikt2
Contravariant permutation of the torsion tensor (also known as contorsion). Defined
as:

c cd
ikt2 = g ikt1

ab abd

(Substitute ifg in place of g if a frame metric is used.)

Variableitr
The torsion tensor. For a metric with torsion, repeated covariant differentiation on a
scalar function will not commute, as demonstrated by the following example:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) imetric:g;
(%o2) g
(%i3) covdiff(covdiff(f([], []), i), j)

- covdiff(covdiff(f([], []), j), i)$
(%i4) ishow(%)$

%4 %2
(%t4) f ichr2 - f ichr2

,%4 j i ,%2 i j
(%i5) canform(%);
(%o5) 0
(%i6) itorsion_flag:true;
(%o6) true
(%i7) covdiff(covdiff(f([], []), i), j)

- covdiff(covdiff(f([], []), j), i)$
(%i8) ishow(%)$

336 Maxima Manual

%8 %6
(%t8) f icc2 - f icc2 - f + f

,%8 j i ,%6 i j ,j i ,i j
(%i9) ishow(canform(%))$

%1 %1
(%t9) f icc2 - f icc2

,%1 j i ,%1 i j
(%i10) ishow(canform(ev(%,icc2)))$

%1 %1
(%t10) f ikt2 - f ikt2

,%1 i j ,%1 j i
(%i11) ishow(canform(ev(%,ikt2)))$

%2 %1 %2 %1
(%t11) f g ikt1 - f g ikt1

,%2 i j %1 ,%2 j i %1
(%i12) ishow(factor(canform(rename(expand(ev(%,ikt1))))))$

%3 %2 %1 %1
f g g (itr - itr)
,%3 %2 %1 j i i j

(%t12) ------------------------------------
2

(%i13) decsym(itr,2,1,[anti(all)],[]);
(%o13) done
(%i14) defcon(g,g,kdelta);
(%o14) done
(%i15) subst(g,nounify(g),%th(3))$
(%i16) ishow(canform(contract(%)))$

%1
(%t16) - f itr

,%1 i j

27.2.7 Exterior algebra

The itensor package can perform operations on totally antisymmetric covariant tensor
fields. A totally antisymmetric tensor field of rank (0,L) corresponds with a differential
L-form. On these objects, a multiplication operation known as the exterior product, or
wedge product, is defined.

Unfortunately, not all authors agree on the definition of the wedge product. Some
authors prefer a definition that corresponds with the notion of antisymmetrization: in these
works, the wedge product of two vector fields, for instance, would be defined as

a a - a a
i j j i

a /\ a = -----------
i j 2

More generally, the product of a p-form and a q-form would be defined as
1 k1..kp l1..lq

A /\ B = ------ D A B

Chapter 27: itensor 337

i1..ip j1..jq (p+q)! i1..ip j1..jq k1..kp l1..lq

where D stands for the Kronecker-delta.

Other authors, however, prefer a “geometric” definition that corresponds with the notion
of the volume element:

a /\ a = a a - a a
i j i j j i

and, in the general case

1 k1..kp l1..lq
A /\ B = ----- D A B
i1..ip j1..jq p! q! i1..ip j1..jq k1..kp l1..lq

Since itensor is a tensor algebra package, the first of these two definitions appears to
be the more natural one. Many applications, however, utilize the second definition. To
resolve this dilemma, a flag has been implemented that controls the behavior of the wedge
product: if igeowedge_flag is false (the default), the first, "tensorial" definition is used,
otherwise the second, "geometric" definition will be applied.

Operator~
The wedge product operator is denoted by the tilde ~. This is a binary operator. Its
arguments should be expressions involving scalars, covariant tensors of rank one, or
covariant tensors of rank l that have been declared antisymmetric in all covariant
indices.

The behavior of the wedge product operator is controlled by the igeowedge_flag
flag, as in the following example:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) ishow(a([i])~b([j]))$

a b - b a
i j i j

(%t2) -------------
2

(%i3) decsym(a,2,0,[anti(all)],[]);
(%o3) done
(%i4) ishow(a([i,j])~b([k]))$

a b + b a - a b
i j k i j k i k j

(%t4) ---------------------------
3

(%i5) igeowedge_flag:true;
(%o5) true
(%i6) ishow(a([i])~b([j]))$
(%t6) a b - b a

i j i j
(%i7) ishow(a([i,j])~b([k]))$
(%t7) a b + b a - a b

i j k i j k i k j

338 Maxima Manual

Operator|
The vertical bar | denotes the "contraction with a vector" binary operation. When a
totally antisymmetric covariant tensor is contracted with a contravariant vector, the
result is the same regardless which index was used for the contraction. Thus, it is
possible to define the contraction operation in an index-free manner.
In the itensor package, contraction with a vector is always carried out with respect
to the first index in the literal sorting order. This ensures better simplification of
expressions involving the | operator. For instance:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) decsym(a,2,0,[anti(all)],[]);
(%o2) done
(%i3) ishow(a([i,j],[])|v)$

%1
(%t3) v a

%1 j
(%i4) ishow(a([j,i],[])|v)$

%1
(%t4) - v a

%1 j

Note that it is essential that the tensors used with the | operator be declared totally
antisymmetric in their covariant indices. Otherwise, the results will be incorrect.

Functionextdiff (expr, i)
Computes the exterior derivative of expr with respect to the index i. The exterior
derivative is formally defined as the wedge product of the partial derivative operator
and a differential form. As such, this operation is also controlled by the setting of
igeowedge_flag. For instance:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) ishow(extdiff(v([i]),j))$

v - v
j,i i,j

(%t2) -----------
2

(%i3) decsym(a,2,0,[anti(all)],[]);
(%o3) done
(%i4) ishow(extdiff(a([i,j]),k))$

a - a + a
j k,i i k,j i j,k

(%t4) ------------------------
3

(%i5) igeowedge_flag:true;
(%o5) true
(%i6) ishow(extdiff(v([i]),j))$
(%t6) v - v

j,i i,j
(%i7) ishow(extdiff(a([i,j]),k))$

Chapter 27: itensor 339

(%t7) - (a - a + a)
k j,i k i,j j i,k

Functionhodge (expr)
Compute the Hodge-dual of expr. For instance:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) imetric(g);
(%o2) done
(%i3) idim(4);
(%o3) done
(%i4) icounter:100;
(%o4) 100
(%i5) decsym(A,3,0,[anti(all)],[])$

(%i6) ishow(A([i,j,k],[]))$
(%t6) A

i j k
(%i7) ishow(canform(hodge(%)))$

%1 %2 %3 %4
levi_civita g A

%1 %102 %2 %3 %4
(%t7) ---

6
(%i8) ishow(canform(hodge(%)))$

%1 %2 %3 %8 %4 %5 %6 %7
(%t8) levi_civita levi_civita g

%1 %106
g g g A /6
%2 %107 %3 %108 %4 %8 %5 %6 %7

(%i9) lc2kdt(%)$

(%i10) %,kdelta$

(%i11) ishow(canform(contract(expand(%))))$
(%t11) - A

%106 %107 %108

Option variableigeowedge flag
Default value: false

Controls the behavior of the wedge product and exterior derivative. When set to
false (the default), the notion of differential forms will correspond with that of a
totally antisymmetric covariant tensor field. When set to true, differential forms will
agree with the notion of the volume element.

340 Maxima Manual

27.2.8 Exporting TeX expressions

The itensor package provides limited support for exporting tensor expressions to TeX.
Since itensor expressions appear as function calls, the regular Maxima tex command
will not produce the expected output. You can try instead the tentex command, which
attempts to translate tensor expressions into appropriately indexed TeX objects.

Functiontentex (expr)
To use the tentex function, you must first load tentex, as in the following example:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) load(tentex);
(%o2) /share/tensor/tentex.lisp
(%i3) idummyx:m;
(%o3) m
(%i4) ishow(icurvature([j,k,l],[i]))$

m1 i m1 i i
(%t4) ichr2 ichr2 - ichr2 ichr2 - ichr2

j k m1 l j l m1 k j l,k

i
+ ichr2

j k,l
(%i5) tentex(%)$
$$\Gamma_{j\,k}^{m_1}\,\Gamma_{l\,m_1}^{i}-\Gamma_{j\,l}^{m_1}\,
\Gamma_{k\,m_1}^{i}-\Gamma_{j\,l,k}^{i}+\Gamma_{j\,k,l}^{i}$$

Note the use of the idummyx assignment, to avoid the appearance of the percent sign
in the TeX expression, which may lead to compile errors.

NB: This version of the tentex function is somewhat experimental.

27.2.9 Interfacing with ctensor

The itensor package has the ability to generate Maxima code that can then be executed
in the context of the ctensor package. The function that performs this task is ic_convert.

Functionic convert (eqn)
Converts the itensor equation eqn to a ctensor assignment statement. Implied
sums over dummy indices are made explicit while indexed objects are transformed
into arrays (the array subscripts are in the order of covariant followed by contravariant
indices of the indexed objects). The derivative of an indexed object will be replaced by
the noun form of diff taken with respect to ct_coords subscripted by the derivative
index. The Christoffel symbols ichr1 and ichr2 will be translated to lcs and mcs,
respectively and if metricconvert is true then all occurrences of the metric with two
covariant (contravariant) indices will be renamed to lg (ug). In addition, do loops
will be introduced summing over all free indices so that the transformed assignment

Chapter 27: itensor 341

statement can be evaluated by just doing ev. The following examples demonstrate
the features of this function.

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) eqn:ishow(t([i,j],[k])=f([],[])*g([l,m],[])*a([],[m],j)

*b([i],[l,k]))$
k m l k

(%t2) t = f a b g
i j ,j i l m

(%i3) ic_convert(eqn);
(%o3) for i thru dim do (for j thru dim do (

for k thru dim do
t : f sum(sum(diff(a , ct_coords) b
i, j, k m j i, l, k

g , l, 1, dim), m, 1, dim)))
l, m

(%i4) imetric(g);
(%o4) done
(%i5) metricconvert:true;
(%o5) true
(%i6) ic_convert(eqn);
(%o6) for i thru dim do (for j thru dim do (

for k thru dim do
t : f sum(sum(diff(a , ct_coords) b
i, j, k m j i, l, k

lg , l, 1, dim), m, 1, dim)))
l, m

27.2.10 Reserved words

The following Maxima words are used by the itensor package internally and should not
be redefined:

Keyword Comments
--
indices2() Internal version of indices()
conti Lists contravariant indices
covi Lists covariant indices of a indexed object
deri Lists derivative indices of an indexed object
name Returns the name of an indexed object
concan
irpmon
lc0
_lc2kdt0
_lcprod
_extlc

342 Maxima Manual

Chapter 28: ctensor 343

28 ctensor

28.1 Introduction to ctensor

ctensor is a component tensor manipulation package. To use the ctensor package,
type load(ctensor). To begin an interactive session with ctensor, type csetup(). You
are first asked to specify the dimension of the manifold. If the dimension is 2, 3 or 4 then
the list of coordinates defaults to [x,y], [x,y,z] or [x,y,z,t] respectively. These names
may be changed by assigning a new list of coordinates to the variable ct_coords (described
below) and the user is queried about this. Care must be taken to avoid the coordinate
names conflicting with other object definitions.

Next, the user enters the metric either directly or from a file by specifying its ordinal
position. The metric is stored in the matrix lg. Finally, the metric inverse is computed
and stored in the matrix ug. One has the option of carrying out all calculations in a power
series.

A sample protocol is begun below for the static, spherically symmetric metric (standard
coordinates) which will be applied to the problem of deriving Einstein’s vacuum equations
(which lead to the Schwarzschild solution) as an example. Many of the functions in ctensor
will be displayed for the standard metric as examples.

(%i1) load(ctensor);
(%o1) /share/tensor/ctensor.mac
(%i2) csetup();
Enter the dimension of the coordinate system:
4;
Do you wish to change the coordinate names?
n;
Do you want to
1. Enter a new metric?

2. Enter a metric from a file?

3. Approximate a metric with a Taylor series?
1;

Is the matrix 1. Diagonal 2. Symmetric 3. Antisymmetric 4. General
Answer 1, 2, 3 or 4
1;
Row 1 Column 1:
a;
Row 2 Column 2:
x^2;
Row 3 Column 3:
x^2*sin(y)^2;
Row 4 Column 4:
-d;

Matrix entered.

344 Maxima Manual

Enter functional dependencies with the DEPENDS function or ’N’ if none
depends([a,d],x);
Do you wish to see the metric?
y;

[a 0 0 0]
[]
[2]
[0 x 0 0]
[]
[2 2]
[0 0 x sin (y) 0]
[]
[0 0 0 - d]

(%o2) done
(%i3) christof(mcs);

a
x

(%t3) mcs = ---
1, 1, 1 2 a

1
(%t4) mcs = -

1, 2, 2 x

1
(%t5) mcs = -

1, 3, 3 x

d
x

(%t6) mcs = ---
1, 4, 4 2 d

x
(%t7) mcs = - -

2, 2, 1 a

cos(y)
(%t8) mcs = ------

2, 3, 3 sin(y)

2
x sin (y)

(%t9) mcs = - ---------
3, 3, 1 a

(%t10) mcs = - cos(y) sin(y)
3, 3, 2

Chapter 28: ctensor 345

d
x

(%t11) mcs = ---
4, 4, 1 2 a

(%o11) done

28.2 Functions and Variables for ctensor

28.2.1 Initialization and setup

Functioncsetup ()
A function in the ctensor (component tensor) package which initializes the package
and allows the user to enter a metric interactively. See ctensor for more details.

Functioncmetric (dis)
Functioncmetric ()

A function in the ctensor (component tensor) package that computes the metric
inverse and sets up the package for further calculations.
If cframe_flag is false, the function computes the inverse metric ug from the (user-
defined) matrix lg. The metric determinant is also computed and stored in the
variable gdet. Furthermore, the package determines if the metric is diagonal and sets
the value of diagmetric accordingly. If the optional argument dis is present and not
equal to false, the user is prompted to see the metric inverse.
If cframe_flag is true, the function expects that the values of fri (the inverse frame
matrix) and lfg (the frame metric) are defined. From these, the frame matrix fr and
the inverse frame metric ufg are computed.

Functionct coordsys (coordinate system, extra arg)
Functionct coordsys (coordinate system)

Sets up a predefined coordinate system and metric. The argument coordinate system
can be one of the following symbols:

SYMBOL Dim Coordinates Description/comments
--
cartesian2d 2 [x,y] Cartesian 2D coordinate

system
polar 2 [r,phi] Polar coordinate system
elliptic 2 [u,v] Elliptic coord. system
confocalelliptic 2 [u,v] Confocal elliptic

coordinates
bipolar 2 [u,v] Bipolar coord. system
parabolic 2 [u,v] Parabolic coord. system
cartesian3d 3 [x,y,z] Cartesian 3D coordinate

system

346 Maxima Manual

polarcylindrical 3 [r,theta,z] Polar 2D with
cylindrical z

ellipticcylindrical 3 [u,v,z] Elliptic 2D with
cylindrical z

confocalellipsoidal 3 [u,v,w] Confocal ellipsoidal
bipolarcylindrical 3 [u,v,z] Bipolar 2D with

cylindrical z
paraboliccylindrical 3 [u,v,z] Parabolic 2D with

cylindrical z
paraboloidal 3 [u,v,phi] Paraboloidal coords.
conical 3 [u,v,w] Conical coordinates
toroidal 3 [u,v,phi] Toroidal coordinates
spherical 3 [r,theta,phi] Spherical coord. system
oblatespheroidal 3 [u,v,phi] Oblate spheroidal

coordinates
oblatespheroidalsqrt 3 [u,v,phi]
prolatespheroidal 3 [u,v,phi] Prolate spheroidal

coordinates
prolatespheroidalsqrt 3 [u,v,phi]
ellipsoidal 3 [r,theta,phi] Ellipsoidal coordinates
cartesian4d 4 [x,y,z,t] Cartesian 4D coordinate

system
spherical4d 4 [r,theta,eta,phi] Spherical 4D coordinate

system
exteriorschwarzschild 4 [t,r,theta,phi] Schwarzschild metric
interiorschwarzschild 4 [t,z,u,v] Interior Schwarzschild

metric
kerr_newman 4 [t,r,theta,phi] Charged axially

symmetric metric

coordinate_system can also be a list of transformation functions, followed by a list
containing the coordinate variables. For instance, you can specify a spherical metric
as follows:

(%i1) load(ctensor);
(%o1) /share/tensor/ctensor.mac
(%i2) ct_coordsys([r*cos(theta)*cos(phi),r*cos(theta)*sin(phi),

r*sin(theta),[r,theta,phi]]);
(%o2) done
(%i3) lg:trigsimp(lg);

[1 0 0]
[]
[2]

(%o3) [0 r 0]
[]
[2 2]
[0 0 r cos (theta)]

(%i4) ct_coords;
(%o4) [r, theta, phi]
(%i5) dim;

Chapter 28: ctensor 347

(%o5) 3

Transformation functions can also be used when cframe_flag is true:

(%i1) load(ctensor);
(%o1) /share/tensor/ctensor.mac
(%i2) cframe_flag:true;
(%o2) true
(%i3) ct_coordsys([r*cos(theta)*cos(phi),r*cos(theta)*sin(phi),

r*sin(theta),[r,theta,phi]]);
(%o3) done
(%i4) fri;
(%o4)
[cos(phi)cos(theta) -cos(phi) r sin(theta) -sin(phi) r cos(theta)]
[]
[sin(phi)cos(theta) -sin(phi) r sin(theta) cos(phi) r cos(theta)]
[]
[sin(theta) r cos(theta) 0]

(%i5) cmetric();
(%o5) false
(%i6) lg:trigsimp(lg);

[1 0 0]
[]
[2]

(%o6) [0 r 0]
[]
[2 2]
[0 0 r cos (theta)]

The optional argument extra arg can be any one of the following:

cylindrical tells ct_coordsys to attach an additional cylindrical coordinate.

minkowski tells ct_coordsys to attach an additional coordinate with negative metric
signature.

all tells ct_coordsys to call cmetric and christof(false) after setting up the
metric.

If the global variable verbose is set to true, ct_coordsys displays the values of dim,
ct_coords, and either lg or lfg and fri, depending on the value of cframe_flag.

Functioninit ctensor ()
Initializes the ctensor package.

The init_ctensor function reinitializes the ctensor package. It removes all arrays
and matrices used by ctensor, resets all flags, resets dim to 4, and resets the frame
metric to the Lorentz-frame.

348 Maxima Manual

28.2.2 The tensors of curved space

The main purpose of the ctensor package is to compute the tensors of curved
space(time), most notably the tensors used in general relativity.

When a metric base is used, ctensor can compute the following tensors:

lg -- ug
\ \
lcs -- mcs -- ric -- uric

\ \ \
\ tracer - ein -- lein
\
riem -- lriem -- weyl

\
uriem

ctensor can also work using moving frames. When cframe_flag is set to true, the
following tensors can be calculated:

lfg -- ufg
\

fri -- fr -- lcs -- mcs -- lriem -- ric -- uric
\ | \ \ \
lg -- ug | weyl tracer - ein -- lein

|\
| riem
|
\uriem

Functionchristof (dis)
A function in the ctensor (component tensor) package. It computes the Christoffel
symbols of both kinds. The argument dis determines which results are to be imme-
diately displayed. The Christoffel symbols of the first and second kinds are stored
in the arrays lcs[i,j,k] and mcs[i,j,k] respectively and defined to be symmetric
in the first two indices. If the argument to christof is lcs or mcs then the unique
non-zero values of lcs[i,j,k] or mcs[i,j,k], respectively, will be displayed. If the
argument is all then the unique non-zero values of lcs[i,j,k] and mcs[i,j,k] will
be displayed. If the argument is false then the display of the elements will not occur.
The array elements mcs[i,j,k] are defined in such a manner that the final index is
contravariant.

Functionricci (dis)
A function in the ctensor (component tensor) package. ricci computes the covariant
(symmetric) components ric[i,j] of the Ricci tensor. If the argument dis is true,
then the non-zero components are displayed.

Chapter 28: ctensor 349

Functionuricci (dis)
This function first computes the covariant components ric[i,j] of the Ricci tensor.
Then the mixed Ricci tensor is computed using the contravariant metric tensor. If
the value of the argument dis is true, then these mixed components, uric[i,j]
(the index i is covariant and the index j is contravariant), will be displayed directly.
Otherwise, ricci(false) will simply compute the entries of the array uric[i,j]
without displaying the results.

Functionscurvature ()
Returns the scalar curvature (obtained by contracting the Ricci tensor) of the Rie-
mannian manifold with the given metric.

Functioneinstein (dis)
A function in the ctensor (component tensor) package. einstein computes the
mixed Einstein tensor after the Christoffel symbols and Ricci tensor have been ob-
tained (with the functions christof and ricci). If the argument dis is true, then
the non-zero values of the mixed Einstein tensor ein[i,j] will be displayed where
j is the contravariant index. The variable rateinstein will cause the rational sim-
plification on these components. If ratfac is true then the components will also be
factored.

Functionleinstein (dis)
Covariant Einstein-tensor. leinstein stores the values of the covariant Einstein
tensor in the array lein. The covariant Einstein-tensor is computed from the mixed
Einstein tensor ein by multiplying it with the metric tensor. If the argument dis is
true, then the non-zero values of the covariant Einstein tensor are displayed.

Functionriemann (dis)
A function in the ctensor (component tensor) package. riemann computes the Rie-
mann curvature tensor from the given metric and the corresponding Christoffel sym-
bols. The following index conventions are used:

l _l _l _l _m _l _m
R[i,j,k,l] = R = | - | + | | - | |

ijk ij,k ik,j mk ij mj ik

This notation is consistent with the notation used by the itensor package and its
icurvature function. If the optional argument dis is true, the non-zero components
riem[i,j,k,l] will be displayed. As with the Einstein tensor, various switches set
by the user control the simplification of the components of the Riemann tensor. If
ratriemann is true, then rational simplification will be done. If ratfac is true then
each of the components will also be factored.
If the variable cframe_flag is false, the Riemann tensor is computed directly from
the Christoffel-symbols. If cframe_flag is true, the covariant Riemann-tensor is
computed first from the frame field coefficients.

Functionlriemann (dis)
Covariant Riemann-tensor (lriem[]).

350 Maxima Manual

Computes the covariant Riemann-tensor as the array lriem. If the argument dis is
true, unique nonzero values are displayed.
If the variable cframe_flag is true, the covariant Riemann tensor is computed di-
rectly from the frame field coefficients. Otherwise, the (3,1) Riemann tensor is com-
puted first.
For information on index ordering, see riemann.

Functionuriemann (dis)
Computes the contravariant components of the Riemann curvature tensor as array
elements uriem[i,j,k,l]. These are displayed if dis is true.

Functionrinvariant ()
Forms the Kretchmann-invariant (kinvariant) obtained by contracting the tensors

lriem[i,j,k,l]*uriem[i,j,k,l].

This object is not automatically simplified since it can be very large.

Functionweyl (dis)
Computes the Weyl conformal tensor. If the argument dis is true, the non-zero com-
ponents weyl[i,j,k,l] will be displayed to the user. Otherwise, these components
will simply be computed and stored. If the switch ratweyl is set to true, then the
components will be rationally simplified; if ratfac is true then the results will be
factored as well.

28.2.3 Taylor series expansion

The ctensor package has the ability to truncate results by assuming that they are Taylor-
series approximations. This behavior is controlled by the ctayswitch variable; when set to
true, ctensor makes use internally of the function ctaylor when simplifying results.

The ctaylor function is invoked by the following ctensor functions:

Function Comments

christof() For mcs only
ricci()
uricci()
einstein()
riemann()
weyl()
checkdiv()

Functionctaylor ()
The ctaylor function truncates its argument by converting it to a Taylor-series using
taylor, and then calling ratdisrep. This has the combined effect of dropping terms
higher order in the expansion variable ctayvar. The order of terms that should be
dropped is defined by ctaypov; the point around which the series expansion is carried
out is specified in ctaypt.

Chapter 28: ctensor 351

As an example, consider a simple metric that is a perturbation of the Minkowski
metric. Without further restrictions, even a diagonal metric produces expressions for
the Einstein tensor that are far too complex:

(%i1) load(ctensor);
(%o1) /share/tensor/ctensor.mac
(%i2) ratfac:true;
(%o2) true
(%i3) derivabbrev:true;
(%o3) true
(%i4) ct_coords:[t,r,theta,phi];
(%o4) [t, r, theta, phi]
(%i5) lg:matrix([-1,0,0,0],[0,1,0,0],[0,0,r^2,0],

[0,0,0,r^2*sin(theta)^2]);
[- 1 0 0 0]
[]
[0 1 0 0]
[]

(%o5) [2]
[0 0 r 0]
[]
[2 2]
[0 0 0 r sin (theta)]

(%i6) h:matrix([h11,0,0,0],[0,h22,0,0],[0,0,h33,0],[0,0,0,h44]);
[h11 0 0 0]
[]
[0 h22 0 0]

(%o6) []
[0 0 h33 0]
[]
[0 0 0 h44]

(%i7) depends(l,r);
(%o7) [l(r)]
(%i8) lg:lg+l*h;

[h11 l - 1 0 0 0]
[]
[0 h22 l + 1 0 0]
[]

(%o8) [2]
[0 0 r + h33 l 0]
[]
[2 2]
[0 0 0 r sin (theta) + h44 l]

(%i9) cmetric(false);
(%o9) done
(%i10) einstein(false);
(%o10) done
(%i11) ntermst(ein);
[[1, 1], 62]

352 Maxima Manual

[[1, 2], 0]
[[1, 3], 0]
[[1, 4], 0]
[[2, 1], 0]
[[2, 2], 24]
[[2, 3], 0]
[[2, 4], 0]
[[3, 1], 0]
[[3, 2], 0]
[[3, 3], 46]
[[3, 4], 0]
[[4, 1], 0]
[[4, 2], 0]
[[4, 3], 0]
[[4, 4], 46]
(%o12) done

However, if we recompute this example as an approximation that is linear in the
variable l, we get much simpler expressions:

(%i14) ctayswitch:true;
(%o14) true
(%i15) ctayvar:l;
(%o15) l
(%i16) ctaypov:1;
(%o16) 1
(%i17) ctaypt:0;
(%o17) 0
(%i18) christof(false);
(%o18) done
(%i19) ricci(false);
(%o19) done
(%i20) einstein(false);
(%o20) done
(%i21) ntermst(ein);
[[1, 1], 6]
[[1, 2], 0]
[[1, 3], 0]
[[1, 4], 0]
[[2, 1], 0]
[[2, 2], 13]
[[2, 3], 2]
[[2, 4], 0]
[[3, 1], 0]
[[3, 2], 2]
[[3, 3], 9]
[[3, 4], 0]
[[4, 1], 0]
[[4, 2], 0]

Chapter 28: ctensor 353

[[4, 3], 0]
[[4, 4], 9]
(%o21) done
(%i22) ratsimp(ein[1,1]);

2 2 4 2 2
(%o22) - (((h11 h22 - h11) (l) r - 2 h33 l r) sin (theta)

r r r

2 2 4 2
- 2 h44 l r - h33 h44 (l))/(4 r sin (theta))

r r r

This capability can be useful, for instance, when working in the weak field limit far
from a gravitational source.

28.2.4 Frame fields

When the variable cframe_flag is set to true, the ctensor package performs its calcu-
lations using a moving frame.

Functionframe bracket (fr, fri, diagframe)
The frame bracket (fb[]).
Computes the frame bracket according to the following definition:

c c c d e
ifb = (ifri - ifri) ifr ifr

ab d,e e,d a b

28.2.5 Algebraic classification

A new feature (as of November, 2004) of ctensor is its ability to compute the Petrov
classification of a 4-dimensional spacetime metric. For a demonstration of this capability,
see the file share/tensor/petrov.dem.

Functionnptetrad ()
Computes a Newman-Penrose null tetrad (np) and its raised-index counterpart (npi).
See petrov for an example.
The null tetrad is constructed on the assumption that a four-diemensional orthonor-
mal frame metric with metric signature (-,+,+,+) is being used. The components of
the null tetrad are related to the inverse frame matrix as follows:

np = (fri + fri) / sqrt(2)
1 1 2

np = (fri - fri) / sqrt(2)
2 1 2

354 Maxima Manual

np = (fri + %i fri) / sqrt(2)
3 3 4

np = (fri - %i fri) / sqrt(2)
4 3 4

Functionpsi (dis)
Computes the five Newman-Penrose coefficients psi[0]...psi[4]. If psi is set to
true, the coefficients are displayed. See petrov for an example.

These coefficients are computed from the Weyl-tensor in a coordinate base. If a frame
base is used, the Weyl-tensor is first converted to a coordinate base, which can be a
computationally expensive procedure. For this reason, in some cases it may be more
advantageous to use a coordinate base in the first place before the Weyl tensor is
computed. Note however, that constructing a Newman-Penrose null tetrad requires a
frame base. Therefore, a meaningful computation sequence may begin with a frame
base, which is then used to compute lg (computed automatically by cmetric and
then ug. At this point, you can switch back to a coordinate base by setting cframe_
flag to false before beginning to compute the Christoffel symbols. Changing to a
frame base at a later stage could yield inconsistent results, as you may end up with
a mixed bag of tensors, some computed in a frame base, some in a coordinate base,
with no means to distinguish between the two.

Functionpetrov ()
Computes the Petrov classification of the metric characterized by psi[0]...psi[4].

For example, the following demonstrates how to obtain the Petrov-classification of
the Kerr metric:

(%i1) load(ctensor);
(%o1) /share/tensor/ctensor.mac
(%i2) (cframe_flag:true,gcd:spmod,ctrgsimp:true,ratfac:true);
(%o2) true
(%i3) ct_coordsys(exteriorschwarzschild,all);
(%o3) done
(%i4) ug:invert(lg)$
(%i5) weyl(false);
(%o5) done
(%i6) nptetrad(true);
(%t6) np =

[sqrt(r - 2 m) sqrt(r)]
[--------------- --------------------- 0 0]
[sqrt(2) sqrt(r) sqrt(2) sqrt(r - 2 m)]
[]
[sqrt(r - 2 m) sqrt(r)]
[--------------- - --------------------- 0 0]
[sqrt(2) sqrt(r) sqrt(2) sqrt(r - 2 m)]

Chapter 28: ctensor 355

[]
[r %i r sin(theta)]
[0 0 ------- ---------------]
[sqrt(2) sqrt(2)]
[]
[r %i r sin(theta)]
[0 0 ------- - ---------------]
[sqrt(2) sqrt(2)]

sqrt(r) sqrt(r - 2 m)
(%t7) npi = matrix([- ---------------------,---------------, 0, 0],

sqrt(2) sqrt(r - 2 m) sqrt(2) sqrt(r)

sqrt(r) sqrt(r - 2 m)
[- ---------------------, - ---------------, 0, 0],

sqrt(2) sqrt(r - 2 m) sqrt(2) sqrt(r)

1 %i
[0, 0, ---------, --------------------],

sqrt(2) r sqrt(2) r sin(theta)

1 %i
[0, 0, ---------, - --------------------])

sqrt(2) r sqrt(2) r sin(theta)

(%o7) done
(%i7) psi(true);
(%t8) psi = 0

0

(%t9) psi = 0
1

m
(%t10) psi = --

2 3
r

(%t11) psi = 0
3

(%t12) psi = 0
4

(%o12) done
(%i12) petrov();
(%o12) D

The Petrov classification function is based on the algorithm published in "Classifying
geometries in general relativity: III Classification in practice" by Pollney, Skea, and

356 Maxima Manual

d’Inverno, Class. Quant. Grav. 17 2885-2902 (2000). Except for some simple test
cases, the implementation is untested as of December 19, 2004, and is likely to contain
errors.

28.2.6 Torsion and nonmetricity

ctensor has the ability to compute and include torsion and nonmetricity coefficients in
the connection coefficients.

The torsion coefficients are calculated from a user-supplied tensor tr, which should be
a rank (2,1) tensor. From this, the torsion coefficients kt are computed according to the
following formulae:

m m m
- g tr - g tr - tr g

im kj jm ki ij km
kt = -------------------------------
ijk 2

k km
kt = g kt
ij ijm

Note that only the mixed-index tensor is calculated and stored in the array kt.
The nonmetricity coefficients are calculated from the user-supplied nonmetricity vector

nm. From this, the nonmetricity coefficients nmc are computed as follows:

k k km
-nm D - D nm + g nm g

k i j i j m ij
nmc = ------------------------------

ij 2

where D stands for the Kronecker-delta.
When ctorsion_flag is set to true, the values of kt are substracted from the mixed-

indexed connection coefficients computed by christof and stored in mcs. Similarly, if
cnonmet_flag is set to true, the values of nmc are substracted from the mixed-indexed
connection coefficients.

If necessary, christof calls the functions contortion and nonmetricity in order to
compute kt and nm.

Functioncontortion (tr)
Computes the (2,1) contortion coefficients from the torsion tensor tr.

Functionnonmetricity (nm)
Computes the (2,1) nonmetricity coefficients from the nonmetricity vector nm.

Chapter 28: ctensor 357

28.2.7 Miscellaneous features

Functionctransform (M)
A function in the ctensor (component tensor) package which will perform a coordi-
nate transformation upon an arbitrary square symmetric matrix M. The user must
input the functions which define the transformation. (Formerly called transform.)

Functionfindde (A, n)
returns a list of the unique differential equations (expressions) corresponding to the
elements of the n dimensional square array A. Presently, n may be 2 or 3. deindex
is a global list containing the indices of A corresponding to these unique differential
equations. For the Einstein tensor (ein), which is a two dimensional array, if com-
puted for the metric in the example below, findde gives the following independent
differential equations:

(%i1) load(ctensor);
(%o1) /share/tensor/ctensor.mac
(%i2) derivabbrev:true;
(%o2) true
(%i3) dim:4;
(%o3) 4
(%i4) lg:matrix([a, 0, 0, 0], [0, x^2, 0, 0],

[0, 0, x^2*sin(y)^2, 0], [0,0,0,-d]);
[a 0 0 0]
[]
[2]
[0 x 0 0]

(%o4) []
[2 2]
[0 0 x sin (y) 0]
[]
[0 0 0 - d]

(%i5) depends([a,d],x);
(%o5) [a(x), d(x)]
(%i6) ct_coords:[x,y,z,t];
(%o6) [x, y, z, t]
(%i7) cmetric();
(%o7) done
(%i8) einstein(false);
(%o8) done
(%i9) findde(ein,2);

2
(%o9) [d x - a d + d, 2 a d d x - a (d) x - a d d x

x x x x x x

2 2
+ 2 a d d - 2 a d , a x + a - a]

x x x
(%i10) deindex;

358 Maxima Manual

(%o10) [[1, 1], [2, 2], [4, 4]]

Functioncograd ()
Computes the covariant gradient of a scalar function allowing the user to choose the
corresponding vector name as the example under contragrad illustrates.

Functioncontragrad ()
Computes the contravariant gradient of a scalar function allowing the user to choose
the corresponding vector name as the example below for the Schwarzschild metric
illustrates:

(%i1) load(ctensor);
(%o1) /share/tensor/ctensor.mac
(%i2) derivabbrev:true;
(%o2) true
(%i3) ct_coordsys(exteriorschwarzschild,all);
(%o3) done
(%i4) depends(f,r);
(%o4) [f(r)]
(%i5) cograd(f,g1);
(%o5) done
(%i6) listarray(g1);
(%o6) [0, f , 0, 0]

r
(%i7) contragrad(f,g2);
(%o7) done
(%i8) listarray(g2);

f r - 2 f m
r r

(%o8) [0, -------------, 0, 0]
r

Functiondscalar ()
computes the tensor d’Alembertian of the scalar function once dependencies have
been declared upon the function. For example:

(%i1) load(ctensor);
(%o1) /share/tensor/ctensor.mac
(%i2) derivabbrev:true;
(%o2) true
(%i3) ct_coordsys(exteriorschwarzschild,all);
(%o3) done
(%i4) depends(p,r);
(%o4) [p(r)]
(%i5) factor(dscalar(p));

2
p r - 2 m p r + 2 p r - 2 m p

Chapter 28: ctensor 359

r r r r r r
(%o5) --------------------------------------

2
r

Functioncheckdiv ()
computes the covariant divergence of the mixed second rank tensor (whose first index
must be covariant) by printing the corresponding n components of the vector field (the
divergence) where n = dim. If the argument to the function is g then the divergence
of the Einstein tensor will be formed and must be zero. In addition, the divergence
(vector) is given the array name div.

Functioncgeodesic (dis)
A function in the ctensor (component tensor) package. cgeodesic computes the
geodesic equations of motion for a given metric. They are stored in the array geod[i].
If the argument dis is true then these equations are displayed.

Functionbdvac (f)
generates the covariant components of the vacuum field equations of the Brans- Dicke
gravitational theory. The scalar field is specified by the argument f, which should be
a (quoted) function name with functional dependencies, e.g., ’p(x).
The components of the second rank covariant field tensor are represented by the array
bd.

Functioninvariant1 ()
generates the mixed Euler- Lagrange tensor (field equations) for the invariant density
of R^2. The field equations are the components of an array named inv1.

Functioninvariant2 ()
*** NOT YET IMPLEMENTED ***
generates the mixed Euler- Lagrange tensor (field equations) for the invariant density
of ric[i,j]*uriem[i,j]. The field equations are the components of an array named
inv2.

Functionbimetric ()
*** NOT YET IMPLEMENTED ***
generates the field equations of Rosen’s bimetric theory. The field equations are the
components of an array named rosen.

28.2.8 Utility functions

Functiondiagmatrixp (M)
Returns true if M is a diagonal matrix or (2D) array.

Functionsymmetricp (M)
Returns true if M is a symmetric matrix or (2D) array.

360 Maxima Manual

Functionntermst (f)
gives the user a quick picture of the "size" of the doubly subscripted tensor (array) f.
It prints two element lists where the second element corresponds to NTERMS of the
components specified by the first elements. In this way, it is possible to quickly find
the non-zero expressions and attempt simplification.

Functioncdisplay (ten)
displays all the elements of the tensor ten, as represented by a multidimensional
array. Tensors of rank 0 and 1, as well as other types of variables, are displayed
as with ldisplay. Tensors of rank 2 are displayed as 2-dimensional matrices, while
tensors of higher rank are displayed as a list of 2-dimensional matrices. For instance,
the Riemann-tensor of the Schwarzschild metric can be viewed as:

(%i1) load(ctensor);
(%o1) /share/tensor/ctensor.mac
(%i2) ratfac:true;
(%o2) true
(%i3) ct_coordsys(exteriorschwarzschild,all);
(%o3) done
(%i4) riemann(false);
(%o4) done
(%i5) cdisplay(riem);

[0 0 0 0]
[]
[2]
[3 m (r - 2 m) m 2 m]
[0 - ------------- + -- - ---- 0 0]
[4 3 4]
[r r r]
[]

riem = [m (r - 2 m)]
1, 1 [0 0 ----------- 0]

[4]
[r]
[]
[m (r - 2 m)]
[0 0 0 -----------]
[4]
[r]

[2 m (r - 2 m)]
[0 ------------- 0 0]
[4]
[r]

riem = []
1, 2 [0 0 0 0]

[]
[0 0 0 0]
[]
[0 0 0 0]

Chapter 28: ctensor 361

[m (r - 2 m)]
[0 0 - ----------- 0]
[4]
[r]

riem = []
1, 3 [0 0 0 0]

[]
[0 0 0 0]
[]
[0 0 0 0]

[m (r - 2 m)]
[0 0 0 - -----------]
[4]
[r]

riem = []
1, 4 [0 0 0 0]

[]
[0 0 0 0]
[]
[0 0 0 0]

[0 0 0 0]
[]
[2 m]
[- ------------ 0 0 0]

riem = [2]
2, 1 [r (r - 2 m)]

[]
[0 0 0 0]
[]
[0 0 0 0]

[2 m]
[------------ 0 0 0]
[2]
[r (r - 2 m)]
[]
[0 0 0 0]
[]

riem = [m]
2, 2 [0 0 - ------------ 0]

[2]
[r (r - 2 m)]
[]
[m]
[0 0 0 - ------------]
[2]

362 Maxima Manual

[r (r - 2 m)]

[0 0 0 0]
[]
[m]
[0 0 ------------ 0]

riem = [2]
2, 3 [r (r - 2 m)]

[]
[0 0 0 0]
[]
[0 0 0 0]

[0 0 0 0]
[]
[m]
[0 0 0 ------------]

riem = [2]
2, 4 [r (r - 2 m)]

[]
[0 0 0 0]
[]
[0 0 0 0]

[0 0 0 0]
[]
[0 0 0 0]
[]

riem = [m]
3, 1 [- 0 0 0]

[r]
[]
[0 0 0 0]

[0 0 0 0]
[]
[0 0 0 0]
[]

riem = [m]
3, 2 [0 - 0 0]

[r]
[]
[0 0 0 0]

[m]
[- - 0 0 0]
[r]
[]
[m]

Chapter 28: ctensor 363

[0 - - 0 0]
riem = [r]

3, 3 []
[0 0 0 0]
[]
[2 m - r]
[0 0 0 ------- + 1]
[r]

[0 0 0 0]
[]
[0 0 0 0]
[]

riem = [2 m]
3, 4 [0 0 0 - ---]

[r]
[]
[0 0 0 0]

[0 0 0 0]
[]
[0 0 0 0]
[]

riem = [0 0 0 0]
4, 1 []

[2]
[m sin (theta)]
[------------- 0 0 0]
[r]

[0 0 0 0]
[]
[0 0 0 0]
[]

riem = [0 0 0 0]
4, 2 []

[2]
[m sin (theta)]
[0 ------------- 0 0]
[r]

[0 0 0 0]
[]
[0 0 0 0]
[]

riem = [0 0 0 0]
4, 3 []

[2]
[2 m sin (theta)]

364 Maxima Manual

[0 0 - --------------- 0]
[r]

[2]
[m sin (theta)]
[- ------------- 0 0 0]
[r]
[]
[2]
[m sin (theta)]

riem = [0 - ------------- 0 0]
4, 4 [r]

[]
[2]
[2 m sin (theta)]
[0 0 --------------- 0]
[r]
[]
[0 0 0 0]

(%o5) done

Functiondeleten (L, n)
Returns a new list consisting of L with the n’th element deleted.

28.2.9 Variables used by ctensor

Option variabledim
Default value: 4

An option in the ctensor (component tensor) package. dim is the dimension of the
manifold with the default 4. The command dim: n will reset the dimension to any
other value n.

Option variablediagmetric
Default value: false

An option in the ctensor (component tensor) package. If diagmetric is true special
routines compute all geometrical objects (which contain the metric tensor explicitly)
by taking into consideration the diagonality of the metric. Reduced run times will, of
course, result. Note: this option is set automatically by csetup if a diagonal metric
is specified.

Option variablectrgsimp
Causes trigonometric simplifications to be used when tensors are computed. Presently,
ctrgsimp affects only computations involving a moving frame.

Chapter 28: ctensor 365

Option variablecframe flag
Causes computations to be performed relative to a moving frame as opposed to a
holonomic metric. The frame is defined by the inverse frame array fri and the frame
metric lfg. For computations using a Cartesian frame, lfg should be the unit matrix
of the appropriate dimension; for computations in a Lorentz frame, lfg should have
the appropriate signature.

Option variablectorsion flag
Causes the contortion tensor to be included in the computation of the connection
coefficients. The contortion tensor itself is computed by contortion from the user-
supplied tensor tr.

Option variablecnonmet flag
Causes the nonmetricity coefficients to be included in the computation of the connec-
tion coefficients. The nonmetricity coefficients are computed from the user-supplied
nonmetricity vector nm by the function nonmetricity.

Option variablectayswitch
If set to true, causes some ctensor computations to be carried out using Taylor-
series expansions. Presently, christof, ricci, uricci, einstein, and weyl take
into account this setting.

Option variablectayvar
Variable used for Taylor-series expansion if ctayswitch is set to true.

Option variablectaypov
Maximum power used in Taylor-series expansion when ctayswitch is set to true.

Option variablectaypt
Point around which Taylor-series expansion is carried out when ctayswitch is set to
true.

System variablegdet
The determinant of the metric tensor lg. Computed by cmetric when cframe_flag
is set to false.

Option variableratchristof
Causes rational simplification to be applied by christof.

Option variablerateinstein
Default value: true

If true rational simplification will be performed on the non-zero components of Ein-
stein tensors; if ratfac is true then the components will also be factored.

366 Maxima Manual

Option variableratriemann
Default value: true
One of the switches which controls simplification of Riemann tensors; if true, then
rational simplification will be done; if ratfac is true then each of the components
will also be factored.

Option variableratweyl
Default value: true
If true, this switch causes the weyl function to apply rational simplification to the
values of the Weyl tensor. If ratfac is true, then the components will also be
factored.

Variablelfg
The covariant frame metric. By default, it is initialized to the 4-dimensional Lorentz
frame with signature (+,+,+,-). Used when cframe_flag is true.

Variableufg
The inverse frame metric. Computed from lfg when cmetric is called while cframe_
flag is set to true.

Variableriem
The (3,1) Riemann tensor. Computed when the function riemann is invoked. For
information about index ordering, see the description of riemann.
If cframe_flag is true, riem is computed from the covariant Riemann-tensor lriem.

Variablelriem
The covariant Riemann tensor. Computed by lriemann.

Variableuriem
The contravariant Riemann tensor. Computed by uriemann.

Variableric
The mixed Ricci-tensor. Computed by ricci.

Variableuric
The contravariant Ricci-tensor. Computed by uricci.

Variablelg
The metric tensor. This tensor must be specified (as a dim by dim matrix) before
other computations can be performed.

Variableug
The inverse of the metric tensor. Computed by cmetric.

Variableweyl
The Weyl tensor. Computed by weyl.

Chapter 28: ctensor 367

Variablefb
Frame bracket coefficients, as computed by frame_bracket.

Variablekinvariant
The Kretchmann invariant. Computed by rinvariant.

Variablenp
A Newman-Penrose null tetrad. Computed by nptetrad.

Variablenpi
The raised-index Newman-Penrose null tetrad. Computed by nptetrad. Defined as
ug.np. The product np.transpose(npi) is constant:

(%i39) trigsimp(np.transpose(npi));
[0 - 1 0 0]
[]
[- 1 0 0 0]

(%o39) []
[0 0 0 1]
[]
[0 0 1 0]

Variabletr
User-supplied rank-3 tensor representing torsion. Used by contortion.

Variablekt
The contortion tensor, computed from tr by contortion.

Variablenm
User-supplied nonmetricity vector. Used by nonmetricity.

Variablenmc
The nonmetricity coefficients, computed from nm by nonmetricity.

System variabletensorkill
Variable indicating if the tensor package has been initialized. Set and used by csetup,
reset by init_ctensor.

Option variablect coords
Default value: []

An option in the ctensor (component tensor) package. ct_coords contains a list
of coordinates. While normally defined when the function csetup is called, one may
redefine the coordinates with the assignment ct_coords: [j1, j2, ..., jn] where
the j’s are the new coordinate names. See also csetup.

368 Maxima Manual

28.2.10 Reserved names

The following names are used internally by the ctensor package and should not be
redefined:

Name Description

_lg() Evaluates to lfg if frame metric used, lg otherwise
_ug() Evaluates to ufg if frame metric used, ug otherwise
cleanup() Removes items drom the deindex list
contract4() Used by psi()
filemet() Used by csetup() when reading the metric from a file
findde1() Used by findde()
findde2() Used by findde()
findde3() Used by findde()
kdelt() Kronecker-delta (not generalized)
newmet() Used by csetup() for setting up a metric interactively
setflags() Used by init_ctensor()
readvalue()
resimp()
sermet() Used by csetup() for entering a metric as Taylor-series
txyzsum()
tmetric() Frame metric, used by cmetric() when cframe_flag:true
triemann() Riemann-tensor in frame base, used when cframe_flag:true
tricci() Ricci-tensor in frame base, used when cframe_flag:true
trrc() Ricci rotation coefficients, used by christof()
yesp()

28.2.11 Changes

In November, 2004, the ctensor package was extensively rewritten. Many functions and
variables have been renamed in order to make the package compatible with the commercial
version of Macsyma.

New Name Old Name Description

ctaylor() DLGTAYLOR() Taylor-series expansion of an expression
lgeod[] EM Geodesic equations
ein[] G[] Mixed Einstein-tensor
ric[] LR[] Mixed Ricci-tensor
ricci() LRICCICOM() Compute the mixed Ricci-tensor
ctaypov MINP Maximum power in Taylor-series expansion
cgeodesic() MOTION Compute geodesic equations
ct_coords OMEGA Metric coordinates
ctayvar PARAM Taylor-series expansion variable
lriem[] R[] Covariant Riemann-tensor
uriemann() RAISERIEMANN() Compute the contravariant Riemann-tensor
ratriemann RATRIEMAN Rational simplif. of the Riemann-tensor
uric[] RICCI[] Contravariant Ricci-tensor
uricci() RICCICOM() Compute the contravariant Ricci-tensor
cmetric() SETMETRIC() Set up the metric

Chapter 28: ctensor 369

ctaypt TAYPT Point for Taylor-series expansion
ctayswitch TAYSWITCH Taylor-series setting switch
csetup() TSETUP() Start interactive setup session
ctransform() TTRANSFORM() Interactive coordinate transformation
uriem[] UR[] Contravariant Riemann-tensor
weyl[] W[] (3,1) Weyl-tensor

370 Maxima Manual

Chapter 29: atensor 371

29 atensor

29.1 Introduction to atensor

atensor is an algebraic tensor manipulation package. To use atensor, type
load(atensor), followed by a call to the init_atensor function.

The essence of atensor is a set of simplification rules for the noncommutative (dot)
product operator ("."). atensor recognizes several algebra types; the corresponding sim-
plification rules are put into effect when the init_atensor function is called.

The capabilities of atensor can be demonstrated by defining the algebra of quaternions
as a Clifford-algebra Cl(0,2) with two basis vectors. The three quaternionic imaginary units
are then the two basis vectors and their product, i.e.:

i = v j = v k = v . v
1 2 1 2

Although the atensor package has a built-in definition for the quaternion algebra, it
is not used in this example, in which we endeavour to build the quaternion multiplication
table as a matrix:

(%i1) load(atensor);
(%o1) /share/tensor/atensor.mac
(%i2) init_atensor(clifford,0,0,2);
(%o2) done
(%i3) atensimp(v[1].v[1]);
(%o3) - 1
(%i4) atensimp((v[1].v[2]).(v[1].v[2]));
(%o4) - 1
(%i5) q:zeromatrix(4,4);

[0 0 0 0]
[]
[0 0 0 0]

(%o5) []
[0 0 0 0]
[]
[0 0 0 0]

(%i6) q[1,1]:1;
(%o6) 1
(%i7) for i thru adim do q[1,i+1]:q[i+1,1]:v[i];
(%o7) done
(%i8) q[1,4]:q[4,1]:v[1].v[2];
(%o8) v . v

1 2
(%i9) for i from 2 thru 4 do for j from 2 thru 4 do

q[i,j]:atensimp(q[i,1].q[1,j]);
(%o9) done
(%i10) q;

[1 v v v . v]

372 Maxima Manual

[1 2 1 2]
[]
[v - 1 v . v - v]
[1 1 2 2]

(%o10) []
[v - v . v - 1 v]
[2 1 2 1]
[]
[v . v v - v - 1]
[1 2 2 1]

atensor recognizes as base vectors indexed symbols, where the symbol is that stored in
asymbol and the index runs between 1 and adim. For indexed symbols, and indexed symbols
only, the bilinear forms sf, af, and av are evaluated. The evaluation substitutes the value
of aform[i,j] in place of fun(v[i],v[j]) where v represents the value of asymbol and
fun is either af or sf; or, it substitutes v[aform[i,j]] in place of av(v[i],v[j]).

Needless to say, the functions sf, af and av can be redefined.
When the atensor package is loaded, the following flags are set:

dotscrules:true;
dotdistrib:true;
dotexptsimp:false;

If you wish to experiment with a nonassociative algebra, you may also consider setting
dotassoc to false. In this case, however, atensimp will not always be able to obtain the
desired simplifications.

29.2 Functions and Variables for atensor

Functioninit atensor (alg type, opt dims)
Functioninit atensor (alg type)

Initializes the atensor package with the specified algebra type. alg type can be one
of the following:
universal: The universal algebra has no commutation rules.
grassmann: The Grassman algebra is defined by the commutation relation u.v+v.u=0.
clifford: The Clifford algebra is defined by the commutation relation u.v+v.u=-
2*sf(u,v) where sf is a symmetric scalar-valued function. For this algebra, opt dims
can be up to three nonnegative integers, representing the number of positive, degen-
erate, and negative dimensions of the algebra, respectively. If any opt dims values
are supplied, atensor will configure the values of adim and aform appropriately.
Otherwise, adim will default to 0 and aform will not be defined.
symmetric: The symmetric algebra is defined by the commutation relation u.v-
v.u=0.
symplectic: The symplectic algebra is defined by the commutation relation u.v-
v.u=2*af(u,v) where af is an antisymmetric scalar-valued function. For the sym-
plectic algebra, opt dims can be up to two nonnegative integers, representing the
nondegenerate and degenerate dimensions, respectively. If any opt dims values are

Chapter 29: atensor 373

supplied, atensor will configure the values of adim and aform appropriately. Other-
wise, adim will default to 0 and aform will not be defined.

lie_envelop: The algebra of the Lie envelope is defined by the commutation relation
u.v-v.u=2*av(u,v) where av is an antisymmetric function.

The init_atensor function also recognizes several predefined algebra types:

complex implements the algebra of complex numbers as the Clifford algebra Cl(0,1).
The call init_atensor(complex) is equivalent to init_atensor(clifford,0,0,1).

quaternion implements the algebra of quaternions. The call init_
atensor(quaternion) is equivalent to init_atensor(clifford,0,0,2).

pauli implements the algebra of Pauli-spinors as the Clifford-algebra Cl(3,0). A call
to init_atensor(pauli) is equivalent to init_atensor(clifford,3).

dirac implements the algebra of Dirac-spinors as the Clifford-algebra Cl(3,1). A call
to init_atensor(dirac) is equivalent to init_atensor(clifford,3,0,1).

Functionatensimp (expr)
Simplifies an algebraic tensor expression expr according to the rules configured by a
call to init_atensor. Simplification includes recursive application of commutation
relations and resolving calls to sf, af, and av where applicable. A safeguard is used
to ensure that the function always terminates, even for complex expressions.

Functionalg type
The algebra type. Valid values are universal, grassmann, clifford, symmetric,
symplectic and lie_envelop.

Variableadim
Default value: 0

The dimensionality of the algebra. atensor uses the value of adim to determine if an
indexed object is a valid base vector. See abasep.

Variableaform
Default value: ident(3)

Default values for the bilinear forms sf, af, and av. The default is the identity matrix
ident(3).

Variableasymbol
Default value: v

The symbol for base vectors.

Functionsf (u, v)
A symmetric scalar function that is used in commutation relations. The default
implementation checks if both arguments are base vectors using abasep and if that
is the case, substitutes the corresponding value from the matrix aform.

374 Maxima Manual

Functionaf (u, v)
An antisymmetric scalar function that is used in commutation relations. The default
implementation checks if both arguments are base vectors using abasep and if that
is the case, substitutes the corresponding value from the matrix aform.

Functionav (u, v)
An antisymmetric function that is used in commutation relations. The default imple-
mentation checks if both arguments are base vectors using abasep and if that is the
case, substitutes the corresponding value from the matrix aform.
For instance:

(%i1) load(atensor);
(%o1) /share/tensor/atensor.mac
(%i2) adim:3;
(%o2) 3
(%i3) aform:matrix([0,3,-2],[-3,0,1],[2,-1,0]);

[0 3 - 2]
[]

(%o3) [- 3 0 1]
[]
[2 - 1 0]

(%i4) asymbol:x;
(%o4) x
(%i5) av(x[1],x[2]);
(%o5) x

3

Functionabasep (v)
Checks if its argument is an atensor base vector. That is, if it is an indexed symbol,
with the symbol being the same as the value of asymbol, and the index having a
numeric value between 1 and adim.

Chapter 30: Series 375

30 Series

30.1 Introduction to Series

Maxima contains functions taylor and powerseries for finding the series of differen-
tiable functions. It also has tools such as nusum capable of finding the closed form of some
series. Operations such as addition and multiplication work as usual on series. This section
presents the global variables which control the expansion.

30.2 Functions and Variables for Series

Option variablecauchysum
Default value: false

When multiplying together sums with inf as their upper limit, if sumexpand is true
and cauchysum is true then the Cauchy product will be used rather than the usual
product. In the Cauchy product the index of the inner summation is a function of
the index of the outer one rather than varying independently.

Example:
(%i1) sumexpand: false$
(%i2) cauchysum: false$
(%i3) s: sum (f(i), i, 0, inf) * sum (g(j), j, 0, inf);

inf inf
==== ====
\ \

(%o3) (> f(i)) > g(j)
/ /
==== ====
i = 0 j = 0

(%i4) sumexpand: true$
(%i5) cauchysum: true$
(%i6) ’’s;

inf i1
==== ====
\ \

(%o6) > > g(i1 - i2) f(i2)
/ /
==== ====
i1 = 0 i2 = 0

Functiondeftaylor (f 1(x 1), expr 1, ..., f n(x n), expr n)
For each function f i of one variable x i, deftaylor defines expr i as the Taylor series
about zero. expr i is typically a polynomial in x i or a summation; more general
expressions are accepted by deftaylor without complaint.

powerseries (f i(x i), x i, 0) returns the series defined by deftaylor.

376 Maxima Manual

deftaylor returns a list of the functions f 1, ..., f n. deftaylor evaluates its argu-
ments.
Example:

(%i1) deftaylor (f(x), x^2 + sum(x^i/(2^i*i!^2), i, 4, inf));
(%o1) [f]
(%i2) powerseries (f(x), x, 0);

inf
==== i1
\ x 2

(%o2) > -------- + x
/ i1 2
==== 2 i1!
i1 = 4

(%i3) taylor (exp (sqrt (f(x))), x, 0, 4);
2 3 4
x 3073 x 12817 x

(%o3)/T/ 1 + x + -- + ------- + -------- + . . .
2 18432 307200

Option variablemaxtayorder
Default value: true
When maxtayorder is true, then during algebraic manipulation of (truncated) Taylor
series, taylor tries to retain as many terms as are known to be correct.

Functionniceindices (expr)
Renames the indices of sums and products in expr. niceindices attempts to rename
each index to the value of niceindicespref[1], unless that name appears in the
summand or multiplicand, in which case niceindices tries the succeeding elements
of niceindicespref in turn, until an unused variable is found. If the entire list is
exhausted, additional indices are constructed by appending integers to the value of
niceindicespref[1], e.g., i0, i1, i2,
niceindices returns an expression. niceindices evaluates its argument.
Example:

(%i1) niceindicespref;
(%o1) [i, j, k, l, m, n]
(%i2) product (sum (f (foo + i*j*bar), foo, 1, inf), bar, 1, inf);

inf inf
/===\ ====
! ! \

(%o2) ! ! > f(bar i j + foo)
! ! /
bar = 1 ====

foo = 1
(%i3) niceindices (%);

inf inf
/===\ ====
! ! \

Chapter 30: Series 377

(%o3) ! ! > f(i j l + k)
! ! /

l = 1 ====
k = 1

Option variableniceindicespref
Default value: [i, j, k, l, m, n]

niceindicespref is the list from which niceindices takes the names of indices for
sums and products.
The elements of niceindicespref are typically names of variables, although that is
not enforced by niceindices.
Example:

(%i1) niceindicespref: [p, q, r, s, t, u]$
(%i2) product (sum (f (foo + i*j*bar), foo, 1, inf), bar, 1, inf);

inf inf
/===\ ====
! ! \

(%o2) ! ! > f(bar i j + foo)
! ! /
bar = 1 ====

foo = 1
(%i3) niceindices (%);

inf inf
/===\ ====
! ! \

(%o3) ! ! > f(i j q + p)
! ! /

q = 1 ====
p = 1

Functionnusum (expr, x, i 0, i 1)
Carries out indefinite hypergeometric summation of expr with respect to x using a
decision procedure due to R.W. Gosper. expr and the result must be expressible as
products of integer powers, factorials, binomials, and rational functions.
The terms "definite" and "indefinite summation" are used analogously to "definite"
and "indefinite integration". To sum indefinitely means to give a symbolic result for
the sum over intervals of variable length, not just e.g. 0 to inf. Thus, since there is
no formula for the general partial sum of the binomial series, nusum can’t do it.
nusum and unsum know a little about sums and differences of finite products. See also
unsum.
Examples:

(%i1) nusum (n*n!, n, 0, n);

Dependent equations eliminated: (1)
(%o1) (n + 1)! - 1
(%i2) nusum (n^4*4^n/binomial(2*n,n), n, 0, n);

378 Maxima Manual

4 3 2 n
2 (n + 1) (63 n + 112 n + 18 n - 22 n + 3) 4 2

(%o2) -- - ------
693 binomial(2 n, n) 3 11 7

(%i3) unsum (%, n);
4 n
n 4

(%o3) ----------------
binomial(2 n, n)

(%i4) unsum (prod (i^2, i, 1, n), n);
n - 1
/===\
! ! 2

(%o4) (! ! i) (n - 1) (n + 1)
! !
i = 1

(%i5) nusum (%, n, 1, n);

Dependent equations eliminated: (2 3)
n

/===\
! ! 2

(%o5) ! ! i - 1
! !
i = 1

Functionpade (taylor series, numer deg bound, denom deg bound)
Returns a list of all rational functions which have the given Taylor series expansion
where the sum of the degrees of the numerator and the denominator is less than or
equal to the truncation level of the power series, i.e. are "best" approximants, and
which additionally satisfy the specified degree bounds.
taylor series is a univariate Taylor series. numer deg bound and denom deg bound
are positive integers specifying degree bounds on the numerator and denominator.
taylor series can also be a Laurent series, and the degree bounds can be inf which
causes all rational functions whose total degree is less than or equal to the length
of the power series to be returned. Total degree is defined as numer deg bound +
denom deg bound. Length of a power series is defined as "truncation level" + 1 -
min(0, "order of series").

(%i1) taylor (1 + x + x^2 + x^3, x, 0, 3);
2 3

(%o1)/T/ 1 + x + x + x + . . .
(%i2) pade (%, 1, 1);

1
(%o2) [- -----]

x - 1
(%i3) t: taylor(-(83787*x^10 - 45552*x^9 - 187296*x^8

+ 387072*x^7 + 86016*x^6 - 1507328*x^5
+ 1966080*x^4 + 4194304*x^3 - 25165824*x^2

Chapter 30: Series 379

+ 67108864*x - 134217728)
/134217728, x, 0, 10);

2 3 4 5 6 7
x 3 x x 15 x 23 x 21 x 189 x

(%o3)/T/ 1 - - + ---- - -- - ----- + ----- - ----- - ------
2 16 32 1024 2048 32768 65536

8 9 10
5853 x 2847 x 83787 x

+ ------- + ------- - --------- + . . .
4194304 8388608 134217728

(%i4) pade (t, 4, 4);
(%o4) []

There is no rational function of degree 4 numerator/denominator, with this power
series expansion. You must in general have degree of the numerator and degree of
the denominator adding up to at least the degree of the power series, in order to have
enough unknown coefficients to solve.

(%i5) pade (t, 5, 5);
5 4 3

(%o5) [- (520256329 x - 96719020632 x - 489651410240 x

2
- 1619100813312 x - 2176885157888 x - 2386516803584)

5 4 3
/(47041365435 x + 381702613848 x + 1360678489152 x

2
+ 2856700692480 x + 3370143559680 x + 2386516803584)]

Option variablepowerdisp
Default value: false

When powerdisp is true, a sum is displayed with its terms in order of increasing
power. Thus a polynomial is displayed as a truncated power series, with the constant
term first and the highest power last.

By default, terms of a sum are displayed in order of decreasing power.

Functionpowerseries (expr, x, a)
Returns the general form of the power series expansion for expr in the variable x
about the point a (which may be inf for infinity).

If powerseries is unable to expand expr, taylor may give the first several terms of
the series.

When verbose is true, powerseries prints progress messages.
(%i1) verbose: true$
(%i2) powerseries (log(sin(x)/x), x, 0);
can’t expand

380 Maxima Manual

log(sin(x))
so we’ll try again after applying the rule:

d
/ -- (sin(x))
[dx

log(sin(x)) = i ----------- dx
] sin(x)
/

in the first simplification we have returned:
/
[
i cot(x) dx - log(x)
]
/

inf
==== i1 2 i1 2 i1
\ (- 1) 2 bern(2 i1) x
> ------------------------------
/ i1 (2 i1)!
====
i1 = 1

(%o2) -------------------------------------
2

Option variablepsexpand
Default value: false
When psexpand is true, an extended rational function expression is displayed fully
expanded. The switch ratexpand has the same effect.
When psexpand is false, a multivariate expression is displayed just as in the rational
function package.
When psexpand is multi, then terms with the same total degree in the variables are
grouped together.

Functionrevert (expr, x)
Functionrevert2 (expr, x, n)

These functions return the reversion of expr, a Taylor series about zero in the variable
x. revert returns a polynomial of degree equal to the highest power in expr. revert2
returns a polynomial of degree n, which may be greater than, equal to, or less than
the degree of expr.
load ("revert") loads these functions.
Examples:

(%i1) load ("revert")$
(%i2) t: taylor (exp(x) - 1, x, 0, 6);

2 3 4 5 6
x x x x x

(%o2)/T/ x + -- + -- + -- + --- + --- + . . .
2 6 24 120 720

Chapter 30: Series 381

(%i3) revert (t, x);
6 5 4 3 2

10 x - 12 x + 15 x - 20 x + 30 x - 60 x
(%o3)/R/ - --

60
(%i4) ratexpand (%);

6 5 4 3 2
x x x x x

(%o4) - -- + -- - -- + -- - -- + x
6 5 4 3 2

(%i5) taylor (log(x+1), x, 0, 6);
2 3 4 5 6
x x x x x

(%o5)/T/ x - -- + -- - -- + -- - -- + . . .
2 3 4 5 6

(%i6) ratsimp (revert (t, x) - taylor (log(x+1), x, 0, 6));
(%o6) 0
(%i7) revert2 (t, x, 4);

4 3 2
x x x

(%o7) - -- + -- - -- + x
4 3 2

Functiontaylor (expr, x, a, n)
Functiontaylor (expr, [x 1, x 2, ...], a, n)
Functiontaylor (expr, [x, a, n, ’asymp])
Functiontaylor (expr, [x 1, x 2, ...], [a 1, a 2, ...], [n 1, n 2, ...])
Functiontaylor (expr, [x 1, a 1, n 1], [x 2, a 2, n 2], ...)

taylor (expr, x, a, n) expands the expression expr in a truncated Taylor or Laurent
series in the variable x around the point a, containing terms through (x - a)^n.

If expr is of the form f (x)/g(x) and g(x) has no terms up to degree n then taylor
attempts to expand g(x) up to degree 2 n. If there are still no nonzero terms, taylor
doubles the degree of the expansion of g(x) so long as the degree of the expansion is
less than or equal to n 2^taylordepth.

taylor (expr, [x 1, x 2, ...], a, n) returns a truncated power series of degree n
in all variables x 1, x 2, ... about the point (a, a, ...).

taylor (expr, [x 1, a 1, n 1], [x 2, a 2, n 2], ...) returns a truncated power
series in the variables x 1, x 2, ... about the point (a 1, a 2, ...), truncated at n 1,
n 2,

taylor (expr, [x 1, x 2, ...], [a 1, a 2, ...], [n 1, n 2, ...]) returns a trun-
cated power series in the variables x 1, x 2, ... about the point (a 1, a 2, ...),
truncated at n 1, n 2,

taylor (expr, [x, a, n, ’asymp]) returns an expansion of expr in negative powers
of x - a. The highest order term is (x - a)^-n.

When maxtayorder is true, then during algebraic manipulation of (truncated) Taylor
series, taylor tries to retain as many terms as are known to be correct.

382 Maxima Manual

When psexpand is true, an extended rational function expression is displayed fully
expanded. The switch ratexpand has the same effect. When psexpand is false, a
multivariate expression is displayed just as in the rational function package. When
psexpand is multi, then terms with the same total degree in the variables are grouped
together.

See also the taylor_logexpand switch for controlling expansion.

Examples:

(%i1) taylor (sqrt (sin(x) + a*x + 1), x, 0, 3);
2 2

(a + 1) x (a + 2 a + 1) x
(%o1)/T/ 1 + --------- - -----------------

2 8

3 2 3
(3 a + 9 a + 9 a - 1) x

+ -------------------------- + . . .
48

(%i2) %^2;
3

x
(%o2)/T/ 1 + (a + 1) x - -- + . . .

6
(%i3) taylor (sqrt (x + 1), x, 0, 5);

2 3 4 5
x x x 5 x 7 x

(%o3)/T/ 1 + - - -- + -- - ---- + ---- + . . .
2 8 16 128 256

(%i4) %^2;
(%o4)/T/ 1 + x + . . .
(%i5) product ((1 + x^i)^2.5, i, 1, inf)/(1 + x^2);

inf
/===\
! ! i 2.5
! ! (x + 1)
! !
i = 1

(%o5) -----------------
2
x + 1

(%i6) ev (taylor(%, x, 0, 3), keepfloat);
2 3

(%o6)/T/ 1 + 2.5 x + 3.375 x + 6.5625 x + . . .
(%i7) taylor (1/log (x + 1), x, 0, 3);

2 3
1 1 x x 19 x

(%o7)/T/ - + - - -- + -- - ----- + . . .
x 2 12 24 720

(%i8) taylor (cos(x) - sec(x), x, 0, 5);

Chapter 30: Series 383

4
2 x

(%o8)/T/ - x - -- + . . .
6

(%i9) taylor ((cos(x) - sec(x))^3, x, 0, 5);
(%o9)/T/ 0 + . . .
(%i10) taylor (1/(cos(x) - sec(x))^3, x, 0, 5);

2 4
1 1 11 347 6767 x 15377 x

(%o10)/T/ - -- + ---- + ------ - ----- - ------- - --------
6 4 2 15120 604800 7983360
x 2 x 120 x

+ . . .
(%i11) taylor (sqrt (1 - k^2*sin(x)^2), x, 0, 6);

2 2 4 2 4
k x (3 k - 4 k) x

(%o11)/T/ 1 - ----- - ----------------
2 24

6 4 2 6
(45 k - 60 k + 16 k) x

- -------------------------- + . . .
720

(%i12) taylor ((x + 1)^n, x, 0, 4);
2 2 3 2 3

(n - n) x (n - 3 n + 2 n) x
(%o12)/T/ 1 + n x + ----------- + --------------------

2 6

4 3 2 4
(n - 6 n + 11 n - 6 n) x

+ ---------------------------- + . . .
24

(%i13) taylor (sin (y + x), x, 0, 3, y, 0, 3);
3 2
y y

(%o13)/T/ y - -- + . . . + (1 - -- + . . .) x
6 2

3 2
y y 2 1 y 3

+ (- - + -- + . . .) x + (- - + -- + . . .) x + . . .
2 12 6 12

(%i14) taylor (sin (y + x), [x, y], 0, 3);
3 2 2 3
x + 3 y x + 3 y x + y

(%o14)/T/ y + x - ------------------------- + . . .
6

384 Maxima Manual

(%i15) taylor (1/sin (y + x), x, 0, 3, y, 0, 3);
1 y 1 1 1 2

(%o15)/T/ - + - + . . . + (- -- + - + . . .) x + (-- + . . .) x
y 6 2 6 3

y y

1 3
+ (- -- + . . .) x + . . .

4
y

(%i16) taylor (1/sin (y + x), [x, y], 0, 3);
3 2 2 3

1 x + y 7 x + 21 y x + 21 y x + 7 y
(%o16)/T/ ----- + ----- + ------------------------------- + . . .

x + y 6 360

Option variabletaylordepth
Default value: 3
If there are still no nonzero terms, taylor doubles the degree of the expansion of
g(x) so long as the degree of the expansion is less than or equal to n 2^taylordepth.

Functiontaylorinfo (expr)
Returns information about the Taylor series expr. The return value is a list of lists.
Each list comprises the name of a variable, the point of expansion, and the degree of
the expansion.
taylorinfo returns false if expr is not a Taylor series.
Example:

(%i1) taylor ((1 - y^2)/(1 - x), x, 0, 3, [y, a, inf]);
2 2

(%o1)/T/ - (y - a) - 2 a (y - a) + (1 - a)

2 2
+ (1 - a - 2 a (y - a) - (y - a)) x

2 2 2
+ (1 - a - 2 a (y - a) - (y - a)) x

2 2 3
+ (1 - a - 2 a (y - a) - (y - a)) x + . . .
(%i2) taylorinfo(%);
(%o2) [[y, a, inf], [x, 0, 3]]

Functiontaylorp (expr)
Returns true if expr is a Taylor series, and false otherwise.

Option variabletaylor logexpand
Default value: true

Chapter 30: Series 385

taylor_logexpand controls expansions of logarithms in taylor series.
When taylor_logexpand is true, all logarithms are expanded fully so that zero-
recognition problems involving logarithmic identities do not disturb the expansion
process. However, this scheme is not always mathematically correct since it ignores
branch information.
When taylor_logexpand is set to false, then the only expansion of logarithms that
occur is that necessary to obtain a formal power series.

Option variabletaylor order coefficients
Default value: true
taylor_order_coefficients controls the ordering of coefficients in a Taylor series.
When taylor_order_coefficients is true, coefficients of taylor series are ordered
canonically.

Functiontaylor simplifier (expr)
Simplifies coefficients of the power series expr. taylor calls this function.

Option variabletaylor truncate polynomials
Default value: true
When taylor_truncate_polynomials is true, polynomials are truncated based
upon the input truncation levels.
Otherwise, polynomials input to taylor are considered to have infinite precison.

Functiontaytorat (expr)
Converts expr from taylor form to canonical rational expression (CRE) form. The
effect is the same as rat (ratdisrep (expr)), but faster.

Functiontrunc (expr)
Annotates the internal representation of the general expression expr so that it is
displayed as if its sums were truncated Taylor series. expr is not otherwise modified.
Example:

(%i1) expr: x^2 + x + 1;
2

(%o1) x + x + 1
(%i2) trunc (expr);

2
(%o2) 1 + x + x + . . .
(%i3) is (expr = trunc (expr));
(%o3) true

Functionunsum (f, n)
Returns the first backward difference f (n) - f (n - 1). Thus unsum in a sense is the
inverse of sum.
See also nusum.
Examples:

386 Maxima Manual

(%i1) g(p) := p*4^n/binomial(2*n,n);
n

p 4
(%o1) g(p) := ----------------

binomial(2 n, n)
(%i2) g(n^4);

4 n
n 4

(%o2) ----------------
binomial(2 n, n)

(%i3) nusum (%, n, 0, n);
4 3 2 n

2 (n + 1) (63 n + 112 n + 18 n - 22 n + 3) 4 2
(%o3) -- - ------

693 binomial(2 n, n) 3 11 7
(%i4) unsum (%, n);

4 n
n 4

(%o4) ----------------
binomial(2 n, n)

Option variableverbose
Default value: false
When verbose is true, powerseries prints progress messages.

Chapter 31: Number Theory 387

31 Number Theory

31.1 Functions and Variables for Number Theory

Functionbern (n)
Returns the n’th Bernoulli number for integer n. Bernoulli numbers equal to zero are
suppressed if zerobern is false.
See also burn.

(%i1) zerobern: true$
(%i2) map (bern, [0, 1, 2, 3, 4, 5, 6, 7, 8]);

1 1 1 1 1
(%o2) [1, - -, -, 0, - --, 0, --, 0, - --]

2 6 30 42 30
(%i3) zerobern: false$
(%i4) map (bern, [0, 1, 2, 3, 4, 5, 6, 7, 8]);

1 1 1 5 691 7 3617 43867
(%o4) [1, - -, -, - --, --, - ----, -, - ----, -----]

2 6 30 66 2730 6 510 798

Functionbernpoly (x, n)
Returns the n’th Bernoulli polynomial in the variable x.

Functionbfzeta (s, n)
Returns the Riemann zeta function for the argument s. The return value is a big float
(bfloat); n is the number of digits in the return value.

Functionbfhzeta (s, h, n)
Returns the Hurwitz zeta function for the arguments s and h. The return value is a
big float (bfloat); n is the number of digits in the return value.
The Hurwitz zeta function is defined as

sum ((k+h)^-s, k, 0, inf)

load ("bffac") loads this function.

Functionbinomial (x, y)
The binomial coefficient x!/(y! (x - y)!). If x and y are integers, then the numer-
ical value of the binomial coefficient is computed. If y, or x - y, is an integer, the
binomial coefficient is expressed as a polynomial.
Examples:

(%i1) binomial (11, 7);
(%o1) 330
(%i2) 11! / 7! / (11 - 7)!;
(%o2) 330
(%i3) binomial (x, 7);

(x - 6) (x - 5) (x - 4) (x - 3) (x - 2) (x - 1) x

388 Maxima Manual

(%o3) ---
5040

(%i4) binomial (x + 7, x);
(x + 1) (x + 2) (x + 3) (x + 4) (x + 5) (x + 6) (x + 7)

(%o4) ---
5040

(%i5) binomial (11, y);
(%o5) binomial(11, y)

Functionburn (n)
Returns the n’th Bernoulli number for integer n. burn may be more efficient than
bern for large, isolated n (perhaps n greater than 105 or so), as bern computes all
the Bernoulli numbers up to index n before returning.
burn exploits the observation that (rational) Bernoulli numbers can be approximated
by (transcendental) zetas with tolerable efficiency.
load ("bffac") loads this function.

Functioncf (expr)
Converts expr into a continued fraction. expr is an expression comprising continued
fractions and square roots of integers. Operands in the expression may be combined
with arithmetic operators. Aside from continued fractions and square roots, factors
in the expression must be integer or rational numbers. Maxima does not know about
operations on continued fractions outside of cf.
cf evaluates its arguments after binding listarith to false. cf returns a continued
fraction, represented as a list.
A continued fraction a + 1/(b + 1/(c + ...)) is represented by the list [a, b, c,
...]. The list elements a, b, c, ... must evaluate to integers. expr may also contain
sqrt (n) where n is an integer. In this case cf will give as many terms of the continued
fraction as the value of the variable cflength times the period.
A continued fraction can be evaluated to a number by evaluating the arithmetic
representation returned by cfdisrep. See also cfexpand for another way to evaluate
a continued fraction.
See also cfdisrep, cfexpand, and cflength.
Examples:
• expr is an expression comprising continued fractions and square roots of integers.

(%i1) cf ([5, 3, 1]*[11, 9, 7] + [3, 7]/[4, 3, 2]);
(%o1) [59, 17, 2, 1, 1, 1, 27]
(%i2) cf ((3/17)*[1, -2, 5]/sqrt(11) + (8/13));
(%o2) [0, 1, 1, 1, 3, 2, 1, 4, 1, 9, 1, 9, 2]

• cflength controls how many periods of the continued fraction are computed for
algebraic, irrational numbers.

(%i1) cflength: 1$
(%i2) cf ((1 + sqrt(5))/2);
(%o2) [1, 1, 1, 1, 2]
(%i3) cflength: 2$

Chapter 31: Number Theory 389

(%i4) cf ((1 + sqrt(5))/2);
(%o4) [1, 1, 1, 1, 1, 1, 1, 2]
(%i5) cflength: 3$
(%i6) cf ((1 + sqrt(5))/2);
(%o6) [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2]

• A continued fraction can be evaluated by evaluating the arithmetic representation
returned by cfdisrep.

(%i1) cflength: 3$
(%i2) cfdisrep (cf (sqrt (3)))$
(%i3) ev (%, numer);
(%o3) 1.731707317073171

• Maxima does not know about operations on continued fractions outside of cf.
(%i1) cf ([1,1,1,1,1,2] * 3);
(%o1) [4, 1, 5, 2]
(%i2) cf ([1,1,1,1,1,2]) * 3;
(%o2) [3, 3, 3, 3, 3, 6]

Functioncfdisrep (list)
Constructs and returns an ordinary arithmetic expression of the form a + 1/(b + 1/(c
+ ...)) from the list representation of a continued fraction [a, b, c, ...].

(%i1) cf ([1, 2, -3] + [1, -2, 1]);
(%o1) [1, 1, 1, 2]
(%i2) cfdisrep (%);

1
(%o2) 1 + ---------

1
1 + -----

1
1 + -

2

Functioncfexpand (x)
Returns a matrix of the numerators and denominators of the last (column 1) and
next-to-last (column 2) convergents of the continued fraction x.

(%i1) cf (rat (ev (%pi, numer)));

‘rat’ replaced 3.141592653589793 by 103993/33102 =3.141592653011902
(%o1) [3, 7, 15, 1, 292]
(%i2) cfexpand (%);

[103993 355]
(%o2) []

[33102 113]
(%i3) %[1,1]/%[2,1], numer;
(%o3) 3.141592653011902

Option variablecflength
Default value: 1

390 Maxima Manual

cflength controls the number of terms of the continued fraction the function cf will
give, as the value cflength times the period. Thus the default is to give one period.

(%i1) cflength: 1$
(%i2) cf ((1 + sqrt(5))/2);
(%o2) [1, 1, 1, 1, 2]
(%i3) cflength: 2$
(%i4) cf ((1 + sqrt(5))/2);
(%o4) [1, 1, 1, 1, 1, 1, 1, 2]
(%i5) cflength: 3$
(%i6) cf ((1 + sqrt(5))/2);
(%o6) [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2]

Functiondivsum (n, k)
Functiondivsum (n)

divsum (n, k) returns the sum of the divisors of n raised to the k’th power.

divsum (n) returns the sum of the divisors of n.
(%i1) divsum (12);
(%o1) 28
(%i2) 1 + 2 + 3 + 4 + 6 + 12;
(%o2) 28
(%i3) divsum (12, 2);
(%o3) 210
(%i4) 1^2 + 2^2 + 3^2 + 4^2 + 6^2 + 12^2;
(%o4) 210

Functioneuler (n)
Returns the n’th Euler number for nonnegative integer n.

For the Euler-Mascheroni constant, see %gamma.
(%i1) map (euler, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
(%o1) [1, 0, - 1, 0, 5, 0, - 61, 0, 1385, 0, - 50521]

Constant%gamma
The Euler-Mascheroni constant, 0.5772156649015329

Functionfactorial (x)
Represents the factorial function. Maxima treats factorial (x) the same as x!. See
!.

Functionfib (n)
Returns the n’th Fibonacci number. fib(0) equal to 0 and fib(1) equal to 1, and
fib (-n) equal to (-1)^(n + 1) * fib(n).

After calling fib, prevfib is equal to fib (x - 1), the Fibonacci number preceding
the last one computed.

(%i1) map (fib, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
(%o1) [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

Chapter 31: Number Theory 391

Functionfibtophi (expr)
Expresses Fibonacci numbers in expr in terms of the constant %phi, which is (1 +
sqrt(5))/2, approximately 1.61803399.
Examples:

(%i1) fibtophi (fib (n));
n n

%phi - (1 - %phi)
(%o1) -------------------

2 %phi - 1
(%i2) fib (n-1) + fib (n) - fib (n+1);
(%o2) - fib(n + 1) + fib(n) + fib(n - 1)
(%i3) fibtophi (%);

n + 1 n + 1 n n
%phi - (1 - %phi) %phi - (1 - %phi)

(%o3) - --------------------------- + -------------------
2 %phi - 1 2 %phi - 1

n - 1 n - 1
%phi - (1 - %phi)

+ ---------------------------
2 %phi - 1

(%i4) ratsimp (%);
(%o4) 0

Functionifactors (n)
For a positive integer n returns the factorization of n. If n=p1^e1..pk^nk is the
decomposition of n into prime factors, ifactors returns [[p1, e1], ... , [pk, ek]].
Factorization methods used are trial divisions by primes up to 9973, Pollard’s rho
method and elliptic curve method.

(%i1) ifactors(51575319651600);
(%o1) [[2, 4], [3, 2], [5, 2], [1583, 1], [9050207, 1]]
(%i2) apply("*", map(lambda([u], u[1]^u[2]), %));
(%o2) 51575319651600

Functioninrt (x, n)
Returns the integer n’th root of the absolute value of x.

(%i1) l: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]$
(%i2) map (lambda ([a], inrt (10^a, 3)), l);
(%o2) [2, 4, 10, 21, 46, 100, 215, 464, 1000, 2154, 4641, 10000]

Functioninv mod (n, m)
Computes the inverse of n modulo m. inv_mod (n,m) returns false, if n is a zero
divisor modulo m.

(%i1) inv_mod(3, 41);
(%o1) 14
(%i2) ratsimp(3^-1), modulus=41;
(%o2) 14
(%i3) inv_mod(3, 42);
(%o3) false

392 Maxima Manual

Functionjacobi (p, q)
Returns the Jacobi symbol of p and q.

(%i1) l: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]$
(%i2) map (lambda ([a], jacobi (a, 9)), l);
(%o2) [1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0]

Functionlcm (expr 1, ..., expr n)
Returns the least common multiple of its arguments. The arguments may be general
expressions as well as integers.
load ("functs") loads this function.

Functionminfactorial (expr)
Examines expr for occurrences of two factorials which differ by an integer.
minfactorial then turns one into a polynomial times the other.

(%i1) n!/(n+2)!;
n!

(%o1) --------
(n + 2)!

(%i2) minfactorial (%);
1

(%o2) ---------------
(n + 1) (n + 2)

Functionnext prime (n)
Returns the smallest prime bigger than n.

(%i1) next_prime(27);
(%o1) 29

Functionpartfrac (expr, var)
Expands the expression expr in partial fractions with respect to the main variable var.
partfrac does a complete partial fraction decomposition. The algorithm employed is
based on the fact that the denominators of the partial fraction expansion (the factors
of the original denominator) are relatively prime. The numerators can be written as
linear combinations of denominators, and the expansion falls out.

(%i1) 1/(1+x)^2 - 2/(1+x) + 2/(2+x);
2 2 1

(%o1) ----- - ----- + --------
x + 2 x + 1 2

(x + 1)
(%i2) ratsimp (%);

x
(%o2) - -------------------

3 2
x + 4 x + 5 x + 2

(%i3) partfrac (%, x);
2 2 1

(%o3) ----- - ----- + --------

Chapter 31: Number Theory 393

x + 2 x + 1 2
(x + 1)

Functionpower mod (a, n, m)
Uses a modular algorithm to compute a^n mod m where a and n are integers and m is
a positive integer. If n is negative, inv_mod is used to find the modular inverse.

(%i1) power_mod(3, 15, 5);
(%o1) 2
(%i2) mod(3^15,5);
(%o2) 2
(%i3) power_mod(2, -1, 5);
(%o3) 3
(%i4) inv_mod(2,5);
(%o4) 3

Functionprimep (n)
Primality test. If primep (n) returns false, n is a composite number and if it returns
true, n is a prime number with very high probability.
For n less than 341550071728321 a deterministic version of Miller-Rabin’s test is used.
If primep (n) returns true, then n is a prime number.
For n bigger than 34155071728321 primep uses primep_number_of_tests Miller-
Rabin’s pseudo-primality tests and one Lucas pseudo-primality test. The probability
that n will pass one Miller-Rabin test is less than 1/4. Using the default value 25
for primep_number_of_tests, the probability of n beeing composite is much smaller
that 10^-15.

Option variableprimep number of tests
Default value: 25
Number of Miller-Rabin’s tests used in primep.

Functionprev prime (n)
Returns the greatest prime smaller than n.

(%i1) prev_prime(27);
(%o1) 23

Functionqunit (n)
Returns the principal unit of the real quadratic number field sqrt (n) where n is an
integer, i.e., the element whose norm is unity. This amounts to solving Pell’s equation
a^2 - n b^2 = 1.

(%i1) qunit (17);
(%o1) sqrt(17) + 4
(%i2) expand (% * (sqrt(17) - 4));
(%o2) 1

Functiontotient (n)
Returns the number of integers less than or equal to n which are relatively prime to
n.

394 Maxima Manual

Option variablezerobern
Default value: true
When zerobern is false, bern excludes the Bernoulli numbers which are equal to
zero. See bern.

Functionzeta (n)
Returns the Riemann zeta function if x is a negative integer, 0, 1, or a positive even
number, and returns a noun form zeta (n) for all other arguments, including rational
noninteger, floating point, and complex arguments.
See also bfzeta and zeta%pi.

(%i1) map (zeta, [-4, -3, -2, -1, 0, 1, 2, 3, 4, 5]);
2 4

1 1 1 %pi %pi
(%o1) [0, ---, 0, - --, - -, inf, ----, zeta(3), ----, zeta(5)]

120 12 2 6 90

Option variablezeta%pi
Default value: true
When zeta%pi is true, zeta returns an expression proportional to %pi^n for even
integer n. Otherwise, zeta returns a noun form zeta (n) for even integer n.

(%i1) zeta%pi: true$
(%i2) zeta (4);

4
%pi

(%o2) ----
90

(%i3) zeta%pi: false$
(%i4) zeta (4);
(%o4) zeta(4)

Chapter 32: Symmetries 395

32 Symmetries

32.1 Introduction to Symmetries

sym is a package for working with symmetric groups of polynomials.

32.2 Functions and Variables for Symmetries

32.2.1 Changing bases

Functioncomp2pui (n, L)
implements passing from the complete symmetric functions given in the list L to the
elementary symmetric functions from 0 to n. If the list L contains fewer than n+1
elements, it will be completed with formal values of the type h1, h2, etc. If the first
element of the list L exists, it specifies the size of the alphabet, otherwise the size is
set to n.

(%i1) comp2pui (3, [4, g]);
2 2

(%o1) [4, g, 2 h2 - g , 3 h3 - g h2 + g (g - 2 h2)]

Functionele2pui (m, L)
goes from the elementary symmetric functions to the complete functions. Similar to
comp2ele and comp2pui.
Other functions for changing bases: comp2ele.

Functionele2comp (m, L)
Goes from the elementary symmetric functions to the compete functions. Similar to
comp2ele and comp2pui.
Other functions for changing bases: comp2ele.

Functionelem (ele, sym, lvar)
decomposes the symmetric polynomial sym, in the variables contained in the list lvar,
in terms of the elementary symmetric functions given in the list ele. If the first element
of ele is given, it will be the size of the alphabet, otherwise the size will be the degree
of the polynomial sym. If values are missing in the list ele, formal values of the type
e1, e2, etc. will be added. The polynomial sym may be given in three different forms:
contracted (elem should then be 1, its default value), partitioned (elem should be 3),
or extended (i.e. the entire polynomial, and elem should then be 2). The function
pui is used in the same way.
On an alphabet of size 3 with e1, the first elementary symmetric function, with
value 7, the symmetric polynomial in 3 variables whose contracted form (which here
depends on only two of its variables) is x^4-2*x*y decomposes as follows in elementary
symmetric functions:

396 Maxima Manual

(%i1) elem ([3, 7], x^4 - 2*x*y, [x, y]);
(%o1) 7 (e3 - 7 e2 + 7 (49 - e2)) + 21 e3

+ (- 2 (49 - e2) - 2) e2
(%i2) ratsimp (%);

2
(%o2) 28 e3 + 2 e2 - 198 e2 + 2401

Other functions for changing bases: comp2ele.

Functionmon2schur (L)
The list L represents the Schur function SL: we have L = [i1, i2, . . . , iq], with i1 ≤
i2 ≤ . . . ≤ iq. The Schur function Si1,i2,...,iq is the minor of the infinite matrix hi−j,
i ≥ 1, j ≥ 1, consisting of the q first rows and the columns i1 + 1, i2 + 2, . . . , iq + q.

This Schur function can be written in terms of monomials by using treinat and
kostka. The form returned is a symmetric polynomial in a contracted representation
in the variables x1, x2,

(%i1) mon2schur ([1, 1, 1]);
(%o1) x1 x2 x3
(%i2) mon2schur ([3]);

2 3
(%o2) x1 x2 x3 + x1 x2 + x1
(%i3) mon2schur ([1, 2]);

2
(%o3) 2 x1 x2 x3 + x1 x2

which means that for 3 variables this gives:

2 x1 x2 x3 + x1^2 x2 + x2^2 x1 + x1^2 x3 + x3^2 x1
+ x2^2 x3 + x3^2 x2

Other functions for changing bases: comp2ele.

Functionmulti elem (l elem, multi pc, l var)
decomposes a multi-symmetric polynomial in the multi-contracted form multi pc in
the groups of variables contained in the list of lists l var in terms of the elementary
symmetric functions contained in l elem.

(%i1) multi_elem ([[2, e1, e2], [2, f1, f2]], a*x + a^2 + x^3,
[[x, y], [a, b]]);

3
(%o1) - 2 f2 + f1 (f1 + e1) - 3 e1 e2 + e1
(%i2) ratsimp (%);

2 3
(%o2) - 2 f2 + f1 + e1 f1 - 3 e1 e2 + e1

Other functions for changing bases: comp2ele.

Functionmulti pui
is to the function pui what the function multi_elem is to the function elem.

Chapter 32: Symmetries 397

(%i1) multi_pui ([[2, p1, p2], [2, t1, t2]], a*x + a^2 + x^3,
[[x, y], [a, b]]);

3
3 p1 p2 p1

(%o1) t2 + p1 t1 + ------- - ---
2 2

Functionpui (L, sym, lvar)
decomposes the symmetric polynomial sym, in the variables in the list lvar, in terms
of the power functions in the list L. If the first element of L is given, it will be the
size of the alphabet, otherwise the size will be the degree of the polynomial sym. If
values are missing in the list L, formal values of the type p1, p2 , etc. will be added.
The polynomial sym may be given in three different forms: contracted (elem should
then be 1, its default value), partitioned (elem should be 3), or extended (i.e. the
entire polynomial, and elem should then be 2). The function pui is used in the same
way.

(%i1) pui;
(%o1) 1
(%i2) pui ([3, a, b], u*x*y*z, [x, y, z]);

2
a (a - b) u (a b - p3) u

(%o2) ------------ - ------------
6 3

(%i3) ratsimp (%);
3

(2 p3 - 3 a b + a) u
(%o3) ---------------------

6

Other functions for changing bases: comp2ele.

Functionpui2comp (n, lpui)
renders the list of the first n complete functions (with the length first) in terms of
the power functions given in the list lpui. If the list lpui is empty, the cardinal is n,
otherwise it is its first element (as in comp2ele and comp2pui).

(%i1) pui2comp (2, []);
2

p2 + p1
(%o1) [2, p1, --------]

2
(%i2) pui2comp (3, [2, a1]);

2
a1 (p2 + a1)

2 p3 + ------------- + a1 p2
p2 + a1 2

(%o2) [2, a1, --------, --------------------------]
2 3

(%i3) ratsimp (%);
2 3

398 Maxima Manual

p2 + a1 2 p3 + 3 a1 p2 + a1
(%o3) [2, a1, --------, --------------------]

2 6

Other functions for changing bases: comp2ele.

Functionpui2ele (n, lpui)
effects the passage from power functions to the elementary symmetric functions. If
the flag pui2ele is girard, it will return the list of elementary symmetric functions
from 1 to n, and if the flag is close, it will return the n-th elementary symmetric
function.
Other functions for changing bases: comp2ele.

Functionpuireduc (n, lpui)
lpui is a list whose first element is an integer m. puireduc gives the first n power
functions in terms of the first m.

(%i1) puireduc (3, [2]);
2

p1 (p1 - p2)
(%o1) [2, p1, p2, p1 p2 - -------------]

2
(%i2) ratsimp (%);

3
3 p1 p2 - p1

(%o2) [2, p1, p2, -------------]
2

Functionschur2comp (P, l var)
P is a polynomial in the variables of the list l var. Each of these variables represents
a complete symmetric function. In l var the i-th complete symmetric function is
represented by the concatenation of the letter h and the integer i: hi. This function
expresses P in terms of Schur functions.

(%i1) schur2comp (h1*h2 - h3, [h1, h2, h3]);
(%o1) s

1, 2
(%i2) schur2comp (a*h3, [h3]);
(%o2) s a

3

32.2.2 Changing representations

Functioncont2part (pc, lvar)
returns the partitioned polynomial associated to the contracted form pc whose vari-
ables are in lvar.

(%i1) pc: 2*a^3*b*x^4*y + x^5;
3 4 5

(%o1) 2 a b x y + x

Chapter 32: Symmetries 399

(%i2) cont2part (pc, [x, y]);
3

(%o2) [[1, 5, 0], [2 a b, 4, 1]]

Functioncontract (psym, lvar)
returns a contracted form (i.e. a monomial orbit under the action of the symmetric
group) of the polynomial psym in the variables contained in the list lvar. The function
explose performs the inverse operation. The function tcontract tests the symmetry
of the polynomial.

(%i1) psym: explose (2*a^3*b*x^4*y, [x, y, z]);
3 4 3 4 3 4 3 4

(%o1) 2 a b y z + 2 a b x z + 2 a b y z + 2 a b x z

3 4 3 4
+ 2 a b x y + 2 a b x y

(%i2) contract (psym, [x, y, z]);
3 4

(%o2) 2 a b x y

Functionexplose (pc, lvar)
returns the symmetric polynomial associated with the contracted form pc. The list
lvar contains the variables.

(%i1) explose (a*x + 1, [x, y, z]);
(%o1) a z + a y + a x + 1

Functionpart2cont (ppart, lvar)
goes from the partitioned form to the contracted form of a symmetric polynomial.
The contracted form is rendered with the variables in lvar.

(%i1) part2cont ([[2*a^3*b, 4, 1]], [x, y]);
3 4

(%o1) 2 a b x y

Functionpartpol (psym, lvar)
psym is a symmetric polynomial in the variables of the list lvar. This function retturns
its partitioned representation.

(%i1) partpol (-a*(x + y) + 3*x*y, [x, y]);
(%o1) [[3, 1, 1], [- a, 1, 0]]

Functiontcontract (pol, lvar)
tests if the polynomial pol is symmetric in the variables of the list lvar. If so, it
returns a contracted representation like the function contract.

Functiontpartpol (pol, lvar)
tests if the polynomial pol is symmetric in the variables of the list lvar. If so, it
returns its partitioned representation like the function partpol.

400 Maxima Manual

32.2.3 Groups and orbits

Functiondirect ([p 1, ..., p n], y, f, [lvar 1, ..., lvar n])
calculates the direct image (see M. Giusti, D. Lazard et A. Valibouze, ISSAC 1988,
Rome) associated to the function f, in the lists of variables lvar 1, ..., lvar n, and in
the polynomials p 1, ..., p n in a variable y. The arity of the function f is important
for the calulation. Thus, if the expression for f does not depend on some variable, it
is useless to include this variable, and not including it will also considerably reduce
the amount of computation.

(%i1) direct ([z^2 - e1* z + e2, z^2 - f1* z + f2],
z, b*v + a*u, [[u, v], [a, b]]);

2
(%o1) y - e1 f1 y

2 2 2 2
- 4 e2 f2 - (e1 - 2 e2) (f1 - 2 f2) + e1 f1

+ ---
2

(%i2) ratsimp (%);
2 2 2

(%o2) y - e1 f1 y + (e1 - 4 e2) f2 + e2 f1
(%i3) ratsimp (direct ([z^3-e1*z^2+e2*z-e3,z^2 - f1* z + f2],

z, b*v + a*u, [[u, v], [a, b]]));
6 5 2 2 2 4

(%o3) y - 2 e1 f1 y + ((2 e1 - 6 e2) f2 + (2 e2 + e1) f1) y

3 3 3
+ ((9 e3 + 5 e1 e2 - 2 e1) f1 f2 + (- 2 e3 - 2 e1 e2) f1) y

2 2 4 2
+ ((9 e2 - 6 e1 e2 + e1) f2

2 2 2 2 4
+ (- 9 e1 e3 - 6 e2 + 3 e1 e2) f1 f2 + (2 e1 e3 + e2) f1)

2 2 2 3 2
y + (((9 e1 - 27 e2) e3 + 3 e1 e2 - e1 e2) f1 f2

2 2 3 5
+ ((15 e2 - 2 e1) e3 - e1 e2) f1 f2 - 2 e2 e3 f1) y

2 3 3 2 2 3
+ (- 27 e3 + (18 e1 e2 - 4 e1) e3 - 4 e2 + e1 e2) f2

2 3 3 2 2
+ (27 e3 + (e1 - 9 e1 e2) e3 + e2) f1 f2

2 4 2 6

Chapter 32: Symmetries 401

+ (e1 e2 e3 - 9 e3) f1 f2 + e3 f1

Finding the polynomial whose roots are the sums a+u where a is a root of z2−e1z+e2
and u is a root of z2 − f1z + f2.

(%i1) ratsimp (direct ([z^2 - e1* z + e2, z^2 - f1* z + f2],
z, a + u, [[u], [a]]));

4 3 2
(%o1) y + (- 2 f1 - 2 e1) y + (2 f2 + f1 + 3 e1 f1 + 2 e2

2 2 2 2
+ e1) y + ((- 2 f1 - 2 e1) f2 - e1 f1 + (- 2 e2 - e1) f1

2 2 2
- 2 e1 e2) y + f2 + (e1 f1 - 2 e2 + e1) f2 + e2 f1 + e1 e2 f1

2
+ e2

direct accepts two flags: elementaires and puissances (default) which allow de-
composing the symmetric polynomials appearing in the calculation into elementary
symmetric functions, or power functions, respectively.
Functions of sym used in this function:
multi_orbit (so orbit), pui_direct, multi_elem (so elem), multi_pui (so pui),
pui2ele, ele2pui (if the flag direct is in puissances).

Functionmulti orbit (P, [lvar 1, lvar 2,..., lvar p])
P is a polynomial in the set of variables contained in the lists lvar 1, lvar 2, ..., lvar p.
This function returns the orbit of the polynomial P under the action of the product
of the symmetric groups of the sets of variables represented in these p lists.

(%i1) multi_orbit (a*x + b*y, [[x, y], [a, b]]);
(%o1) [b y + a x, a y + b x]
(%i2) multi_orbit (x + y + 2*a, [[x, y], [a, b, c]]);
(%o2) [y + x + 2 c, y + x + 2 b, y + x + 2 a]

Also see: orbit for the action of a single symmetric group.

Functionmultsym (ppart 1, ppart 2, n)
returns the product of the two symmetric polynomials in n variables by working only
modulo the action of the symmetric group of order n. The polynomials are in their
partitioned form.
Given the 2 symmetric polynomials in x, y : 3*(x + y) + 2*x*y and 5*(x^2 + y^2)
whose partitioned forms are [[3, 1], [2, 1, 1]] and [[5, 2]], their product will
be

(%i1) multsym ([[3, 1], [2, 1, 1]], [[5, 2]], 2);
(%o1) [[10, 3, 1], [15, 3, 0], [15, 2, 1]]

that is 10*(x^3*y + y^3*x) + 15*(x^2*y + y^2*x) + 15*(x^3 + y^3).
Functions for changing the representations of a symmetric polynomial:
contract, cont2part, explose, part2cont, partpol, tcontract, tpartpol.

402 Maxima Manual

Functionorbit (P, lvar)
computes the orbit of the polynomial P in the variables in the list lvar under the
action of the symmetric group of the set of variables in the list lvar.

(%i1) orbit (a*x + b*y, [x, y]);
(%o1) [a y + b x, b y + a x]
(%i2) orbit (2*x + x^2, [x, y]);

2 2
(%o2) [y + 2 y, x + 2 x]

See also multi_orbit for the action of a product of symmetric groups on a polynomial.

Functionpui direct (orbite, [lvar 1, ..., lvar n], [d 1, d 2, ..., d n])
Let f be a polynomial in n blocks of variables lvar 1, ..., lvar n. Let c i be the number
of variables in lvar i, and SC be the product of n symmetric groups of degree c 1,
..., c n. This group acts naturally on f. The list orbite is the orbit, denoted SC(f),
of the function f under the action of SC. (This list may be obtained by the function
multi_orbit.) The di are integers s.t. c1 ≤ d1, c2 ≤ d2, . . . , cn ≤ dn.
Let SD be the product of the symmetric groups Sd1 × Sd2 × · · · × Sdn . The function
pui_direct returns the first n power functions of SD(f) deduced from the power
functions of SC(f), where n is the size of SD(f).
The result is in multi-contracted form w.r.t. SD, i.e. only one element is kept per
orbit, under the action of SD.

(%i1) l: [[x, y], [a, b]];
(%o1) [[x, y], [a, b]]
(%i2) pui_direct (multi_orbit (a*x + b*y, l), l, [2, 2]);

2 2
(%o2) [a x, 4 a b x y + a x]
(%i3) pui_direct (multi_orbit (a*x + b*y, l), l, [3, 2]);

2 2 2 2 3 3
(%o3) [2 a x, 4 a b x y + 2 a x , 3 a b x y + 2 a x ,

2 2 2 2 3 3 4 4
12 a b x y + 4 a b x y + 2 a x ,

3 2 3 2 4 4 5 5
10 a b x y + 5 a b x y + 2 a x ,

3 3 3 3 4 2 4 2 5 5 6 6
40 a b x y + 15 a b x y + 6 a b x y + 2 a x]
(%i4) pui_direct ([y + x + 2*c, y + x + 2*b, y + x + 2*a],

[[x, y], [a, b, c]], [2, 3]);
2 2

(%o4) [3 x + 2 a, 6 x y + 3 x + 4 a x + 4 a ,

2 3 2 2 3
9 x y + 12 a x y + 3 x + 6 a x + 12 a x + 8 a]

32.2.4 Partitions

Chapter 32: Symmetries 403

Functionkostka (part 1, part 2)
written by P. Esperet, calculates the Kostka number of the partition part 1 and
part 2.

(%i1) kostka ([3, 3, 3], [2, 2, 2, 1, 1, 1]);
(%o1) 6

Functionlgtreillis (n, m)
returns the list of partitions of weight n and length m.

(%i1) lgtreillis (4, 2);
(%o1) [[3, 1], [2, 2]]

Also see: ltreillis, treillis and treinat.

Functionltreillis (n, m)
returns the list of partitions of weight n and length less than or equal to m.

(%i1) ltreillis (4, 2);
(%o1) [[4, 0], [3, 1], [2, 2]]

Also see: lgtreillis, treillis and treinat.

Functiontreillis (n)
returns all partitions of weight n.

(%i1) treillis (4);
(%o1) [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]

See also: lgtreillis, ltreillis and treinat.

Functiontreinat (part)
retruns the list of partitions inferior to the partition part w.r.t. the natural order.

(%i1) treinat ([5]);
(%o1) [[5]]
(%i2) treinat ([1, 1, 1, 1, 1]);
(%o2) [[5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1],

[1, 1, 1, 1, 1]]
(%i3) treinat ([3, 2]);
(%o3) [[5], [4, 1], [3, 2]]

See also: lgtreillis, ltreillis and treillis.

32.2.5 Polynomials and their roots

Functionele2polynome (L, z)
returns the polynomial in z s.t. the elementary symmetric functions of its roots are
in the list L = [n, e 1, ..., e n], where n is the degree of the polynomial and e i
the i-th elementary symmetric function.

404 Maxima Manual

(%i1) ele2polynome ([2, e1, e2], z);
2

(%o1) z - e1 z + e2
(%i2) polynome2ele (x^7 - 14*x^5 + 56*x^3 - 56*x + 22, x);
(%o2) [7, 0, - 14, 0, 56, 0, - 56, - 22]
(%i3) ele2polynome ([7, 0, -14, 0, 56, 0, -56, -22], x);

7 5 3
(%o3) x - 14 x + 56 x - 56 x + 22

The inverse: polynome2ele (P, z).
Also see: polynome2ele, pui2polynome.

Functionpolynome2ele (P, x)
gives the list l = [n, e 1, ..., e n] where n is the degree of the polynomial P in the
variable x and e i is the i-the elementary symmetric function of the roots of P.

(%i1) polynome2ele (x^7 - 14*x^5 + 56*x^3 - 56*x + 22, x);
(%o1) [7, 0, - 14, 0, 56, 0, - 56, - 22]
(%i2) ele2polynome ([7, 0, -14, 0, 56, 0, -56, -22], x);

7 5 3
(%o2) x - 14 x + 56 x - 56 x + 22

The inverse: ele2polynome (l, x)

Functionprodrac (L, k)
L is a list containing the elementary symmetric functions on a set A. prodrac returns
the polynomial whose roots are the k by k products of the elements of A.
Also see somrac.

Functionpui2polynome (x, lpui)
calculates the polynomial in x whose power functions of the roots are given in the list
lpui.

(%i1) pui;
(%o1) 1
(%i2) kill(labels);
(%o0) done
(%i1) polynome2ele (x^3 - 4*x^2 + 5*x - 1, x);
(%o1) [3, 4, 5, 1]
(%i2) ele2pui (3, %);
(%o2) [3, 4, 6, 7]
(%i3) pui2polynome (x, %);

3 2
(%o3) x - 4 x + 5 x - 1

See also: polynome2ele, ele2polynome.

Functionsomrac (L, k)
The list L contains elementary symmetric functions of a polynomial P . The function
computes the polynomial whose roots are the k by k distinct sums of the roots of P.
Also see prodrac.

Chapter 32: Symmetries 405

32.2.6 Resolvents

Functionresolvante (P, x, f, [x 1,..., x d])
calculates the resolvent of the polynomial P in x of degree n >= d by the function
f expressed in the variables x 1, ..., x d. For efficiency of computation it is impor-
tant to not include in the list [x 1, ..., x d] variables which do not appear in the
transformation function f.
To increase the efficiency of the computation one may set flags in resolvante so as
to use appropriate algorithms:
If the function f is unitary:
• A polynomial in a single variable,
• linear,
• alternating,
• a sum,
• symmetric,
• a product,
• the function of the Cayley resolvent (usable up to degree 5)

(x1*x2 + x2*x3 + x3*x4 + x4*x5 + x5*x1 -
(x1*x3 + x3*x5 + x5*x2 + x2*x4 + x4*x1))^2

general,

the flag of resolvante may be, respectively:
• unitaire,
• lineaire,
• alternee,
• somme,
• produit,
• cayley,
• generale.

(%i1) resolvante: unitaire$
(%i2) resolvante (x^7 - 14*x^5 + 56*x^3 - 56*x + 22, x, x^3 - 1,

[x]);

" resolvante unitaire " [7, 0, 28, 0, 168, 0, 1120, - 154, 7840,
- 2772, 56448, - 33880,

413952, - 352352, 3076668, - 3363360, 23114112, - 30494464,

175230832, - 267412992, 1338886528, - 2292126760]
3 6 3 9 6 3

[x - 1, x - 2 x + 1, x - 3 x + 3 x - 1,

12 9 6 3 15 12 9 6 3

406 Maxima Manual

x - 4 x + 6 x - 4 x + 1, x - 5 x + 10 x - 10 x + 5 x

18 15 12 9 6 3
- 1, x - 6 x + 15 x - 20 x + 15 x - 6 x + 1,

21 18 15 12 9 6 3
x - 7 x + 21 x - 35 x + 35 x - 21 x + 7 x - 1]
[- 7, 1127, - 6139, 431767, - 5472047, 201692519, - 3603982011]

7 6 5 4 3 2
(%o2) y + 7 y - 539 y - 1841 y + 51443 y + 315133 y

+ 376999 y + 125253
(%i3) resolvante: lineaire$
(%i4) resolvante (x^4 - 1, x, x1 + 2*x2 + 3*x3, [x1, x2, x3]);

" resolvante lineaire "
24 20 16 12 8

(%o4) y + 80 y + 7520 y + 1107200 y + 49475840 y

4
+ 344489984 y + 655360000

(%i5) resolvante: general$
(%i6) resolvante (x^4 - 1, x, x1 + 2*x2 + 3*x3, [x1, x2, x3]);

" resolvante generale "
24 20 16 12 8

(%o6) y + 80 y + 7520 y + 1107200 y + 49475840 y

4
+ 344489984 y + 655360000

(%i7) resolvante (x^4 - 1, x, x1 + 2*x2 + 3*x3, [x1, x2, x3, x4]);

" resolvante generale "
24 20 16 12 8

(%o7) y + 80 y + 7520 y + 1107200 y + 49475840 y

4
+ 344489984 y + 655360000

(%i8) direct ([x^4 - 1], x, x1 + 2*x2 + 3*x3, [[x1, x2, x3]]);
24 20 16 12 8

(%o8) y + 80 y + 7520 y + 1107200 y + 49475840 y

4
+ 344489984 y + 655360000

(%i9) resolvante :lineaire$
(%i10) resolvante (x^4 - 1, x, x1 + x2 + x3, [x1, x2, x3]);

" resolvante lineaire "
4

Chapter 32: Symmetries 407

(%o10) y - 1
(%i11) resolvante: symetrique$
(%i12) resolvante (x^4 - 1, x, x1 + x2 + x3, [x1, x2, x3]);

" resolvante symetrique "
4

(%o12) y - 1
(%i13) resolvante (x^4 + x + 1, x, x1 - x2, [x1, x2]);

" resolvante symetrique "
6 2

(%o13) y - 4 y - 1
(%i14) resolvante: alternee$
(%i15) resolvante (x^4 + x + 1, x, x1 - x2, [x1, x2]);

" resolvante alternee "
12 8 6 4 2

(%o15) y + 8 y + 26 y - 112 y + 216 y + 229
(%i16) resolvante: produit$
(%i17) resolvante (x^7 - 7*x + 3, x, x1*x2*x3, [x1, x2, x3]);

" resolvante produit "
35 33 29 28 27 26

(%o17) y - 7 y - 1029 y + 135 y + 7203 y - 756 y

24 23 22 21 20
+ 1323 y + 352947 y - 46305 y - 2463339 y + 324135 y

19 18 17 15
- 30618 y - 453789 y - 40246444 y + 282225202 y

14 12 11 10
- 44274492 y + 155098503 y + 12252303 y + 2893401 y

9 8 7 6
- 171532242 y + 6751269 y + 2657205 y - 94517766 y

5 3
- 3720087 y + 26040609 y + 14348907
(%i18) resolvante: symetrique$
(%i19) resolvante (x^7 - 7*x + 3, x, x1*x2*x3, [x1, x2, x3]);

" resolvante symetrique "
35 33 29 28 27 26

(%o19) y - 7 y - 1029 y + 135 y + 7203 y - 756 y

24 23 22 21 20
+ 1323 y + 352947 y - 46305 y - 2463339 y + 324135 y

408 Maxima Manual

19 18 17 15
- 30618 y - 453789 y - 40246444 y + 282225202 y

14 12 11 10
- 44274492 y + 155098503 y + 12252303 y + 2893401 y

9 8 7 6
- 171532242 y + 6751269 y + 2657205 y - 94517766 y

5 3
- 3720087 y + 26040609 y + 14348907
(%i20) resolvante: cayley$
(%i21) resolvante (x^5 - 4*x^2 + x + 1, x, a, []);

" resolvante de Cayley "
6 5 4 3 2

(%o21) x - 40 x + 4080 x - 92928 x + 3772160 x + 37880832 x

+ 93392896

For the Cayley resolvent, the 2 last arguments are neutral and the input polynomial
must necessarily be of degree 5.
See also:
resolvante_bipartite, resolvante_produit_sym, resolvante_unitaire,
resolvante_alternee1, resolvante_klein, resolvante_klein3, resolvante_
vierer, resolvante_diedrale.

Functionresolvante alternee1 (P, x)
calculates the transformation P(x) of degree n by the function

∏
1≤i<j≤n−1(xi − xj).

See also:
resolvante_produit_sym, resolvante_unitaire, resolvante , resolvante_
klein, resolvante_klein3, resolvante_vierer, resolvante_diedrale,
resolvante_bipartite.

Functionresolvante bipartite (P, x)
calculates the transformation of P(x) of even degree n by the function x1x2 · · ·xn/2 +
xn/2+1 · · ·xn.
See also:
resolvante_produit_sym, resolvante_unitaire, resolvante , resolvante_
klein, resolvante_klein3, resolvante_vierer, resolvante_diedrale,
resolvante_alternee1.

(%i1) resolvante_bipartite (x^6 + 108, x);
10 8 6 4

(%o1) y - 972 y + 314928 y - 34012224 y

See also:
resolvante_produit_sym, resolvante_unitaire, resolvante, resolvante_
klein, resolvante_klein3, resolvante_vierer, resolvante_diedrale,
resolvante_alternee1.

Chapter 32: Symmetries 409

Functionresolvante diedrale (P, x)
calculates the transformation of P(x) by the function x 1 x 2 + x 3 x 4.

(%i1) resolvante_diedrale (x^5 - 3*x^4 + 1, x);
15 12 11 10 9 8 7

(%o1) x - 21 x - 81 x - 21 x + 207 x + 1134 x + 2331 x

6 5 4 3 2
- 945 x - 4970 x - 18333 x - 29079 x - 20745 x - 25326 x

- 697

See also:
resolvante_produit_sym, resolvante_unitaire, resolvante_alternee1,
resolvante_klein, resolvante_klein3, resolvante_vierer, resolvante.

Functionresolvante klein (P, x)
calculates the transformation of P(x) by the function x 1 x 2 x 4 + x 4.
See also:
resolvante_produit_sym, resolvante_unitaire, resolvante_alternee1,
resolvante, resolvante_klein3, resolvante_vierer, resolvante_diedrale.

Functionresolvante klein3 (P, x)
calculates the transformation of P(x) by the function x 1 x 2 x 4 + x 4.
See also:
resolvante_produit_sym, resolvante_unitaire, resolvante_alternee1,
resolvante_klein, resolvante, resolvante_vierer, resolvante_diedrale.

Functionresolvante produit sym (P, x)
calculates the list of all product resolvents of the polynomial P(x).

(%i1) resolvante_produit_sym (x^5 + 3*x^4 + 2*x - 1, x);
5 4 10 8 7 6 5

(%o1) [y + 3 y + 2 y - 1, y - 2 y - 21 y - 31 y - 14 y

4 3 2 10 8 7 6 5 4
- y + 14 y + 3 y + 1, y + 3 y + 14 y - y - 14 y - 31 y

3 2 5 4
- 21 y - 2 y + 1, y - 2 y - 3 y - 1, y - 1]
(%i2) resolvante: produit$
(%i3) resolvante (x^5 + 3*x^4 + 2*x - 1, x, a*b*c, [a, b, c]);

" resolvante produit "
10 8 7 6 5 4 3 2

(%o3) y + 3 y + 14 y - y - 14 y - 31 y - 21 y - 2 y + 1

See also:
resolvante, resolvante_unitaire, resolvante_alternee1, resolvante_klein,
resolvante_klein3, resolvante_vierer, resolvante_diedrale.

410 Maxima Manual

Functionresolvante unitaire (P, Q, x)
computes the resolvent of the polynomial P(x) by the polynomial Q(x).
See also:
resolvante_produit_sym, resolvante, resolvante_alternee1, resolvante_
klein, resolvante_klein3, resolvante_vierer, resolvante_diedrale.

Functionresolvante vierer (P, x)
computes the transformation of P(x) by the function x 1 x 2 - x 3 x 4.
See also:
resolvante_produit_sym, resolvante_unitaire, resolvante_alternee1,
resolvante_klein, resolvante_klein3, resolvante, resolvante_diedrale.

32.2.7 Miscellaneous

Functionmultinomial (r, part)
where r is the weight of the partition part. This function returns the associate multi-
nomial coefficient: if the parts of part are i 1, i 2, ..., i k, the result is r!/(i 1! i 2!
... i k!).

Functionpermut (L)
returns the list of permutations of the list L.

Chapter 33: Groups 411

33 Groups

33.1 Functions and Variables for Groups

Functiontodd coxeter (relations, subgroup)
Functiontodd coxeter (relations)

Find the order of G/H where G is the Free Group modulo relations, and H is the
subgroup of G generated by subgroup. subgroup is an optional argument, defaulting
to []. In doing this it produces a multiplication table for the right action of G on
G/H, where the cosets are enumerated [H,Hg2,Hg3,...]. This can be seen internally
in the variable todd_coxeter_state.
Example:

(%i1) symet(n):=create_list(
if (j - i) = 1 then (p(i,j))^^3 else

if (not i = j) then (p(i,j))^^2 else
p(i,i) , j, 1, n-1, i, 1, j);

<3>
(%o1) symet(n) := create_list(if j - i = 1 then p(i, j)

<2>
else (if not i = j then p(i, j) else p(i, i)), j, 1, n - 1,

i, 1, j)
(%i2) p(i,j) := concat(x,i).concat(x,j);
(%o2) p(i, j) := concat(x, i) . concat(x, j)
(%i3) symet(5);

<2> <3> <2> <2> <3>
(%o3) [x1 , (x1 . x2) , x2 , (x1 . x3) , (x2 . x3) ,

<2> <2> <2> <3> <2>
x3 , (x1 . x4) , (x2 . x4) , (x3 . x4) , x4]

(%i4) todd_coxeter(%o3);

Rows tried 426
(%o4) 120
(%i5) todd_coxeter(%o3,[x1]);

Rows tried 213
(%o5) 60
(%i6) todd_coxeter(%o3,[x1,x2]);

Rows tried 71
(%o6) 20

412 Maxima Manual

Chapter 34: Runtime Environment 413

34 Runtime Environment

34.1 Introduction for Runtime Environment

maxima-init.mac is a file which is loaded automatically when Maxima starts. You can
use maxima-init.mac to customize your Maxima environment. maxima-init.mac, if it
exists, is typically placed in the directory named by maxima_userdir, although it can be
in any directory searched by the function file_search.

Here is an example maxima-init.mac file:
setup_autoload ("specfun.mac", ultraspherical, assoc_legendre_p);
showtime:all;

In this example, setup_autoload tells Maxima to load the specified file (specfun.mac)
if any of the functions (ultraspherical, assoc_legendre_p) are called but not yet defined.
Thus you needn’t remember to load the file before calling the functions.

The statement showtime: all tells Maxima to set the showtime variable. The maxima-
init.mac file can contain any other assignments or other Maxima statements.

34.2 Interrupts

The user can stop a time-consuming computation with the ^C (control-C) character.
The default action is to stop the computation and print another user prompt. In this case,
it is not possible to restart a stopped computation.

If the Lisp variable *debugger-hook* is set to nil, by executing
:lisp (setq *debugger-hook* nil)

then upon receiving ^C, Maxima will enter the Lisp debugger, and the user may use the
debugger to inspect the Lisp environment. The stopped computation can be restarted by
entering continue in the Lisp debugger. The means of returning to Maxima from the Lisp
debugger (other than running the computation to completion) is different for each version
of Lisp.

On Unix systems, the character ^Z (control-Z) causes Maxima to stop altogether, and
control is returned to the shell prompt. The fg command causes Maxima to resume from
the point at which it was stopped.

34.3 Functions and Variables for Runtime Environment

Declarationfeature
Maxima understands two distinct types of features, system features and features
which apply to mathematical expressions. See also status for information about sys-
tem features. See also features and featurep for information about mathematical
features.

feature itself is not the name of a function or variable.

414 Maxima Manual

Functionfeaturep (a, f)
Attempts to determine whether the object a has the feature f on the basis of the facts
in the current database. If so, it returns true, else false.
Note that featurep returns false when neither f nor the negation of f can be
established.
featurep evaluates its argument.
See also declare and features.

(%i1) declare (j, even)$
(%i2) featurep (j, integer);
(%o2) true

System variablemaxima tempdir
maxima_tempdir names the directory in which Maxima creates some temporary files.
In particular, temporary files for plotting are created in maxima_tempdir.
The initial value of maxima_tempdir is the user’s home directory, if Maxima can
locate it; otherwise Maxima makes a guess about a suitable directory.
maxima_tempdir may be assigned a string which names a directory.

System variablemaxima userdir
maxima_userdir names a directory which Maxima searches to find Maxima and Lisp
files. (Maxima searches some other directories as well; file_search_maxima and
file_search_lisp are the complete lists.)
The initial value of maxima_userdir is a subdirectory of the user’s home directory, if
Maxima can locate it; otherwise Maxima makes a guess about a suitable directory.
maxima_userdir may be assigned a string which names a directory. However, as-
signing to maxima_userdir does not automatically change file_search_maxima and
file_search_lisp; those variables must be changed separately.

Functionroom ()
Functionroom (true)
Functionroom (false)

Prints out a description of the state of storage and stack management in Maxima.
room calls the Lisp function of the same name.
• room () prints out a moderate description.
• room (true) prints out a verbose description.
• room (false) prints out a terse description.

Functionstatus (feature)
Functionstatus (feature, putative feature)
Functionstatus (status)

Returns information about the presence or absence of certain system-dependent fea-
tures.
• status (feature) returns a list of system features. These include Lisp version,

operating system type, etc. The list may vary from one Lisp type to another.

Chapter 34: Runtime Environment 415

• status (feature, putative feature) returns true if putative feature is on the
list of items returned by status (feature) and false otherwise. status quotes
the argument putative feature. The quote-quote operator ’’ defeats quotation.
A feature whose name contains a special character, such as a hyphen, must be
given as a string argument. For example, status (feature, "ansi-cl").

• status (status) returns a two-element list [feature, status]. feature and
status are the two arguments accepted by the status function; it is unclear if
this list has additional significance.

The variable features contains a list of features which apply to mathematical ex-
pressions. See features and featurep for more information.

Functiontime (%o1, %o2, %o3, ...)
Returns a list of the times, in seconds, taken to compute the output lines %o1, %o2,
%o3, The time returned is Maxima’s estimate of the internal computation time,
not the elapsed time. time can only be applied to output line variables; for any other
variables, time returns unknown.
Set showtime: true to make Maxima print out the computation time and elapsed
time with each output line.

Functiontimedate ()
Returns a string representing the current time and date. The string has the format
HH:MM:SS Day, mm/dd/yyyy (GMT-n), where the fields are hours, minutes, seconds,
day of week, month, day of month, year, and hours different from GMT.
Example:

(%i1) d: timedate ();
(%o1) 08:05:09 Wed, 11/02/2005 (GMT-7)
(%i2) print ("timedate reports current time", d)$
timedate reports current time 08:05:09 Wed, 11/02/2005 (GMT-7)

Functionabsolute real time ()
Returns the number of seconds since midnight, January 1, 1900 UTC. The return
value is an integer.
See also elapsed_real_time and elapsed_run_time.
Example:

(%i1) absolute_real_time ();
(%o1) 3385045277
(%i2) 1900 + absolute_real_time () / (365.25 * 24 * 3600);
(%o2) 2007.265612087104

Functionelapsed real time ()
Returns the number of seconds (including fractions of a second) since Maxima was
most recently started or restarted. The return value is a floating-point number.
See also absolute_real_time and elapsed_run_time.
Example:

416 Maxima Manual

(%i1) elapsed_real_time ();
(%o1) 2.559324
(%i2) expand ((a + b)^500)$
(%i3) elapsed_real_time ();
(%o3) 7.552087

Functionelapsed run time ()
Returns an estimate of the number of seconds (including fractions of a second)
which Maxima has spent in computations since Maxima was most recently started or
restarted. The return value is a floating-point number.
See also absolute_real_time and elapsed_real_time.
Example:

(%i1) elapsed_run_time ();
(%o1) 0.04
(%i2) expand ((a + b)^500)$
(%i3) elapsed_run_time ();
(%o3) 1.26

Chapter 35: Miscellaneous Options 417

35 Miscellaneous Options

35.1 Introduction to Miscellaneous Options

In this section various options are discussed which have a global effect on the operation
of Maxima. Also various lists such as the list of all user defined functions, are discussed.

35.2 Share

The Maxima "share" directory contains programs and other files of interest to Maxima
users, but not part of the core implementation of Maxima. These programs are typically
loaded via load or setup_autoload.

:lisp *maxima-sharedir* displays the location of the share directory within the user’s
file system.

printfile ("share.usg") prints an out-of-date list of share packages. Users may find
it more informative to browse the share directory using a file system browser.

35.3 Functions and Variables for Miscellaneous Options

System variablealiases
Default value: []
aliases is the list of atoms which have a user defined alias (set up by the alias,
ordergreat, orderless functions or by declaring the atom a noun with declare).

Declarationalphabetic
alphabetic is a declaration type recognized by declare. The expression declare(s,
alphabetic) tells Maxima to recognize as alphabetic all of the characters in s, which
must be a string.
See also Section 6.4 [Identifiers], page 61.
Example:

(%i1) xx\~yy\‘\@ : 1729;
(%o1) 1729
(%i2) declare ("~‘@", alphabetic);
(%o2) done
(%i3) xx~yy‘@ + @yy‘xx + ‘xx@@yy~;
(%o3) ‘xx@@yy~ + @yy‘xx + 1729
(%i4) listofvars (%);
(%o4) [@yy‘xx, ‘xx@@yy~]

Functionapropos (string)
Searches for Maxima names which have string appearing anywhere within them.
Thus, apropos (exp) returns a list of all the flags and functions which have exp as
part of their names, such as expand, exp, and exponentialize. Thus if you can only
remember part of the name of something you can use this command to find the rest
of the name. Similarly, you could say apropos (tr_) to find a list of many of the
switches relating to the translator, most of which begin with tr_.

418 Maxima Manual

Functionargs (expr)
Returns the list of arguments of expr, which may be any kind of expression other than
an atom. Only the arguments of the top-level operator are extracted; subexpressions
of expr appear as elements or subexpressions of elements of the list of arguments.
The order of the items in the list may depend on the global flag inflag.
args (expr) is equivalent to substpart ("[", expr, 0). See also substpart, and
op.

Option variablegenindex
Default value: i
genindex is the alphabetic prefix used to generate the next variable of summation
when necessary.

Option variablegensumnum
Default value: 0
gensumnum is the numeric suffix used to generate the next variable of summation. If
it is set to false then the index will consist only of genindex with no numeric suffix.

System variableinfolists
Default value: []
infolists is a list of the names of all of the information lists in Maxima. These are:

labels All bound %i, %o, and %t labels.

values All bound atoms which are user variables, not Maxima options or
switches, created by : or :: or functional binding.

functions
All user-defined functions, created by := or define.

arrays All declared and undeclared arrays, created by :, ::, or :=.

macros All user-defined macro functions.

myoptions
All options ever reset by the user (whether or not they are later reset to
their default values).

rules All user-defined pattern matching and simplification rules, created by
tellsimp, tellsimpafter, defmatch, or defrule.

aliases All atoms which have a user-defined alias, created by the alias,
ordergreat, orderless functions or by declaring the atom as a noun
with declare.

dependencies
All atoms which have functional dependencies, created by the depends
or gradef functions.

gradefs All functions which have user-defined derivatives, created by the gradef
function.

Chapter 35: Miscellaneous Options 419

props All atoms which have any property other than those mentioned above,
such as properties established by atvalue or matchdeclare, etc., as well
as properties established in the declare function.

let_rule_packages
All user-defined let rule packages plus the special package default_
let_rule_package. (default_let_rule_package is the name of the
rule package used when one is not explicitly set by the user.)

Functionintegerp (expr)
Returns true if expr is a literal numeric integer, otherwise false.

integerp returns false if its argument is a symbol, even if the argument is declared
integer.

Examples:
(%i1) integerp (0);
(%o1) true
(%i2) integerp (1);
(%o2) true
(%i3) integerp (-17);
(%o3) true
(%i4) integerp (0.0);
(%o4) false
(%i5) integerp (1.0);
(%o5) false
(%i6) integerp (%pi);
(%o6) false
(%i7) integerp (n);
(%o7) false
(%i8) declare (n, integer);
(%o8) done
(%i9) integerp (n);
(%o9) false

Option variablem1pbranch
Default value: false

m1pbranch is the principal branch for -1 to a power. Quantities such as (-1)^(1/3)
(that is, an "odd" rational exponent) and (-1)^(1/4) (that is, an "even" rational
exponent) are handled as follows:

domain:real

(-1)^(1/3): -1
(-1)^(1/4): (-1)^(1/4)

domain:complex
m1pbranch:false m1pbranch:true
(-1)^(1/3) 1/2+%i*sqrt(3)/2
(-1)^(1/4) sqrt(2)/2+%i*sqrt(2)/2

420 Maxima Manual

Functionnumberp (expr)
Returns true if expr is a literal integer, rational number, floating point number, or
bigfloat, otherwise false.
numberp returns false if its argument is a symbol, even if the argument is a sym-
bolic number such as %pi or %i, or declared to be even, odd, integer, rational,
irrational, real, imaginary, or complex.
Examples:

(%i1) numberp (42);
(%o1) true
(%i2) numberp (-13/19);
(%o2) true
(%i3) numberp (3.14159);
(%o3) true
(%i4) numberp (-1729b-4);
(%o4) true
(%i5) map (numberp, [%e, %pi, %i, %phi, inf, minf]);
(%o5) [false, false, false, false, false, false]
(%i6) declare (a, even, b, odd, c, integer, d, rational,

e, irrational, f, real, g, imaginary, h, complex);
(%o6) done
(%i7) map (numberp, [a, b, c, d, e, f, g, h]);
(%o7) [false, false, false, false, false, false, false, false]

Functionproperties (a)
Returns a list of the names of all the properties associated with the atom a.

Special symbolprops
props are atoms which have any property other than those explicitly mentioned in
infolists, such as specified by atvalue, matchdeclare, etc., as well as properties
specified in the declare function.

Functionpropvars (prop)
Returns a list of those atoms on the props list which have the property indicated by
prop. Thus propvars (atvalue) returns a list of atoms which have atvalues.

Functionput (atom, value, indicator)
Assigns value to the property (specified by indicator) of atom. indicator may be the
name of any property, not just a system-defined property.
put evaluates its arguments. put returns value.
Examples:

(%i1) put (foo, (a+b)^5, expr);
5

(%o1) (b + a)
(%i2) put (foo, "Hello", str);
(%o2) Hello
(%i3) properties (foo);

Chapter 35: Miscellaneous Options 421

(%o3) [[user properties, str, expr]]
(%i4) get (foo, expr);

5
(%o4) (b + a)
(%i5) get (foo, str);
(%o5) Hello

Functionqput (atom, value, indicator)
Assigns value to the property (specified by indicator) of atom. This is the same as
put, except that the arguments are quoted.

Example:
(%i1) foo: aa$
(%i2) bar: bb$
(%i3) baz: cc$
(%i4) put (foo, bar, baz);
(%o4) bb
(%i5) properties (aa);
(%o5) [[user properties, cc]]
(%i6) get (aa, cc);
(%o6) bb
(%i7) qput (foo, bar, baz);
(%o7) bar
(%i8) properties (foo);
(%o8) [value, [user properties, baz]]
(%i9) get (’foo, ’baz);
(%o9) bar

Functionrem (atom, indicator)
Removes the property indicated by indicator from atom.

Functionremove (a 1, p 1, ..., a n, p n)
Functionremove ([a 1, ..., a m], [p 1, ..., p n], ...)
Functionremove ("a", operator)
Functionremove (a, transfun)
Functionremove (all, p)

Removes properties associated with atoms.

remove (a 1, p 1, ..., a n, p n) removes property p_k from atom a_k.

remove ([a 1, ..., a m], [p 1, ..., p n], ...) removes properties p 1, ...,
p n from atoms a 1, ..., a m. There may be more than one pair of lists.

remove (all, p) removes the property p from all atoms which have it.

The removed properties may be system-defined properties such as function, macro,
or mode_declare, or user-defined properties.

A property may be transfun to remove the translated Lisp version of a function.
After executing this, the Maxima version of the function is executed rather than the
translated version.

422 Maxima Manual

remove ("a", operator) or, equivalently, remove ("a", op) removes from a the op-
erator properties declared by prefix, infix, nary, postfix, matchfix, or nofix.
Note that the name of the operator must be written as a quoted string.
remove always returns done whether or not an atom has a specified property.
This behavior is unlike the more specific remove functions remvalue, remarray,
remfunction, and remrule.

Functionremvalue (name 1, ..., name n)
Functionremvalue (all)

Removes the values of user variables name 1, ..., name n (which can be subscripted)
from the system.
remvalue (all) removes the values of all variables in values, the list of all variables
given names by the user (as opposed to those which are automatically assigned by
Maxima).
See also values.

Functionrncombine (expr)
Transforms expr by combining all terms of expr that have identical denominators or
denominators that differ from each other by numerical factors only. This is slightly
different from the behavior of combine, which collects terms that have identical de-
nominators.
Setting pfeformat: true and using combine yields results similar to those that can
be obtained with rncombine, but rncombine takes the additional step of cross-
multiplying numerical denominator factors. This results in neater forms, and the
possibility of recognizing some cancellations.
load(rncomb) loads this function.

Functionscalarp (expr)
Returns true if expr is a number, constant, or variable declared scalar with declare,
or composed entirely of numbers, constants, and such variables, but not containing
matrices or lists.

Functionsetup autoload (filename, function 1, ..., function n)
Specifies that if any of function 1, ..., function n are referenced and not yet defined,
filename is loaded via load. filename usually contains definitions for the functions
specified, although that is not enforced.
setup_autoload does not work for array functions.
setup_autoload quotes its arguments.
Example:

(%i1) legendre_p (1, %pi);
(%o1) legendre_p(1, %pi)
(%i2) setup_autoload ("specfun.mac", legendre_p, ultraspherical);
(%o2) done
(%i3) ultraspherical (2, 1/2, %pi);
Warning - you are redefining the Macsyma function ultraspherical

Chapter 35: Miscellaneous Options 423

Warning - you are redefining the Macsyma function legendre_p
2

3 (%pi - 1)
(%o3) ------------ + 3 (%pi - 1) + 1

2
(%i4) legendre_p (1, %pi);
(%o4) %pi
(%i5) legendre_q (1, %pi);

%pi + 1
%pi log(-------)

1 - %pi
(%o5) ---------------- - 1

2

424 Maxima Manual

Chapter 36: Rules and Patterns 425

36 Rules and Patterns

36.1 Introduction to Rules and Patterns

This section describes user-defined pattern matching and simplification rules. There are
two groups of functions which implement somewhat different pattern matching schemes.
In one group are tellsimp, tellsimpafter, defmatch, defrule, apply1, applyb1, and
apply2. In the other group are let and letsimp. Both schemes define patterns in terms
of pattern variables declared by matchdeclare.

Pattern-matching rules defined by tellsimp and tellsimpafter are applied automati-
cally by the Maxima simplifier. Rules defined by defmatch, defrule, and let are applied
by an explicit function call.

There are additional mechanisms for rules applied to polynomials by tellrat, and for
commutative and noncommutative algebra in affine package.

36.2 Functions and Variables for Rules and Patterns

Functionapply1 (expr, rule 1, ..., rule n)
Repeatedly applies rule 1 to expr until it fails, then repeatedly applies the same rule
to all subexpressions of expr, left to right, until rule 1 has failed on all subexpressions.
Call the result of transforming expr in this manner expr 2. Then rule 2 is applied
in the same fashion starting at the top of expr 2. When rule n fails on the final
subexpression, the result is returned.
maxapplydepth is the depth of the deepest subexpressions processed by apply1 and
apply2.
See also applyb1, apply2, and let.

Functionapply2 (expr, rule 1, ..., rule n)
If rule 1 fails on a given subexpression, then rule 2 is repeatedly applied, etc. Only
if all rules fail on a given subexpression is the whole set of rules repeatedly applied
to the next subexpression. If one of the rules succeeds, then the same subexpression
is reprocessed, starting with the first rule.
maxapplydepth is the depth of the deepest subexpressions processed by apply1 and
apply2.
See also apply1 and let.

Functionapplyb1 (expr, rule 1, ..., rule n)
Repeatedly applies rule 1 to the deepest subexpression of expr until it fails, then
repeatedly applies the same rule one level higher (i.e., larger subexpressions), until
rule 1 has failed on the top-level expression. Then rule 2 is applied in the same fashion
to the result of rule 1. After rule n has been applied to the top-level expression, the
result is returned.
applyb1 is similar to apply1 but works from the bottom up instead of from the top
down.

426 Maxima Manual

maxapplyheight is the maximum height which applyb1 reaches before giving up.

See also apply1, apply2, and let.

Option variablecurrent let rule package
Default value: default_let_rule_package

current_let_rule_package is the name of the rule package that is used by functions
in the let package (letsimp, etc.) if no other rule package is specified. This variable
may be assigned the name of any rule package defined via the let command.

If a call such as letsimp (expr, rule_pkg_name) is made, the rule package rule_
pkg_name is used for that function call only, and the value of current_let_rule_
package is not changed.

Option variabledefault let rule package
Default value: default_let_rule_package

default_let_rule_package is the name of the rule package used when one is not
explicitly set by the user with let or by changing the value of current_let_rule_
package.

Functiondefmatch (progname, pattern, x 1, ..., x n)
Functiondefmatch (progname, pattern)

Defines a function progname(expr, x 1, ..., x n) which tests expr to see if it
matches pattern.

pattern is an expression containing the pattern arguments x 1, ..., x n (if any) and
some pattern variables (if any). The pattern arguments are given explicitly as ar-
guments to defmatch while the pattern variables are declared by the matchdeclare
function. Any variable not declared as a pattern variable in matchdeclare or as a
pattern argument in defmatch matches only itself.

The first argument to the created function progname is an expression to be matched
against the pattern and the other arguments are the actual arguments which corre-
spond to the dummy variables x 1, ..., x n in the pattern.

If the match is successful, progname returns a list of equations whose left sides are the
pattern arguments and pattern variables, and whose right sides are the subexpressions
which the pattern arguments and variables matched. The pattern variables, but not
the pattern arguments, are assigned the subexpressions they match. If the match
fails, progname returns false.

A literal pattern (that is, a pattern which contains neither pattern arguments nor
pattern variables) returns true if the match succeeds.

See also matchdeclare, defrule, tellsimp, and tellsimpafter.

Examples:

Define a function linearp(expr, x) which tests expr to see if it is of the form a*x +
b such that a and b do not contain x and a is nonzero. This match function matches
expressions which are linear in any variable, because the pattern argument x is given
to defmatch.

Chapter 36: Rules and Patterns 427

(%i1) matchdeclare (a, lambda ([e], e#0 and freeof(x, e)), b,
freeof(x));

(%o1) done
(%i2) defmatch (linearp, a*x + b, x);
(%o2) linearp
(%i3) linearp (3*z + (y + 1)*z + y^2, z);

2
(%o3) [b = y , a = y + 4, x = z]
(%i4) a;
(%o4) y + 4
(%i5) b;

2
(%o5) y
(%i6) x;
(%o6) x

Define a function linearp(expr) which tests expr to see if it is of the form a*x +
b such that a and b do not contain x and a is nonzero. This match function only
matches expressions linear in x, not any other variable, because no pattern argument
is given to defmatch.

(%i1) matchdeclare (a, lambda ([e], e#0 and freeof(x, e)), b,
freeof(x));

(%o1) done
(%i2) defmatch (linearp, a*x + b);
(%o2) linearp
(%i3) linearp (3*z + (y + 1)*z + y^2);
(%o3) false
(%i4) linearp (3*x + (y + 1)*x + y^2);

2
(%o4) [b = y , a = y + 4]

Define a function checklimits(expr) which tests expr to see if it is a definite integral.
(%i1) matchdeclare ([a, f], true);
(%o1) done
(%i2) constinterval (l, h) := constantp (h - l);
(%o2) constinterval(l, h) := constantp(h - l)
(%i3) matchdeclare (b, constinterval (a));
(%o3) done
(%i4) matchdeclare (x, atom);
(%o4) done
(%i5) simp : false;
(%o5) false
(%i6) defmatch (checklimits, ’integrate (f, x, a, b));
(%o6) checklimits
(%i7) simp : true;
(%o7) true
(%i8) ’integrate (sin(t), t, %pi + x, 2*%pi + x);

x + 2 %pi
/
[

428 Maxima Manual

(%o8) I sin(t) dt
]
/
x + %pi

(%i9) checklimits (%);
(%o9) [b = x + 2 %pi, a = x + %pi, x = t, f = sin(t)]

Functiondefrule (rulename, pattern, replacement)
Defines and names a replacement rule for the given pattern. If the rule named ru-
lename is applied to an expression (by apply1, applyb1, or apply2), every subex-
pression matching the pattern will be replaced by the replacement. All variables in
the replacement which have been assigned values by the pattern match are assigned
those values in the replacement which is then simplified.

The rules themselves can be treated as functions which transform an expression by
one operation of the pattern match and replacement. If the match fails, the rule
function returns false.

Functiondisprule (rulename 1, ..., rulename 2)
Functiondisprule (all)

Display rules with the names rulename 1, ..., rulename n, as returned by defrule,
tellsimp, or tellsimpafter, or a pattern defined by defmatch. Each rule is dis-
played with an intermediate expression label (%t).

disprule (all) displays all rules.

disprule quotes its arguments. disprule returns the list of intermediate expression
labels corresponding to the displayed rules.

See also letrules, which displays rules defined by let.

Examples:

(%i1) tellsimpafter (foo (x, y), bar (x) + baz (y));
(%o1) [foorule1, false]
(%i2) tellsimpafter (x + y, special_add (x, y));
(%o2) [+rule1, simplus]
(%i3) defmatch (quux, mumble (x));
(%o3) quux
(%i4) disprule (foorule1, "+rule1", quux);
(%t4) foorule1 : foo(x, y) -> baz(y) + bar(x)

(%t5) +rule1 : y + x -> special_add(x, y)

(%t6) quux : mumble(x) -> []

(%o6) [%t4, %t5, %t6]
(%i6) ’’%;
(%o6) [foorule1 : foo(x, y) -> baz(y) + bar(x),

+rule1 : y + x -> special_add(x, y), quux : mumble(x) -> []]

Chapter 36: Rules and Patterns 429

Functionlet (prod, repl, predname, arg 1, ..., arg n)
Functionlet ([prod, repl, predname, arg 1, ..., arg n], package name)

Defines a substitution rule for letsimp such that prod is replaced by repl. prod is a
product of positive or negative powers of the following terms:
• Atoms which letsimp will search for literally unless previous to calling letsimp

the matchdeclare function is used to associate a predicate with the atom. In
this case letsimp will match the atom to any term of a product satisfying the
predicate.

• Kernels such as sin(x), n!, f(x,y), etc. As with atoms above letsimp will look
for a literal match unless matchdeclare is used to associate a predicate with the
argument of the kernel.

A term to a positive power will only match a term having at least that power. A
term to a negative power on the other hand will only match a term with a power at
least as negative. In the case of negative powers in prod the switch letrat must be
set to true. See also letrat.
If a predicate is included in the let function followed by a list of arguments, a
tentative match (i.e. one that would be accepted if the predicate were omitted) is
accepted only if predname (arg_1’, ..., arg_n’) evaluates to true where arg i’ is
the value matched to arg i. The arg i may be the name of any atom or the argument
of any kernel appearing in prod. repl may be any rational expression. If any of the
atoms or arguments from prod appear in repl the appropriate substitutions are made.
The global flag letrat controls the simplification of quotients by letsimp. When
letrat is false, letsimp simplifies the numerator and denominator of expr sepa-
rately, and does not simplify the quotient. Substitutions such as n!/n goes to (n-1)!
then fail. When letrat is true, then the numerator, denominator, and the quotient
are simplified in that order.
These substitution functions allow you to work with several rule packages at
once. Each rule package can contain any number of let rules and is referenced
by a user-defined name. let ([prod, repl, predname, arg 1, ..., arg n],
package name) adds the rule predname to the rule package package name.
letsimp (expr, package name) applies the rules in package name. letsimp
(expr, package name1, package name2, ...) is equivalent to letsimp (expr,
package name1) followed by letsimp (%, package name2),
current_let_rule_package is the name of the rule package that is presently be-
ing used. This variable may be assigned the name of any rule package defined via
the let command. Whenever any of the functions comprising the let package are
called with no package name, the package named by current_let_rule_package is
used. If a call such as letsimp (expr, rule pkg name) is made, the rule package
rule pkg name is used for that letsimp command only, and current_let_rule_
package is not changed. If not otherwise specified, current_let_rule_package de-
faults to default_let_rule_package.

(%i1) matchdeclare ([a, a1, a2], true)$
(%i2) oneless (x, y) := is (x = y-1)$
(%i3) let (a1*a2!, a1!, oneless, a2, a1);
(%o3) a1 a2! --> a1! where oneless(a2, a1)

430 Maxima Manual

(%i4) letrat: true$
(%i5) let (a1!/a1, (a1-1)!);

a1!
(%o5) --- --> (a1 - 1)!

a1
(%i6) letsimp (n*m!*(n-1)!/m);
(%o6) (m - 1)! n!
(%i7) let (sin(a)^2, 1 - cos(a)^2);

2 2
(%o7) sin (a) --> 1 - cos (a)
(%i8) letsimp (sin(x)^4);

4 2
(%o8) cos (x) - 2 cos (x) + 1

Option variableletrat
Default value: false
When letrat is false, letsimp simplifies the numerator and denominator of a ratio
separately, and does not simplify the quotient.
When letrat is true, the numerator, denominator, and their quotient are simplified
in that order.

(%i1) matchdeclare (n, true)$
(%i2) let (n!/n, (n-1)!);

n!
(%o2) -- --> (n - 1)!

n
(%i3) letrat: false$
(%i4) letsimp (a!/a);

a!
(%o4) --

a
(%i5) letrat: true$
(%i6) letsimp (a!/a);
(%o6) (a - 1)!

Functionletrules ()
Functionletrules (package name)

Displays the rules in a rule package. letrules () displays the rules in the current
rule package. letrules (package name) displays the rules in package name.
The current rule package is named by current_let_rule_package. If not otherwise
specified, current_let_rule_package defaults to default_let_rule_package.
See also disprule, which displays rules defined by tellsimp and tellsimpafter.

Functionletsimp (expr)
Functionletsimp (expr, package name)
Functionletsimp (expr, package name 1, ..., package name n)

Repeatedly applies the substitution rules defined by let until no further change is
made to expr.

Chapter 36: Rules and Patterns 431

letsimp (expr) uses the rules from current_let_rule_package.

letsimp (expr, package name) uses the rules from package name without changing
current_let_rule_package.

letsimp (expr, package name 1, ..., package name n) is equivalent to letsimp
(expr, package name 1, followed by letsimp (%, package name 2), and so on.

Option variablelet rule packages
Default value: [default_let_rule_package]

let_rule_packages is a list of all user-defined let rule packages plus the default
package default_let_rule_package.

Functionmatchdeclare (a 1, pred 1, ..., a n, pred n)
Associates a predicate pred k with a variable or list of variables a k so that a k
matches expressions for which the predicate returns anything other than false.

A predicate is the name of a function, or a lambda expression, or a function call or
lambda call missing the last argument, or true or all. Any expression matches true
or all. If the predicate is specified as a function call or lambda call, the expression
to be tested is appended to the list of arguments; the arguments are evaluated at
the time the match is evaluated. Otherwise, the predicate is specified as a function
name or lambda expression, and the expression to be tested is the sole argument. A
predicate function need not be defined when matchdeclare is called; the predicate is
not evaluated until a match is attempted.

A predicate may return a Boolean expression as well as true or false. Boolean
expressions are evaluated by is within the constructed rule function, so it is not
necessary to call is within the predicate.

If an expression satisfies a match predicate, the match variable is assigned the expres-
sion, except for match variables which are operands of addition + or multiplication *.
Only addition and multiplication are handled specially; other n-ary operators (both
built-in and user-defined) are treated like ordinary functions.

In the case of addition and multiplication, the match variable may be assigned a single
expression which satisfies the match predicate, or a sum or product (respectively) of
such expressions. Such multiple-term matching is greedy: predicates are evaluated
in the order in which their associated variables appear in the match pattern, and a
term which satisfies more than one predicate is taken by the first predicate which it
satisfies. Each predicate is tested against all operands of the sum or product before
the next predicate is evaluated. In addition, if 0 or 1 (respectively) satisfies a match
predicate, and there are no other terms which satisfy the predicate, 0 or 1 is assigned
to the match variable associated with the predicate.

The algorithm for processing addition and multiplication patterns makes some match
results (for example, a pattern in which a "match anything" variable appears) de-
pendent on the ordering of terms in the match pattern and in the expression to be
matched. However, if all match predicates are mutually exclusive, the match result
is insensitive to ordering, as one match predicate cannot accept terms matched by
another.

432 Maxima Manual

Calling matchdeclare with a variable a as an argument changes the matchdeclare
property for a, if one was already declared; only the most recent matchdeclare is
in effect when a rule is defined, Later changes to the matchdeclare property (via
matchdeclare or remove) do not affect existing rules.
propvars (matchdeclare) returns the list of all variables for which there is a
matchdeclare property. printprops (a, matchdeclare) returns the predicate for
variable a. printprops (all, matchdeclare) returns the list of predicates for all
matchdeclare variables. remove (a, matchdeclare) removes the matchdeclare
property from a.
The functions defmatch, defrule, tellsimp, tellsimpafter, and let construct
rules which test expressions against patterns.
matchdeclare quotes its arguments. matchdeclare always returns done.
Examples:
A predicate is the name of a function, or a lambda expression, or a function call or
lambda call missing the last argument, or true or all.

(%i1) matchdeclare (aa, integerp);
(%o1) done
(%i2) matchdeclare (bb, lambda ([x], x > 0));
(%o2) done
(%i3) matchdeclare (cc, freeof (%e, %pi, %i));
(%o3) done
(%i4) matchdeclare (dd, lambda ([x, y], gcd (x, y) = 1) (1728));
(%o4) done
(%i5) matchdeclare (ee, true);
(%o5) done
(%i6) matchdeclare (ff, all);
(%o6) done

If an expression satisfies a match predicate, the match variable is assigned the expres-
sion.

(%i1) matchdeclare (aa, integerp, bb, atom);
(%o1) done
(%i2) defrule (r1, bb^aa, ["integer" = aa, "atom" = bb]);

aa
(%o2) r1 : bb -> [integer = aa, atom = bb]
(%i3) r1 (%pi^8);
(%o3) [integer = 8, atom = %pi]

In the case of addition and multiplication, the match variable may be assigned a single
expression which satisfies the match predicate, or a sum or product (respectively) of
such expressions.

(%i1) matchdeclare (aa, atom, bb, lambda ([x], not atom(x)));
(%o1) done
(%i2) defrule (r1, aa + bb, ["all atoms" = aa, "all nonatoms" =

bb]);
bb + aa partitions ‘sum’
(%o2) r1 : bb + aa -> [all atoms = aa, all nonatoms = bb]
(%i3) r1 (8 + a*b + sin(x));

Chapter 36: Rules and Patterns 433

(%o3) [all atoms = 8, all nonatoms = sin(x) + a b]
(%i4) defrule (r2, aa * bb, ["all atoms" = aa, "all nonatoms" =

bb]);
bb aa partitions ‘product’
(%o4) r2 : aa bb -> [all atoms = aa, all nonatoms = bb]
(%i5) r2 (8 * (a + b) * sin(x));
(%o5) [all atoms = 8, all nonatoms = (b + a) sin(x)]

When matching arguments of + and *, if all match predicates are mutually exclusive,
the match result is insensitive to ordering, as one match predicate cannot accept terms
matched by another.

(%i1) matchdeclare (aa, atom, bb, lambda ([x], not atom(x)));
(%o1) done
(%i2) defrule (r1, aa + bb, ["all atoms" = aa, "all nonatoms" =

bb]);
bb + aa partitions ‘sum’
(%o2) r1 : bb + aa -> [all atoms = aa, all nonatoms = bb]
(%i3) r1 (8 + a*b + %pi + sin(x) - c + 2^n);

n
(%o3) [all atoms = %pi + 8, all nonatoms = sin(x) + 2 - c + a b]
(%i4) defrule (r2, aa * bb, ["all atoms" = aa, "all nonatoms" =

bb]);
bb aa partitions ‘product’
(%o4) r2 : aa bb -> [all atoms = aa, all nonatoms = bb]
(%i5) r2 (8 * (a + b) * %pi * sin(x) / c * 2^n);

n
(b + a) 2 sin(x)

(%o5) [all atoms = 8 %pi, all nonatoms = -----------------]
c

The functions propvars and printprops return information about match variables.

(%i1) matchdeclare ([aa, bb, cc], atom, [dd, ee], integerp);
(%o1) done
(%i2) matchdeclare (ff, floatnump, gg, lambda ([x], x > 100));
(%o2) done
(%i3) propvars (matchdeclare);
(%o3) [aa, bb, cc, dd, ee, ff, gg]
(%i4) printprops (ee, matchdeclare);
(%o4) [integerp(ee)]
(%i5) printprops (gg, matchdeclare);
(%o5) [lambda([x], x > 100, gg)]
(%i6) printprops (all, matchdeclare);
(%o6) [lambda([x], x > 100, gg), floatnump(ff), integerp(ee),

integerp(dd), atom(cc), atom(bb), atom(aa)]

Functionmatchfix (ldelimiter, rdelimiter)
Functionmatchfix (ldelimiter, rdelimiter, arg pos, pos)

Declares a matchfix operator with left and right delimiters ldelimiter and rdelimiter.
The delimiters are specified as strings.

434 Maxima Manual

A "matchfix" operator is a function of any number of arguments, such that the
arguments occur between matching left and right delimiters. The delimiters may be
any strings, so long as the parser can distinguish the delimiters from the operands
and other expressions and operators. In practice this rules out unparseable delimiters
such as %, ,, $ and ;, and may require isolating the delimiters with white space. The
right delimiter can be the same or different from the left delimiter.

A left delimiter can be associated with only one right delimiter; two different matchfix
operators cannot have the same left delimiter.

An existing operator may be redeclared as a matchfix operator without changing its
other properties. In particular, built-in operators such as addition + can be declared
matchfix, but operator functions cannot be defined for built-in operators.

matchfix (ldelimiter, rdelimiter, arg pos, pos) declares the argument part-of-
speech arg pos and result part-of-speech pos, and the delimiters ldelimiter and
rdelimiter.

"Part of speech", in reference to operator declarations, means expression type. Three
types are recognized: expr, clause, and any, indicating an algebraic expression, a
Boolean expression, or any kind of expression, respectively. Maxima can detect some
syntax errors by comparing the declared part of speech to an actual expression.

The function to carry out a matchfix operation is an ordinary user-defined function.
The operator function is defined in the usual way with the function definition operator
:= or define. The arguments may be written between the delimiters, or with the
left delimiter as a quoted string and the arguments following in parentheses. dispfun
(ldelimiter) displays the function definition.

The only built-in matchfix operator is the list constructor []. Parentheses () and
double-quotes " " act like matchfix operators, but are not treated as such by the
Maxima parser.

matchfix evaluates its arguments. matchfix returns its first argument, ldelimiter.

Examples:

• Delimiters may be almost any strings.
(%i1) matchfix ("@@", "~");
(%o1) @@
(%i2) @@ a, b, c ~;
(%o2) @@a, b, c~
(%i3) matchfix (">>", "<<");
(%o3) >>
(%i4) >> a, b, c <<;
(%o4) >>a, b, c<<
(%i5) matchfix ("foo", "oof");
(%o5) foo
(%i6) foo a, b, c oof;
(%o6) fooa, b, coof
(%i7) >> w + foo x, y oof + z << / @@ p, q ~;

>>z + foox, yoof + w<<
(%o7) ----------------------

@@p, q~

Chapter 36: Rules and Patterns 435

• Matchfix operators are ordinary user-defined functions.
(%i1) matchfix ("!-", "-!");
(%o1) "!-"
(%i2) !- x, y -! := x/y - y/x;

x y
(%o2) !-x, y-! := - - -

y x
(%i3) define (!-x, y-!, x/y - y/x);

x y
(%o3) !-x, y-! := - - -

y x
(%i4) define ("!-" (x, y), x/y - y/x);

x y
(%o4) !-x, y-! := - - -

y x
(%i5) dispfun ("!-");

x y
(%t5) !-x, y-! := - - -

y x

(%o5) done
(%i6) !-3, 5-!;

16
(%o6) - --

15
(%i7) "!-" (3, 5);

16
(%o7) - --

15

Functionremlet (prod, name)
Functionremlet ()
Functionremlet (all)
Functionremlet (all, name)

Deletes the substitution rule, prod –> repl, most recently defined by the let function.
If name is supplied the rule is deleted from the rule package name.
remlet() and remlet(all) delete all substitution rules from the current rule package.
If the name of a rule package is supplied, e.g. remlet (all, name), the rule package
name is also deleted.
If a substitution is to be changed using the same product, remlet need not be called,
just redefine the substitution using the same product (literally) with the let function
and the new replacement and/or predicate name. Should remlet (prod) now be
called the original substitution rule is revived.
See also remrule, which removes a rule defined by tellsimp or tellsimpafter.

Functionremrule (op, rulename)
Functionremrule (op, all)

Removes rules defined by tellsimp or tellsimpafter.

436 Maxima Manual

remrule (op, rulename) removes the rule with the name rulename from the operator
op. When op is a built-in or user-defined operator (as defined by infix, prefix, etc.),
op and rulename must be enclosed in double quote marks.
remrule (op, all) removes all rules for the operator op.
See also remlet, which removes a rule defined by let.
Examples:

(%i1) tellsimp (foo (aa, bb), bb - aa);
(%o1) [foorule1, false]
(%i2) tellsimpafter (aa + bb, special_add (aa, bb));
(%o2) [+rule1, simplus]
(%i3) infix ("@@");
(%o3) @@
(%i4) tellsimp (aa @@ bb, bb/aa);
(%o4) [@@rule1, false]
(%i5) tellsimpafter (quux (%pi, %e), %pi - %e);
(%o5) [quuxrule1, false]
(%i6) tellsimpafter (quux (%e, %pi), %pi + %e);
(%o6) [quuxrule2, quuxrule1, false]
(%i7) [foo (aa, bb), aa + bb, aa @@ bb, quux (%pi, %e),

quux (%e, %pi)];
bb

(%o7) [bb - aa, special_add(aa, bb), --, %pi - %e, %pi + %e]
aa

(%i8) remrule (foo, foorule1);
(%o8) foo
(%i9) remrule ("+", "+rule1");
(%o9) +
(%i10) remrule ("@@", "@@rule1");
(%o10) @@
(%i11) remrule (quux, all);
(%o11) quux
(%i12) [foo (aa, bb), aa + bb, aa @@ bb, quux (%pi, %e),

quux (%e, %pi)];
(%o12) [foo(aa, bb), bb + aa, aa @@ bb, quux(%pi, %e),

quux(%e, %pi)]

Functiontellsimp (pattern, replacement)
is similar to tellsimpafter but places new information before old so that it is applied
before the built-in simplification rules.
tellsimp is used when it is important to modify the expression before the simplifier
works on it, for instance if the simplifier "knows" something about the expression,
but what it returns is not to your liking. If the simplifier "knows" something about
the main operator of the expression, but is simply not doing enough for you, you
probably want to use tellsimpafter.
The pattern may not be a sum, product, single variable, or number.
rules is the list of rules defined by defrule, defmatch, tellsimp, and
tellsimpafter.

Chapter 36: Rules and Patterns 437

Examples:

(%i1) matchdeclare (x, freeof (%i));
(%o1) done
(%i2) %iargs: false$
(%i3) tellsimp (sin(%i*x), %i*sinh(x));
(%o3) [sinrule1, simp-%sin]
(%i4) trigexpand (sin (%i*y + x));
(%o4) sin(x) cos(%i y) + %i cos(x) sinh(y)
(%i5) %iargs:true$
(%i6) errcatch(0^0);
0
0 has been generated
(%o6) []
(%i7) ev (tellsimp (0^0, 1), simp: false);
(%o7) [^rule1, simpexpt]
(%i8) 0^0;
(%o8) 1
(%i9) remrule ("^", %th(2)[1]);
(%o9) ^
(%i10) tellsimp (sin(x)^2, 1 - cos(x)^2);
(%o10) [^rule2, simpexpt]
(%i11) (1 + sin(x))^2;

2
(%o11) (sin(x) + 1)
(%i12) expand (%);

2
(%o12) 2 sin(x) - cos (x) + 2
(%i13) sin(x)^2;

2
(%o13) 1 - cos (x)
(%i14) kill (rules);
(%o14) done
(%i15) matchdeclare (a, true);
(%o15) done
(%i16) tellsimp (sin(a)^2, 1 - cos(a)^2);
(%o16) [^rule3, simpexpt]
(%i17) sin(y)^2;

2
(%o17) 1 - cos (y)

Functiontellsimpafter (pattern, replacement)
Defines a simplification rule which the Maxima simplifier applies after built-in sim-
plification rules. pattern is an expression, comprising pattern variables (declared by
matchdeclare) and other atoms and operators, considered literals for the purpose of
pattern matching. replacement is substituted for an actual expression which matches
pattern; pattern variables in replacement are assigned the values matched in the
actual expression.

438 Maxima Manual

pattern may be any nonatomic expression in which the main operator is not a pattern
variable; the simplification rule is associated with the main operator. The names of
functions (with one exception, described below), lists, and arrays may appear in
pattern as the main operator only as literals (not pattern variables); this rules out
expressions such as aa(x) and bb[y] as patterns, if aa and bb are pattern variables.
Names of functions, lists, and arrays which are pattern variables may appear as
operators other than the main operator in pattern.

There is one exception to the above rule concerning names of functions. The name of
a subscripted function in an expression such as aa[x](y) may be a pattern variable,
because the main operator is not aa but rather the Lisp atom mqapply. This is a
consequence of the representation of expressions involving subscripted functions.

Simplification rules are applied after evaluation (if not suppressed through quotation
or the flag noeval). Rules established by tellsimpafter are applied in the order
they were defined, and after any built-in rules. Rules are applied bottom-up, that is,
applied first to subexpressions before application to the whole expression. It may be
necessary to repeatedly simplify a result (for example, via the quote-quote operator
’’ or the flag infeval) to ensure that all rules are applied.

Pattern variables are treated as local variables in simplification rules. Once a rule is
defined, the value of a pattern variable does not affect the rule, and is not affected
by the rule. An assignment to a pattern variable which results from a successful rule
match does not affect the current assignment (or lack of it) of the pattern variable.
However, as with all atoms in Maxima, the properties of pattern variables (as declared
by put and related functions) are global.

The rule constructed by tellsimpafter is named after the main operator of pattern.
Rules for built-in operators, and user-defined operators defined by infix, prefix,
postfix, matchfix, and nofix, have names which are Lisp identifiers. Rules for
other functions have names which are Maxima identifiers.

The treatment of noun and verb forms is slightly confused. If a rule is defined for
a noun (or verb) form and a rule for the corresponding verb (or noun) form already
exists, the newly-defined rule applies to both forms (noun and verb). If a rule for the
corresponding verb (or noun) form does not exist, the newly-defined rule applies only
to the noun (or verb) form.

The rule constructed by tellsimpafter is an ordinary Lisp function. If the name of
the rule is $foorule1, the construct :lisp (trace $foorule1) traces the function,
and :lisp (symbol-function ’$foorule1 displays its definition.

tellsimpafter quotes its arguments. tellsimpafter returns the list of rules for the
main operator of pattern, including the newly established rule.

See also matchdeclare, defmatch, defrule, tellsimp, let, kill, remrule, and
clear_rules.

Examples:

pattern may be any nonatomic expression in which the main operator is not a pattern
variable.

(%i1) matchdeclare (aa, atom, [ll, mm], listp, xx, true)$
(%i2) tellsimpafter (sin (ll), map (sin, ll));

Chapter 36: Rules and Patterns 439

(%o2) [sinrule1, simp-%sin]
(%i3) sin ([1/6, 1/4, 1/3, 1/2, 1]*%pi);

1 sqrt(2) sqrt(3)
(%o3) [-, -------, -------, 1, 0]

2 2 2
(%i4) tellsimpafter (ll^mm, map ("^", ll, mm));
(%o4) [^rule1, simpexpt]
(%i5) [a, b, c]^[1, 2, 3];

2 3
(%o5) [a, b , c]
(%i6) tellsimpafter (foo (aa (xx)), aa (foo (xx)));
(%o6) [foorule1, false]
(%i7) foo (bar (u - v));
(%o7) bar(foo(u - v))

Rules are applied in the order they were defined. If two rules can match an expression,
the rule which was defined first is applied.

(%i1) matchdeclare (aa, integerp);
(%o1) done
(%i2) tellsimpafter (foo (aa), bar_1 (aa));
(%o2) [foorule1, false]
(%i3) tellsimpafter (foo (aa), bar_2 (aa));
(%o3) [foorule2, foorule1, false]
(%i4) foo (42);
(%o4) bar_1(42)

Pattern variables are treated as local variables in simplification rules. (Compare to
defmatch, which treats pattern variables as global variables.)

(%i1) matchdeclare (aa, integerp, bb, atom);
(%o1) done
(%i2) tellsimpafter (foo(aa, bb), bar(’aa=aa, ’bb=bb));
(%o2) [foorule1, false]
(%i3) bb: 12345;
(%o3) 12345
(%i4) foo (42, %e);
(%o4) bar(aa = 42, bb = %e)
(%i5) bb;
(%o5) 12345

As with all atoms, properties of pattern variables are global even though values are
local. In this example, an assignment property is declared via define_variable.
This is a property of the atom bb throughout Maxima.

(%i1) matchdeclare (aa, integerp, bb, atom);
(%o1) done
(%i2) tellsimpafter (foo(aa, bb), bar(’aa=aa, ’bb=bb));
(%o2) [foorule1, false]
(%i3) foo (42, %e);
(%o3) bar(aa = 42, bb = %e)
(%i4) define_variable (bb, true, boolean);
(%o4) true
(%i5) foo (42, %e);

440 Maxima Manual

Error: bb was declared mode boolean, has value: %e
-- an error. Quitting. To debug this try debugmode(true);

Rules are named after main operators. Names of rules for built-in and user-defined
operators are Lisp identifiers, while names for other functions are Maxima identifiers.

(%i1) tellsimpafter (foo (%pi + %e), 3*%pi);
(%o1) [foorule1, false]
(%i2) tellsimpafter (foo (%pi * %e), 17*%e);
(%o2) [foorule2, foorule1, false]
(%i3) tellsimpafter (foo (%i ^ %e), -42*%i);
(%o3) [foorule3, foorule2, foorule1, false]
(%i4) tellsimpafter (foo (9) + foo (13), quux (22));
(%o4) [+rule1, simplus]
(%i5) tellsimpafter (foo (9) * foo (13), blurf (22));
(%o5) [*rule1, simptimes]
(%i6) tellsimpafter (foo (9) ^ foo (13), mumble (22));
(%o6) [^rule1, simpexpt]
(%i7) rules;
(%o7) [foorule1, foorule2, foorule3, +rule1, *rule1, ^rule1]
(%i8) foorule_name: first (%o1);
(%o8) foorule1
(%i9) plusrule_name: first (%o4);
(%o9) +rule1
(%i10) remrule (foo, foorule1);
(%o10) foo
(%i11) remrule ("^", ?\^rule1);
(%o11) ^
(%i12) rules;
(%o12) [foorule2, foorule3, +rule1, *rule1]

A worked example: anticommutative multiplication.

(%i1) gt (i, j) := integerp(j) and i < j;
(%o1) gt(i, j) := integerp(j) and i < j
(%i2) matchdeclare (i, integerp, j, gt(i));
(%o2) done
(%i3) tellsimpafter (s[i]^^2, 1);
(%o3) [^^rule1, simpncexpt]
(%i4) tellsimpafter (s[i] . s[j], -s[j] . s[i]);
(%o4) [.rule1, simpnct]
(%i5) s[1] . (s[1] + s[2]);
(%o5) s . (s + s)

1 2 1
(%i6) expand (%);
(%o6) 1 - s . s

2 1
(%i7) factor (expand (sum (s[i], i, 0, 9)^^5));
(%o7) 100 (s + s + s + s + s + s + s + s + s + s)

9 8 7 6 5 4 3 2 1 0

Chapter 36: Rules and Patterns 441

Functionclear rules ()
Executes kill (rules) and then resets the next rule number to 1 for addition +,
multiplication *, and exponentiation ^.

442 Maxima Manual

Chapter 37: Lists 443

37 Lists

37.1 Introduction to Lists

Lists are the basic building block for Maxima and Lisp. All data types other than arrays,
hash tables, numbers are represented as Lisp lists, These Lisp lists have the form

((MPLUS) $A 2)

to indicate an expression a+2. At Maxima level one would see the infix notation a+2.
Maxima also has lists which are printed as

[1, 2, 7, x+y]

for a list with 4 elements. Internally this corresponds to a Lisp list of the form
((MLIST) 1 2 7 ((MPLUS) $X $Y))

The flag which denotes the type field of the Maxima expression is a list itself, since after it
has been through the simplifier the list would become

((MLIST SIMP) 1 2 7 ((MPLUS SIMP) $X $Y))

37.2 Functions and Variables for Lists

Functionappend (list 1, ..., list n)
Returns a single list of the elements of list 1 followed by the elements of list 2, ...
append also works on general expressions, e.g. append (f(a,b), f(c,d,e)); yields
f(a,b,c,d,e).
Do example(append); for an example.

Functionassoc (key, list, default)
Functionassoc (key, list)

This function searches for the key in the left hand side of the input list of the form
[x,y,z,...] where each of the list elements is an expression of a binary operand
and 2 elements. For example x=1, 2^3, [a,b] etc. The key is checked againts the
first operand. assoc returns the second operand if the key is found. If the key is not
found it either returns the default value. default is optional and defaults to false.

Functionatom (expr)
Returns true if expr is atomic (i.e. a number, name or string) else false. Thus
atom(5) is true while atom(a[1]) and atom(sin(x)) are false (asuming a[1] and
x are unbound).

Functioncons (expr, list)
Returns a new list constructed of the element expr as its first element, followed by
the elements of list. cons also works on other expressions, e.g. cons(x, f(a,b,c));
-> f(x,a,b,c).

Functioncopylist (list)
Returns a copy of the list list.

444 Maxima Manual

Functioncreate list (form, x 1, list 1, ..., x n, list n)
Create a list by evaluating form with x 1 bound to each element of list 1, and for
each such binding bind x 2 to each element of list 2, The number of elements in
the result will be the product of the number of elements in each list. Each variable
x i must actually be a symbol – it will not be evaluated. The list arguments will be
evaluated once at the beginning of the iteration.

(%i1) create_list(x^i,i,[1,3,7]);
3 7

(%o1) [x, x , x]

With a double iteration:

(%i1) create_list([i,j],i,[a,b],j,[e,f,h]);
(%o1) [[a, e], [a, f], [a, h], [b, e], [b, f], [b, h]]

Instead of list i two args may be supplied each of which should evaluate to a number.
These will be the inclusive lower and upper bounds for the iteration.

(%i1) create_list([i,j],i,[1,2,3],j,1,i);
(%o1) [[1, 1], [2, 1], [2, 2], [3, 1], [3, 2], [3, 3]]

Note that the limits or list for the j variable can depend on the current value of i.

Functiondelete (expr 1, expr 2)
Functiondelete (expr 1, expr 2, n)

Removes all occurrences of expr 1 from expr 2. expr 1 may be a term of expr 2 (if
it is a sum) or a factor of expr 2 (if it is a product).

(%i1) delete(sin(x), x+sin(x)+y);
(%o1) y + x

delete(expr 1, expr 2, n) removes the first n occurrences of expr 1 from expr 2. If
there are fewer than n occurrences of expr 1 in expr 2 then all occurrences will be
deleted.

(%i1) delete(a, f(a,b,c,d,a));
(%o1) f(b, c, d)
(%i2) delete(a, f(a,b,a,c,d,a), 2);
(%o2) f(b, c, d, a)

Functioneighth (expr)
Returns the 8’th item of expression or list expr. See first for more details.

Functionendcons (expr, list)
Returns a new list consisting of the elements of list followed by expr. endcons also
works on general expressions, e.g. endcons(x, f(a,b,c)); -> f(a,b,c,x).

Functionfifth (expr)
Returns the 5’th item of expression or list expr. See first for more details.

Chapter 37: Lists 445

Functionfirst (expr)
Returns the first part of expr which may result in the first element of a list, the
first row of a matrix, the first term of a sum, etc. Note that first and its related
functions, rest and last, work on the form of expr which is displayed not the form
which is typed on input. If the variable inflag is set to true however, these functions
will look at the internal form of expr. Note that the simplifier re-orders expressions.
Thus first(x+y) will be x if inflag is true and y if inflag is false (first(y+x)
gives the same results). The functions second .. tenth yield the second through the
tenth part of their input argument.

Functionfourth (expr)
Returns the 4’th item of expression or list expr. See first for more details.

Functionget (a, i)
Retrieves the user property indicated by i associated with atom a or returns false if
a doesn’t have property i.
get evaluates its arguments.

(%i1) put (%e, ’transcendental, ’type);
(%o1) transcendental
(%i2) put (%pi, ’transcendental, ’type)$
(%i3) put (%i, ’algebraic, ’type)$
(%i4) typeof (expr) := block ([q],

if numberp (expr)
then return (’algebraic),
if not atom (expr)
then return (maplist (’typeof, expr)),
q: get (expr, ’type),
if q=false
then errcatch (error(expr,"is not numeric.")) else q)$

(%i5) typeof (2*%e + x*%pi);
x is not numeric.
(%o5) [[transcendental, []], [algebraic, transcendental]]
(%i6) typeof (2*%e + %pi);
(%o6) [transcendental, [algebraic, transcendental]]

Functionjoin (l, m)
Creates a new list containing the elements of lists l and m, interspersed. The result
has elements [l[1], m[1], l[2], m[2], ...]. The lists l and m may contain any
type of elements.
If the lists are different lengths, join ignores elements of the longer list.
Maxima complains if l or m is not a list.
Examples:

(%i1) L1: [a, sin(b), c!, d - 1];
(%o1) [a, sin(b), c!, d - 1]
(%i2) join (L1, [1, 2, 3, 4]);

446 Maxima Manual

(%o2) [a, 1, sin(b), 2, c!, 3, d - 1, 4]
(%i3) join (L1, [aa, bb, cc, dd, ee, ff]);
(%o3) [a, aa, sin(b), bb, c!, cc, d - 1, dd]

Functionlast (expr)
Returns the last part (term, row, element, etc.) of the expr.

Functionlength (expr)
Returns (by default) the number of parts in the external (displayed) form of expr.
For lists this is the number of elements, for matrices it is the number of rows, and for
sums it is the number of terms (see dispform).
The length command is affected by the inflag switch. So, e.g. length(a/(b*c));
gives 2 if inflag is false (Assuming exptdispflag is true), but 3 if inflag is true
(the internal representation is essentially a*b^-1*c^-1).

Option variablelistarith
default value: true - if false causes any arithmetic operations with lists to be sup-
pressed; when true, list-matrix operations are contagious causing lists to be converted
to matrices yielding a result which is always a matrix. However, list-list operations
should return lists.

Functionlistp (expr)
Returns true if expr is a list else false.

Functionmakelist (expr, i, i 0, i 1)
Functionmakelist (expr, x, list)

Constructs and returns a list, each element of which is generated from expr.
makelist (expr, i, i 0, i 1) returns a list, the j’th element of which is equal to ev
(expr, i=j) for j equal to i 0 through i 1.
makelist (expr, x, list) returns a list, the j’th element of which is equal to ev
(expr, x=list[j]) for j equal to 1 through length (list).
Examples:

(%i1) makelist(concat(x,i),i,1,6);
(%o1) [x1, x2, x3, x4, x5, x6]
(%i2) makelist(x=y,y,[a,b,c]);
(%o2) [x = a, x = b, x = c]

Functionmember (expr 1, expr 2)
Returns true if is(expr 1 = a) for some element a in args(expr 2), otherwise returns
false.
expr_2 is typically a list, in which case args(expr 2) = expr 2 and is(expr 1 = a)
for some element a in expr_2 is the test.
member does not inspect parts of the arguments of expr_2, so it may return false
even if expr_1 is a part of some argument of expr_2.

Chapter 37: Lists 447

See also elementp.

Examples:
(%i1) member (8, [8, 8.0, 8b0]);
(%o1) true
(%i2) member (8, [8.0, 8b0]);
(%o2) false
(%i3) member (b, [a, b, c]);
(%o3) true
(%i4) member (b, [[a, b], [b, c]]);
(%o4) false
(%i5) member ([b, c], [[a, b], [b, c]]);
(%o5) true
(%i6) F (1, 1/2, 1/4, 1/8);

1 1 1
(%o6) F(1, -, -, -)

2 4 8
(%i7) member (1/8, %);
(%o7) true
(%i8) member ("ab", ["aa", "ab", sin(1), a + b]);
(%o8) true

Functionninth (expr)
Returns the 9’th item of expression or list expr. See first for more details.

Functionunique (L)
Returns the unique elements of the list L.

When all the elements of L are unique, unique returns a shallow copy of L, not L
itself.

If L is not a list, unique returns L.

Example:
(%i1) unique ([1, %pi, a + b, 2, 1, %e, %pi, a + b, [1]]);
(%o1) [1, 2, %e, %pi, [1], b + a]

Functionrest (expr, n)
Functionrest (expr)

Returns expr with its first n elements removed if n is positive and its last - n elements
removed if n is negative. If n is 1 it may be omitted. expr may be a list, matrix, or
other expression.

Functionreverse (list)
Reverses the order of the members of the list (not the members themselves). reverse
also works on general expressions, e.g. reverse(a=b); gives b=a.

Functionsecond (expr)
Returns the 2’nd item of expression or list expr. See first for more details.

448 Maxima Manual

Functionseventh (expr)
Returns the 7’th item of expression or list expr. See first for more details.

Functionsixth (expr)
Returns the 6’th item of expression or list expr. See first for more details.

Functionsublist indices (L, P)
Returns the indices of the elements x of the list L for which the predicate maybe(P(x))
returns true; this excludes unknown as well as false. P may be the name of a function
or a lambda expression. L must be a literal list.
Examples:

(%i1) sublist_indices (’[a, b, b, c, 1, 2, b, 3, b],
lambda ([x], x=’b));

(%o1) [2, 3, 7, 9]
(%i2) sublist_indices (’[a, b, b, c, 1, 2, b, 3, b], symbolp);
(%o2) [1, 2, 3, 4, 7, 9]
(%i3) sublist_indices ([1 > 0, 1 < 0, 2 < 1, 2 > 1, 2 > 0],

identity);
(%o3) [1, 4, 5]
(%i4) assume (x < -1);
(%o4) [x < - 1]
(%i5) map (maybe, [x > 0, x < 0, x < -2]);
(%o5) [false, true, unknown]
(%i6) sublist_indices ([x > 0, x < 0, x < -2], identity);
(%o6) [2]

Functiontenth (expr)
Returns the 10’th item of expression or list expr. See first for more details.

Functionthird (expr)
Returns the 3’rd item of expression or list expr. See first for more details.

Chapter 38: Sets 449

38 Sets

38.1 Introduction to Sets

Maxima provides set functions, such as intersection and union, for finite sets that are
defined by explicit enumeration. Maxima treats lists and sets as distinct objects. This
feature makes it possible to work with sets that have members that are either lists or sets.

In addition to functions for finite sets, Maxima provides some functions related to com-
binatorics; these include the Stirling numbers of the first and second kind, the Bell numbers,
multinomial coefficients, partitions of nonnegative integers, and a few others. Maxima also
defines a Kronecker delta function.

38.1.1 Usage

To construct a set with members a_1, ..., a_n, write set(a_1, ..., a_n) or {a_1,
..., a_n}; to construct the empty set, write set() or {}. In input, set(...) and { ... }
are equivalent. Sets are always displayed with curly braces.

If a member is listed more than once, simplification eliminates the redundant member.
(%i1) set();
(%o1) {}
(%i2) set(a, b, a);
(%o2) {a, b}
(%i3) set(a, set(b));
(%o3) {a, {b}}
(%i4) set(a, [b]);
(%o4) {a, [b]}
(%i5) {};
(%o5) {}
(%i6) {a, b, a};
(%o6) {a, b}
(%i7) {a, {b}};
(%o7) {a, {b}}
(%i8) {a, [b]};
(%o8) {a, [b]}

Two would-be elements x and y are redundant (i.e., considered the same for the purpose
of set construction) if and only if is(x = y) yields true. Note that is(equal(x, y)) can
yield true while is(x = y) yields false; in that case the elements x and y are considered
distinct.

(%i1) x: a/c + b/c;
b a

(%o1) - + -
c c

(%i2) y: a/c + b/c;
b a

(%o2) - + -
c c

450 Maxima Manual

(%i3) z: (a + b)/c;
b + a

(%o3) -----
c

(%i4) is (x = y);
(%o4) true
(%i5) is (y = z);
(%o5) false
(%i6) is (equal (y, z));
(%o6) true
(%i7) y - z;

b + a b a
(%o7) - ----- + - + -

c c c
(%i8) ratsimp (%);
(%o8) 0
(%i9) {x, y, z};

b + a b a
(%o9) {-----, - + -}

c c c

To construct a set from the elements of a list, use setify.
(%i1) setify ([b, a]);
(%o1) {a, b}

Set members x and y are equal provided is(x = y) evaluates to true. Thus rat(x) and
x are equal as set members; consequently,

(%i1) {x, rat(x)};
(%o1) {x}

Further, since is((x - 1)*(x + 1) = x^2 - 1) evaluates to false, (x - 1)*(x + 1) and
x^2 - 1 are distinct set members; thus

(%i1) {(x - 1)*(x + 1), x^2 - 1};
2

(%o1) {(x - 1) (x + 1), x - 1}

To reduce this set to a singleton set, apply rat to each set member:
(%i1) {(x - 1)*(x + 1), x^2 - 1};

2
(%o1) {(x - 1) (x + 1), x - 1}
(%i2) map (rat, %);

2
(%o2)/R/ {x - 1}

To remove redundancies from other sets, you may need to use other simplification func-
tions. Here is an example that uses trigsimp:

(%i1) {1, cos(x)^2 + sin(x)^2};
2 2

(%o1) {1, sin (x) + cos (x)}
(%i2) map (trigsimp, %);
(%o2) {1}

Chapter 38: Sets 451

A set is simplified when its members are non-redundant and sorted. The current version
of the set functions uses the Maxima function orderlessp to order sets; however, future
versions of the set functions might use a different ordering function.

Some operations on sets, such as substitution, automatically force a re-simplification;
for example,

(%i1) s: {a, b, c}$
(%i2) subst (c=a, s);
(%o2) {a, b}
(%i3) subst ([a=x, b=x, c=x], s);
(%o3) {x}
(%i4) map (lambda ([x], x^2), set (-1, 0, 1));
(%o4) {0, 1}

Maxima treats lists and sets as distinct objects; functions such as union and
intersection complain if any argument is not a set. If you need to apply a set function
to a list, use the setify function to convert it to a set. Thus

(%i1) union ([1, 2], {a, b});
Function union expects a set, instead found [1,2]
-- an error. Quitting. To debug this try debugmode(true);
(%i2) union (setify ([1, 2]), {a, b});
(%o2) {1, 2, a, b}

To extract all set elements of a set s that satisfy a predicate f, use subset(s, f). (A
predicate is a boolean-valued function.) For example, to find the equations in a given set
that do not depend on a variable z, use

(%i1) subset ({x + y + z, x - y + 4, x + y - 5},
lambda ([e], freeof (z, e)));

(%o1) {- y + x + 4, y + x - 5}

The section Section 38.2 [Functions and Variables for Sets], page 453 has a complete list
of the set functions in Maxima.

38.1.2 Set Member Iteration

There two ways to to iterate over set members. One way is the use map; for example:
(%i1) map (f, {a, b, c});
(%o1) {f(a), f(b), f(c)}

The other way is to use for x in s do

(%i1) s: {a, b, c};
(%o1) {a, b, c}
(%i2) for si in s do print (concat (si, 1));
a1
b1
c1
(%o2) done

The Maxima functions first and rest work correctly on sets. Applied to a set, first
returns the first displayed element of a set; which element that is may be implementation-
dependent. If s is a set, then rest(s) is equivalent to disjoin(first(s), s). Currently,
there are other Maxima functions that work correctly on sets. In future versions of the set
functions, first and rest may function differently or not at all.

452 Maxima Manual

38.1.3 Bugs

The set functions use the Maxima function orderlessp to order set members and the
(Lisp-level) function like to test for set member equality. Both of these functions have
known bugs that may manifest if you attempt to use sets with members that are lists or
matrices that contain expressions in canonical rational expression (CRE) form. An example
is

(%i1) {[x], [rat (x)]};
Maxima encountered a Lisp error:

The value #:X1440 is not of type LIST.

Automatically continuing.
To reenable the Lisp debugger set *debugger-hook* to nil.

This expression causes Maxima to halt with an error (the error message depends on
which version of Lisp your Maxima uses). Another example is

(%i1) setify ([[rat(a)], [rat(b)]]);
Maxima encountered a Lisp error:

The value #:A1440 is not of type LIST.

Automatically continuing.
To reenable the Lisp debugger set *debugger-hook* to nil.

These bugs are caused by bugs in orderlessp and like; they are not caused by bugs
in the set functions. To illustrate, try the expressions

(%i1) orderlessp ([rat(a)], [rat(b)]);
Maxima encountered a Lisp error:

The value #:B1441 is not of type LIST.

Automatically continuing.
To reenable the Lisp debugger set *debugger-hook* to nil.
(%i2) is ([rat(a)] = [rat(a)]);
(%o2) false

Until these bugs are fixed, do not construct sets with members that are lists or matrices
containing expressions in CRE form; a set with a member in CRE form, however, shouldn’t
be a problem:

(%i1) {x, rat (x)};
(%o1) {x}

Maxima’s orderlessp has another bug that can cause problems with set functions,
namely that the ordering predicate orderlessp is not transitive. The simplest known
example that shows this is

(%i1) q: x^2$
(%i2) r: (x + 1)^2$
(%i3) s: x*(x + 2)$
(%i4) orderlessp (q, r);
(%o4) true

Chapter 38: Sets 453

(%i5) orderlessp (r, s);
(%o5) true
(%i6) orderlessp (q, s);
(%o6) false

This bug can cause trouble with all set functions as well as with Maxima functions in
general. It is probable, but not certain, that this bug can be avoided if all set members are
either in CRE form or have been simplified using ratsimp.

Maxima’s orderless and ordergreat mechanisms are incompatible with the set func-
tions. If you need to use either orderless or ordergreat, call those functions before
constructing any sets, and do not call unorder.

If you find something that you think might be a set function bug, please report it to the
Maxima bug database. See bug_report.

38.1.4 Authors

Stavros Macrakis of Cambridge, Massachusetts and Barton Willis of the University of
Nebraska at Kearney (UNK) wrote the Maxima set functions and their documentation.

38.2 Functions and Variables for Sets

Functionadjoin (x, a)
Returns the union of the set a with {x}.
adjoin complains if a is not a literal set.
adjoin(x, a) and union(set(x), a) are equivalent; however, adjoin may be some-
what faster than union.
See also disjoin.
Examples:

(%i1) adjoin (c, {a, b});
(%o1) {a, b, c}
(%i2) adjoin (a, {a, b});
(%o2) {a, b}

Functionbelln (n)
Represents the n-th Bell number. belln(n) is the number of partitions of a set with
n members.
For nonnegative integers n, belln(n) simplifies to the n-th Bell number. belln does
not simplify for any other arguments.
belln distributes over equations, lists, matrices, and sets.
Examples:
belln applied to nonnegative integers.

(%i1) makelist (belln (i), i, 0, 6);
(%o1) [1, 1, 2, 5, 15, 52, 203]
(%i2) is (cardinality (set_partitions ({})) = belln (0));

454 Maxima Manual

(%o2) true
(%i3) is (cardinality (set_partitions ({1, 2, 3, 4, 5, 6})) =

belln (6));
(%o3) true

belln applied to arguments which are not nonnegative integers.
(%i1) [belln (x), belln (sqrt(3)), belln (-9)];
(%o1) [belln(x), belln(sqrt(3)), belln(- 9)]

Functioncardinality (a)
Returns the number of distinct elements of the set a.

cardinality ignores redundant elements even when simplification is disabled.

Examples:
(%i1) cardinality ({});
(%o1) 0
(%i2) cardinality ({a, a, b, c});
(%o2) 3
(%i3) simp : false;
(%o3) false
(%i4) cardinality ({a, a, b, c});
(%o4) 3

Functioncartesian product (b 1, ... , b n)
Returns a set of lists of the form [x 1, ..., x n], where x 1, ..., x n are elements of
the sets b 1, ... , b n, respectively.

cartesian_product complains if any argument is not a literal set.

Examples:
(%i1) cartesian_product ({0, 1});
(%o1) {[0], [1]}
(%i2) cartesian_product ({0, 1}, {0, 1});
(%o2) {[0, 0], [0, 1], [1, 0], [1, 1]}
(%i3) cartesian_product ({x}, {y}, {z});
(%o3) {[x, y, z]}
(%i4) cartesian_product ({x}, {-1, 0, 1});
(%o4) {[x, - 1], [x, 0], [x, 1]}

Functiondisjoin (x, a)
Returns the set a without the member x. If x is not a member of a, return a un-
changed.

disjoin complains if a is not a literal set.

disjoin(x, a), delete(x, a), and setdifference(a, set(x)) are all equivalent.
Of these, disjoin is generally faster than the others.

Examples:

Chapter 38: Sets 455

(%i1) disjoin (a, {a, b, c, d});
(%o1) {b, c, d}
(%i2) disjoin (a + b, {5, z, a + b, %pi});
(%o2) {5, %pi, z}
(%i3) disjoin (a - b, {5, z, a + b, %pi});
(%o3) {5, %pi, b + a, z}

Functiondisjointp (a, b)
Returns true if and only if the sets a and b are disjoint.
disjointp complains if either a or b is not a literal set.
Examples:

(%i1) disjointp ({a, b, c}, {1, 2, 3});
(%o1) true
(%i2) disjointp ({a, b, 3}, {1, 2, 3});
(%o2) false

Functiondivisors (n)
Represents the set of divisors of n.
divisors(n) simplifies to a set of integers when n is a nonzero integer. The set of
divisors includes the members 1 and n. The divisors of a negative integer are the
divisors of its absolute value.
divisors distributes over equations, lists, matrices, and sets.
Examples:
We can verify that 28 is a perfect number: the sum of its divisors (except for itself)
is 28.

(%i1) s: divisors(28);
(%o1) {1, 2, 4, 7, 14, 28}
(%i2) lreduce ("+", args(s)) - 28;
(%o2) 28

divisors is a simplifying function. Substituting 8 for a in divisors(a) yields the
divisors without reevaluating divisors(8).

(%i1) divisors (a);
(%o1) divisors(a)
(%i2) subst (8, a, %);
(%o2) {1, 2, 4, 8}

divisors distributes over equations, lists, matrices, and sets.
(%i1) divisors (a = b);
(%o1) divisors(a) = divisors(b)
(%i2) divisors ([a, b, c]);
(%o2) [divisors(a), divisors(b), divisors(c)]
(%i3) divisors (matrix ([a, b], [c, d]));

[divisors(a) divisors(b)]
(%o3) []

[divisors(c) divisors(d)]
(%i4) divisors ({a, b, c});
(%o4) {divisors(a), divisors(b), divisors(c)}

456 Maxima Manual

Functionelementp (x, a)
Returns true if and only if x is a member of the set a.
elementp complains if a is not a literal set.
Examples:

(%i1) elementp (sin(1), {sin(1), sin(2), sin(3)});
(%o1) true
(%i2) elementp (sin(1), {cos(1), cos(2), cos(3)});
(%o2) false

Functionemptyp (a)
Return true if and only if a is the empty set or the empty list.
Examples:

(%i1) map (emptyp, [{}, []]);
(%o1) [true, true]
(%i2) map (emptyp, [a + b, {{}}, %pi]);
(%o2) [false, false, false]

Functionequiv classes (s, F)
Returns a set of the equivalence classes of the set s with respect to the equivalence
relation F.
F is a function of two variables defined on the Cartesian product of s with s. The
return value of F is either true or false, or an expression expr such that is(expr)
is either true or false.
When F is not an equivalence relation, equiv_classes accepts it without complaint,
but the result is generally incorrect in that case.
Examples:
The equivalence relation is a lambda expression which returns true or false.

(%i1) equiv_classes ({1, 1.0, 2, 2.0, 3, 3.0},
lambda ([x, y], is (equal (x, y))));

(%o1) {{1, 1.0}, {2, 2.0}, {3, 3.0}}

The equivalence relation is the name of a relational function which is evaluates to
true or false.

(%i1) equiv_classes ({1, 1.0, 2, 2.0, 3, 3.0}, equal);
(%o1) {{1, 1.0}, {2, 2.0}, {3, 3.0}}

The equivalence classes are numbers which differ by a multiple of 3.
(%i1) equiv_classes ({1, 2, 3, 4, 5, 6, 7},

lambda ([x, y], remainder (x - y, 3) = 0));
(%o1) {{1, 4, 7}, {2, 5}, {3, 6}}

Functionevery (f, s)
Functionevery (f, L 1, ..., L n)

Returns true if the predicate f is true for all given arguments.

Chapter 38: Sets 457

Given one set as the second argument, every(f, s) returns true if is(f (a i)) returns
true for all a i in s. every may or may not evaluate f for all a i in s. Since sets are
unordered, every may evaluate f (a i) in any order.
Given one or more lists as arguments, every(f, L 1, ..., L n) returns true if
is(f (x 1, ..., x n)) returns true for all x 1, ..., x n in L 1, ..., L n, respectively.
every may or may not evaluate f for every combination x 1, ..., x n. every evaluates
lists in the order of increasing index.
Given an empty set {} or empty lists [] as arguments, every returns false.
When the global flag maperror is true, all lists L 1, ..., L n must have equal lengths.
When maperror is false, list arguments are effectively truncated to the length of the
shortest list.
Return values of the predicate f which evaluate (via is) to something other than
true or false are governed by the global flag prederror. When prederror is true,
such values are treated as false, and the return value from every is false. When
prederror is false, such values are treated as unknown, and the return value from
every is unknown.
Examples:
every applied to a single set. The predicate is a function of one argument.

(%i1) every (integerp, {1, 2, 3, 4, 5, 6});
(%o1) true
(%i2) every (atom, {1, 2, sin(3), 4, 5 + y, 6});
(%o2) false

every applied to two lists. The predicate is a function of two arguments.
(%i1) every ("=", [a, b, c], [a, b, c]);
(%o1) true
(%i2) every ("#", [a, b, c], [a, b, c]);
(%o2) false

Return values of the predicate f which evaluate to something other than true or
false are governed by the global flag prederror.

(%i1) prederror : false;
(%o1) false
(%i2) map (lambda ([a, b], is (a < b)), [x, y, z],

[x^2, y^2, z^2]);
(%o2) [unknown, unknown, unknown]
(%i3) every ("<", [x, y, z], [x^2, y^2, z^2]);
(%o3) unknown
(%i4) prederror : true;
(%o4) true
(%i5) every ("<", [x, y, z], [x^2, y^2, z^2]);
(%o5) false

Functionextremal subset (s, f, max)
Functionextremal subset (s, f, min)

Returns the subset of s for which the function f takes on maximum or minimum
values.

458 Maxima Manual

extremal_subset(s, f, max) returns the subset of the set or list s for which the
real-valued function f takes on its maximum value.
extremal_subset(s, f, min) returns the subset of the set or list s for which the
real-valued function f takes on its minimum value.
Examples:

(%i1) extremal_subset ({-2, -1, 0, 1, 2}, abs, max);
(%o1) {- 2, 2}
(%i2) extremal_subset ({sqrt(2), 1.57, %pi/2}, sin, min);
(%o2) {sqrt(2)}

Functionflatten (expr)
Collects arguments of subexpressions which have the same operator as expr and
constructs an expression from these collected arguments.
Subexpressions in which the operator is different from the main operator of expr are
copied without modification, even if they, in turn, contain some subexpressions in
which the operator is the same as for expr.
It may be possible for flatten to construct expressions in which the number of
arguments differs from the declared arguments for an operator; this may provoke an
error message from the simplifier or evaluator. flatten does not try to detect such
situations.
Expressions with special representations, for example, canonical rational expressions
(CRE), cannot be flattened; in such cases, flatten returns its argument unchanged.
Examples:
Applied to a list, flatten gathers all list elements that are lists.

(%i1) flatten ([a, b, [c, [d, e], f], [[g, h]], i, j]);
(%o1) [a, b, c, d, e, f, g, h, i, j]

Applied to a set, flatten gathers all members of set elements that are sets.
(%i1) flatten ({a, {b}, {{c}}});
(%o1) {a, b, c}
(%i2) flatten ({a, {[a], {a}}});
(%o2) {a, [a]}

flatten is similar to the effect of declaring the main operator n-ary. However,
flatten has no effect on subexpressions which have an operator different from the
main operator, while an n-ary declaration affects those.

(%i1) expr: flatten (f (g (f (f (x)))));
(%o1) f(g(f(f(x))))
(%i2) declare (f, nary);
(%o2) done
(%i3) ev (expr);
(%o3) f(g(f(x)))

flatten treats subscripted functions the same as any other operator.
(%i1) flatten (f[5] (f[5] (x, y), z));
(%o1) f (x, y, z)

5

Chapter 38: Sets 459

It may be possible for flatten to construct expressions in which the number of
arguments differs from the declared arguments for an operator;

(%i1) ’mod (5, ’mod (7, 4));
(%o1) mod(5, mod(7, 4))
(%i2) flatten (%);
(%o2) mod(5, 7, 4)
(%i3) ’’%, nouns;
Wrong number of arguments to mod
-- an error. Quitting. To debug this try debugmode(true);

Functionfull listify (a)
Replaces every set operator in a by a list operator, and returns the result. full_
listify replaces set operators in nested subexpressions, even if the main operator is
not set.
listify replaces only the main operator.
Examples:

(%i1) full_listify ({a, b, {c, {d, e, f}, g}});
(%o1) [a, b, [c, [d, e, f], g]]
(%i2) full_listify (F (G ({a, b, H({c, d, e})})));
(%o2) F(G([a, b, H([c, d, e])]))

Functionfullsetify (a)
When a is a list, replaces the list operator with a set operator, and applies fullsetify
to each member which is a set. When a is not a list, it is returned unchanged.
setify replaces only the main operator.
Examples:
In line (%o2), the argument of f isn’t converted to a set because the main operator
of f([b]) isn’t a list.

(%i1) fullsetify ([a, [a]]);
(%o1) {a, {a}}
(%i2) fullsetify ([a, f([b])]);
(%o2) {a, f([b])}

Functionidentity (x)
Returns x for any argument x.
Examples:
identity may be used as a predicate when the arguments are already Boolean values.

(%i1) every (identity, [true, true]);
(%o1) true

Functioninteger partitions (n)
Functioninteger partitions (n, len)

Returns integer partitions of n, that is, lists of integers which sum to n.

460 Maxima Manual

integer_partitions(n) returns the set of all partitions of the integer n. Each
partition is a list sorted from greatest to least.
integer_partitions(n, len) returns all partitions that have length len or less; in
this case, zeros are appended to each partition with fewer than len terms to make
each partition have exactly len terms. Each partition is a list sorted from greatest to
least.
A list [a1, ..., am] is a partition of a nonnegative integer n when (1) each ai is a nonzero
integer, and (2) a1 + ...+ am = n. Thus 0 has no partitions.
Examples:

(%i1) integer_partitions (3);
(%o1) {[1, 1, 1], [2, 1], [3]}
(%i2) s: integer_partitions (25)$
(%i3) cardinality (s);
(%o3) 1958
(%i4) map (lambda ([x], apply ("+", x)), s);
(%o4) {25}
(%i5) integer_partitions (5, 3);
(%o5) {[2, 2, 1], [3, 1, 1], [3, 2, 0], [4, 1, 0], [5, 0, 0]}
(%i6) integer_partitions (5, 2);
(%o6) {[3, 2], [4, 1], [5, 0]}

To find all partitions that satisfy a condition, use the function subset; here is an
example that finds all partitions of 10 that consist of prime numbers.

(%i1) s: integer_partitions (10)$
(%i2) cardinality (s);
(%o2) 42
(%i3) xprimep(x) := integerp(x) and (x > 1) and primep(x)$
(%i4) subset (s, lambda ([x], every (xprimep, x)));
(%o4) {[2, 2, 2, 2, 2], [3, 3, 2, 2], [5, 3, 2], [5, 5], [7, 3]}

Functionintersect (a 1, ..., a n)
intersect is the same as intersection, which see.

Functionintersection (a 1, ..., a n)
Returns a set containing the elements that are common to the sets a 1 through a n.
intersection complains if any argument is not a literal set.
Examples:

(%i1) S_1 : {a, b, c, d};
(%o1) {a, b, c, d}
(%i2) S_2 : {d, e, f, g};
(%o2) {d, e, f, g}
(%i3) S_3 : {c, d, e, f};
(%o3) {c, d, e, f}
(%i4) S_4 : {u, v, w};
(%o4) {u, v, w}
(%i5) intersection (S_1, S_2);

Chapter 38: Sets 461

(%o5) {d}
(%i6) intersection (S_2, S_3);
(%o6) {d, e, f}
(%i7) intersection (S_1, S_2, S_3);
(%o7) {d}
(%i8) intersection (S_1, S_2, S_3, S_4);
(%o8) {}

Functionkron delta (x, y)
Represents the Kronecker delta function.
kron_delta simplifies to 1 when x and y are identical or demonstrably equivalent,
and it simplifies to 0 when x and y are demonstrably not equivalent. Otherwise, it
is not certain whether x and y are equivalent, and kron_delta simplifies to a noun
expression. kron_delta implements a cautious policy with respect to floating point
expressions: if the difference x - y is a floating point number, kron_delta simplifies
to a noun expression when x is apparently equivalent to y.
Specifically, kron_delta(x, y) simplifies to 1 when is(x = y) is true. kron_delta
also simplifies to 1 when sign(abs(x - y)) is zero and x - y is not a floating point
number (neither an ordinary float nor a bigfloat). kron_delta simplifies to 0 when
sign(abs(x - y)) is pos.
Otherwise, sign(abs(x - y)) is something other than pos or zero, or it is zero
and x - y is a floating point number. In these cases, kron_delta returns a noun
expression.
kron_delta is declared to be symmetric. That is, kron_delta(x, y) is equal to
kron_delta(y, x).
Examples:
The arguments of kron_delta are identical. kron_delta simplifies to 1.

(%i1) kron_delta (a, a);
(%o1) 1
(%i2) kron_delta (x^2 - y^2, x^2 - y^2);
(%o2) 1
(%i3) float (kron_delta (1/10, 0.1));
(%o3) 1

The arguments of kron_delta are equivalent, and their difference is not a floating
point number. kron_delta simplifies to 1.

(%i1) assume (equal (x, y));
(%o1) [equal(x, y)]
(%i2) kron_delta (x, y);
(%o2) 1

The arguments of kron_delta are not equivalent. kron_delta simplifies to 0.
(%i1) kron_delta (a + 1, a);
(%o1) 0
(%i2) assume (a > b)$
(%i3) kron_delta (a, b);
(%o3) 0

462 Maxima Manual

(%i4) kron_delta (1/5, 0.7);
(%o4) 0

The arguments of kron_delta might or might not be equivalent. kron_delta sim-
plifies to a noun expression.

(%i1) kron_delta (a, b);
(%o1) kron_delta(a, b)
(%i2) assume(x >= y)$
(%i3) kron_delta (x, y);
(%o3) kron_delta(x, y)

The arguments of kron_delta are equivalent, but their difference is a floating point
number. kron_delta simplifies to a noun expression.

(%i1) 1/4 - 0.25;
(%o1) 0.0
(%i2) 1/10 - 0.1;
(%o2) 0.0
(%i3) 0.25 - 0.25b0;
Warning: Float to bigfloat conversion of 0.25
(%o3) 0.0b0
(%i4) kron_delta (1/4, 0.25);

1
(%o4) kron_delta(-, 0.25)

4
(%i5) kron_delta (1/10, 0.1);

1
(%o5) kron_delta(--, 0.1)

10
(%i6) kron_delta (0.25, 0.25b0);
Warning: Float to bigfloat conversion of 0.25
(%o6) kron_delta(0.25, 2.5b-1)

kron_delta is symmetric.
(%i1) kron_delta (x, y);
(%o1) kron_delta(x, y)
(%i2) kron_delta (y, x);
(%o2) kron_delta(x, y)
(%i3) kron_delta (x, y) - kron_delta (y, x);
(%o3) 0
(%i4) is (equal (kron_delta (x, y), kron_delta (y, x)));
(%o4) true
(%i5) is (kron_delta (x, y) = kron_delta (y, x));
(%o5) true

Functionlistify (a)
Returns a list containing the members of a when a is a set. Otherwise, listify
returns a.
full_listify replaces all set operators in a by list operators.
Examples:

Chapter 38: Sets 463

(%i1) listify ({a, b, c, d});
(%o1) [a, b, c, d]
(%i2) listify (F ({a, b, c, d}));
(%o2) F({a, b, c, d})

Functionlreduce (F, s)
Functionlreduce (F, s, s 0)

Extends the binary function F to an n-ary function by composition, where s is a list.
lreduce(F, s) returns F(... F(F(s_1, s_2), s_3), ... s_n). When the optional
argument s 0 is present, the result is equivalent to lreduce(F, cons(s 0, s)).
The function F is first applied to the leftmost list elements, thus the name "lreduce".
See also rreduce, xreduce, and tree_reduce.
Examples:
lreduce without the optional argument.

(%i1) lreduce (f, [1, 2, 3]);
(%o1) f(f(1, 2), 3)
(%i2) lreduce (f, [1, 2, 3, 4]);
(%o2) f(f(f(1, 2), 3), 4)

lreduce with the optional argument.
(%i1) lreduce (f, [1, 2, 3], 4);
(%o1) f(f(f(4, 1), 2), 3)

lreduce applied to built-in binary operators. / is the division operator.
(%i1) lreduce ("^", args ({a, b, c, d}));

b c d
(%o1) ((a))
(%i2) lreduce ("/", args ({a, b, c, d}));

a
(%o2) -----

b c d

Functionmakeset (expr, x, s)
Returns a set with members generated from the expression expr, where x is a list of
variables in expr, and s is a set or list of lists. To generate each set member, expr is
evaluated with the variables x bound in parallel to a member of s.
Each member of s must have the same length as x. The list of variables x must be a
list of symbols, without subscripts. Even if there is only one symbol, x must be a list
of one element, and each member of s must be a list of one element.
See also makelist.
Examples:

(%i1) makeset (i/j, [i, j], [[1, a], [2, b], [3, c], [4, d]]);
1 2 3 4

(%o1) {-, -, -, -}
a b c d

(%i2) S : {x, y, z}$

464 Maxima Manual

(%i3) S3 : cartesian_product (S, S, S);
(%o3) {[x, x, x], [x, x, y], [x, x, z], [x, y, x], [x, y, y],
[x, y, z], [x, z, x], [x, z, y], [x, z, z], [y, x, x],
[y, x, y], [y, x, z], [y, y, x], [y, y, y], [y, y, z],
[y, z, x], [y, z, y], [y, z, z], [z, x, x], [z, x, y],
[z, x, z], [z, y, x], [z, y, y], [z, y, z], [z, z, x],
[z, z, y], [z, z, z]}
(%i4) makeset (i + j + k, [i, j, k], S3);
(%o4) {3 x, 3 y, y + 2 x, 2 y + x, 3 z, z + 2 x, z + y + x,

z + 2 y, 2 z + x, 2 z + y}
(%i5) makeset (sin(x), [x], {[1], [2], [3]});
(%o5) {sin(1), sin(2), sin(3)}

Functionmoebius (n)
Represents the Moebius function.
When n is product of k distinct primes, moebius(n) simplifies to (−1)k; when n = 1,
it simplifies to 1; and it simplifies to 0 for all other positive integers.
moebius distributes over equations, lists, matrices, and sets.
Examples:

(%i1) moebius (1);
(%o1) 1
(%i2) moebius (2 * 3 * 5);
(%o2) - 1
(%i3) moebius (11 * 17 * 29 * 31);
(%o3) 1
(%i4) moebius (2^32);
(%o4) 0
(%i5) moebius (n);
(%o5) moebius(n)
(%i6) moebius (n = 12);
(%o6) moebius(n) = 0
(%i7) moebius ([11, 11 * 13, 11 * 13 * 15]);
(%o7) [- 1, 1, 1]
(%i8) moebius (matrix ([11, 12], [13, 14]));

[- 1 0]
(%o8) []

[- 1 1]
(%i9) moebius ({21, 22, 23, 24});
(%o9) {- 1, 0, 1}

Functionmultinomial coeff (a 1, ..., a n)
Functionmultinomial coeff ()

Returns the multinomial coefficient.
When each a k is a nonnegative integer, the multinomial coefficient gives the number
of ways of placing a 1 + ... + a n distinct objects into n boxes with a k elements in
the k’th box. In general, multinomial_coeff (a 1, ..., a n) evaluates to (a 1 +
... + a n)!/(a 1! ... a n!).

Chapter 38: Sets 465

multinomial_coeff() (with no arguments) evaluates to 1.
minfactorial may be able to simplify the value returned by multinomial_coeff.
Examples:

(%i1) multinomial_coeff (1, 2, x);
(x + 3)!

(%o1) --------
2 x!

(%i2) minfactorial (%);
(x + 1) (x + 2) (x + 3)

(%o2) -----------------------
2

(%i3) multinomial_coeff (-6, 2);
(- 4)!

(%o3) --------
2 (- 6)!

(%i4) minfactorial (%);
(%o4) 10

Functionnum distinct partitions (n)
Functionnum distinct partitions (n, list)

Returns the number of distinct integer partitions of n when n is a nonnegative integer.
Otherwise, num_distinct_partitions returns a noun expression.
num_distinct_partitions(n, list) returns a list of the number of distinct parti-
tions of 1, 2, 3, ..., n.
A distinct partition of n is a list of distinct positive integers k1, ..., km such that
n = k1 + ...+ km.
Examples:

(%i1) num_distinct_partitions (12);
(%o1) 15
(%i2) num_distinct_partitions (12, list);
(%o2) [1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15]
(%i3) num_distinct_partitions (n);
(%o3) num_distinct_partitions(n)

Functionnum partitions (n)
Functionnum partitions (n, list)

Returns the number of integer partitions of n when n is a nonnegative integer. Oth-
erwise, num_partitions returns a noun expression.
num_partitions(n, list) returns a list of the number of integer partitions of 1, 2,
3, ..., n.
For a nonnegative integer n, num_partitions(n) is equal to cardinality(integer_
partitions(n)); however, num_partitions does not actually construct the set of
partitions, so it is much faster.
Examples:

466 Maxima Manual

(%i1) num_partitions (5) = cardinality (integer_partitions (5));
(%o1) 7 = 7
(%i2) num_partitions (8, list);
(%o2) [1, 1, 2, 3, 5, 7, 11, 15, 22]
(%i3) num_partitions (n);
(%o3) num_partitions(n)

Functionpartition set (a, f)
Partitions the set a according to the predicate f.

partition_set returns a list of two sets. The first set comprises the elements of a
for which f evaluates to false, and the second comprises any other elements of a.
partition_set does not apply is to the return value of f.

partition_set complains if a is not a literal set.

See also subset.

Examples:
(%i1) partition_set ({2, 7, 1, 8, 2, 8}, evenp);
(%o1) [{1, 7}, {2, 8}]
(%i2) partition_set ({x, rat(y), rat(y) + z, 1},

lambda ([x], ratp(x)));
(%o2)/R/ [{1, x}, {y, y + z}]

Functionpermutations (a)
Returns a set of all distinct permutations of the members of the list or set a. Each
permutation is a list, not a set.

When a is a list, duplicate members of a are included in the permutations.

permutations complains if a is not a literal list or set.

See also random_permutation.

Examples:
(%i1) permutations ([a, a]);
(%o1) {[a, a]}
(%i2) permutations ([a, a, b]);
(%o2) {[a, a, b], [a, b, a], [b, a, a]}

Functionpowerset (a)
Functionpowerset (a, n)

Returns the set of all subsets of a, or a subset of that set.

powerset(a) returns the set of all subsets of the set a. powerset(a) has
2^cardinality(a) members.

powerset(a, n) returns the set of all subsets of a that have cardinality n.

powerset complains if a is not a literal set, or if n is not a nonnegative integer.

Examples:

Chapter 38: Sets 467

(%i1) powerset ({a, b, c});
(%o1) {{}, {a}, {a, b}, {a, b, c}, {a, c}, {b}, {b, c}, {c}}
(%i2) powerset ({w, x, y, z}, 4);
(%o2) {{w, x, y, z}}
(%i3) powerset ({w, x, y, z}, 3);
(%o3) {{w, x, y}, {w, x, z}, {w, y, z}, {x, y, z}}
(%i4) powerset ({w, x, y, z}, 2);
(%o4) {{w, x}, {w, y}, {w, z}, {x, y}, {x, z}, {y, z}}
(%i5) powerset ({w, x, y, z}, 1);
(%o5) {{w}, {x}, {y}, {z}}
(%i6) powerset ({w, x, y, z}, 0);
(%o6) {{}}

Functionrandom permutation (a)
Returns a random permutation of the set or list a, as constructed by the Knuth shuffle
algorithm.
The return value is a new list, which is distinct from the argument even if all elements
happen to be the same. However, the elements of the argument are not copied.
Examples:

(%i1) random_permutation ([a, b, c, 1, 2, 3]);
(%o1) [c, 1, 2, 3, a, b]
(%i2) random_permutation ([a, b, c, 1, 2, 3]);
(%o2) [b, 3, 1, c, a, 2]
(%i3) random_permutation ({x + 1, y + 2, z + 3});
(%o3) [y + 2, z + 3, x + 1]
(%i4) random_permutation ({x + 1, y + 2, z + 3});
(%o4) [x + 1, y + 2, z + 3]

Functionrreduce (F, s)
Functionrreduce (F, s, s {n + 1})

Extends the binary function F to an n-ary function by composition, where s is a list.
rreduce(F, s) returns F(s_1, ... F(s_{n - 2}, F(s_{n - 1}, s_n))). When the
optional argument s {n + 1} is present, the result is equivalent to rreduce(F,
endcons(s {n + 1}, s)).
The function F is first applied to the rightmost list elements, thus the name "rreduce".
See also lreduce, tree_reduce, and xreduce.
Examples:
rreduce without the optional argument.

(%i1) rreduce (f, [1, 2, 3]);
(%o1) f(1, f(2, 3))
(%i2) rreduce (f, [1, 2, 3, 4]);
(%o2) f(1, f(2, f(3, 4)))

rreduce with the optional argument.
(%i1) rreduce (f, [1, 2, 3], 4);
(%o1) f(1, f(2, f(3, 4)))

rreduce applied to built-in binary operators. / is the division operator.

468 Maxima Manual

(%i1) rreduce ("^", args ({a, b, c, d}));
d
c
b

(%o1) a
(%i2) rreduce ("/", args ({a, b, c, d}));

a c
(%o2) ---

b d

Functionsetdifference (a, b)
Returns a set containing the elements in the set a that are not in the set b.
setdifference complains if either a or b is not a literal set.
Examples:

(%i1) S_1 : {a, b, c, x, y, z};
(%o1) {a, b, c, x, y, z}
(%i2) S_2 : {aa, bb, c, x, y, zz};
(%o2) {aa, bb, c, x, y, zz}
(%i3) setdifference (S_1, S_2);
(%o3) {a, b, z}
(%i4) setdifference (S_2, S_1);
(%o4) {aa, bb, zz}
(%i5) setdifference (S_1, S_1);
(%o5) {}
(%i6) setdifference (S_1, {});
(%o6) {a, b, c, x, y, z}
(%i7) setdifference ({}, S_1);
(%o7) {}

Functionsetequalp (a, b)
Returns true if sets a and b have the same number of elements and is(x = y) is
true for x in the elements of a and y in the elements of b, considered in the order
determined by listify. Otherwise, setequalp returns false.
Examples:

(%i1) setequalp ({1, 2, 3}, {1, 2, 3});
(%o1) true
(%i2) setequalp ({a, b, c}, {1, 2, 3});
(%o2) false
(%i3) setequalp ({x^2 - y^2}, {(x + y) * (x - y)});
(%o3) false

Functionsetify (a)
Constructs a set from the elements of the list a. Duplicate elements of the list a are
deleted and the elements are sorted according to the predicate orderlessp.
setify complains if a is not a literal list.
Examples:

Chapter 38: Sets 469

(%i1) setify ([1, 2, 3, a, b, c]);
(%o1) {1, 2, 3, a, b, c}
(%i2) setify ([a, b, c, a, b, c]);
(%o2) {a, b, c}
(%i3) setify ([7, 13, 11, 1, 3, 9, 5]);
(%o3) {1, 3, 5, 7, 9, 11, 13}

Functionsetp (a)
Returns true if and only if a is a Maxima set.
setp returns true for unsimplified sets (that is, sets with redundant members) as
well as simplified sets.
setp is equivalent to the Maxima function setp(a) := not atom(a) and op(a) =
’set.
Examples:

(%i1) simp : false;
(%o1) false
(%i2) {a, a, a};
(%o2) {a, a, a}
(%i3) setp (%);
(%o3) true

Functionset partitions (a)
Functionset partitions (a, n)

Returns the set of all partitions of a, or a subset of that set.
set_partitions(a, n) returns a set of all decompositions of a into n nonempty
disjoint subsets.
set_partitions(a) returns the set of all partitions.
stirling2 returns the cardinality of the set of partitions of a set.
A set of sets P is a partition of a set S when
1. each member of P is a nonempty set,
2. distinct members of P are disjoint,
3. the union of the members of P equals S.

Examples:
The empty set is a partition of itself, the conditions 1 and 2 being vacuously true.

(%i1) set_partitions ({});
(%o1) {{}}

The cardinality of the set of partitions of a set can be found using stirling2.
(%i1) s: {0, 1, 2, 3, 4, 5}$
(%i2) p: set_partitions (s, 3)$
(%i3) cardinality(p) = stirling2 (6, 3);
(%o3) 90 = 90

Each member of p should have n = 3 members; let’s check.

470 Maxima Manual

(%i1) s: {0, 1, 2, 3, 4, 5}$
(%i2) p: set_partitions (s, 3)$
(%i3) map (cardinality, p);
(%o3) {3}

Finally, for each member of p, the union of its members should equal s; again let’s
check.

(%i1) s: {0, 1, 2, 3, 4, 5}$
(%i2) p: set_partitions (s, 3)$
(%i3) map (lambda ([x], apply (union, listify (x))), p);
(%o3) {{0, 1, 2, 3, 4, 5}}

Functionsome (f, a)
Functionsome (f, L 1, ..., L n)

Returns true if the predicate f is true for one or more given arguments.
Given one set as the second argument, some(f, s) returns true if is(f (a i)) returns
true for one or more a i in s. some may or may not evaluate f for all a i in s. Since
sets are unordered, some may evaluate f (a i) in any order.
Given one or more lists as arguments, some(f, L 1, ..., L n) returns true if
is(f (x 1, ..., x n)) returns true for one or more x 1, ..., x n in L 1, ..., L n,
respectively. some may or may not evaluate f for some combinations x 1, ..., x n.
some evaluates lists in the order of increasing index.
Given an empty set {} or empty lists [] as arguments, some returns false.
When the global flag maperror is true, all lists L 1, ..., L n must have equal lengths.
When maperror is false, list arguments are effectively truncated to the length of the
shortest list.
Return values of the predicate f which evaluate (via is) to something other than
true or false are governed by the global flag prederror. When prederror is true,
such values are treated as false. When prederror is false, such values are treated
as unknown.
Examples:
some applied to a single set. The predicate is a function of one argument.

(%i1) some (integerp, {1, 2, 3, 4, 5, 6});
(%o1) true
(%i2) some (atom, {1, 2, sin(3), 4, 5 + y, 6});
(%o2) true

some applied to two lists. The predicate is a function of two arguments.
(%i1) some ("=", [a, b, c], [a, b, c]);
(%o1) true
(%i2) some ("#", [a, b, c], [a, b, c]);
(%o2) false

Return values of the predicate f which evaluate to something other than true or
false are governed by the global flag prederror.

(%i1) prederror : false;
(%o1) false

Chapter 38: Sets 471

(%i2) map (lambda ([a, b], is (a < b)), [x, y, z],
[x^2, y^2, z^2]);

(%o2) [unknown, unknown, unknown]
(%i3) some ("<", [x, y, z], [x^2, y^2, z^2]);
(%o3) unknown
(%i4) some ("<", [x, y, z], [x^2, y^2, z + 1]);
(%o4) true
(%i5) prederror : true;
(%o5) true
(%i6) some ("<", [x, y, z], [x^2, y^2, z^2]);
(%o6) false
(%i7) some ("<", [x, y, z], [x^2, y^2, z + 1]);
(%o7) true

Functionstirling1 (n, m)
Represents the Stirling number of the first kind.
When n and m are nonnegative integers, the magnitude of stirling1 (n, m) is the
number of permutations of a set with n members that have m cycles. For details,
see Graham, Knuth and Patashnik Concrete Mathematics. Maxima uses a recursion
relation to define stirling1 (n, m) for m less than 0; it is undefined for n less than
0 and for non-integer arguments.
stirling1 is a simplifying function. Maxima knows the following identities.
1. stirling1(0, n) = krondelta(0, n) (Ref. [1])
2. stirling1(n, n) = 1 (Ref. [1])
3. stirling1(n, n− 1) = binomial(n, 2) (Ref. [1])
4. stirling1(n+ 1, 0) = 0 (Ref. [1])
5. stirling1(n+ 1, 1) = n! (Ref. [1])
6. stirling1(n+ 1, 2) = 2n − 1 (Ref. [1])

These identities are applied when the arguments are literal integers or symbols de-
clared as integers, and the first argument is nonnegative. stirling1 does not simplify
for non-integer arguments.
References:
[1] Donald Knuth, The Art of Computer Programming, third edition, Volume 1, Sec-
tion 1.2.6, Equations 48, 49, and 50.
Examples:

(%i1) declare (n, integer)$
(%i2) assume (n >= 0)$
(%i3) stirling1 (n, n);
(%o3) 1

stirling1 does not simplify for non-integer arguments.
(%i1) stirling1 (sqrt(2), sqrt(2));
(%o1) stirling1(sqrt(2), sqrt(2))

Maxima applies identities to stirling1.

472 Maxima Manual

(%i1) declare (n, integer)$
(%i2) assume (n >= 0)$
(%i3) stirling1 (n + 1, n);

n (n + 1)
(%o3) ---------

2
(%i4) stirling1 (n + 1, 1);
(%o4) n!

Functionstirling2 (n, m)
Represents the Stirling number of the second kind.
When n and m are nonnegative integers, stirling2 (n, m) is the number of ways
a set with cardinality n can be partitioned into m disjoint subsets. Maxima uses a
recursion relation to define stirling2 (n, m) for m less than 0; it is undefined for
n less than 0 and for non-integer arguments.
stirling2 is a simplifying function. Maxima knows the following identities.
1. stirling2(0, n) = krondelta(0, n) (Ref. [1])
2. stirling2(n, n) = 1 (Ref. [1])
3. stirling2(n, n− 1) = binomial(n, 2) (Ref. [1])
4. stirling2(n+ 1, 1) = 1 (Ref. [1])
5. stirling2(n+ 1, 2) = 2n − 1 (Ref. [1])
6. stirling2(n, 0) = krondelta(n, 0) (Ref. [2])
7. stirling2(n,m) = 0 when m > n (Ref. [2])
8. stirling2(n,m) = sum((−1)(m − k)binomial(mk)kn, i, 1,m)/m! when m and n

are integers, and n is nonnegative. (Ref. [3])

These identities are applied when the arguments are literal integers or symbols de-
clared as integers, and the first argument is nonnegative. stirling2 does not simplify
for non-integer arguments.
References:
[1] Donald Knuth. The Art of Computer Programming, third edition, Volume 1,
Section 1.2.6, Equations 48, 49, and 50.
[2] Graham, Knuth, and Patashnik. Concrete Mathematics, Table 264.
[3] Abramowitz and Stegun. Handbook of Mathematical Functions, Section 24.1.4.
Examples:

(%i1) declare (n, integer)$
(%i2) assume (n >= 0)$
(%i3) stirling2 (n, n);
(%o3) 1

stirling2 does not simplify for non-integer arguments.
(%i1) stirling2 (%pi, %pi);
(%o1) stirling2(%pi, %pi)

Maxima applies identities to stirling2.

Chapter 38: Sets 473

(%i1) declare (n, integer)$
(%i2) assume (n >= 0)$
(%i3) stirling2 (n + 9, n + 8);

(n + 8) (n + 9)
(%o3) ---------------

2
(%i4) stirling2 (n + 1, 2);

n
(%o4) 2 - 1

Functionsubset (a, f)
Returns the subset of the set a that satisfies the predicate f.
subset returns a set which comprises the elements of a for which f returns anything
other than false. subset does not apply is to the return value of f.
subset complains if a is not a literal set.
See also partition_set.
Examples:

(%i1) subset ({1, 2, x, x + y, z, x + y + z}, atom);
(%o1) {1, 2, x, z}
(%i2) subset ({1, 2, 7, 8, 9, 14}, evenp);
(%o2) {2, 8, 14}

Functionsubsetp (a, b)
Returns true if and only if the set a is a subset of b.
subsetp complains if either a or b is not a literal set.
Examples:

(%i1) subsetp ({1, 2, 3}, {a, 1, b, 2, c, 3});
(%o1) true
(%i2) subsetp ({a, 1, b, 2, c, 3}, {1, 2, 3});
(%o2) false

Functionsymmdifference (a 1, ..., a n)
Returns the symmetric difference, that is, the set of members that occur in exactly
one set a k.
Given two arguments, symmdifference (a, b) is the same as union (
setdifference (a, b), setdifference(b, a)).
symmdifference complains if any argument is not a literal set.
Examples:

(%i1) S_1 : {a, b, c};
(%o1) {a, b, c}
(%i2) S_2 : {1, b, c};
(%o2) {1, b, c}
(%i3) S_3 : {a, b, z};
(%o3) {a, b, z}

474 Maxima Manual

(%i4) symmdifference ();
(%o4) {}
(%i5) symmdifference (S_1);
(%o5) {a, b, c}
(%i6) symmdifference (S_1, S_2);
(%o6) {1, a}
(%i7) symmdifference (S_1, S_2, S_3);
(%o7) {1, z}
(%i8) symmdifference ({}, S_1, S_2, S_3);
(%o8) {1, z}

Functiontree reduce (F, s)
Functiontree reduce (F, s, s 0)

Extends the binary function F to an n-ary function by composition, where s is a set
or list.
tree_reduce is equivalent to the following: Apply F to successive pairs of elements
to form a new list [F(s 1, s 2), F(s 3, s 4), ...], carrying the final element un-
changed if there are an odd number of elements. Then repeat until the list is reduced
to a single element, which is the return value.
When the optional argument s 0 is present, the result is equivalent tree_reduce(F,
cons(s 0, s).
For addition of floating point numbers, tree_reduce may return a sum that has a
smaller rounding error than either rreduce or lreduce.
The elements of s and the partial results may be arranged in a minimum-depth binary
tree, thus the name "tree reduce".
Examples:
tree_reduce applied to a list with an even number of elements.

(%i1) tree_reduce (f, [a, b, c, d]);
(%o1) f(f(a, b), f(c, d))

tree_reduce applied to a list with an odd number of elements.
(%i1) tree_reduce (f, [a, b, c, d, e]);
(%o1) f(f(f(a, b), f(c, d)), e)

Functionunion (a 1, ..., a n)
Returns the union of the sets a 1 through a n.
union() (with no arguments) returns the empty set.
union complains if any argument is not a literal set.
Examples:

(%i1) S_1 : {a, b, c + d, %e};
(%o1) {%e, a, b, d + c}
(%i2) S_2 : {%pi, %i, %e, c + d};
(%o2) {%e, %i, %pi, d + c}
(%i3) S_3 : {17, 29, 1729, %pi, %i};
(%o3) {17, 29, 1729, %i, %pi}

Chapter 38: Sets 475

(%i4) union ();
(%o4) {}
(%i5) union (S_1);
(%o5) {%e, a, b, d + c}
(%i6) union (S_1, S_2);
(%o6) {%e, %i, %pi, a, b, d + c}
(%i7) union (S_1, S_2, S_3);
(%o7) {17, 29, 1729, %e, %i, %pi, a, b, d + c}
(%i8) union ({}, S_1, S_2, S_3);
(%o8) {17, 29, 1729, %e, %i, %pi, a, b, d + c}

Functionxreduce (F, s)
Functionxreduce (F, s, s 0)

Extends the function F to an n-ary function by composition, or, if F is already n-ary,
applies F to s. When F is not n-ary, xreduce is the same as lreduce. The argument
s is a list.
Functions known to be n-ary include addition +, multiplication *, and, or, max, min,
and append. Functions may also be declared n-ary by declare(F, nary). For these
functions, xreduce is expected to be faster than either rreduce or lreduce.
When the optional argument s 0 is present, the result is equivalent to xreduce(s,
cons(s 0, s)).
Floating point addition is not exactly associative; be that as it may, xreduce applies
Maxima’s n-ary addition when s contains floating point numbers.
Examples:
xreduce applied to a function known to be n-ary. F is called once, with all arguments.

(%i1) declare (F, nary);
(%o1) done
(%i2) F ([L]) := L;
(%o2) F([L]) := L
(%i3) xreduce (F, [a, b, c, d, e]);
(%o3) [[[[[("[", simp), a], b], c], d], e]

xreduce applied to a function not known to be n-ary. G is called several times, with
two arguments each time.

(%i1) G ([L]) := L;
(%o1) G([L]) := L
(%i2) xreduce (G, [a, b, c, d, e]);
(%o2) [[[[[("[", simp), a], b], c], d], e]
(%i3) lreduce (G, [a, b, c, d, e]);
(%o3) [[[[a, b], c], d], e]

476 Maxima Manual

Chapter 39: Function Definition 477

39 Function Definition

39.1 Introduction to Function Definition

39.2 Function

39.2.1 Ordinary functions

To define a function in Maxima you use the := operator. E.g.
f(x) := sin(x)

defines a function f. Anonmyous functions may also be created using lambda. For example
lambda ([i, j], ...)

can be used instead of f where
f(i,j) := block ([], ...);
map (lambda ([i], i+1), l)

would return a list with 1 added to each term.
You may also define a function with a variable number of arguments, by having a final

argument which is assigned to a list of the extra arguments:
(%i1) f ([u]) := u;
(%o1) f([u]) := u
(%i2) f (1, 2, 3, 4);
(%o2) [1, 2, 3, 4]
(%i3) f (a, b, [u]) := [a, b, u];
(%o3) f(a, b, [u]) := [a, b, u]
(%i4) f (1, 2, 3, 4, 5, 6);
(%o4) [1, 2, [3, 4, 5, 6]]

The right hand side of a function is an expression. Thus if you want a sequence of
expressions, you do

f(x) := (expr1, expr2,, exprn);

and the value of exprn is what is returned by the function.
If you wish to make a return from some expression inside the function then you must

use block and return.
block ([], expr1, ..., if (a > 10) then return(a), ..., exprn)

is itself an expression, and so could take the place of the right hand side of a function
definition. Here it may happen that the return happens earlier than the last expression.

The first [] in the block, may contain a list of variables and variable assignments, such
as [a: 3, b, c: []], which would cause the three variables a,b,and c to not refer to their
global values, but rather have these special values for as long as the code executes inside
the block, or inside functions called from inside the block. This is called dynamic binding,
since the variables last from the start of the block to the time it exits. Once you return
from the block, or throw out of it, the old values (if any) of the variables will be restored.
It is certainly a good idea to protect your variables in this way. Note that the assignments

478 Maxima Manual

in the block variables, are done in parallel. This means, that if you had used c: a in the
above, the value of c would have been the value of a at the time you just entered the block,
but before a was bound. Thus doing something like

block ([a: a], expr1, ... a: a+3, ..., exprn)

will protect the external value of a from being altered, but would let you access what
that value was. Thus the right hand side of the assignments, is evaluated in the entering
context, before any binding occurs. Using just block ([x], ... would cause the x to have
itself as value, just as if it would have if you entered a fresh Maxima session.

The actual arguments to a function are treated in exactly same way as the variables in
a block. Thus in

f(x) := (expr1, ..., exprn);

and
f(1);

we would have a similar context for evaluation of the expressions as if we had done
block ([x: 1], expr1, ..., exprn)

Inside functions, when the right hand side of a definition, may be computed at runtime,
it is useful to use define and possibly buildq.

39.2.2 Array functions

An array function stores the function value the first time it is called with a given argu-
ment, and returns the stored value, without recomputing it, when that same argument is
given. Such a function is often called a memoizing function.

Array function names are appended to the global list arrays (not the global list
functions). arrayinfo returns the list of arguments for which there are stored values,
and listarray returns the stored values. dispfun and fundef return the array function
definition.

arraymake constructs an array function call, analogous to funmake for ordinary func-
tions. arrayapply applies an array function to its arguments, analogous to apply for
ordinary functions. There is nothing exactly analogous to map for array functions, although
map(lambda([x], a[x]), L) or makelist(a[x], x, L), where L is a list, are not too far
off the mark.

remarray removes an array function definition (including any stored function values),
analogous to remfunction for ordinary functions.

kill(a[x]) removes the value of the array function a stored for the argument x; the
next time a is called with argument x, the function value is recomputed. However, there
is no way to remove all of the stored values at once, except for kill(a) or remarray(a),
which also remove the function definition.

39.3 Macros

Functionbuildq (L, expr)
Substitutes variables named by the list L into the expression expr, in parallel, with-
out evaluating expr. The resulting expression is simplified, but not evaluated, after
buildq carries out the substitution.

Chapter 39: Function Definition 479

The elements of L are symbols or assignment expressions symbol: value, evaluated
in parallel. That is, the binding of a variable on the right-hand side of an assignment
is the binding of that variable in the context from which buildq was called, not the
binding of that variable in the variable list L. If some variable in L is not given an
explicit assignment, its binding in buildq is the same as in the context from which
buildq was called.
Then the variables named by L are substituted into expr in parallel. That is, the
substitution for every variable is determined before any substitution is made, so the
substitution for one variable has no effect on any other.
If any variable x appears as splice (x) in expr, then x must be bound to a list, and
the list is spliced (interpolated) into expr instead of substituted.
Any variables in expr not appearing in L are carried into the result verbatim, even if
they have bindings in the context from which buildq was called.
Examples
a is explicitly bound to x, while b has the same binding (namely 29) as in the calling
context, and c is carried through verbatim. The resulting expression is not evaluated
until the explicit evaluation ’’%.

(%i1) (a: 17, b: 29, c: 1729)$
(%i2) buildq ([a: x, b], a + b + c);
(%o2) x + c + 29
(%i3) ’’%;
(%o3) x + 1758

e is bound to a list, which appears as such in the arguments of foo, and interpolated
into the arguments of bar.

(%i1) buildq ([e: [a, b, c]], foo (x, e, y));
(%o1) foo(x, [a, b, c], y)
(%i2) buildq ([e: [a, b, c]], bar (x, splice (e), y));
(%o2) bar(x, a, b, c, y)

The result is simplified after substitution. If simplification were applied before sub-
stitution, these two results would be the same.

(%i1) buildq ([e: [a, b, c]], splice (e) + splice (e));
(%o1) 2 c + 2 b + 2 a
(%i2) buildq ([e: [a, b, c]], 2 * splice (e));
(%o2) 2 a b c

The variables in L are bound in parallel; if bound sequentially, the first result would
be foo (b, b). Substitutions are carried out in parallel; compare the second result
with the result of subst, which carries out substitutions sequentially.

(%i1) buildq ([a: b, b: a], foo (a, b));
(%o1) foo(b, a)
(%i2) buildq ([u: v, v: w, w: x, x: y, y: z, z: u],

bar (u, v, w, x, y, z));
(%o2) bar(v, w, x, y, z, u)
(%i3) subst ([u=v, v=w, w=x, x=y, y=z, z=u],

bar (u, v, w, x, y, z));
(%o3) bar(u, u, u, u, u, u)

480 Maxima Manual

Construct a list of equations with some variables or expressions on the left-hand side
and their values on the right-hand side. macroexpand shows the expression returned
by show_values.

(%i1) show_values ([L]) ::= buildq ([L], map ("=", ’L, L));
(%o1) show_values([L]) ::= buildq([L], map("=", ’L, L))
(%i2) (a: 17, b: 29, c: 1729)$
(%i3) show_values (a, b, c - a - b);
(%o3) [a = 17, b = 29, c - b - a = 1683]
(%i4) macroexpand (show_values (a, b, c - a - b));
(%o4) map(=, ’([a, b, c - b - a]), [a, b, c - b - a])

Given a function of several arguments, create another function for which some of the
arguments are fixed.

(%i1) curry (f, [a]) :=
buildq ([f, a], lambda ([[x]], apply (f, append (a, x))))$

(%i2) by3 : curry ("*", 3);
(%o2) lambda([[x]], apply(*, append([3], x)))
(%i3) by3 (a + b);
(%o3) 3 (b + a)

Functionmacroexpand (expr)
Returns the macro expansion of expr without evaluating it, when expr is a macro
function call. Otherwise, macroexpand returns expr.

If the expansion of expr yields another macro function call, that macro function call
is also expanded.

macroexpand quotes its argument. However, if the expansion of a macro function call
has side effects, those side effects are executed.

See also ::=, macros, and macroexpand1.

Examples

(%i1) g (x) ::= x / 99;
x

(%o1) g(x) ::= --
99

(%i2) h (x) ::= buildq ([x], g (x - a));
(%o2) h(x) ::= buildq([x], g(x - a))
(%i3) a: 1234;
(%o3) 1234
(%i4) macroexpand (h (y));

y - a
(%o4) -----

99
(%i5) h (y);

y - 1234
(%o5) --------

99

Chapter 39: Function Definition 481

Functionmacroexpand1 (expr)
Returns the macro expansion of expr without evaluating it, when expr is a macro
function call. Otherwise, macroexpand1 returns expr.

macroexpand1 quotes its argument. However, if the expansion of a macro function
call has side effects, those side effects are executed.

If the expansion of expr yields another macro function call, that macro function call
is not expanded.

See also ::=, macros, and macroexpand.

Examples

(%i1) g (x) ::= x / 99;
x

(%o1) g(x) ::= --
99

(%i2) h (x) ::= buildq ([x], g (x - a));
(%o2) h(x) ::= buildq([x], g(x - a))
(%i3) a: 1234;
(%o3) 1234
(%i4) macroexpand1 (h (y));
(%o4) g(y - a)
(%i5) h (y);

y - 1234
(%o5) --------

99

Global variablemacros
Default value: []

macros is the list of user-defined macro functions. The macro function definition oper-
ator ::= puts a new macro function onto this list, and kill, remove, and remfunction
remove macro functions from the list.

See also infolists.

Functionsplice (a)
Splices (interpolates) the list named by the atom a into an expression, but only if
splice appears within buildq; otherwise, splice is treated as an undefined func-
tion. If appearing within buildq as a alone (without splice), a is substituted (not
interpolated) as a list into the result. The argument of splice can only be an atom;
it cannot be a literal list or an expression which yields a list.

Typically splice supplies the arguments for a function or operator. For a function
f, the expression f (splice (a)) within buildq expands to f (a[1], a[2], a[3],
...). For an operator o, the expression "o" (splice (a) within buildq expands to
"o" (a[1], a[2], a[3], ...), where o may be any type of operator (typically one
which takes multiple arguments). Note that the operator must be enclosed in double
quotes ".

Examples

482 Maxima Manual

(%i1) buildq ([x: [1, %pi, z - y]], foo (splice (x)) / length (x));
foo(1, %pi, z - y)

(%o1) -----------------------
length([1, %pi, z - y])

(%i2) buildq ([x: [1, %pi]], "/" (splice (x)));
1

(%o2) ---
%pi

(%i3) matchfix ("<>", "<>");
(%o3) <>
(%i4) buildq ([x: [1, %pi, z - y]], "<>" (splice (x)));
(%o4) <>1, %pi, z - y<>

39.4 Functions and Variables for Function Definition

Functionapply (F, [x 1, ..., x n])
Constructs and evaluates an expression F(arg 1, ..., arg n).
apply does not attempt to distinguish array functions from ordinary functions; when
F is the name of an array function, apply evaluates F(...) (that is, a function call
with parentheses instead of square brackets). arrayapply evaluates a function call
with square brackets in this case.
Examples:
apply evaluates its arguments. In this example, min is applied to the value of L.

(%i1) L : [1, 5, -10.2, 4, 3];
(%o1) [1, 5, - 10.2, 4, 3]
(%i2) apply (min, L);
(%o2) - 10.2

apply evaluates arguments, even if the function F quotes them.
(%i1) F (x) := x / 1729;

x
(%o1) F(x) := ----

1729
(%i2) fname : F;
(%o2) F
(%i3) dispfun (F);

x
(%t3) F(x) := ----

1729

(%o3) [%t3]
(%i4) dispfun (fname);
fname is not the name of a user function.
-- an error. Quitting. To debug this try debugmode(true);
(%i5) apply (dispfun, [fname]);

x
(%t5) F(x) := ----

Chapter 39: Function Definition 483

1729

(%o5) [%t5]

apply evaluates the function name F. Single quote ’ defeats evaluation. demoivre is
the name of a global variable and also a function.

(%i1) demoivre;
(%o1) false
(%i2) demoivre (exp (%i * x));
(%o2) %i sin(x) + cos(x)
(%i3) apply (demoivre, [exp (%i * x)]);
demoivre evaluates to false
Improper name or value in functional position.
-- an error. Quitting. To debug this try debugmode(true);
(%i4) apply (’demoivre, [exp (%i * x)]);
(%o4) %i sin(x) + cos(x)

Functionblock ([v 1, ..., v m], expr 1, ..., expr n)
Functionblock (expr 1, ..., expr n)

block evaluates expr 1, ..., expr n in sequence and returns the value of the last
expression evaluated. The sequence can be modified by the go, throw, and return
functions. The last expression is expr n unless return or an expression containing
throw is evaluated. Some variables v 1, ..., v m can be declared local to the block;
these are distinguished from global variables of the same names. If no variables are
declared local then the list may be omitted. Within the block, any variable other
than v 1, ..., v m is a global variable.

block saves the current values of the variables v 1, ..., v m (if any) upon entry to
the block, then unbinds the variables so that they evaluate to themselves. The local
variables may be bound to arbitrary values within the block but when the block is
exited the saved values are restored, and the values assigned within the block are lost.

block may appear within another block. Local variables are established each time a
new block is evaluated. Local variables appear to be global to any enclosed blocks.
If a variable is non-local in a block, its value is the value most recently assigned
by an enclosing block, if any, otherwise, it is the value of the variable in the global
environment. This policy may coincide with the usual understanding of "dynamic
scope".

If it is desired to save and restore other local properties besides value, for
example array (except for complete arrays), function, dependencies, atvalue,
matchdeclare, atomgrad, constant, and nonscalar then the function local should
be used inside of the block with arguments being the names of the variables.

The value of the block is the value of the last statement or the value of the argument
to the function return which may be used to exit explicitly from the block. The
function go may be used to transfer control to the statement of the block that is
tagged with the argument to go. To tag a statement, precede it by an atomic argument
as another statement in the block. For example: block ([x], x:1, loop, x: x+1,
..., go(loop), ...). The argument to go must be the name of a tag appearing

484 Maxima Manual

within the block. One cannot use go to transfer to a tag in a block other than the
one containing the go.
Blocks typically appear on the right side of a function definition but can be used in
other places as well.

Functionbreak (expr 1, ..., expr n)
Evaluates and prints expr 1, ..., expr n and then causes a Maxima break at which
point the user can examine and change his environment. Upon typing exit; the
computation resumes.

Functioncatch (expr 1, ..., expr n)
Evaluates expr 1, ..., expr n one by one; if any leads to the evaluation of an expression
of the form throw (arg), then the value of the catch is the value of throw (arg),
and no further expressions are evaluated. This "non-local return" thus goes through
any depth of nesting to the nearest enclosing catch. If there is no catch enclosing a
throw, an error message is printed.
If the evaluation of the arguments does not lead to the evaluation of any throw then
the value of catch is the value of expr n.

(%i1) lambda ([x], if x < 0 then throw(x) else f(x))$
(%i2) g(l) := catch (map (’’%, l))$
(%i3) g ([1, 2, 3, 7]);
(%o3) [f(1), f(2), f(3), f(7)]
(%i4) g ([1, 2, -3, 7]);
(%o4) - 3

The function g returns a list of f of each element of l if l consists only of non-negative
numbers; otherwise, g "catches" the first negative element of l and "throws" it up.

Functioncompfile (filename, f 1, ..., f n)
Functioncompfile (filename, functions)
Functioncompfile (filename, all)

Translates Maxima functions into Lisp and writes the translated code into the file
filename.
compfile(filename, f 1, ..., f n) translates the specified functions.
compfile(filename, functions) and compfile(filename, all) translate all
user-defined functions.
The Lisp translations are not evaluated, nor is the output file processed by the Lisp
compiler. translate creates and evaluates Lisp translations. compile_file trans-
lates Maxima into Lisp, and then executes the Lisp compiler.
See also translate, translate_file, and compile_file.

Functioncompile (f 1, ..., f n)
Functioncompile (functions)
Functioncompile (all)

Translates Maxima functions f 1, ..., f n into Lisp, evaluates the Lisp translations,
and calls the Lisp function COMPILE on each translated function. compile returns a
list of the names of the compiled functions.

Chapter 39: Function Definition 485

compile (all) or compile (functions) compiles all user-defined functions.
compile quotes its arguments; the quote-quote operator ’’ defeats quotation.

Functiondefine (f (x 1, ..., x n), expr)
Functiondefine (f [x 1, ..., x n], expr)
Functiondefine (funmake (f, [x 1, ..., x n]), expr)
Functiondefine (arraymake (f, [x 1, ..., x n]), expr)
Functiondefine (ev (expr 1), expr 2)

Defines a function named f with arguments x 1, ..., x n and function body expr.
define always evaluates its second argument (unless explicitly quoted). The func-
tion so defined may be an ordinary Maxima function (with arguments enclosed in
parentheses) or an array function (with arguments enclosed in square brackets).
When the last or only function argument x n is a list of one element, the function
defined by define accepts a variable number of arguments. Actual arguments are
assigned one-to-one to formal arguments x 1, ..., x (n - 1), and any further actual
arguments, if present, are assigned to x n as a list.
When the first argument of define is an expression of the form f (x 1, ..., x n) or
f [x 1, ..., x n], the function arguments are evaluated but f is not evaluated, even
if there is already a function or variable by that name.
When the first argument is an expression with operator funmake, arraymake, or ev,
the first argument is evaluated; this allows for the function name to be computed, as
well as the body.
All function definitions appear in the same namespace; defining a function f within
another function g does not limit the scope of f to g.
If some formal argument x k is a quoted symbol (after evaluation), the function
defined by define does not evaluate the corresponding actual argument. Otherwise
all actual arguments are evaluated.
See also := and ::=.
Examples:
define always evaluates its second argument (unless explicitly quoted).

(%i1) expr : cos(y) - sin(x);
(%o1) cos(y) - sin(x)
(%i2) define (F1 (x, y), expr);
(%o2) F1(x, y) := cos(y) - sin(x)
(%i3) F1 (a, b);
(%o3) cos(b) - sin(a)
(%i4) F2 (x, y) := expr;
(%o4) F2(x, y) := expr
(%i5) F2 (a, b);
(%o5) cos(y) - sin(x)

The function defined by define may be an ordinary Maxima function or an array
function.

(%i1) define (G1 (x, y), x.y - y.x);
(%o1) G1(x, y) := x . y - y . x
(%i2) define (G2 [x, y], x.y - y.x);

486 Maxima Manual

(%o2) G2 := x . y - y . x
x, y

When the last or only function argument x n is a list of one element, the function
defined by define accepts a variable number of arguments.

(%i1) define (H ([L]), ’(apply ("+", L)));
(%o1) H([L]) := apply("+", L)
(%i2) H (a, b, c);
(%o2) c + b + a

When the first argument is an expression with operator funmake, arraymake, or ev,
the first argument is evaluated.

(%i1) [F : I, u : x];
(%o1) [I, x]
(%i2) funmake (F, [u]);
(%o2) I(x)
(%i3) define (funmake (F, [u]), cos(u) + 1);
(%o3) I(x) := cos(x) + 1
(%i4) define (arraymake (F, [u]), cos(u) + 1);
(%o4) I := cos(x) + 1

x
(%i5) define (foo (x, y), bar (y, x));
(%o5) foo(x, y) := bar(y, x)
(%i6) define (ev (foo (x, y)), sin(x) - cos(y));
(%o6) bar(y, x) := sin(x) - cos(y)

Functiondefine variable (name, default value, mode)
Introduces a global variable into the Maxima environment. define_variable is useful
in user-written packages, which are often translated or compiled.

define_variable carries out the following steps:

1. mode_declare (name, mode) declares the mode of name to the translator. See
mode_declare for a list of the possible modes.

2. If the variable is unbound, default value is assigned to name.
3. declare (name, special) declares it special.
4. Associates name with a test function to ensure that name is only assigned values

of the declared mode.

The value_check property can be assigned to any variable which has been defined
via define_variable with a mode other than any. The value_check property is a
lambda expression or the name of a function of one variable, which is called when an
attempt is made to assign a value to the variable. The argument of the value_check
function is the would-be assigned value.

define_variable evaluates default_value, and quotes name and mode. define_
variable returns the current value of name, which is default_value if name was
unbound before, and otherwise it is the previous value of name.

Examples:

foo is a Boolean variable, with the initial value true.

Chapter 39: Function Definition 487

(%i1) define_variable (foo, true, boolean);
(%o1) true
(%i2) foo;
(%o2) true
(%i3) foo: false;
(%o3) false
(%i4) foo: %pi;
Error: foo was declared mode boolean, has value: %pi
-- an error. Quitting. To debug this try debugmode(true);
(%i5) foo;
(%o5) false

bar is an integer variable, which must be prime.

(%i1) define_variable (bar, 2, integer);
(%o1) 2
(%i2) qput (bar, prime_test, value_check);
(%o2) prime_test
(%i3) prime_test (y) := if not primep(y) then

error (y, "is not prime.");
(%o3) prime_test(y) := if not primep(y)

then error(y, "is not prime.")
(%i4) bar: 1439;
(%o4) 1439
(%i5) bar: 1440;
1440 is not prime.
#0: prime_test(y=1440)
-- an error. Quitting. To debug this try debugmode(true);
(%i6) bar;
(%o6) 1439

baz_quux is a variable which cannot be assigned a value. The mode any_check is
like any, but any_check enables the value_check mechanism, and any does not.

(%i1) define_variable (baz_quux, ’baz_quux, any_check);
(%o1) baz_quux
(%i2) F: lambda ([y], if y # ’baz_quux then

error ("Cannot assign to ‘baz_quux’."));
(%o2) lambda([y], if y # ’baz_quux

then error(Cannot assign to ‘baz_quux’.))
(%i3) qput (baz_quux, ’’F, value_check);
(%o3) lambda([y], if y # ’baz_quux

then error(Cannot assign to ‘baz_quux’.))
(%i4) baz_quux: ’baz_quux;
(%o4) baz_quux
(%i5) baz_quux: sqrt(2);
Cannot assign to ‘baz_quux’.
#0: lambda([y],if y # ’baz_quux then

error("Cannot assign to ‘baz_quux’."))(y=sqrt(2))

488 Maxima Manual

-- an error. Quitting. To debug this try debugmode(true);
(%i6) baz_quux;
(%o6) baz_quux

Functiondispfun (f 1, ..., f n)
Functiondispfun (all)

Displays the definition of the user-defined functions f 1, ..., f n. Each argument may
be the name of a macro (defined with ::=), an ordinary function (defined with := or
define), an array function (defined with := or define, but enclosing arguments in
square brackets []), a subscripted function, (defined with := or define, but enclosing
some arguments in square brackets and others in parentheses ()) one of a family
of subscripted functions selected by a particular subscript value, or a subscripted
function defined with a constant subscript.
dispfun (all) displays all user-defined functions as given by the functions, arrays,
and macros lists, omitting subscripted functions defined with constant subscripts.
dispfun creates an intermediate expression label (%t1, %t2, etc.) for each displayed
function, and assigns the function definition to the label. In contrast, fundef returns
the function definition.
dispfun quotes its arguments; the quote-quote operator ’’ defeats quotation.
dispfun returns the list of intermediate expression labels corresponding to the
displayed functions.
Examples:

(%i1) m(x, y) ::= x^(-y);
- y

(%o1) m(x, y) ::= x
(%i2) f(x, y) := x^(-y);

- y
(%o2) f(x, y) := x
(%i3) g[x, y] := x^(-y);

- y
(%o3) g := x

x, y
(%i4) h[x](y) := x^(-y);

- y
(%o4) h (y) := x

x
(%i5) i[8](y) := 8^(-y);

- y
(%o5) i (y) := 8

8
(%i6) dispfun (m, f, g, h, h[5], h[10], i[8]);

- y
(%t6) m(x, y) ::= x

- y
(%t7) f(x, y) := x

Chapter 39: Function Definition 489

- y
(%t8) g := x

x, y

- y
(%t9) h (y) := x

x

1
(%t10) h (y) := --

5 y
5

1
(%t11) h (y) := ---

10 y
10

- y
(%t12) i (y) := 8

8

(%o12) [%t6, %t7, %t8, %t9, %t10, %t11, %t12]
(%i12) ’’%;

- y - y - y
(%o12) [m(x, y) ::= x , f(x, y) := x , g := x ,

x, y
- y 1 1 - y

h (y) := x , h (y) := --, h (y) := ---, i (y) := 8]
x 5 y 10 y 8

5 10

System variablefunctions
Default value: []

functions is the list of ordinary Maxima functions in the current session. An ordinary
function is a function constructed by define or := and called with parentheses (). A
function may be defined at the Maxima prompt or in a Maxima file loaded by load
or batch.

Array functions (called with square brackets, e.g., F[x]) and subscripted functions
(called with square brackets and parentheses, e.g., F[x](y)) are listed by the global
variable arrays, and not by functions.

Lisp functions are not kept on any list.

Examples:
(%i1) F_1 (x) := x - 100;
(%o1) F_1(x) := x - 100
(%i2) F_2 (x, y) := x / y;

x

490 Maxima Manual

(%o2) F_2(x, y) := -
y

(%i3) define (F_3 (x), sqrt (x));
(%o3) F_3(x) := sqrt(x)
(%i4) G_1 [x] := x - 100;
(%o4) G_1 := x - 100

x
(%i5) G_2 [x, y] := x / y;

x
(%o5) G_2 := -

x, y y
(%i6) define (G_3 [x], sqrt (x));
(%o6) G_3 := sqrt(x)

x
(%i7) H_1 [x] (y) := x^y;

y
(%o7) H_1 (y) := x

x
(%i8) functions;
(%o8) [F_1(x), F_2(x, y), F_3(x)]
(%i9) arrays;
(%o9) [G_1, G_2, G_3, H_1]

Functionfundef (f)
Returns the definition of the function f.

The argument may be the name of a macro (defined with ::=), an ordinary function
(defined with := or define), an array function (defined with := or define, but
enclosing arguments in square brackets []), a subscripted function, (defined with :=
or define, but enclosing some arguments in square brackets and others in parentheses
()) one of a family of subscripted functions selected by a particular subscript value,
or a subscripted function defined with a constant subscript.

fundef quotes its argument; the quote-quote operator ’’ defeats quotation.

fundef (f) returns the definition of f. In contrast, dispfun (f) creates an interme-
diate expression label and assigns the definition to the label.

Functionfunmake (F, [arg 1, ..., arg n])
Returns an expression F(arg 1, ..., arg n). The return value is simplified, but not
evaluated, so the function F is not called, even if it exists.

funmake does not attempt to distinguish array functions from ordinary functions;
when F is the name of an array function, funmake returns F(...) (that is, a function
call with parentheses instead of square brackets). arraymake returns a function call
with square brackets in this case.

funmake evaluates its arguments.

Examples:

funmake applied to an ordinary Maxima function.

Chapter 39: Function Definition 491

(%i1) F (x, y) := y^2 - x^2;
2 2

(%o1) F(x, y) := y - x
(%i2) funmake (F, [a + 1, b + 1]);
(%o2) F(a + 1, b + 1)
(%i3) ’’%;

2 2
(%o3) (b + 1) - (a + 1)

funmake applied to a macro.
(%i1) G (x) ::= (x - 1)/2;

x - 1
(%o1) G(x) ::= -----

2
(%i2) funmake (G, [u]);
(%o2) G(u)
(%i3) ’’%;

u - 1
(%o3) -----

2

funmake applied to a subscripted function.
(%i1) H [a] (x) := (x - 1)^a;

a
(%o1) H (x) := (x - 1)

a
(%i2) funmake (H [n], [%e]);

n
(%o2) lambda([x], (x - 1))(%e)
(%i3) ’’%;

n
(%o3) (%e - 1)
(%i4) funmake (’(H [n]), [%e]);
(%o4) H (%e)

n
(%i5) ’’%;

n
(%o5) (%e - 1)

funmake applied to a symbol which is not a defined function of any kind.
(%i1) funmake (A, [u]);
(%o1) A(u)
(%i2) ’’%;
(%o2) A(u)

funmake evaluates its arguments, but not the return value.
(%i1) det(a,b,c) := b^2 -4*a*c;

2
(%o1) det(a, b, c) := b - 4 a c
(%i2) (x : 8, y : 10, z : 12);
(%o2) 12

492 Maxima Manual

(%i3) f : det;
(%o3) det
(%i4) funmake (f, [x, y, z]);
(%o4) det(8, 10, 12)
(%i5) ’’%;
(%o5) - 284

Maxima simplifies funmake’s return value.
(%i1) funmake (sin, [%pi / 2]);
(%o1) 1

Functionlambda ([x 1, ..., x m], expr 1, ..., expr n)
Functionlambda ([[L]], expr 1, ..., expr n)
Functionlambda ([x 1, ..., x m, [L]], expr 1, ..., expr n)

Defines and returns a lambda expression (that is, an anonymous function). The
function may have required arguments x 1, ..., x m and/or optional arguments L,
which appear within the function body as a list. The return value of the function
is expr n. A lambda expression can be assigned to a variable and evaluated like an
ordinary function. A lambda expression may appear in some contexts in which a
function name is expected.
When the function is evaluated, unbound local variables x 1, ..., x m are created.
lambda may appear within block or another lambda; local variables are established
each time another block or lambda is evaluated. Local variables appear to be global
to any enclosed block or lambda. If a variable is not local, its value is the value most
recently assigned in an enclosing block or lambda, if any, otherwise, it is the value
of the variable in the global environment. This policy may coincide with the usual
understanding of "dynamic scope".
After local variables are established, expr 1 through expr n are evaluated in turn. The
special variable %%, representing the value of the preceding expression, is recognized.
throw and catch may also appear in the list of expressions.
return cannot appear in a lambda expression unless enclosed by block, in which case
return defines the return value of the block and not of the lambda expression, unless
the block happens to be expr n. Likewise, go cannot appear in a lambda expression
unless enclosed by block.
lambda quotes its arguments; the quote-quote operator ’’ defeats quotation.
Examples:
• A lambda expression can be assigned to a variable and evaluated like an ordinary

function.
(%i1) f: lambda ([x], x^2);

2
(%o1) lambda([x], x)
(%i2) f(a);

2
(%o2) a

• A lambda expression may appear in contexts in which a function evaluation is
expected.

Chapter 39: Function Definition 493

(%i3) lambda ([x], x^2) (a);
2

(%o3) a
(%i4) apply (lambda ([x], x^2), [a]);

2
(%o4) a
(%i5) map (lambda ([x], x^2), [a, b, c, d, e]);

2 2 2 2 2
(%o5) [a , b , c , d , e]

• Argument variables are local variables. Other variables appear to be global
variables. Global variables are evaluated at the time the lambda expression is
evaluated, unless some special evaluation is forced by some means, such as ’’.
(%i6) a: %pi$
(%i7) b: %e$
(%i8) g: lambda ([a], a*b);
(%o8) lambda([a], a b)
(%i9) b: %gamma$
(%i10) g(1/2);

%gamma
(%o10) ------

2
(%i11) g2: lambda ([a], a*’’b);
(%o11) lambda([a], a %gamma)
(%i12) b: %e$
(%i13) g2(1/2);

%gamma
(%o13) ------

2

• Lambda expressions may be nested. Local variables within the outer lambda
expression appear to be global to the inner expression unless masked by local
variables of the same names.
(%i14) h: lambda ([a, b], h2: lambda ([a], a*b), h2(1/2));

1
(%o14) lambda([a, b], h2 : lambda([a], a b), h2(-))

2
(%i15) h(%pi, %gamma);

%gamma
(%o15) ------

2

• Since lambda quotes its arguments, lambda expression i below does not define
a "multiply by a" function. Such a function can be defined via buildq, as in
lambda expression i2 below.
(%i16) i: lambda ([a], lambda ([x], a*x));
(%o16) lambda([a], lambda([x], a x))
(%i17) i(1/2);
(%o17) lambda([x], a x)
(%i18) i2: lambda([a], buildq([a: a], lambda([x], a*x)));
(%o18) lambda([a], buildq([a : a], lambda([x], a x)))

494 Maxima Manual

(%i19) i2(1/2);
x

(%o19) lambda([x], -)
2

(%i20) i2(1/2)(%pi);
%pi

(%o20) ---
2

• A lambda expression may take a variable number of arguments, which are indi-
cated by [L] as the sole or final argument. The arguments appear within the
function body as a list.
(%i1) f : lambda ([aa, bb, [cc]], aa * cc + bb);
(%o1) lambda([aa, bb, [cc]], aa cc + bb)
(%i2) f (foo, %i, 17, 29, 256);
(%o2) [17 foo + %i, 29 foo + %i, 256 foo + %i]
(%i3) g : lambda ([[aa]], apply ("+", aa));
(%o3) lambda([[aa]], apply(+, aa))
(%i4) g (17, 29, x, y, z, %e);
(%o4) z + y + x + %e + 46

Functionlocal (v 1, ..., v n)
Declares the variables v 1, ..., v n to be local with respect to all the properties in the
statement in which this function is used.
local quotes its arguments. local returns done.
local may only be used in block, in the body of function definitions or lambda
expressions, or in the ev function, and only one occurrence is permitted in each.
local is independent of context.

Option variablemacroexpansion
Default value: false
macroexpansion controls whether the expansion (that is, the return value) of a macro
function is substituted for the macro function call. A substitution may speed up
subsequent expression evaluations, at the cost of storing the expansion.

false The expansion of a macro function is not substituted for the macro func-
tion call.

expand The first time a macro function call is evaluated, the expansion is stored.
The expansion is not recomputed on subsequent calls; any side effects
(such as print or assignment to global variables) happen only when the
macro function call is first evaluated. Expansion in an expression does
not affect other expressions which have the same macro function call.

displace The first time a macro function call is evaluated, the expansion is substi-
tuted for the call, thus modifying the expression from which the macro
function was called. The expansion is not recomputed on subsequent
calls; any side effects happen only when the macro function call is first
evaluated. Expansion in an expression does not affect other expressions
which have the same macro function call.

Chapter 39: Function Definition 495

Examples

When macroexpansion is false, a macro function is called every time the calling
expression is evaluated, and the calling expression is not modified.

(%i1) f (x) := h (x) / g (x);
h(x)

(%o1) f(x) := ----
g(x)

(%i2) g (x) ::= block (print ("x + 99 is equal to", x),
return (x + 99));

(%o2) g(x) ::= block(print("x + 99 is equal to", x),
return(x + 99))

(%i3) h (x) ::= block (print ("x - 99 is equal to", x),
return (x - 99));

(%o3) h(x) ::= block(print("x - 99 is equal to", x),
return(x - 99))

(%i4) macroexpansion: false;
(%o4) false
(%i5) f (a * b);
x - 99 is equal to x
x + 99 is equal to x

a b - 99
(%o5) --------

a b + 99
(%i6) dispfun (f);

h(x)
(%t6) f(x) := ----

g(x)

(%o6) done
(%i7) f (a * b);
x - 99 is equal to x
x + 99 is equal to x

a b - 99
(%o7) --------

a b + 99

When macroexpansion is expand, a macro function is called once, and the calling
expression is not modified.

(%i1) f (x) := h (x) / g (x);
h(x)

(%o1) f(x) := ----
g(x)

(%i2) g (x) ::= block (print ("x + 99 is equal to", x),
return (x + 99));

(%o2) g(x) ::= block(print("x + 99 is equal to", x),
return(x + 99))

(%i3) h (x) ::= block (print ("x - 99 is equal to", x),
return (x - 99));

(%o3) h(x) ::= block(print("x - 99 is equal to", x),

496 Maxima Manual

return(x - 99))
(%i4) macroexpansion: expand;
(%o4) expand
(%i5) f (a * b);
x - 99 is equal to x
x + 99 is equal to x

a b - 99
(%o5) --------

a b + 99
(%i6) dispfun (f);

h(x)
(%t6) f(x) := ----

g(x)

(%o6) done
(%i7) f (a * b);

a b - 99
(%o7) --------

a b + 99

When macroexpansion is expand, a macro function is called once, and the calling
expression is modified.

(%i1) f (x) := h (x) / g (x);
h(x)

(%o1) f(x) := ----
g(x)

(%i2) g (x) ::= block (print ("x + 99 is equal to", x),
return (x + 99));

(%o2) g(x) ::= block(print("x + 99 is equal to", x),
return(x + 99))

(%i3) h (x) ::= block (print ("x - 99 is equal to", x),
return (x - 99));

(%o3) h(x) ::= block(print("x - 99 is equal to", x),
return(x - 99))

(%i4) macroexpansion: displace;
(%o4) displace
(%i5) f (a * b);
x - 99 is equal to x
x + 99 is equal to x

a b - 99
(%o5) --------

a b + 99
(%i6) dispfun (f);

x - 99
(%t6) f(x) := ------

x + 99

(%o6) done
(%i7) f (a * b);

a b - 99

Chapter 39: Function Definition 497

(%o7) --------
a b + 99

Option variablemode checkp
Default value: true

When mode_checkp is true, mode_declare checks the modes of bound variables.

Option variablemode check errorp
Default value: false

When mode_check_errorp is true, mode_declare calls error.

Option variablemode check warnp
Default value: true

When mode_check_warnp is true, mode errors are described.

Functionmode declare (y 1, mode 1, ..., y n, mode n)
mode_declare is used to declare the modes of variables and functions for subsequent
translation or compilation of functions. mode_declare is typically placed at the
beginning of a function definition, at the beginning of a Maxima script, or executed
at the interactive prompt.

The arguments of mode_declare are pairs consisting of a variable and a mode which
is one of boolean, fixnum, number, rational, or float. Each variable may also be
a list of variables all of which are declared to have the same mode.

If a variable is an array, and if every element of the array which is referenced has a
value then array (yi, complete, dim1, dim2, ...) rather than

array(yi, dim1, dim2, ...)

should be used when first declaring the bounds of the array. If all the elements of the
array are of mode fixnum (float), use fixnum (float) instead of complete. Also if
every element of the array is of the same mode, say m, then

mode_declare (completearray (yi), m))

should be used for efficient translation.

Numeric code using arrays might run faster by declaring the expected size of the
array, as in:

mode_declare (completearray (a [10, 10]), float)

for a floating point number array which is 10 x 10.

One may declare the mode of the result of a function by using function (f_1, f_2,
...) as an argument; here f_1, f_2, ... are the names of functions. For example the
expression,

mode_declare ([function (f_1, f_2, ...)], fixnum)

declares that the values returned by f_1, f_2, ... are single-word integers.

modedeclare is a synonym for mode_declare.

498 Maxima Manual

Functionmode identity (arg 1, arg 2)
A special form used with mode_declare and macros to declare, e.g., a list of lists of
flonums, or other compound data object. The first argument to mode_identity is
a primitive value mode name as given to mode_declare (i.e., one of float, fixnum,
number, list, or any), and the second argument is an expression which is evaluated
and returned as the value of mode_identity. However, if the return value is not
allowed by the mode declared in the first argument, an error or warning is signalled.
The important thing is that the mode of the expression as determined by the Maxima
to Lisp translator, will be that given as the first argument, independent of anything
that goes on in the second argument. E.g., x: 3.3; mode_identity (fixnum, x);
yields an error. mode_identity (flonum, x) returns 3.3 . This has a number of
uses, e.g., if you knew that first (l) returned a number then you might write mode_
identity (number, first (l)). However, a more efficient way to do it would be to
define a new primitive,

firstnumb (x) ::= buildq ([x], mode_identity (number, x));

and use firstnumb every time you take the first of a list of numbers.

Option variabletranscompile
Default value: true
When transcompile is true, translate and translate_file generate declarations
to make the translated code more suitable for compilation.
compfile sets transcompile: true for the duration.

Functiontranslate (f 1, ..., f n)
Functiontranslate (functions)
Functiontranslate (all)

Translates the user-defined functions f 1, ..., f n from the Maxima language into Lisp
and evaluates the Lisp translations. Typically the translated functions run faster than
the originals.
translate (all) or translate (functions) translates all user-defined functions.
Functions to be translated should include a call to mode_declare at the beginning
when possible in order to produce more efficient code. For example:

f (x_1, x_2, ...) := block ([v_1, v_2, ...],
mode_declare (v_1, mode_1, v_2, mode_2, ...), ...)

where the x 1, x 2, ... are the parameters to the function and the v 1, v 2, ... are the
local variables.
The names of translated functions are removed from the functions list if savedef is
false (see below) and are added to the props lists.
Functions should not be translated unless they are fully debugged.
Expressions are assumed simplified; if they are not, correct but non-optimal code gets
generated. Thus, the user should not set the simp switch to false which inhibits
simplification of the expressions to be translated.
The switch translate, if true, causes automatic translation of a user’s function to
Lisp.

Chapter 39: Function Definition 499

Note that translated functions may not run identically to the way they did before
translation as certain incompatabilities may exist between the Lisp and Maxima ver-
sions. Principally, the rat function with more than one argument and the ratvars
function should not be used if any variables are mode_declare’d canonical rational
expressions (CRE). Also the prederror: false setting will not translate.

savedef - if true will cause the Maxima version of a user function to remain when
the function is translate’d. This permits the definition to be displayed by dispfun
and allows the function to be edited.

transrun - if false will cause the interpreted version of all functions to be run
(provided they are still around) rather than the translated version.

The result returned by translate is a list of the names of the functions translated.

Functiontranslate file (maxima filename)
Functiontranslate file (maxima filename, lisp filename)

Translates a file of Maxima code into a file of Lisp code. translate_file returns a
list of three filenames: the name of the Maxima file, the name of the Lisp file, and the
name of file containing additional information about the translation. translate_file
evaluates its arguments.

translate_file ("foo.mac"); load("foo.LISP") is the same as batch
("foo.mac") except for certain restrictions, the use of ’’ and %, for example.

translate_file (maxima filename) translates a Maxima file maxima filename into
a similarly-named Lisp file. For example, foo.mac is translated into foo.LISP. The
Maxima filename may include a directory name or names, in which case the Lisp
output file is written to the same directory from which the Maxima input comes.

translate_file (maxima filename, lisp filename) translates a Maxima file max-
ima filename into a Lisp file lisp filename. translate_file ignores the filename
extension, if any, of lisp_filename; the filename extension of the Lisp output file is
always LISP. The Lisp filename may include a directory name or names, in which
case the Lisp output file is written to the specified directory.

translate_file also writes a file of translator warning messages of various degrees
of severity. The filename extension of this file is UNLISP. This file may contain
valuable information, though possibly obscure, for tracking down bugs in translated
code. The UNLISP file is always written to the same directory from which the Maxima
input comes.

translate_file emits Lisp code which causes some declarations and definitions to
take effect as soon as the Lisp code is compiled. See compile_file for more on this
topic.

See also tr_array_as_ref, tr_bound_function_applyp, tr_exponent, tr_file_
tty_messagesp, tr_float_can_branch_complex, tr_function_call_default,
tr_numer, tr_optimize_max_loop, tr_semicompile, tr_state_vars, tr_
warnings_get, tr_warn_bad_function_calls, tr_warn_fexpr, tr_warn_meval,
tr_warn_mode, tr_warn_undeclared, tr_warn_undefined_variable, and
tr_windy.

500 Maxima Manual

Option variabletransrun
Default value: true
When transrun is false will cause the interpreted version of all functions to be run
(provided they are still around) rather than the translated version.

Option variabletr array as ref
Default value: true
If translate_fast_arrays is false, array references in Lisp code emitted by
translate_file are affected by tr_array_as_ref. When tr_array_as_ref is
true, array names are evaluated, otherwise array names appear as literal symbols in
translated code.
tr_array_as_ref has no effect if translate_fast_arrays is true.

Option variabletr bound function applyp
Default value: true
When tr_bound_function_applyp is true, Maxima gives a warning if a bound vari-
able (such as a function argument) is found being used as a function. tr_bound_
function_applyp does not affect the code generated in such cases.
For example, an expression such as g (f, x) := f (x+1) will trigger the warning
message.

Option variabletr file tty messagesp
Default value: false
When tr_file_tty_messagesp is true, messages generated by translate_file dur-
ing translation of a file are displayed on the console and inserted into the UNLISP
file. When false, messages about translation of the file are only inserted into the
UNLISP file.

Option variabletr float can branch complex
Default value: true
Tells the Maxima-to-Lisp translator to assume that the functions acos, asin, asec,
and acsc can return complex results.
The ostensible effect of tr_float_can_branch_complex is the following. However, it
appears that this flag has no effect on the translator output.
When it is true then acos(x) is of mode any even if x is of mode float (as set by
mode_declare). When false then acos(x) is of mode float if and only if x is of
mode float.

Option variabletr function call default
Default value: general
false means give up and call meval, expr means assume Lisp fixed arg function.
general, the default gives code good for mexprs and mlexprs but not macros.
general assures variable bindings are correct in compiled code. In general mode,
when translating F(X), if F is a bound variable, then it assumes that apply (f, [x])

Chapter 39: Function Definition 501

is meant, and translates a such, with apropriate warning. There is no need to turn
this off. With the default settings, no warning messages implies full compatibility of
translated and compiled code with the Maxima interpreter.

Option variabletr numer
Default value: false

When tr_numer is true, numer properties are used for atoms which have them, e.g.
%pi.

Option variabletr optimize max loop
Default value: 100

tr_optimize_max_loop is the maximum number of times the macro-expansion and
optimization pass of the translator will loop in considering a form. This is to catch
macro expansion errors, and non-terminating optimization properties.

Option variabletr semicompile
Default value: false

When tr_semicompile is true, translate_file and compfile output forms which
will be macroexpanded but not compiled into machine code by the Lisp compiler.

System variabletr state vars
Default value:

[transcompile, tr_semicompile, tr_warn_undeclared, tr_warn_meval,
tr_warn_fexpr, tr_warn_mode, tr_warn_undefined_variable,
tr_function_call_default, tr_array_as_ref,tr_numer]

The list of the switches that affect the form of the translated output. This information
is useful to system people when trying to debug the translator. By comparing the
translated product to what should have been produced for a given state, it is possible
to track down bugs.

Functiontr warnings get ()
Prints a list of warnings which have been given by the translator during the current
translation.

Option variabletr warn bad function calls
Default value: true

- Gives a warning when when function calls are being made which may not be correct
due to improper declarations that were made at translate time.

Option variabletr warn fexpr
Default value: compfile

- Gives a warning if any FEXPRs are encountered. FEXPRs should not normally be
output in translated code, all legitimate special program forms are translated.

502 Maxima Manual

Option variabletr warn meval
Default value: compfile
- Gives a warning if the function meval gets called. If meval is called that indicates
problems in the translation.

Option variabletr warn mode
Default value: all
- Gives a warning when variables are assigned values inappropriate for their mode.

Option variabletr warn undeclared
Default value: compile
- Determines when to send warnings about undeclared variables to the TTY.

Option variabletr warn undefined variable
Default value: all
- Gives a warning when undefined global variables are seen.

Option variabletr windy
Default value: true
- Generate helpful comments and programming hints.

Functioncompile file (filename)
Functioncompile file (filename, compiled filename)
Functioncompile file (filename, compiled filename, lisp filename)

Translates the Maxima file filename into Lisp, executes the Lisp compiler, and, if the
translation and compilation succeed, loads the compiled code into Maxima.
compile_file returns a list of the names of four files: the original Maxima file, the
Lisp translation, notes on translation, and the compiled code. If the compilation fails,
the fourth item is false.
Some declarations and definitions take effect as soon as the Lisp code is compiled
(without loading the compiled code). These include functions defined with the :=
operator, macros define with the ::= operator, alias, declare, define_variable,
mode_declare, and infix, matchfix, nofix, postfix, prefix, and compfile.
Assignments and function calls are not evaluated until the compiled code is loaded.
In particular, within the Maxima file, assignments to the translation flags (tr_numer,
etc.) have no effect on the translation.
filename may not contain :lisp statements.
compile_file evaluates its arguments.

Functiondeclare translated (f 1, f 2, ...)
When translating a file of Maxima code to Lisp, it is important for the translator
to know which functions it sees in the file are to be called as translated or compiled
functions, and which ones are just Maxima functions or undefined. Putting this
declaration at the top of the file, lets it know that although a symbol does which does

Chapter 39: Function Definition 503

not yet have a Lisp function value, will have one at call time. (MFUNCTION-CALL fn
arg1 arg2 ...) is generated when the translator does not know fn is going to be a
Lisp function.

504 Maxima Manual

Chapter 40: Program Flow 505

40 Program Flow

40.1 Introduction to Program Flow

Maxima provides a do loop for iteration, as well as more primitive constructs such as
go.

40.2 Functions and Variables for Program Flow

Functionbacktrace ()
Functionbacktrace (n)

Prints the call stack, that is, the list of functions which called the currently active
function.
backtrace() prints the entire call stack.
backtrace (n) prints the n most recent functions, including the currently active
function.
backtrace can be called from a script, a function, or the interactive prompt (not only
in a debugging context).
Examples:
• backtrace() prints the entire call stack.

(%i1) h(x) := g(x/7)$
(%i2) g(x) := f(x-11)$
(%i3) f(x) := e(x^2)$
(%i4) e(x) := (backtrace(), 2*x + 13)$
(%i5) h(10);
#0: e(x=4489/49)
#1: f(x=-67/7)
#2: g(x=10/7)
#3: h(x=10)

9615
(%o5) ----

49

• backtrace (n) prints the n most recent functions, including the currently active
function.

(%i1) h(x) := (backtrace(1), g(x/7))$
(%i2) g(x) := (backtrace(1), f(x-11))$
(%i3) f(x) := (backtrace(1), e(x^2))$
(%i4) e(x) := (backtrace(1), 2*x + 13)$
(%i5) h(10);
#0: h(x=10)
#0: g(x=10/7)
#0: f(x=-67/7)
#0: e(x=4489/49)

9615
(%o5) ----

49

506 Maxima Manual

Special operatordo
The do statement is used for performing iteration. Due to its great generality the do
statement will be described in two parts. First the usual form will be given which
is analogous to that used in several other programming languages (Fortran, Algol,
PL/I, etc.); then the other features will be mentioned.
There are three variants of this form that differ only in their terminating conditions.
They are:
• for variable: initial value step increment thru limit do body

• for variable: initial value step increment while condition do body

• for variable: initial value step increment unless condition do body

(Alternatively, the step may be given after the termination condition or limit.)
initial value, increment, limit, and body can be any expressions. If the increment is
1 then "step 1" may be omitted.
The execution of the do statement proceeds by first assigning the initial value to the
variable (henceforth called the control-variable). Then: (1) If the control-variable has
exceeded the limit of a thru specification, or if the condition of the unless is true,
or if the condition of the while is false then the do terminates. (2) The body is
evaluated. (3) The increment is added to the control-variable. The process from (1)
to (3) is performed repeatedly until the termination condition is satisfied. One may
also give several termination conditions in which case the do terminates when any of
them is satisfied.
In general the thru test is satisfied when the control-variable is greater than the limit
if the increment was non-negative, or when the control-variable is less than the limit
if the increment was negative. The increment and limit may be non-numeric expres-
sions as long as this inequality can be determined. However, unless the increment
is syntactically negative (e.g. is a negative number) at the time the do statement
is input, Maxima assumes it will be positive when the do is executed. If it is not
positive, then the do may not terminate properly.
Note that the limit, increment, and termination condition are evaluated each time
through the loop. Thus if any of these involve much computation, and yield a result
that does not change during all the executions of the body, then it is more efficient
to set a variable to their value prior to the do and use this variable in the do form.
The value normally returned by a do statement is the atom done. However, the
function return may be used inside the body to exit the do prematurely and give it
any desired value. Note however that a return within a do that occurs in a block
will exit only the do and not the block. Note also that the go function may not be
used to exit from a do into a surrounding block.
The control-variable is always local to the do and thus any variable may be used
without affecting the value of a variable with the same name outside of the do. The
control-variable is unbound after the do terminates.

(%i1) for a:-3 thru 26 step 7 do display(a)$
a = - 3

a = 4

Chapter 40: Program Flow 507

a = 11

a = 18

a = 25

(%i1) s: 0$
(%i2) for i: 1 while i <= 10 do s: s+i;
(%o2) done
(%i3) s;
(%o3) 55

Note that the condition while i <= 10 is equivalent to unless i > 10 and also thru
10.

(%i1) series: 1$
(%i2) term: exp (sin (x))$
(%i3) for p: 1 unless p > 7 do

(term: diff (term, x)/p,
series: series + subst (x=0, term)*x^p)$

(%i4) series;
7 6 5 4 2
x x x x x

(%o4) -- - --- - -- - -- + -- + x + 1
90 240 15 8 2

which gives 8 terms of the Taylor series for e^sin(x).
(%i1) poly: 0$
(%i2) for i: 1 thru 5 do

for j: i step -1 thru 1 do
poly: poly + i*x^j$

(%i3) poly;
5 4 3 2

(%o3) 5 x + 9 x + 12 x + 14 x + 15 x
(%i4) guess: -3.0$
(%i5) for i: 1 thru 10 do

(guess: subst (guess, x, 0.5*(x + 10/x)),
if abs (guess^2 - 10) < 0.00005 then return (guess));

(%o5) - 3.162280701754386

This example computes the negative square root of 10 using the Newton- Raphson
iteration a maximum of 10 times. Had the convergence criterion not been met the
value returned would have been done.
Instead of always adding a quantity to the control-variable one may sometimes wish
to change it in some other way for each iteration. In this case one may use next
expression instead of step increment. This will cause the control-variable to be set
to the result of evaluating expression each time through the loop.

(%i6) for count: 2 next 3*count thru 20 do display (count)$
count = 2

count = 6

508 Maxima Manual

count = 18

As an alternative to for variable: value ...do... the syntax for variable from
value ...do... may be used. This permits the from value to be placed after the
step or next value or after the termination condition. If from value is omitted then
1 is used as the initial value.

Sometimes one may be interested in performing an iteration where the control-variable
is never actually used. It is thus permissible to give only the termination conditions
omitting the initialization and updating information as in the following example to
compute the square-root of 5 using a poor initial guess.

(%i1) x: 1000$
(%i2) thru 20 do x: 0.5*(x + 5.0/x)$
(%i3) x;
(%o3) 2.23606797749979
(%i4) sqrt(5), numer;
(%o4) 2.23606797749979

If it is desired one may even omit the termination conditions entirely and just give do
body which will continue to evaluate the body indefinitely. In this case the function
return should be used to terminate execution of the do.

(%i1) newton (f, x):= ([y, df, dfx], df: diff (f (’x), ’x),
do (y: ev(df), x: x - f(x)/y,

if abs (f (x)) < 5e-6 then return (x)))$
(%i2) sqr (x) := x^2 - 5.0$
(%i3) newton (sqr, 1000);
(%o3) 2.236068027062195

(Note that return, when executed, causes the current value of x to be returned as
the value of the do. The block is exited and this value of the do is returned as the
value of the block because the do is the last statement in the block.)

One other form of the do is available in Maxima. The syntax is:

for variable in list end tests do body

The elements of list are any expressions which will successively be assigned to the
variable on each iteration of the body. The optional termination tests end tests can
be used to terminate execution of the do; otherwise it will terminate when the list
is exhausted or when a return is executed in the body. (In fact, list may be any
non-atomic expression, and successive parts are taken.)

(%i1) for f in [log, rho, atan] do ldisp(f(1))$
(%t1) 0
(%t2) rho(1)

%pi
(%t3) ---

4
(%i4) ev(%t3,numer);
(%o4) 0.78539816

Chapter 40: Program Flow 509

Functionerrcatch (expr 1, ..., expr n)
Evaluates expr 1, ..., expr n one by one and returns [expr n] (a list) if no error
occurs. If an error occurs in the evaluation of any argument, errcatch prevents the
error from propagating and returns the empty list [] without evaluating any more
arguments.
errcatch is useful in batch files where one suspects an error might occur which would
terminate the batch if the error weren’t caught.

Functionerror (expr 1, ..., expr n)
System variableerror

Evaluates and prints expr 1, ..., expr n, and then causes an error return to top level
Maxima or to the nearest enclosing errcatch.
The variable error is set to a list describing the error. The first element of error is
a format string, which merges all the strings among the arguments expr 1, ..., expr n,
and the remaining elements are the values of any non-string arguments.
errormsg() formats and prints error. This is effectively reprinting the most recent
error message.

Functionerrormsg ()
Reprints the most recent error message. The variable error holds the message, and
errormsg formats and prints it.

Special operatorfor
Used in iterations. See do for a description of Maxima’s iteration facilities.

Functiongo (tag)
is used within a block to transfer control to the statement of the block which is tagged
with the argument to go. To tag a statement, precede it by an atomic argument as
another statement in the block. For example:

block ([x], x:1, loop, x+1, ..., go(loop), ...)

The argument to go must be the name of a tag appearing in the same block. One
cannot use go to transfer to tag in a block other than the one containing the go.

Special operatorif
Represents conditional evaluation. Various forms of if expressions are recognized.
if cond 1 then expr 1 else expr 0 evaluates to expr 1 if cond 1 evaluates to true,
otherwise the expression evaluates to expr 0.
if cond 1 then expr 1 elseif cond 2 then expr 2 elseif ... else expr 0
evaluates to expr k if cond k is true and all preceding conditions are false. If none
of the conditions are true, the expression evaluates to expr_0.
A trailing else false is assumed if else is missing. That is, if cond 1 then expr 1
is equivalent to if cond 1 then expr 1 else false, and if cond 1 then expr 1
elseif ... elseif cond n then expr n is equivalent to if cond 1 then expr 1
elseif ... elseif cond n then expr n else false.

510 Maxima Manual

The alternatives expr 0, ..., expr n may be any Maxima expressions, including nested
if expressions. The alternatives are neither simplified nor evaluated unless the cor-
responding condition is true.
The conditions cond 1, ..., cond n are expressions which potentially or actually evalu-
ate to true or false. When a condition does not actually evaluate to true or false,
the behavior of if is governed by the global flag prederror. When prederror is
true, it is an error if any evaluated condition does not evaluate to true or false.
Otherwise, conditions which do not evaluate to true or false are accepted, and the
result is a conditional expression.
Among other elements, conditions may comprise relational and logical operators as
follows.

Operation Symbol Type

less than < relational infix
less than <=

or equal to relational infix
equality (syntactic) = relational infix
negation of = # relational infix
equality (value) equal relational function
negation of equal notequal relational function
greater than >=

or equal to relational infix
greater than > relational infix
and and logical infix
or or logical infix
not not logical prefix

Functionmap (f, expr 1, ..., expr n)
Returns an expression whose leading operator is the same as that of the expressions
expr 1, ..., expr n but whose subparts are the results of applying f to the correspond-
ing subparts of the expressions. f is either the name of a function of n arguments or
is a lambda form of n arguments.
maperror - if false will cause all of the mapping functions to (1) stop when they
finish going down the shortest expr i if not all of the expr i are of the same length
and (2) apply f to [expr 1, expr 2, ...] if the expr i are not all the same type of object.
If maperror is true then an error message will be given in the above two instances.
One of the uses of this function is to map a function (e.g. partfrac) onto each term
of a very large expression where it ordinarily wouldn’t be possible to use the function
on the entire expression due to an exhaustion of list storage space in the course of
the computation.

(%i1) map(f,x+a*y+b*z);
(%o1) f(b z) + f(a y) + f(x)
(%i2) map(lambda([u],partfrac(u,x)),x+1/(x^3+4*x^2+5*x+2));

1 1 1
(%o2) ----- - ----- + -------- + x

x + 2 x + 1 2
(x + 1)

Chapter 40: Program Flow 511

(%i3) map(ratsimp, x/(x^2+x)+(y^2+y)/y);
1

(%o3) y + ----- + 1
x + 1

(%i4) map("=",[a,b],[-0.5,3]);
(%o4) [a = - 0.5, b = 3]

Functionmapatom (expr)
Returns true if and only if expr is treated by the mapping routines as an atom. "Ma-
patoms" are atoms, numbers (including rational numbers), and subscripted variables.

Option variablemaperror
Default value: true

When maperror is false, causes all of the mapping functions, for example
map (f, expr 1, expr 2, ...)

to (1) stop when they finish going down the shortest expr i if not all of the expr i are
of the same length and (2) apply f to [expr 1, expr 2, ...] if the expr i are not all the
same type of object.

If maperror is true then an error message is displayed in the above two instances.

Option variablemapprint
Default value: true

When mapprint is true, various information messages from map, mapl, and fullmap
are produced in certain situations. These include situations where map would use
apply, or map is truncating on the shortest list.

If mapprint is false, these messages are suppressed.

Functionmaplist (f, expr 1, ..., expr n)
Returns a list of the applications of f to the parts of the expressions expr 1, ..., expr n.
f is the name of a function, or a lambda expression.

maplist differs from map (f, expr 1, ..., expr n) which returns an expression with
the same main operator as expr i has (except for simplifications and the case where
map does an apply).

Option variableprederror
Default value: false

When prederror is true, an error message is displayed whenever the predicate of an
if statement or an is function fails to evaluate to either true or false.

If false, unknown is returned instead in this case. The prederror: false mode is
not supported in translated code; however, maybe is supported in translated code.

See also is and maybe.

512 Maxima Manual

Functionreturn (value)
May be used to exit explicitly from a block, bringing its argument. See block for
more information.

Functionscanmap (f, expr)
Functionscanmap (f, expr, bottomup)

Recursively applies f to expr, in a top down manner. This is most useful when
complete factorization is desired, for example:

(%i1) exp:(a^2+2*a+1)*y + x^2$
(%i2) scanmap(factor,exp);

2 2
(%o2) (a + 1) y + x

Note the way in which scanmap applies the given function factor to the constituent
subexpressions of expr; if another form of expr is presented to scanmap then the
result may be different. Thus, %o2 is not recovered when scanmap is applied to the
expanded form of exp:

(%i3) scanmap(factor,expand(exp));
2 2

(%o3) a y + 2 a y + y + x

Here is another example of the way in which scanmap recursively applies a given
function to all subexpressions, including exponents:

(%i4) expr : u*v^(a*x+b) + c$
(%i5) scanmap(’f, expr);

f(f(f(a) f(x)) + f(b))
(%o5) f(f(f(u) f(f(v))) + f(c))

scanmap (f, expr, bottomup) applies f to expr in a bottom-up manner. E.g., for
undefined f,

scanmap(f,a*x+b) ->
f(a*x+b) -> f(f(a*x)+f(b)) -> f(f(f(a)*f(x))+f(b))

scanmap(f,a*x+b,bottomup) -> f(a)*f(x)+f(b)
-> f(f(a)*f(x))+f(b) ->
f(f(f(a)*f(x))+f(b))

In this case, you get the same answer both ways.

Functionthrow (expr)
Evaluates expr and throws the value back to the most recent catch. throw is used
with catch as a nonlocal return mechanism.

Special operatorwhile
Special operatorunless

See do.

Functionoutermap (f, a 1, ..., a n)
Applies the function f to each one of the elements of the outer product a 1 cross a 2
... cross a n.

Chapter 40: Program Flow 513

f is the name of a function of n arguments or a lambda expression of n arguments.
Each argument a k may be a list or nested list, or a matrix, or any other kind of
expression.
The outermap return value is a nested structure. Let x be the return value. Then x
has the same structure as the first list, nested list, or matrix argument, x[i_1]...[i_
m] has the same structure as the second list, nested list, or matrix argument, x[i_
1]...[i_m][j_1]...[j_n] has the same structure as the third list, nested list, or
matrix argument, and so on, where m, n, ... are the numbers of indices required to
access the elements of each argument (one for a list, two for a matrix, one or more
for a nested list). Arguments which are not lists or matrices have no effect on the
structure of the return value.
Note that the effect of outermap is different from that of applying f to each one of the
elements of the outer product returned by cartesian_product. outermap preserves
the structure of the arguments in the return value, while cartesian_product does
not.
outermap evaluates its arguments.
See also map, maplist, and apply.
Examples:
Elementary examples of outermap. To show the argument combinations more clearly,
F is left undefined.

(%i1) outermap(F, [a, b, c], [1, 2, 3]);
(%o1) [[F(a, 1), F(a, 2), F(a, 3)], [F(b, 1), F(b, 2), F(b, 3)],

[F(c, 1), F(c, 2), F(c, 3)]]
(%i2) outermap(F, matrix([a, b],[c, d]), matrix([1, 2],[3, 4]));

[[F(a, 1) F(a, 2)] [F(b, 1) F(b, 2)]]
[[] []]
[[F(a, 3) F(a, 4)] [F(b, 3) F(b, 4)]]

(%o2) []
[[F(c, 1) F(c, 2)] [F(d, 1) F(d, 2)]]
[[] []]
[[F(c, 3) F(c, 4)] [F(d, 3) F(d, 4)]]

(%i3) outermap (F, [a, b], x, matrix ([1, 2], [3, 4]));
[F(a, x, 1) F(a, x, 2)] [F(b, x, 1) F(b, x, 2)]

(%o3) [[], []]
[F(a, x, 3) F(a, x, 4)] [F(b, x, 3) F(b, x, 4)]

(%i4) outermap (F, [a, b], matrix ([1, 2]), matrix ([x], [y]));
[[F(a, 1, x)] [F(a, 2, x)]]

(%o4) [[[] []],
[[F(a, 1, y)] [F(a, 2, y)]]

[[F(b, 1, x)] [F(b, 2, x)]]
[[] []]]
[[F(b, 1, y)] [F(b, 2, y)]]

(%i5) outermap ("+", [a, b, c], [1, 2, 3]);
(%o5) [[a + 1, a + 2, a + 3], [b + 1, b + 2, b + 3],

[c + 1, c + 2, c + 3]]

A closer examination of the outermap return value. The first, second, and third
arguments are a matrix, a list, and a matrix, respectively. The return value is a

514 Maxima Manual

matrix. Each element of that matrix is a list, and each element of each list is a
matrix.

(%i1) arg_1 : matrix ([a, b], [c, d]);
[a b]

(%o1) []
[c d]

(%i2) arg_2 : [11, 22];
(%o2) [11, 22]
(%i3) arg_3 : matrix ([xx, yy]);
(%o3) [xx yy]
(%i4) xx_0 : outermap(lambda([x, y, z], x / y + z), arg_1,

arg_2, arg_3);
[[a a] [a a]]
[[[xx + -- yy + --], [xx + -- yy + --]]]
[[11 11] [22 22]]

(%o4) Col 1 = []
[[c c] [c c]]
[[[xx + -- yy + --], [xx + -- yy + --]]]
[[11 11] [22 22]]

[[b b] [b b]]
[[[xx + -- yy + --], [xx + -- yy + --]]]
[[11 11] [22 22]]

Col 2 = []
[[d d] [d d]]
[[[xx + -- yy + --], [xx + -- yy + --]]]
[[11 11] [22 22]]

(%i5) xx_1 : xx_0 [1][1];
[a a] [a a]

(%o5) [[xx + -- yy + --], [xx + -- yy + --]]
[11 11] [22 22]

(%i6) xx_2 : xx_0 [1][1] [1];
[a a]

(%o6) [xx + -- yy + --]
[11 11]

(%i7) xx_3 : xx_0 [1][1] [1] [1][1];
a

(%o7) xx + --
11

(%i8) [op (arg_1), op (arg_2), op (arg_3)];
(%o8) [matrix, [, matrix]
(%i9) [op (xx_0), op (xx_1), op (xx_2)];
(%o9) [matrix, [, matrix]

outermap preserves the structure of the arguments in the return value, while
cartesian_product does not.

(%i1) outermap (F, [a, b, c], [1, 2, 3]);
(%o1) [[F(a, 1), F(a, 2), F(a, 3)], [F(b, 1), F(b, 2), F(b, 3)],

[F(c, 1), F(c, 2), F(c, 3)]]
(%i2) setify (flatten (%));

Chapter 40: Program Flow 515

(%o2) {F(a, 1), F(a, 2), F(a, 3), F(b, 1), F(b, 2), F(b, 3),
F(c, 1), F(c, 2), F(c, 3)}

(%i3) map(lambda([L], apply(F, L)),
cartesian_product({a, b, c}, {1, 2, 3}));

(%o3) {F(a, 1), F(a, 2), F(a, 3), F(b, 1), F(b, 2), F(b, 3),
F(c, 1), F(c, 2), F(c, 3)}

(%i4) is (equal (%, %th (2)));
(%o4) true

516 Maxima Manual

Chapter 41: Debugging 517

41 Debugging

41.1 Source Level Debugging

Maxima has a built-in source level debugger. The user can set a breakpoint at a function,
and then step line by line from there. The call stack may be examined, together with the
variables bound at that level.

The command :help or :h shows the list of debugger commands. (In general, commands
may be abbreviated if the abbreviation is unique. If not unique, the alternatives will be
listed.) Within the debugger, the user can also use any ordinary Maxima functions to
examine, define, and manipulate variables and expressions.

A breakpoint is set by the :br command at the Maxima prompt. Within the debugger,
the user can advance one line at a time using the :n (“next”) command. The :bt (“back-
trace”) command shows a list of stack frames. The :r (“resume”) command exits the
debugger and continues with execution. These commands are demonstrated in the example
below.

(%i1) load ("/tmp/foobar.mac");

(%o1) /tmp/foobar.mac

(%i2) :br foo
Turning on debugging debugmode(true)
Bkpt 0 for foo (in /tmp/foobar.mac line 1)

(%i2) bar (2,3);
Bkpt 0:(foobar.mac 1)
/tmp/foobar.mac:1::

(dbm:1) :bt <-- :bt typed here gives a backtrace
#0: foo(y=5)(foobar.mac line 1)
#1: bar(x=2,y=3)(foobar.mac line 9)

(dbm:1) :n <-- Here type :n to advance line
(foobar.mac 2)
/tmp/foobar.mac:2::

(dbm:1) :n <-- Here type :n to advance line
(foobar.mac 3)
/tmp/foobar.mac:3::

(dbm:1) u; <-- Investigate value of u
28

(dbm:1) u: 33; <-- Change u to be 33
33

(dbm:1) :r <-- Type :r to resume the computation

518 Maxima Manual

(%o2) 1094

The file /tmp/foobar.mac is the following:
foo(y) := block ([u:y^2],
u: u+3,
u: u^2,
u);

bar(x,y) := (
x: x+2,
y: y+2,
x: foo(y),
x+y);

USE OF THE DEBUGGER THROUGH EMACS
If the user is running the code under GNU emacs in a shell window (dbl shell), or is

running the graphical interface version, Xmaxima, then if he stops at a break point, he will
see his current position in the source file which will be displayed in the other half of the
window, either highlighted in red, or with a little arrow pointing at the right line. He can
advance single lines at a time by typing M-n (Alt-n).

Under Emacs you should run in a dbl shell, which requires the dbl.el file in the elisp
directory. Make sure you install the elisp files or add the Maxima elisp directory to your
path: e.g., add the following to your ‘.emacs’ file or the ‘site-init.el’

(setq load-path (cons "/usr/share/maxima/5.9.1/emacs" load-path))
(autoload ’dbl "dbl")

then in emacs
M-x dbl

should start a shell window in which you can run programs, for example Maxima, gcl,
gdb etc. This shell window also knows about source level debugging, and display of source
code in the other window.

The user may set a break point at a certain line of the file by typing C-x space. This
figures out which function the cursor is in, and then it sees which line of that function the
cursor is on. If the cursor is on, say, line 2 of foo, then it will insert in the other window
the command, “:br foo 2”, to break foo at its second line. To have this enabled, the
user must have maxima-mode.el turned on in the window in which the file foobar.mac is
visiting. There are additional commands available in that file window, such as evaluating
the function into the Maxima, by typing Alt-Control-x.

41.2 Keyword Commands

Keyword commands are special keywords which are not interpreted as Maxima expres-
sions. A keyword command can be entered at the Maxima prompt or the debugger prompt,
although not at the break prompt. Keyword commands start with a colon, ’:’. For example,
to evaluate a Lisp form you may type :lisp followed by the form to be evaluated.

(%i1) :lisp (+ 2 3)
5

Chapter 41: Debugging 519

The number of arguments taken depends on the particular command. Also, you need
not type the whole command, just enough to be unique among the break keywords. Thus
:br would suffice for :break.

The keyword commands are listed below.

:break F n
Set a breakpoint in function F at line offset n from the beginning of the function.
If F is given as a string, then it is assumed to be a file, and n is the offset from
the beginning of the file. The offset is optional. If not given, it is assumed to
be zero (first line of the function or file).

:bt Print a backtrace of the stack frames

:continue
Continue the computation

:delete Delete the specified breakpoints, or all if none are specified

:disable Disable the specified breakpoints, or all if none are specified

:enable Enable the specified breakpoints, or all if none are specified

:frame n Print stack frame n, or the current frame if none is specified

:help Print help on a debugger command, or all commands if none is specified

:info Print information about item

:lisp some-form
Evaluate some-form as a Lisp form

:lisp-quiet some-form
Evaluate Lisp form some-form without any output

:next Like :step, except :next steps over function calls

:quit Quit the current debugger level without completing the computation

:resume Continue the computation

:step Continue the computation until it reaches a new source line

:top Return to the Maxima prompt (from any debugger level) without completing
the computation

41.3 Functions and Variables for Debugging

Option variablerefcheck
Default value: false

When refcheck is true, Maxima prints a message each time a bound variable is used
for the first time in a computation.

520 Maxima Manual

Option variablesetcheck
Default value: false
If setcheck is set to a list of variables (which can be subscripted), Maxima prints
a message whenever the variables, or subscripted occurrences of them, are bound
with the ordinary assignment operator :, the :: assignment operator, or function
argument binding, but not the function assignment := nor the macro assignment ::=
operators. The message comprises the name of the variable and the value it is bound
to.
setcheck may be set to all or true thereby including all variables.
Each new assignment of setcheck establishes a new list of variables to check, and
any variables previously assigned to setcheck are forgotten.
The names assigned to setcheck must be quoted if they would otherwise evaluate
to something other than themselves. For example, if x, y, and z are already bound,
then enter

setcheck: [’x, ’y, ’z]$

to put them on the list of variables to check.
No printout is generated when a variable on the setcheck list is assigned to itself,
e.g., X: ’X.

Option variablesetcheckbreak
Default value: false
When setcheckbreak is true, Maxima will present a break prompt whenever a
variable on the setcheck list is assigned a new value. The break occurs before the
assignment is carried out. At this point, setval holds the value to which the variable
is about to be assigned. Hence, one may assign a different value by assigning to
setval.
See also setcheck and setval.

System variablesetval
Holds the value to which a variable is about to be set when a setcheckbreak occurs.
Hence, one may assign a different value by assigning to setval.
See also setcheck and setcheckbreak.

Functiontimer (f 1, ..., f n)
Functiontimer (all)
Functiontimer ()

Given functions f 1, ..., f n, timer puts each one on the list of functions for which
timing statistics are collected. timer(f)$ timer(g)$ puts f and then g onto the list;
the list accumulates from one call to the next.
timer(all) puts all user-defined functions (as named by the global variable
functions) on the list of timed functions.
With no arguments, timer returns the list of timed functions.
Maxima records how much time is spent executing each function on the list of timed
functions. timer_info returns the timing statistics, including the average time

Chapter 41: Debugging 521

elapsed per function call, the number of calls, and the total time elapsed. untimer
removes functions from the list of timed functions.
timer quotes its arguments. f(x) := x^2$ g:f$ timer(g)$ does not put f on the
timer list.
If trace(f) is in effect, then timer(f) has no effect; trace and timer cannot both
be in effect at the same time.
See also timer_devalue.

Functionuntimer (f 1, ..., f n)
Functionuntimer ()

Given functions f 1, ..., f n, untimer removes each function from the timer list.
With no arguments, untimer removes all functions currently on the timer list.
After untimer (f) is executed, timer_info (f) still returns previously collected tim-
ing statistics, although timer_info() (with no arguments) does not return informa-
tion about any function not currently on the timer list. timer (f) resets all timing
statistics to zero and puts f on the timer list again.

Option variabletimer devalue
Default value: false
When timer_devalue is true, Maxima subtracts from each timed function the time
spent in other timed functions. Otherwise, the time reported for each function in-
cludes the time spent in other functions. Note that time spent in untimed functions
is not subtracted from the total time.
See also timer and timer_info.

Functiontimer info (f 1, ..., f n)
Functiontimer info ()

Given functions f 1, ..., f n, timer_info returns a matrix containing timing informa-
tion for each function. With no arguments, timer_info returns timing information
for all functions currently on the timer list.
The matrix returned by timer_info contains the function name, time per function
call, number of function calls, total time, and gctime, which meant "garbage collec-
tion time" in the original Macsyma but is now always zero.
The data from which timer_info constructs its return value can also be obtained by
the get function:

get(f, ’calls); get(f, ’runtime); get(f, ’gctime);

See also timer.

Functiontrace (f 1, ..., f n)
Functiontrace (all)
Functiontrace ()

Given functions f 1, ..., f n, trace instructs Maxima to print out debugging informa-
tion whenever those functions are called. trace(f)$ trace(g)$ puts f and then g
onto the list of functions to be traced; the list accumulates from one call to the next.

522 Maxima Manual

trace(all) puts all user-defined functions (as named by the global variable
functions) on the list of functions to be traced.
With no arguments, trace returns a list of all the functions currently being traced.
The untrace function disables tracing. See also trace_options.
trace quotes its arguments. Thus, f(x) := x^2$ g:f$ trace(g)$ does not put f on
the trace list.
When a function is redefined, it is removed from the timer list. Thus after timer(f)$
f(x) := x^2$, function f is no longer on the timer list.
If timer (f) is in effect, then trace (f) has no effect; trace and timer can’t both
be in effect for the same function.

Functiontrace options (f, option 1, ..., option n)
Functiontrace options (f)

Sets the trace options for function f. Any previous options are superseded. trace_
options (f, ...) has no effect unless trace (f) is also called (either before or after
trace_options).
trace_options (f) resets all options to their default values.
The option keywords are:
• noprint Do not print a message at function entry and exit.
• break Put a breakpoint before the function is entered, and after the function is

exited. See break.
• lisp_print Display arguments and return values as Lisp objects.
• info Print -> true at function entry and exit.
• errorcatch Catch errors, giving the option to signal an error, retry the function

call, or specify a return value.

Trace options are specified in two forms. The presence of the option keyword alone
puts the option into effect unconditionally. (Note that option foo is not put into
effect by specifying foo: true or a similar form; note also that keywords need not be
quoted.) Specifying the option keyword with a predicate function makes the option
conditional on the predicate.
The argument list to the predicate function is always [level, direction, function,
item] where level is the recursion level for the function, direction is either enter
or exit, function is the name of the function, and item is the argument list (on
entering) or the return value (on exiting).
Here is an example of unconditional trace options:

(%i1) ff(n) := if equal(n, 0) then 1 else n * ff(n - 1)$

(%i2) trace (ff)$

(%i3) trace_options (ff, lisp_print, break)$

(%i4) ff(3);

Here is the same function, with the break option conditional on a predicate:

Chapter 41: Debugging 523

(%i5) trace_options (ff, break(pp))$

(%i6) pp (level, direction, function, item) := block (print (item),
return (function = ’ff and level = 3 and direction = exit))$

(%i7) ff(6);

Functionuntrace (f 1, ..., f n)
Functionuntrace ()

Given functions f 1, ..., f n, untrace disables tracing enabled by the trace function.
With no arguments, untrace disables tracing for all functions.
untrace returns a list of the functions for which it disabled tracing.

524 Maxima Manual

Chapter 42: augmented lagrangian 525

42 augmented lagrangian

42.1 Functions and Variables for augmented lagrangian

Functionaugmented lagrangian method (FOM, xx, C, yy)
Functionaugmented lagrangian method (FOM, xx, C, yy, optional args)

Returns an approximate minimum of the expression FOM with respect to the vari-
ables xx, holding the constraints C equal to zero. yy is a list of initial guesses for xx.
The method employed is the augmented Lagrangian method (see Refs [1] and [2]).
optional_args represents additional arguments, specified as symbol = value. The
optional arguments recognized are:

niter Number of iterations of the augmented Lagrangian algorithm

lbfgs_tolerance
Tolerance supplied to LBFGS

iprint IPRINT parameter (a list of two integers which controls verbosity) sup-
plied to LBFGS

%lambda Initial value of %lambda to be used for calculating the augmented La-
grangian

This implementation minimizes the augmented Lagrangian by applying the limited-
memory BFGS (LBFGS) algorithm, which is a quasi-Newton algorithm.
load(augmented_lagrangian) loads this function.
See also lbfgs.
References:
[1] http://www-fp.mcs.anl.gov/otc/Guide/OptWeb/continuous/constrained/
nonlinearcon/auglag.html

[2] http://www.cs.ubc.ca/spider/ascher/542/chap10.pdf

Example:
(%i1) load (lbfgs);
(%o1) /maxima/share/lbfgs/lbfgs.mac
(%i2) load (augmented_lagrangian);
(%o2)

/maxima/share/contrib/augmented_lagrangian.mac
(%i3) FOM: x^2 + 2*y^2;

2 2
(%o3) 2 y + x
(%i4) xx: [x, y];
(%o4) [x, y]
(%i5) C: [x + y - 1];
(%o5) [y + x - 1]
(%i6) yy: [1, 1];
(%o6) [1, 1]
(%i7) augmented_lagrangian_method(FOM, xx, C, yy, iprint=[-1,0]);
(%o7) [[x = 0.66665984108002, y = 0.33334027245545],

%lambda = [- 1.333337940892525]]

526 Maxima Manual

Chapter 43: bode 527

43 bode

43.1 Functions and Variables for bode

Functionbode gain (H, range, ...plot opts...)
Function to draw Bode gain plots.

Examples (1 through 7 from
http://www.swarthmore.edu/NatSci/echeeve1/Ref/Bode/BodeHow.html,

8 from Ron Crummett):
(%i1) load("bode")$

(%i2) H1 (s) := 100 * (1 + s) / ((s + 10) * (s + 100))$

(%i3) bode_gain (H1 (s), [w, 1/1000, 1000])$

(%i4) H2 (s) := 1 / (1 + s/omega0)$

(%i5) bode_gain (H2 (s), [w, 1/1000, 1000]), omega0 = 10$

(%i6) H3 (s) := 1 / (1 + s/omega0)^2$

(%i7) bode_gain (H3 (s), [w, 1/1000, 1000]), omega0 = 10$

(%i8) H4 (s) := 1 + s/omega0$

(%i9) bode_gain (H4 (s), [w, 1/1000, 1000]), omega0 = 10$

(%i10) H5 (s) := 1/s$

(%i11) bode_gain (H5 (s), [w, 1/1000, 1000])$

(%i12) H6 (s) := 1/((s/omega0)^2 + 2 * zeta * (s/omega0) + 1)$

(%i13) bode_gain (H6 (s), [w, 1/1000, 1000]),
omega0 = 10, zeta = 1/10$

(%i14) H7 (s) := (s/omega0)^2 + 2 * zeta * (s/omega0) + 1$

(%i15) bode_gain (H7 (s), [w, 1/1000, 1000]),
omega0 = 10, zeta = 1/10$

(%i16) H8 (s) := 0.5 / (0.0001 * s^3 + 0.002 * s^2 + 0.01 * s)$

(%i17) bode_gain (H8 (s), [w, 1/1000, 1000])$

To use this function write first load("bode"). See also bode_phase

528 Maxima Manual

Functionbode phase (H, range, ...plot opts...)
Function to draw Bode phase plots.
Examples (1 through 7 from

http://www.swarthmore.edu/NatSci/echeeve1/Ref/Bode/BodeHow.html,

8 from Ron Crummett):
(%i1) load("bode")$

(%i2) H1 (s) := 100 * (1 + s) / ((s + 10) * (s + 100))$

(%i3) bode_phase (H1 (s), [w, 1/1000, 1000])$

(%i4) H2 (s) := 1 / (1 + s/omega0)$

(%i5) bode_phase (H2 (s), [w, 1/1000, 1000]), omega0 = 10$

(%i6) H3 (s) := 1 / (1 + s/omega0)^2$

(%i7) bode_phase (H3 (s), [w, 1/1000, 1000]), omega0 = 10$

(%i8) H4 (s) := 1 + s/omega0$

(%i9) bode_phase (H4 (s), [w, 1/1000, 1000]), omega0 = 10$

(%i10) H5 (s) := 1/s$

(%i11) bode_phase (H5 (s), [w, 1/1000, 1000])$

(%i12) H6 (s) := 1/((s/omega0)^2 + 2 * zeta * (s/omega0) + 1)$

(%i13) bode_phase (H6 (s), [w, 1/1000, 1000]),
omega0 = 10, zeta = 1/10$

(%i14) H7 (s) := (s/omega0)^2 + 2 * zeta * (s/omega0) + 1$

(%i15) bode_phase (H7 (s), [w, 1/1000, 1000]),
omega0 = 10, zeta = 1/10$

(%i16) H8 (s) := 0.5 / (0.0001 * s^3 + 0.002 * s^2 + 0.01 * s)$

(%i17) bode_phase (H8 (s), [w, 1/1000, 1000])$

(%i18) block ([bode_phase_unwrap : false],
bode_phase (H8 (s), [w, 1/1000, 1000]));

(%i19) block ([bode_phase_unwrap : true],
bode_phase (H8 (s), [w, 1/1000, 1000]));

To use this function write first load("bode"). See also bode_gain

Chapter 44: contrib ode 529

44 contrib ode

44.1 Introduction to contrib ode

Maxima’s ordinary differential equation (ODE) solver ode2 solves elementary linear
ODEs of first and second order. The function contrib_ode extends ode2 with additional
methods for linear and non-linear first order ODEs and linear homogeneous second order
ODEs. The code is still under development and the calling sequence may change in future
releases. Once the code has stabilized it may be moved from the contrib directory and
integrated into Maxima.

This package must be loaded with the command load(’contrib_ode) before use.
The calling convention for contrib_ode is identical to ode2. It takes three arguments:

an ODE (only the left hand side need be given if the right hand side is 0), the dependent
variable, and the independent variable. When successful, it returns a list of solutions.

The form of the solution differs from ode2. As non-linear equations can have multiple
solutions, contrib_ode returns a list of solutions. Each solution can have a number of
forms:
• an explicit solution for the dependent variable,
• an implicit solution for the dependent variable,
• a parametric solution in terms of variable %t, or
• a tranformation into another ODE in variable %u.

%c is used to represent the constant of integration for first order equations. %k1 and %k2
are the constants for second order equations. If contrib_ode cannot obtain a solution for
whatever reason, it returns false, after perhaps printing out an error message.

It is necessary to return a list of solutions, as even first order non-linear ODEs can have
multiple solutions. For example:

(%i1) load(’contrib_ode)$

(%i2) eqn:x*’diff(y,x)^2-(1+x*y)*’diff(y,x)+y=0;

dy 2 dy
(%o2) x (--) - (x y + 1) -- + y = 0

dx dx
(%i3) contrib_ode(eqn,y,x);

x
(%o3) [y = log(x) + %c, y = %c %e]
(%i4) method;

(%o4) factor

Nonlinear ODEs can have singular solutions without constants of integration, as in the
second solution of the following example:

(%i1) load(’contrib_ode)$

530 Maxima Manual

(%i2) eqn:’diff(y,x)^2+x*’diff(y,x)-y=0;

dy 2 dy
(%o2) (--) + x -- - y = 0

dx dx
(%i3) contrib_ode(eqn,y,x);

2
2 x

(%o3) [y = %c x + %c , y = - --]
4

(%i4) method;

(%o4) clairault

The following ODE has two parametric solutions in terms of the dummy variable %t. In
this case the parametric solutions can be manipulated to give explicit solutions.

(%i1) load(’contrib_ode)$

(%i2) eqn:’diff(y,x)=(x+y)^2;

dy 2
(%o2) -- = (y + x)

dx
(%i3) contrib_ode(eqn,y,x);

(%o3) [[x = %c - atan(sqrt(%t)), y = - x - sqrt(%t)],
[x = atan(sqrt(%t)) + %c, y = sqrt(%t) - x]]

(%i4) method;

(%o4) lagrange

The following example (Kamke 1.112) demonstrates an implicit solution.

(%i1) load(’contrib_ode)$

(%i2) assume(x>0,y>0);

(%o2) [x > 0, y > 0]
(%i3) eqn:x*’diff(y,x)-x*sqrt(y^2+x^2)-y;

dy 2 2
(%o3) x -- - x sqrt(y + x) - y

dx
(%i4) contrib_ode(eqn,y,x);

y
(%o4) [x - asinh(-) = %c]

x
(%i5) method;

Chapter 44: contrib ode 531

(%o5) lie

The following Riccati equation is transformed into a linear second order ODE in the
variable %u. Maxima is unable to solve the new ODE, so it is returned unevaluated.

(%i1) load(’contrib_ode)$

(%i2) eqn:x^2*’diff(y,x)=a+b*x^n+c*x^2*y^2;

2 dy 2 2 n
(%o2) x -- = c x y + b x + a

dx
(%i3) contrib_ode(eqn,y,x);

d%u
--- 2
dx 2 n - 2 a d %u

(%o3) [[y = - ----, %u c (b x + --) + ---- c = 0]]
%u c 2 2

x dx
(%i4) method;

(%o4) riccati

For first order ODEs contrib_ode calls ode2. It then tries the following methods: fac-
torization, Clairault, Lagrange, Riccati, Abel and Lie symmetry methods. The Lie method
is not attempted on Abel equations if the Abel method fails, but it is tried if the Riccati
method returns an unsolved second order ODE.

For second order ODEs contrib_ode calls ode2 then odelin.
Extensive debugging traces and messages are displayed if the command put(’contrib_

ode,true,’verbose) is executed.

44.2 Functions and Variables for contrib ode

Functioncontrib ode (eqn, y, x)
Returns a list of solutions of the ODE eqn with independent variable x and dependent
variable y.

Functionodelin (eqn, y, x)
odelin solves linear homogeneous ODEs of first and second order with independent
variable x and dependent variable y. It returns a fundamental solution set of the
ODE.
For second order ODEs, odelin uses a method, due to Bronstein and Lafaille, that
searches for solutions in terms of given special functions.

(%i1) load(’contrib_ode);

(%i2) odelin(x*(x+1)*’diff(y,x,2)+(x+5)*’diff(y,x,1)+(-4)*y,y,x);
...trying factor method

532 Maxima Manual

...solving 7 equations in 4 variables

...trying the Bessel solver

...solving 1 equations in 2 variables

...trying the F01 solver

...solving 1 equations in 3 variables

...trying the spherodial wave solver

...solving 1 equations in 4 variables

...trying the square root Bessel solver

...solving 1 equations in 2 variables

...trying the 2F1 solver

...solving 9 equations in 5 variables
gauss_a(- 6, - 2, - 3, - x) gauss_b(- 6, - 2, - 3, - x)

(%o2) {---------------------------, ---------------------------}
4 4
x x

Functionode check (eqn, soln)
Returns the value of ODE eqn after substituting a possible solution soln. The value
is equivalent to zero if soln is a solution of eqn.

(%i1) load(’contrib_ode)$

(%i2) eqn:’diff(y,x,2)+(a*x+b)*y;

2
d y

(%o2) --- + (a x + b) y
2

dx
(%i3) ans:[y = bessel_y(1/3,2*(a*x+b)^(3/2)/(3*a))*%k2*sqrt(a*x+b)

+bessel_j(1/3,2*(a*x+b)^(3/2)/(3*a))*%k1*sqrt(a*x+b)];

3/2
1 2 (a x + b)

(%o3) [y = bessel_y(-, --------------) %k2 sqrt(a x + b)
3 3 a

3/2
1 2 (a x + b)

+ bessel_j(-, --------------) %k1 sqrt(a x + b)]
3 3 a

(%i4) ode_check(eqn,ans[1]);

(%o4) 0

System variablemethod
The variable method is set to the successful solution method.

Variable%c
%c is the integration constant for first order ODEs.

Chapter 44: contrib ode 533

Variable%k1
%k1 is the first integration constant for second order ODEs.

Variable%k2
%k2 is the second integration constant for second order ODEs.

Functiongauss a (a, b, c, x)
gauss_a(a,b,c,x) and gauss_b(a,b,c,x) are 2F1 geometric functions. They repre-
sent any two independent solutions of the hypergeometric differential equation x(1-x)
diff(y,x,2) + [c-(a+b+1)x diff(y,x) - aby = 0 (A&S 15.5.1).

The only use of these functions is in solutions of ODEs returned by odelin and
contrib_ode. The definition and use of these functions may change in future releases
of Maxima.

See also gauss_b, dgauss_a and gauss_b.

Functiongauss b (a, b, c, x)
See gauss_a.

Functiondgauss a (a, b, c, x)
The derivative with respect to x of gauss_a(a, b, c, x).

Functiondgauss b (a, b, c, x)
The derivative with respect to x of gauss_b(a, b, c, x).

Functionkummer m (a, b, x)
Kummer’s M function, as defined in Abramowitz and Stegun, Handbook of Mathe-
matical Functions, Section 13.1.2.

The only use of this function is in solutions of ODEs returned by odelin and contrib_
ode. The definition and use of this function may change in future releases of Maxima.

See also kummer_u, dkummer_m and dkummer_u.

Functionkummer u (a, b, x)
Kummer’s U function, as defined in Abramowitz and Stegun, Handbook of Mathe-
matical Functions, Section 13.1.3.

See kummer_m.

Functiondkummer m (a, b, x)
The derivative with respect to x of kummer_m(a, b, x).

Functiondkummer u (a, b, x)
The derivative with respect to x of kummer_u(a, b, x).

534 Maxima Manual

44.3 Possible improvements to contrib ode

These routines are work in progress. I still need to:
• Extend the FACTOR method ode1_factor to work for multiple roots.
• Extend the FACTOR method ode1_factor to attempt to solve higher order factors.

At present it only attemps to solve linear factors.
• Fix the LAGRANGE routine ode1_lagrange to prefer real roots over complex roots.
• Add additional methods for Riccati equations.
• Improve the detection of Abel equations of second kind. The exisiting pattern matching

is weak.
• Work on the Lie symmetry group routine ode1_lie. There are quite a few problems

with it: some parts are unimplemented; some test cases seem to run forever; other test
cases crash; yet others return very complex "solutions". I wonder if it really ready for
release yet.

• Add more test cases.

44.4 Test cases for contrib ode

The routines have been tested on a approximately one thousand test cases from Murphy,
Kamke, Zwillinger and elsewhere. These are included in the tests subdirectory.
• The Clairault routine ode1_clairault finds all known solutions, including singular

solutions, of the Clairault equations in Murphy and Kamke.
• The other routines often return a single solution when multiple solutions exist.
• Some of the "solutions" from ode1_lie are overly complex and impossible to check.
• There are some crashes.

44.5 References for contrib ode

1. E. Kamke, Differentialgleichungen Losungsmethoden und Losungen, Vol 1, Geest &
Portig, Leipzig, 1961

2. G. M. Murphy, Ordinary Differential Equations and Their Solutions, Van Nostrand,
New York, 1960

3. D. Zwillinger, Handbook of Differential Equations, 3rd edition, Academic Press, 1998
4. F. Schwarz, Symmetry Analysis of Abel’s Equation, Studies in Applied Mathematics,

100:269-294 (1998)
5. F. Schwarz, Algorithmic Solution of Abel’s Equation, Computing 61, 39-49 (1998)
6. E. S. Cheb-Terrab, A. D. Roche, Symmetries and First Order ODE Patterns, Computer

Physics Communications 113 (1998), p 239. (http://lie.uwaterloo.ca/papers/
ode vii.pdf)

7. E. S. Cheb-Terrab, T. Koloknikov, First Order ODEs, Symmetries and Lin-
ear Transformations, European Journal of Applied Mathematics, Vol. 14,
No. 2, pp. 231-246 (2003). (http://arxiv.org/abs/math-ph/0007023,
http://lie.uwaterloo.ca/papers/ode iv.pdf)

Chapter 44: contrib ode 535

8. G. W. Bluman, S. C. Anco, Symmetry and Integration Methods for Differential Equa-
tions, Springer, (2002)

9. M. Bronstein, S. Lafaille, Solutions of linear ordinary differential equations in terms of
special functions, Proceedings of ISSAC 2002, Lille, ACM Press, 23-28. (http://www-
sop.inria.fr/cafe/Manuel.Bronstein/publications/issac2002.pdf)

536 Maxima Manual

Chapter 45: descriptive 537

45 descriptive

45.1 Introduction to descriptive

Package descriptive contains a set of functions for making descriptive statistical com-
putations and graphing. Together with the source code there are three data sets in your
Maxima tree: pidigits.data, wind.data and biomed.data.

Any statistics manual can be used as a reference to the functions in package
descriptive.

For comments, bugs or suggestions, please contact me at ’mario AT edu DOT xunta
DOT es’.

Here is a simple example on how the descriptive functions in descriptive do they work,
depending on the nature of their arguments, lists or matrices,

(%i1) load (descriptive)$
(%i2) /* univariate sample */ mean ([a, b, c]);

c + b + a
(%o2) ---------

3
(%i3) matrix ([a, b], [c, d], [e, f]);

[a b]
[]

(%o3) [c d]
[]
[e f]

(%i4) /* multivariate sample */ mean (%);
e + c + a f + d + b

(%o4) [---------, ---------]
3 3

Note that in multivariate samples the mean is calculated for each column.
In case of several samples with possible different sizes, the Maxima function map can be

used to get the desired results for each sample,
(%i1) load (descriptive)$
(%i2) map (mean, [[a, b, c], [d, e]]);

c + b + a e + d
(%o2) [---------, -----]

3 2

In this case, two samples of sizes 3 and 2 were stored into a list.
Univariate samples must be stored in lists like

(%i1) s1 : [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5];
(%o1) [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]

and multivariate samples in matrices as in
(%i1) s2 : matrix ([13.17, 9.29], [14.71, 16.88], [18.50, 16.88],

[10.58, 6.63], [13.33, 13.25], [13.21, 8.12]);
[13.17 9.29]
[]

538 Maxima Manual

[14.71 16.88]
[]
[18.5 16.88]

(%o1) []
[10.58 6.63]
[]
[13.33 13.25]
[]
[13.21 8.12]

In this case, the number of columns equals the random variable dimension and the
number of rows is the sample size.

Data can be introduced by hand, but big samples are usually stored in plain text files.
For example, file pidigits.data contains the first 100 digits of number %pi:

3
1
4
1
5
9
2
6
5
3 ...

In order to load these digits in Maxima,
(%i1) s1 : read_list (file_search ("pidigits.data"))$
(%i2) length (s1);
(%o2) 100

On the other hand, file wind.data contains daily average wind speeds at 5 meteorological
stations in the Republic of Ireland (This is part of a data set taken at 12 meteorological
stations. The original file is freely downloadable from the StatLib Data Repository and its
analysis is discused in Haslett, J., Raftery, A. E. (1989) Space-time Modelling with Long-
memory Dependence: Assessing Ireland’s Wind Power Resource, with Discussion. Applied
Statistics 38, 1-50). This loads the data:

(%i1) s2 : read_matrix (file_search ("wind.data"))$
(%i2) length (s2);
(%o2) 100
(%i3) s2 [%]; /* last record */
(%o3) [3.58, 6.0, 4.58, 7.62, 11.25]

Some samples contain non numeric data. As an example, file biomed.data (which is
part of another bigger one downloaded from the StatLib Data Repository) contains four
blood measures taken from two groups of patients, A and B, of different ages,

(%i1) s3 : read_matrix (file_search ("biomed.data"))$
(%i2) length (s3);
(%o2) 100
(%i3) s3 [1]; /* first record */
(%o3) [A, 30, 167.0, 89.0, 25.6, 364]

Chapter 45: descriptive 539

The first individual belongs to group A, is 30 years old and his/her blood measures were
167.0, 89.0, 25.6 and 364.

One must take care when working with categorical data. In the next example, symbol a
is asigned a value in some previous moment and then a sample with categorical value a is
taken,

(%i1) a : 1$
(%i2) matrix ([a, 3], [b, 5]);

[1 3]
(%o2) []

[b 5]

45.2 Functions and Variables for data manipulation

Functioncontinuous freq (list)
Functioncontinuous freq (list, m)

The argument of continuous_freq must be a list of numbers, which will be then
grouped in intervals and counted how many of them belong to each group. Option-
ally, function continuous_freq admits a second argument indicating the number of
classes, 10 is default,

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) continuous_freq (s1, 5);
(%o3) [[0, 1.8, 3.6, 5.4, 7.2, 9.0], [16, 24, 18, 17, 25]]

The first list contains the interval limits and the second the corresponding counts:
there are 16 digits inside the interval [0, 1.8], that is 0’s and 1’s, 24 digits in (1.8,
3.6], that is 2’s and 3’s, and so on.

Functiondiscrete freq (list)
Counts absolute frequencies in discrete samples, both numeric and categorical. Its
unique argument is a list,

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) discrete_freq (s1);
(%o3) [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],

[8, 8, 12, 12, 10, 8, 9, 8, 12, 13]]

The first list gives the sample values and the second their absolute frequencies. Com-
mands ? col and ? transpose should help you to understand the last input.

Functionsubsample (data matrix, predicate function)
Functionsubsample (data matrix, predicate function, col num1, col num2, ...)

This is a sort of variant of the Maxima submatrix function. The first argument is
the data matrix, the second is a predicate function and optional additional arguments
are the numbers of the columns to be taken. Its behaviour is better understood with
examples.

540 Maxima Manual

These are multivariate records in which the wind speed in the first meteorological
station were greater than 18. See that in the lambda expression the i-th component
is refered to as v[i].

(%i1) load (descriptive)$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) subsample (s2, lambda([v], v[1] > 18));

[19.38 15.37 15.12 23.09 25.25]
[]
[18.29 18.66 19.08 26.08 27.63]

(%o3) []
[20.25 21.46 19.95 27.71 23.38]
[]
[18.79 18.96 14.46 26.38 21.84]

In the following example, we request only the first, second and fifth components of
those records with wind speeds greater or equal than 16 in station number 1 and less
than 25 knots in station number 4. The sample contains only data from stations 1, 2
and 5. In this case, the predicate function is defined as an ordinary Maxima function.

(%i1) load (descriptive)$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) g(x):= x[1] >= 16 and x[4] < 25$
(%i4) subsample (s2, g, 1, 2, 5);

[19.38 15.37 25.25]
[]
[17.33 14.67 19.58]

(%o4) []
[16.92 13.21 21.21]
[]
[17.25 18.46 23.87]

Here is an example with the categorical variables of biomed.data. We want the
records corresponding to those patients in group B who are older than 38 years.

(%i1) load (descriptive)$
(%i2) s3 : read_matrix (file_search ("biomed.data"))$
(%i3) h(u):= u[1] = B and u[2] > 38 $
(%i4) subsample (s3, h);

[B 39 28.0 102.3 17.1 146]
[]
[B 39 21.0 92.4 10.3 197]
[]
[B 39 23.0 111.5 10.0 133]
[]
[B 39 26.0 92.6 12.3 196]

(%o4) []
[B 39 25.0 98.7 10.0 174]
[]
[B 39 21.0 93.2 5.9 181]
[]
[B 39 18.0 95.0 11.3 66]
[]

Chapter 45: descriptive 541

[B 39 39.0 88.5 7.6 168]

Probably, the statistical analysis will involve only the blood measures,
(%i1) load (descriptive)$
(%i2) s3 : read_matrix (file_search ("biomed.data"))$
(%i3) subsample (s3, lambda([v], v[1] = B and v[2] > 38),

3, 4, 5, 6);
[28.0 102.3 17.1 146]
[]
[21.0 92.4 10.3 197]
[]
[23.0 111.5 10.0 133]
[]
[26.0 92.6 12.3 196]

(%o3) []
[25.0 98.7 10.0 174]
[]
[21.0 93.2 5.9 181]
[]
[18.0 95.0 11.3 66]
[]
[39.0 88.5 7.6 168]

This is the multivariate mean of s3,
(%i1) load (descriptive)$
(%i2) s3 : read_matrix (file_search ("biomed.data"))$
(%i3) mean (s3);

65 B + 35 A 317 6 NA + 8145.0
(%o3) [-----------, ---, 87.178, -------------, 18.123,

100 10 100
3 NA + 19587
------------]

100

Here, the first component is meaningless, since A and B are categorical, the second
component is the mean age of individuals in rational form, and the fourth and last
values exhibit some strange behaviour. This is because symbol NA is used here to
indicate non available data, and the two means are nonsense. A possible solution
would be to take out from the matrix those rows with NA symbols, although this
deserves some loss of information.

(%i1) load (descriptive)$
(%i2) s3 : read_matrix (file_search ("biomed.data"))$
(%i3) g(v):= v[4] # NA and v[6] # NA $
(%i4) mean(subsample(s3, g, 3,4,5,6));
(%o4) [79.4923076923077, 86.2032967032967, 16.93186813186813,

2514
----]
13

45.3 Functions and Variables for descriptive statistics

542 Maxima Manual

Functionmean (list)
Functionmean (matrix)

This is the sample mean, defined as

x̄ =
1
n

n∑
i=1

xi

Example:
(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) mean (s1);

471
(%o3) ---

100
(%i4) %, numer;
(%o4) 4.71
(%i5) s2 : read_matrix (file_search ("wind.data"))$
(%i6) mean (s2);
(%o6) [9.9485, 10.1607, 10.8685, 15.7166, 14.8441]

Functionvar (list)
Functionvar (matrix)

This is the sample variance, defined as

1
n

n∑
i=1

(xi − x̄)2

Example:
(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) var (s1), numer;
(%o3) 8.425899999999999

See also function var1.

Functionvar1 (list)
Functionvar1 (matrix)

This is the sample variance, defined as

1
n− 1

n∑
i=1

(xi − x̄)2

Example:
(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) var1 (s1), numer;
(%o3) 8.5110101010101
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) var1 (s2);
(%o5) [17.39586540404041, 15.13912778787879, 15.63204924242424,

32.50152569696971, 24.66977392929294]

See also function var.

Chapter 45: descriptive 543

Functionstd (list)
Functionstd (matrix)

This is the the square root of function var, the variance with denominator n.

Example:
(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) std (s1), numer;
(%o3) 2.902740084816414
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) std (s2);
(%o5) [4.149928523480858, 3.871399812729241, 3.933920277534866,

5.672434260526957, 4.941970881136392]

See also functions var and std1.

Functionstd1 (list)
Functionstd1 (matrix)

This is the the square root of function var1, the variance with denominator n− 1.

Example:
(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) std1 (s1), numer;
(%o3) 2.917363553109228
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) std1 (s2);
(%o5) [4.17083509672109, 3.89090320978032, 3.953738641137555,

5.701010936401517, 4.966867617451963]

See also functions var1 and std.

Functionnoncentral moment (list, k)
Functionnoncentral moment (matrix, k)

The non central moment of order k, defined as

1
n

n∑
i=1

xki

Example:
(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) noncentral_moment (s1, 1), numer; /* the mean */
(%o3) 4.71
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) noncentral_moment (s2, 5);
(%o5) [319793.8724761506, 320532.1923892463, 391249.5621381556,

2502278.205988911, 1691881.797742255]

See also function central_moment.

544 Maxima Manual

Functioncentral moment (list, k)
Functioncentral moment (matrix, k)

The central moment of order k, defined as

1
n

n∑
i=1

(xi − x̄)k

Example:
(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) central_moment (s1, 2), numer; /* the variance */
(%o3) 8.425899999999999
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) central_moment (s2, 3);
(%o5) [11.29584771375004, 16.97988248298583, 5.626661952750102,

37.5986572057918, 25.85981904394192]

See also functions central_moment and mean.

Functioncv (list)
Functioncv (matrix)

The variation coefficient is the quotient between the sample standard deviation (std)
and the mean,

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) cv (s1), numer;
(%o3) .6193977819764815
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) cv (s2);
(%o5) [.4192426091090204, .3829365309260502, 0.363779605385983,

.3627381836021478, .3346021393989506]

See also functions std and mean.

Functionmini (list)
Functionmini (matrix)

This is the minimum value of the sample list,
(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) mini (s1);
(%o3) 0
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) mini (s2);
(%o5) [0.58, 0.5, 2.67, 5.25, 5.17]

See also function maxi.

Functionmaxi (list)
Functionmaxi (matrix)

This is the maximum value of the sample list,

Chapter 45: descriptive 545

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) maxi (s1);
(%o3) 9
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) maxi (s2);
(%o5) [20.25, 21.46, 20.04, 29.63, 27.63]

See also function mini.

Functionrange (list)
Functionrange (matrix)

The range is the difference between the extreme values.
Example:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) range (s1);
(%o3) 9
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) range (s2);
(%o5) [19.67, 20.96, 17.37, 24.38, 22.46]

Functionquantile (list, p)
Functionquantile (matrix, p)

This is the p-quantile, with p a number in [0, 1], of the sample list. Although there are
several definitions for the sample quantile (Hyndman, R. J., Fan, Y. (1996) Sample
quantiles in statistical packages. American Statistician, 50, 361-365), the one based
on linear interpolation is implemented in package descriptive.
Example:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) /* 1st and 3rd quartiles */

[quantile (s1, 1/4), quantile (s1, 3/4)], numer;
(%o3) [2.0, 7.25]
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) quantile (s2, 1/4);
(%o5) [7.2575, 7.477500000000001, 7.82, 11.28, 11.48]

Functionmedian (list)
Functionmedian (matrix)

Once the sample is ordered, if the sample size is odd the median is the central value,
otherwise it is the mean of the two central values.
Example:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) median (s1);

9

546 Maxima Manual

(%o3) -
2

(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) median (s2);
(%o5) [10.06, 9.855, 10.73, 15.48, 14.105]

The median is the 1/2-quantile.

See also function quantile.

Functionqrange (list)
Functionqrange (matrix)

The interquartilic range is the difference between the third and first quartiles,
quantile(list,3/4) - quantile(list,1/4),

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) qrange (s1);

21
(%o3) --

4
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) qrange (s2);
(%o5) [5.385, 5.572499999999998, 6.0225, 8.729999999999999,

6.650000000000002]

See also function quantile.

Functionmean deviation (list)
Functionmean deviation (matrix)

The mean deviation, defined as

1
n

n∑
i=1

|xi − x̄|

Example:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) mean_deviation (s1);

51
(%o3) --

20
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) mean_deviation (s2);
(%o5) [3.287959999999999, 3.075342, 3.23907, 4.715664000000001,

4.028546000000002]

See also function mean.

Chapter 45: descriptive 547

Functionmedian deviation (list)
Functionmedian deviation (matrix)

The median deviation, defined as

1
n

n∑
i=1

|xi −med|

where med is the median of list.
Example:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) median_deviation (s1);

5
(%o3) -

2
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) median_deviation (s2);
(%o5) [2.75, 2.755, 3.08, 4.315, 3.31]

See also function mean.

Functionharmonic mean (list)
Functionharmonic mean (matrix)

The harmonic mean, defined as

n∑n
i=1

1
xi

Example:
(%i1) load (descriptive)$
(%i2) y : [5, 7, 2, 5, 9, 5, 6, 4, 9, 2, 4, 2, 5]$
(%i3) harmonic_mean (y), numer;
(%o3) 3.901858027632205
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) harmonic_mean (s2);
(%o5) [6.948015590052786, 7.391967752360356, 9.055658197151745,

13.44199028193692, 13.01439145898509]

See also functions mean and geometric_mean.

Functiongeometric mean (list)
Functiongeometric mean (matrix)

The geometric mean, defined as

(
n∏
i=1

xi

) 1
n

Example:

548 Maxima Manual

(%i1) load (descriptive)$
(%i2) y : [5, 7, 2, 5, 9, 5, 6, 4, 9, 2, 4, 2, 5]$
(%i3) geometric_mean (y), numer;
(%o3) 4.454845412337012
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) geometric_mean (s2);
(%o5) [8.82476274347979, 9.22652604739361, 10.0442675714889,

14.61274126349021, 13.96184163444275]

See also functions mean and harmonic_mean.

Functionkurtosis (list)
Functionkurtosis (matrix)

The kurtosis coefficient, defined as

1
ns4

n∑
i=1

(xi − x̄)4 − 3

Example:
(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) kurtosis (s1), numer;
(%o3) - 1.273247946514421
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) kurtosis (s2);
(%o5) [- .2715445622195385, 0.119998784429451,

- .4275233490482866, - .6405361979019522, - .4952382132352935]

See also functions mean, var and skewness.

Functionskewness (list)
Functionskewness (matrix)

The skewness coefficient, defined as

1
ns3

n∑
i=1

(xi − x̄)3

Example:
(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) skewness (s1), numer;
(%o3) .009196180476450306
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) skewness (s2);
(%o5) [.1580509020000979, .2926379232061854, .09242174416107717,

.2059984348148687, .2142520248890832]

See also functions mean, var and kurtosis.

Chapter 45: descriptive 549

Functionpearson skewness (list)
Functionpearson skewness (matrix)

Pearson’s skewness coefficient, defined as

3 (x̄−med)
s

where med is the median of list.
Example:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) pearson_skewness (s1), numer;
(%o3) .2159484029093895
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) pearson_skewness (s2);
(%o5) [- .08019976629211892, .2357036272952649,

.1050904062491204, .1245042340592368, .4464181795804519]

See also functions mean, var and median.

Functionquartile skewness (list)
Functionquartile skewness (matrix)

The quartile skewness coefficient, defined as

c 3
4
− 2 c 1

2
+ c 1

4

c 3
4
− c 1

4

where cp is the p-quantile of sample list.
Example:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) quartile_skewness (s1), numer;
(%o3) .04761904761904762
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) quartile_skewness (s2);
(%o5) [- 0.0408542246982353, .1467025572005382,

0.0336239103362392, .03780068728522298, 0.210526315789474]

See also function quantile.

45.4 Functions and Variables for specific multivariate
descriptive statistics

Functioncov (matrix)
The covariance matrix of the multivariate sample, defined as

S =
1
n

n∑
j=1

(
Xj − X̄

) (
Xj − X̄

)′
where Xj is the j-th row of the sample matrix.
Example:

550 Maxima Manual

(%i1) load (descriptive)$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) fpprintprec : 7$ /* change precision for pretty output */
(%i4) cov (s2);

[17.22191 13.61811 14.37217 19.39624 15.42162]
[]
[13.61811 14.98774 13.30448 15.15834 14.9711]
[]

(%o4) [14.37217 13.30448 15.47573 17.32544 16.18171]
[]
[19.39624 15.15834 17.32544 32.17651 20.44685]
[]
[15.42162 14.9711 16.18171 20.44685 24.42308]

See also function cov1.

Functioncov1 (matrix)
The covariance matrix of the multivariate sample, defined as

1
n− 1

n∑
j=1

(
Xj − X̄

) (
Xj − X̄

)′
where Xj is the j-th row of the sample matrix.
Example:

(%i1) load (descriptive)$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) fpprintprec : 7$ /* change precision for pretty output */
(%i4) cov1 (s2);

[17.39587 13.75567 14.51734 19.59216 15.5774]
[]
[13.75567 15.13913 13.43887 15.31145 15.12232]
[]

(%o4) [14.51734 13.43887 15.63205 17.50044 16.34516]
[]
[19.59216 15.31145 17.50044 32.50153 20.65338]
[]
[15.5774 15.12232 16.34516 20.65338 24.66977]

See also function cov.

Functionglobal variances (matrix)
Functionglobal variances (matrix, logical value)

Function global_variances returns a list of global variance measures:
• total variance: trace(S_1),
• mean variance: trace(S_1)/p,
• generalized variance: determinant(S_1),
• generalized standard deviation: sqrt(determinant(S_1)),
• efective variance determinant(S_1)^(1/p), (defined in: Peña, D. (2002)

Análisis de datos multivariantes; McGraw-Hill, Madrid.)

Chapter 45: descriptive 551

• efective standard deviation: determinant(S_1)^(1/(2*p)).

where p is the dimension of the multivariate random variable and S1 the covariance
matrix returned by cov1.
Example:

(%i1) load (descriptive)$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) global_variances (s2);
(%o3) [105.338342060606, 21.06766841212119, 12874.34690469686,

113.4651792608502, 6.636590811800794, 2.576158149609762]

Function global_variances has an optional logical argument: global_
variances(x,true) tells Maxima that x is the data matrix, making the same as
global_variances(x). On the other hand, global_variances(x,false) means
that x is not the data matrix, but the covariance matrix, avoiding its recalculation,

(%i1) load (descriptive)$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) s : cov1 (s2)$
(%i4) global_variances (s, false);
(%o4) [105.338342060606, 21.06766841212119, 12874.34690469686,

113.4651792608502, 6.636590811800794, 2.576158149609762]

See also cov and cov1.

Functioncor (matrix)
Functioncor (matrix, logical value)

The correlation matrix of the multivariate sample.
Example:

(%i1) load (descriptive)$
(%i2) fpprintprec:7$
(%i3) s2 : read_matrix (file_search ("wind.data"))$
(%i4) cor (s2);

[1.0 .8476339 .8803515 .8239624 .7519506]
[]
[.8476339 1.0 .8735834 .6902622 0.782502]
[]

(%o4) [.8803515 .8735834 1.0 .7764065 .8323358]
[]
[.8239624 .6902622 .7764065 1.0 .7293848]
[]
[.7519506 0.782502 .8323358 .7293848 1.0]

Function cor has an optional logical argument: cor(x,true) tells Maxima that x
is the data matrix, making the same as cor(x). On the other hand, cor(x,false)
means that x is not the data matrix, but the covariance matrix, avoiding its recalcu-
lation,

(%i1) load (descriptive)$
(%i2) fpprintprec:7$
(%i3) s2 : read_matrix (file_search ("wind.data"))$
(%i4) s : cov1 (s2)$

552 Maxima Manual

(%i5) cor (s, false); /* this is faster */
[1.0 .8476339 .8803515 .8239624 .7519506]
[]
[.8476339 1.0 .8735834 .6902622 0.782502]
[]

(%o5) [.8803515 .8735834 1.0 .7764065 .8323358]
[]
[.8239624 .6902622 .7764065 1.0 .7293848]
[]
[.7519506 0.782502 .8323358 .7293848 1.0]

See also cov and cov1.

Functionlist correlations (matrix)
Functionlist correlations (matrix, logical value)

Function list_correlations returns a list of correlation measures:
• precision matrix: the inverse of the covariance matrix S1,

S−1
1 =

(
sij
)
i,j=1,2,...,p

• multiple correlation vector: (R2
1, R

2
2, ..., R

2
p), with

R2
i = 1− 1

siisii

being an indicator of the goodness of fit of the linear multivariate regression
model on Xi when the rest of variables are used as regressors.

• partial correlation matrix: with element (i, j) being

rij.rest = − sij√
siisjj

Example:
(%i1) load (descriptive)$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) z : list_correlations (s2)$
(%i4) fpprintprec : 5$ /* for pretty output */
(%i5) z[1]; /* precision matrix */

[.38486 - .13856 - .15626 - .10239 .031179]
[]
[- .13856 .34107 - .15233 .038447 - .052842]
[]

(%o5) [- .15626 - .15233 .47296 - .024816 - .10054]
[]
[- .10239 .038447 - .024816 .10937 - .034033]
[]
[.031179 - .052842 - .10054 - .034033 .14834]

(%i6) z[2]; /* multiple correlation vector */
(%o6) [.85063, .80634, .86474, .71867, .72675]

Chapter 45: descriptive 553

(%i7) z[3]; /* partial correlation matrix */
[- 1.0 .38244 .36627 .49908 - .13049]
[]
[.38244 - 1.0 .37927 - .19907 .23492]
[]

(%o7) [.36627 .37927 - 1.0 .10911 .37956]
[]
[.49908 - .19907 .10911 - 1.0 .26719]
[]
[- .13049 .23492 .37956 .26719 - 1.0]

Function list_correlations also has an optional logical argument: list_
correlations(x,true) tells Maxima that x is the data matrix, making the same as
list_correlations(x). On the other hand, list_correlations(x,false) means
that x is not the data matrix, but the covariance matrix, avoiding its recalculation.

See also cov and cov1.

45.5 Functions and Variables for statistical graphs

Functionhistogram (list)
Functionhistogram (list, option 1, option 2, ...)
Functionhistogram (one column matrix)
Functionhistogram (one column matrix, option 1, option 2, ...)
Functionhistogram (one row matrix)
Functionhistogram (one row matrix, option 1, option 2, ...)

This function plots an histogram from a continuous sample. Sample data must be
stored in a list of numbers or a one dimensional matrix.

Available options are:

• Those defined in the draw package. See also bars and barsplot.

• nclasses: number of classes of the histogram (10 by default).

See also discrete_freq and continuous_freq to count data, and bars and barsplot
to display bar graphs.

Examples:

A simple histogram with eight classes.

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) histogram (

s1,
nclasses = 8,
title = "pi digits",
xlabel = "digits",
ylabel = "Absolute frequency",
fill_color = grey,
fill_density = 0.6)$

554 Maxima Manual

Functionscatterplot (list)
Functionscatterplot (list, option 1, option 2, ...)
Functionscatterplot (matrix)
Functionscatterplot (matrix, option 1, option 2, ...)

Plots scatter diagrams both for univariate (list) and multivariate (matrix) samples.

Available options are:

• Those defined in the draw package.

• nclasses: number of classes of the histogram (10 by default).

Examples:

Univariate scatter diagram from a simulated Gaussian sample.
(%i1) load (descriptive)$
(%i2) load (distrib)$
(%i3) scatterplot(

random_normal(0,1,200),
xaxis = true,
point_size = 2,
terminal = eps,
eps_width = 10,
eps_height = 2)$

Two dimensional scatter plot.
(%i1) load (descriptive)$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) scatterplot(

submatrix(s2, 1,2,3),
title = "Data from stations #4 and #5",
point_type = diamant,
point_size = 2,
color = blue)$

Three dimensional scatter plot.
(%i1) load (descriptive)$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) scatterplot(submatrix (s2, 1,2))$

Five dimensional scatter plot, with five classes histograms.
(%i1) load (descriptive)$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) scatterplot(

s2,
nclasses = 5,
fill_color = blue,
fill_density = 0.3,
xtics = 5)$

For plotting isolated or line-joined points in two and three dimensions, see points.
For histogram related options, see bars.

See also histogram.

Chapter 45: descriptive 555

Functionbarsplot (list)
Functionbarsplot (list, option 1, option 2, ...)
Functionbarsplot (one column matrix)
Functionbarsplot (one column matrix, option 1, option 2, ...)
Functionbarsplot (one row matrix)
Functionbarsplot (one row matrix, option 1, option 2, ...)

Similar to histogram but for discrete, numeric or categorical, statistical variables.
Available options are:
• Those defined in the draw package.
• box width: relative width of rectangles (3/4 by default). This value must be in

the range [0,1].

Example:
(%i1) load (descriptive)$
(%i2) s3 : read_matrix (file_search ("biomed.data"))$
(%i3) barsplot(col(s3,2),

title = "Ages",
xlabel = "years",
box_width = 1/2,
fill_density = 0.3)$

For bars diagrams related options, see bars of package draw. See also functions
histogram and piechart.

Functionpiechart (list)
Functionpiechart (list, option 1, option 2, ...)
Functionpiechart (one column matrix)
Functionpiechart (one column matrix, option 1, option 2, ...)
Functionpiechart (one row matrix)
Functionpiechart (one row matrix, option 1, option 2, ...)

Similar to barsplot, but plots sectors instead of rectangles.
Available options are:
• Those defined in the draw package.
• pie center: diagram’s center ([0,0] by default).
• pie radius: diagram’s radius (1 by default).

Example:
(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) piechart(

s1,
xrange = [-1.1, 1.3],
yrange = [-1.1, 1.1],
axis_top = false,
axis_right = false,
axis_left = false,
axis_bottom = false,
xtics = none,

556 Maxima Manual

ytics = none,
title = "Digit frequencies in pi")$

See also function barsplot.

Functionboxplot (data)
Functionboxplot (data, option 1, option 2, ...)

This function plots box-and-whishker diagrams. Argument data can be a list, which
is not of great interest, since these diagrams are mainly used for comparing different
samples, or a matrix, so it is possible to compare two or more components of a
multivariate statistical variable. But it is also allowed data to be a list of samples with
possible different sample sizes, in fact this is the only function in package descriptive
that admits this type of data structure.
Available options are:
• Those defined in the draw package.
• box width: relative width of boxes (3/4 by default). This value must be in the

range [0,1].

Examples:
Box-and-whishker diagram from a multivariate sample.

(%i1) load (descriptive)$
(%i2) s2 : read_matrix(file_search("wind.data"))$
(%i3) boxplot(s2,

box_width = 0.2,
title = "Windspeed in knots",
xlabel = "Stations",
color = red,
line_width = 2) $

Box-and-whishker diagram from three samples of different sizes.
(%i1) load (descriptive)$
(%i2) A :

[[6, 4, 6, 2, 4, 8, 6, 4, 6, 4, 3, 2],
[8, 10, 7, 9, 12, 8, 10],
[16, 13, 17, 12, 11, 18, 13, 18, 14, 12]]$

(%i3) boxplot (A)$

Chapter 46: diag 557

46 diag

46.1 Functions and Variables for diag

Functiondiag (lm)
Constructs a square matrix with the matrices of lm in the diagonal. lm is a list of
matrices or scalars.
Example:

(%i1) load("diag")$

(%i2) a1:matrix([1,2,3],[0,4,5],[0,0,6])$

(%i3) a2:matrix([1,1],[1,0])$

(%i4) diag([a1,x,a2]);
[1 2 3 0 0 0]
[]
[0 4 5 0 0 0]
[]
[0 0 6 0 0 0]

(%o4) []
[0 0 0 x 0 0]
[]
[0 0 0 0 1 1]
[]
[0 0 0 0 1 0]

To use this function write first load("diag").

FunctionJF (lambda,n)
Returns the Jordan cell of order n with eigenvalue lambda.
Example:

(%i1) load("diag")$

(%i2) JF(2,5);
[2 1 0 0 0]
[]
[0 2 1 0 0]
[]

(%o2) [0 0 2 1 0]
[]
[0 0 0 2 1]
[]
[0 0 0 0 2]

(%i3) JF(3,2);
[3 1]

558 Maxima Manual

(%o3) []
[0 3]

To use this function write first load("diag").

Functionjordan (mat)
Returns the Jordan form of matrix mat, but codified in a Maxima list. To get the
corresponding matrix, call function dispJordan using as argument the output of
jornan.
Example:

(%i1) load("diag")$

(%i3) a:matrix([2,0,0,0,0,0,0,0],
[1,2,0,0,0,0,0,0],
[-4,1,2,0,0,0,0,0],
[2,0,0,2,0,0,0,0],
[-7,2,0,0,2,0,0,0],
[9,0,-2,0,1,2,0,0],
[-34,7,1,-2,-1,1,2,0],
[145,-17,-16,3,9,-2,0,3])$

(%i34) jordan(a);
(%o4) [[2, 3, 3, 1], [3, 1]]
(%i5) dispJordan(%);

[2 1 0 0 0 0 0 0]
[]
[0 2 1 0 0 0 0 0]
[]
[0 0 2 0 0 0 0 0]
[]
[0 0 0 2 1 0 0 0]

(%o5) []
[0 0 0 0 2 1 0 0]
[]
[0 0 0 0 0 2 0 0]
[]
[0 0 0 0 0 0 2 0]
[]
[0 0 0 0 0 0 0 3]

To use this function write first load("diag"). See also dispJordan and minimalPoly.

FunctiondispJordan (l)
Returns the Jordan matrix associated to the codification given by the Maxima list l,
which is the output given by function jordan.
Example:

(%i1) load("diag")$

(%i2) b1:matrix([0,0,1,1,1],

Chapter 46: diag 559

[0,0,0,1,1],
[0,0,0,0,1],
[0,0,0,0,0],
[0,0,0,0,0])$

(%i3) jordan(b1);
(%o3) [[0, 3, 2]]
(%i4) dispJordan(%);

[0 1 0 0 0]
[]
[0 0 1 0 0]
[]

(%o4) [0 0 0 0 0]
[]
[0 0 0 0 1]
[]
[0 0 0 0 0]

To use this function write first load("diag"). See also jordan and minimalPoly.

FunctionminimalPoly (l)
Returns the minimal polynomial associated to the codification given by the Maxima
list l, which is the output given by function jordan.
Example:

(%i1) load("diag")$

(%i2) a:matrix([2,1,2,0],
[-2,2,1,2],
[-2,-1,-1,1],
[3,1,2,-1])$

(%i3) jordan(a);
(%o3) [[- 1, 1], [1, 3]]
(%i4) minimalPoly(%);

3
(%o4) (x - 1) (x + 1)

To use this function write first load("diag"). See also jordan and dispJordan.

FunctionModeMatrix (A,l)
Returns the matrix M such that (Mm1).A.M = J , where J is the Jordan form of
A. The Maxima list l is the codified form of the Jordan form as returned by function
jordan.
Example:

(%i1) load("diag")$

(%i2) a:matrix([2,1,2,0],
[-2,2,1,2],
[-2,-1,-1,1],

560 Maxima Manual

[3,1,2,-1])$

(%i3) jordan(a);
(%o3) [[- 1, 1], [1, 3]]
(%i4) M: ModeMatrix(a,%);

[1 - 1 1 1]
[]
[1]
[- - - 1 0 0]
[9]
[]

(%o4) [13]
[- -- 1 - 1 0]
[9]
[]
[17]
[-- - 1 1 1]
[9]

(%i5) is((M^^-1).a.M = dispJordan(%o3));
(%o5) true

Note that dispJordan(%o3) is the Jordan form of matrix a.
To use this function write first load("diag"). See also jordan and dispJordan.

Functionmat function (f,mat)
Returns f(mat), where f is an analytic function and mat a matrix. This computation
is based on Cauchy’s integral formula, which states that if f(x) is analytic and

mat = diag([JF(m1,n1),...,JF(mk,nk)]),

then
f(mat) = ModeMatrix*diag([f(JF(m1,n1)), ..., f(JF(mk,nk))])

*ModeMatrix^^(-1)

Note that there are about 6 or 8 other methods for this calculation.
Some examples follow.
Example 1:

(%i1) load("diag")$

(%i2) b2:matrix([0,1,0], [0,0,1], [-1,-3,-3])$

(%i3) mat_function(exp,t*b2);
2 - t
t %e - t - t

(%o3) matrix([-------- + t %e + %e ,
2

- t - t - t
2 %e %e - t - t %e
t (- ----- - ----- + %e) + t (2 %e - -----)

t 2 t
t

Chapter 46: diag 561

- t - t - t
- t - t %e 2 %e %e

+ 2 %e , t (%e - -----) + t (----- - -----)
t 2 t

2 - t - t - t
- t t %e 2 %e %e - t

+ %e], [- --------, - t (- ----- - ----- + %e),
2 t 2

t
- t - t 2 - t

2 %e %e t %e - t
- t (----- - -----)], [-------- - t %e ,

2 t 2
- t - t - t

2 %e %e - t - t %e
t (- ----- - ----- + %e) - t (2 %e - -----),

t 2 t
t

- t - t - t
2 %e %e - t %e
t (----- - -----) - t (%e - -----)])

2 t t
(%i4) ratsimp(%);

[2 - t]
[(t + 2 t + 2) %e]
[--------------------]
[2]
[]
[2 - t]

(%o4) Col 1 = [t %e]
[- --------]
[2]
[]
[2 - t]
[(t - 2 t) %e]
[----------------]
[2]

[2 - t]
[(t + t) %e]
[]

Col 2 = [2 - t]
[- (t - t - 1) %e]
[]
[2 - t]
[(t - 3 t) %e]
[2 - t]
[t %e]
[--------]
[2]

562 Maxima Manual

[]
[2 - t]

Col 3 = [(t - 2 t) %e]
[- ----------------]
[2]
[]
[2 - t]
[(t - 4 t + 2) %e]
[--------------------]
[2]

Example 2:
(%i5) b1:matrix([0,0,1,1,1],

[0,0,0,1,1],
[0,0,0,0,1],
[0,0,0,0,0],
[0,0,0,0,0])$

(%i6) mat_function(exp,t*b1);
[2]
[t]
[1 0 t t -- + t]
[2]
[]

(%o6) [0 1 0 t t]
[]
[0 0 1 0 t]
[]
[0 0 0 1 0]
[]
[0 0 0 0 1]

(%i7) minimalPoly(jordan(b1));
3

(%o7) x
(%i8) ident(5)+t*b1+1/2*(t^2)*b1^^2;

[2]
[t]
[1 0 t t -- + t]
[2]
[]

(%o8) [0 1 0 t t]
[]
[0 0 1 0 t]
[]
[0 0 0 1 0]
[]
[0 0 0 0 1]

(%i9) mat_function(exp,%i*t*b1);
[2]

Chapter 46: diag 563

[t]
[1 0 %i t %i t %i t - --]
[2]
[]

(%o9) [0 1 0 %i t %i t]
[]
[0 0 1 0 %i t]
[]
[0 0 0 1 0]
[]
[0 0 0 0 1]

(%i10) mat_function(cos,t*b1)+%i*mat_function(sin,t*b1);
[2]
[t]
[1 0 %i t %i t %i t - --]
[2]
[]

(%o10) [0 1 0 %i t %i t]
[]
[0 0 1 0 %i t]
[]
[0 0 0 1 0]
[]
[0 0 0 0 1]

Example 3:
(%i11) a1:matrix([2,1,0,0,0,0],

[-1,4,0,0,0,0],
[-1,1,2,1,0,0],
[-1,1,-1,4,0,0],
[-1,1,-1,1,3,0],
[-1,1,-1,1,1,2])$

(%i12) fpow(x):=block([k],declare(k,integer),x^k)$

(%i13) mat_function(fpow,a1);
[k k - 1] [k - 1]
[3 - k 3] [k 3]
[] []
[k - 1] [k k - 1]
[- k 3] [3 + k 3]
[] []
[k - 1] [k - 1]
[- k 3] [k 3]

(%o13) Col 1 = [] Col 2 = []
[k - 1] [k - 1]
[- k 3] [k 3]
[] []
[k - 1] [k - 1]
[- k 3] [k 3]

564 Maxima Manual

[] []
[k - 1] [k - 1]
[- k 3] [k 3]

[0] [0]
[] []
[0] [0]
[] []
[k k - 1] [k - 1]
[3 - k 3] [k 3]
[] []

Col 3 = [k - 1] Col 4 = [k k - 1]
[- k 3] [3 + k 3]
[] []
[k - 1] [k - 1]
[- k 3] [k 3]
[] []
[k - 1] [k - 1]
[- k 3] [k 3]
[0]
[] [0]
[0] []
[] [0]
[0] []
[] [0]

Col 5 = [0] Col 6 = []
[] [0]
[k] []
[3] [0]
[] []
[k k] [k]
[3 - 2] [2]

To use this function write first load("diag").

Chapter 47: distrib 565

47 distrib

47.1 Introduction to distrib

Package distrib contains a set of functions for making probability computations on
both discrete and continuous univariate models.

What follows is a short reminder of basic probabilistic related definitions.
Let f(x) be the density function of an absolute continuous random variable X. The

distribution function is defined as

F (x) =
∫ x

−∞
f (u) du

which equals the probability Pr(X <= x).
The mean value is a localization parameter and is defined as

E [X] =
∫ ∞
−∞

x f (x) dx

The variance is a measure of variation,

V [X] =
∫ ∞
−∞

f (x) (x− E [X])2
dx

which is a positive real number. The square root of the variance is the standard deviation,
D[X] = sqrt(V [X]), and it is another measure of variation.

The skewness coefficient is a measure of non-symmetry,

SK [X] =
∫∞
−∞ f (x) (x− E [X])3

dx

D [X]3

And the kurtosis coefficient measures the peakedness of the distribution,

KU [X] =
∫∞
−∞ f (x) (x− E [X])4

dx

D [X]4
− 3

If X is gaussian, KU [X] = 0. In fact, both skewness and kurtosis are shape parameters
used to measure the non–gaussianity of a distribution.

If the random variable X is discrete, the density, or probability, function f(x) takes
positive values within certain countable set of numbers xi, and zero elsewhere. In this case,
the distribution function is

F (x) =
∑
xi≤x

f (xi)

The mean, variance, standard deviation, skewness coefficient and kurtosis coefficient take
the form

E [X] =
∑
xi

xif (xi),

566 Maxima Manual

V [X] =
∑
xi

f (xi) (xi − E [X])2
,

D [X] =
√
V [X],

SK [X] =
∑
xi
f (x) (x− E [X])3

dx

D [X]3

and

KU [X] =
∑
xi
f (x) (x− E [X])4

dx

D [X]4
− 3,

respectively.
Package distrib includes functions for simulating random variates. Some of these func-

tions make use of optional variables indicating the algorithm to be used. The general inverse
method (based on the fact that if u is an uniform random number in (0, 1), then F^(-1)(u)
is a random variate with distribution F) is implemented in most cases; this is a suboptimal
method in terms of timing, but useful for comparing with other algorithms. In this exam-
ple, the performance of algorithms ahrens_cheng and inverse for simulating chi-square
variates are compared by means of their histograms:

(%i1) load(distrib)$
(%i2) load(descriptive)$
(%i3) showtime: true$
Evaluation took 0.00 seconds (0.00 elapsed) using 32 bytes.
(%i4) random_chi2_algorithm: ’ahrens_cheng$

histogram(random_chi2(10,500))$
Evaluation took 0.00 seconds (0.00 elapsed) using 40 bytes.
Evaluation took 0.69 seconds (0.71 elapsed) using 5.694 MB.
(%i6) random_chi2_algorithm: ’inverse$ histogram(random_chi2(10,500))$
Evaluation took 0.00 seconds (0.00 elapsed) using 32 bytes.
Evaluation took 10.15 seconds (10.17 elapsed) using 322.098 MB.

In order to make visual comparisons among algorithms for a discrete variate, function
barsplot of the descriptive package should be used.

Note that some work remains to be done, since these simulating functions are not yet
checked by more rigurous goodness of fit tests.

Please, consult an introductory manual on probability and statistics for more information
about all this mathematical stuff.

There is a naming convention in package distrib. Every function name has two parts,
the first one makes reference to the function or parameter we want to calculate,

Functions:
Density function (pdf_*)
Distribution function (cdf_*)
Quantile (quantile_*)
Mean (mean_*)
Variance (var_*)
Standard deviation (std_*)

Chapter 47: distrib 567

Skewness coefficient (skewness_*)
Kurtosis coefficient (kurtosis_*)
Random variate (random_*)

The second part is an explicit reference to the probabilistic model,
Continuous distributions:

Normal (*normal)
Student (*student_t)
Chi^2 (*chi2)
F (*f)
Exponential (*exp)
Lognormal (*lognormal)
Gamma (*gamma)
Beta (*beta)
Continuous uniform (*continuous_uniform)
Logistic (*logistic)
Pareto (*pareto)
Weibull (*weibull)
Rayleigh (*rayleigh)
Laplace (*laplace)
Cauchy (*cauchy)
Gumbel (*gumbel)

Discrete distributions:
Binomial (*binomial)
Poisson (*poisson)
Bernoulli (*bernoulli)
Geometric (*geometric)
Discrete uniform (*discrete_uniform)
hypergeometric (*hypergeometric)
Negative binomial (*negative_binomial)

For example, pdf_student_t(x,n) is the density function of the Student distribution
with n degrees of freedom, std_pareto(a,b) is the standard deviation of the Pareto dis-
tribution with parameters a and b and kurtosis_poisson(m) is the kurtosis coefficient of
the Poisson distribution with mean m.

In order to make use of package distrib you need first to load it by typing
(%i1) load(distrib)$

For comments, bugs or suggestions, please contact the author at ’mario AT edu DOT
xunta DOT es’.

47.2 Functions and Variables for continuous distributions

Functionpdf normal (x,m,s)
Returns the value at x of the density function of a Normal(m, s) random variable,
with s > 0. To make use of this function, write first load(distrib).

568 Maxima Manual

Functioncdf normal (x,m,s)
Returns the value at x of the distribution function of aNormal(m, s) random variable,
with s > 0. This function is defined in terms of Maxima’s built-in error function erf.

(%i1) load (distrib)$
(%i2) assume(s>0)$ cdf_normal(x,m,s);

x - m
erf(---------)

sqrt(2) s 1
(%o3) -------------- + -

2 2

See also erf.

Functionquantile normal (q,m,s)
Returns the q-quantile of a Normal(m, s) random variable, with s > 0; in other
words, this is the inverse of cdf_normal. Argument q must be an element of [0, 1].
To make use of this function, write first load(distrib).

Functionmean normal (m,s)
Returns the mean of a Normal(m, s) random variable, with s > 0, namely m. To
make use of this function, write first load(distrib).

Functionvar normal (m,s)
Returns the variance of a Normal(m, s) random variable, with s > 0, namely s^2.
To make use of this function, write first load(distrib).

Functionstd normal (m,s)
Returns the standard deviation of a Normal(m, s) random variable, with s > 0,
namely s. To make use of this function, write first load(distrib).

Functionskewness normal (m,s)
Returns the skewness coefficient of a Normal(m, s) random variable, with s > 0,
which is always equal to 0. To make use of this function, write first load(distrib).

Functionkurtosis normal (m,s)
Returns the kurtosis coefficient of a Normal(m, s) random variable, with s > 0, which
is always equal to 0. To make use of this function, write first load(distrib).

Option variablerandom normal algorithm
Default value: box_mueller
This is the selected algorithm for simulating random normal variates. Implemented
algorithms are box_mueller and inverse:
• box_mueller, based on algorithm described in Knuth, D.E. (1981) Seminumerical

Algorithms. The Art of Computer Programming. Addison-Wesley.
• inverse, based on the general inverse method.

See also random_normal.

Chapter 47: distrib 569

Functionrandom normal (m,s)
Functionrandom normal (m,s,n)

Returns a Normal(m, s) random variate, with s > 0. Calling random_normal with a
third argument n, a random sample of size n will be simulated.
There are two algorithms implemented for this function, the one to be used can
be selected giving a certain value to the global variable random_normal_algorithm,
which defaults to box_mueller.
See also random_normal_algorithm. To make use of this function, write first
load(distrib).

Functionpdf student t (x,n)
Returns the value at x of the density function of a Student random variable t(n),
with n > 0. To make use of this function, write first load(distrib).

Functioncdf student t (x,n)
Returns the value at x of the distribution function of a Student random variable t(n),
with n > 0. This function has no closed form and it is numerically computed if the
global variable numer equals true, otherwise it returns a nominal expression.

(%i1) load (distrib)$
(%i2) cdf_student_t(1/2, 7/3);

1 7
(%o2) cdf_student_t(-, -)

2 3
(%i3) %,numer;
(%o3) .6698450596140417

Functionquantile student t (q,n)
Returns the q-quantile of a Student random variable t(n), with n > 0; in other words,
this is the inverse of cdf_student_t. Argument q must be an element of [0, 1]. To
make use of this function, write first load(distrib).

Functionmean student t (n)
Returns the mean of a Student random variable t(n), with n > 0, which is always
equal to 0. To make use of this function, write first load(distrib).

Functionvar student t (n)
Returns the variance of a Student random variable t(n), with n > 2.

(%i1) load (distrib)$
(%i2) assume(n>2)$ var_student_t(n);

n
(%o3) -----

n - 2

Functionstd student t (n)
Returns the standard deviation of a Student random variable t(n), with n > 2. To
make use of this function, write first load(distrib).

570 Maxima Manual

Functionskewness student t (n)
Returns the skewness coefficient of a Student random variable t(n), with n > 3, which
is always equal to 0. To make use of this function, write first load(distrib).

Functionkurtosis student t (n)
Returns the kurtosis coefficient of a Student random variable t(n), with n > 4. To
make use of this function, write first load(distrib).

Option variablerandom student t algorithm
Default value: ratio
This is the selected algorithm for simulating random Student variates. Implemented
algorithms are inverse and ratio:
• inverse, based on the general inverse method.
• ratio, based on the fact that if Z is a normal random variable N(0, 1) and S2 is

chi square random variable with n degrees of freedom, Chi2(n), then

X =
Z√
S2

n

is a Student random variable with n degrees of freedom, t(n).

See also random_student_t.

Functionrandom student t (n)
Functionrandom student t (n,m)

Returns a Student random variate t(n), with n > 0. Calling random_student_t with
a second argument m, a random sample of size m will be simulated.
There are two algorithms implemented for this function, the one to be used can be
selected giving a certain value to the global variable random_student_t_algorithm,
which defaults to ratio.
See also random_student_t_algorithm. To make use of this function, write first
load(distrib).

Functionpdf chi2 (x,n)
Returns the value at x of the density function of a Chi-square random variable
Chi2(n), with n > 0.
The Chi2(n) random variable is equivalent to the Gamma(n/2, 2), therefore when
Maxima has not enough information to get the result, a noun form based on the
gamma density is returned.

(%i1) load (distrib)$
(%i2) pdf_chi2(x,n);

n
(%o2) pdf_gamma(x, -, 2)

2
(%i3) assume(x>0, n>0)$ pdf_chi2(x,n);

n/2 - 1 - x/2

Chapter 47: distrib 571

x %e
(%o4) ----------------

n/2 n
2 gamma(-)

2

Functioncdf chi2 (x,n)
Returns the value at x of the distribution function of a Chi-square random variable
Chi2(n), with n > 0.

This function has no closed form and it is numerically computed if the global variable
numer equals true, otherwise it returns a nominal expression based on the gamma
distribution, since the Chi2(n) random variable is equivalent to the Gamma(n/2, 2).

(%i1) load (distrib)$
(%i2) cdf_chi2(3,4);
(%o2) cdf_gamma(3, 2, 2)
(%i3) cdf_chi2(3,4),numer;
(%o3) .4421745996289249

Functionquantile chi2 (q,n)
Returns the q-quantile of a Chi-square random variable Chi2(n), with n > 0; in other
words, this is the inverse of cdf_chi2. Argument q must be an element of [0, 1].

This function has no closed form and it is numerically computed if the global vari-
able numer equals true, otherwise it returns a nominal expression based on the
gamma quantile function, since the Chi2(n) random variable is equivalent to the
Gamma(n/2, 2).

(%i1) load (distrib)$
(%i2) quantile_chi2(0.99,9);
(%o2) 21.66599433346194
(%i3) quantile_chi2(0.99,n);

n
(%o3) quantile_gamma(0.99, -, 2)

2

Functionmean chi2 (n)
Returns the mean of a Chi-square random variable Chi2(n), with n > 0.

The Chi2(n) random variable is equivalent to the Gamma(n/2, 2), therefore when
Maxima has not enough information to get the result, a noun form based on the
gamma mean is returned.

(%i1) load (distrib)$
(%i2) mean_chi2(n);

n
(%o2) mean_gamma(-, 2)

2
(%i3) assume(n>0)$ mean_chi2(n);
(%o4) n

572 Maxima Manual

Functionvar chi2 (n)
Returns the variance of a Chi-square random variable Chi2(n), with n > 0.
The Chi2(n) random variable is equivalent to the Gamma(n/2, 2), therefore when
Maxima has not enough information to get the result, a noun form based on the
gamma variance is returned.

(%i1) load (distrib)$
(%i2) var_chi2(n);

n
(%o2) var_gamma(-, 2)

2
(%i3) assume(n>0)$ var_chi2(n);
(%o4) 2 n

Functionstd chi2 (n)
Returns the standard deviation of a Chi-square random variable Chi2(n), with n > 0.
The Chi2(n) random variable is equivalent to the Gamma(n/2, 2), therefore when
Maxima has not enough information to get the result, a noun form based on the
gamma standard deviation is returned.

(%i1) load (distrib)$
(%i2) std_chi2(n);

n
(%o2) std_gamma(-, 2)

2
(%i3) assume(n>0)$ std_chi2(n);
(%o4) sqrt(2) sqrt(n)

Functionskewness chi2 (n)
Returns the skewness coefficient of a Chi-square random variable Chi2(n), with n > 0.
The Chi2(n) random variable is equivalent to the Gamma(n/2, 2), therefore when
Maxima has not enough information to get the result, a noun form based on the
gamma skewness coefficient is returned.

(%i1) load (distrib)$
(%i2) skewness_chi2(n);

n
(%o2) skewness_gamma(-, 2)

2
(%i3) assume(n>0)$ skewness_chi2(n);

2 sqrt(2)
(%o4) ---------

sqrt(n)

Functionkurtosis chi2 (n)
Returns the kurtosis coefficient of a Chi-square random variable Chi2(n), with n > 0.
The Chi2(n) random variable is equivalent to the Gamma(n/2, 2), therefore when
Maxima has not enough information to get the result, a noun form based on the
gamma kurtosis coefficient is returned.

Chapter 47: distrib 573

(%i1) load (distrib)$
(%i2) kurtosis_chi2(n);

n
(%o2) kurtosis_gamma(-, 2)

2
(%i3) assume(n>0)$ kurtosis_chi2(n);

12
(%o4) --

n

Option variablerandom chi2 algorithm
Default value: ahrens_cheng

This is the selected algorithm for simulating random Chi-square variates. Imple-
mented algorithms are ahrens_cheng and inverse:

• ahrens_cheng, based on the random simulation of gamma variates. See random_
gamma_algorithm for details.

• inverse, based on the general inverse method.

See also random_chi2.

Functionrandom chi2 (n)
Functionrandom chi2 (n,m)

Returns a Chi-square random variate Chi2(n), with n > 0. Calling random_chi2
with a second argument m, a random sample of size m will be simulated.

There are two algorithms implemented for this function, the one to be used can be
selected giving a certain value to the global variable random_chi2_algorithm, which
defaults to ahrens_cheng.

See also random_chi2_algorithm. To make use of this function, write first
load(distrib).

Functionpdf f (x,m,n)
Returns the value at x of the density function of a F random variable F (m,n), with
m,n > 0. To make use of this function, write first load(distrib).

Functioncdf f (x,m,n)
Returns the value at x of the distribution function of a F random variable F (m,n),
with m,n > 0. This function has no closed form and it is numerically computed if
the global variable numer equals true, otherwise it returns a nominal expression.

(%i1) load (distrib)$
(%i2) cdf_f(2,3,9/4);

9
(%o2) cdf_f(2, 3, -)

4
(%i3) %,numer;
(%o3) 0.66756728179008

574 Maxima Manual

Functionquantile f (q,m,n)
Returns the q-quantile of a F random variable F (m,n), with m,n > 0; in other words,
this is the inverse of cdf_f. Argument q must be an element of [0, 1].
This function has no closed form and it is numerically computed if the global variable
numer equals true, otherwise it returns a nominal expression.

(%i1) load (distrib)$
(%i2) quantile_f(2/5,sqrt(3),5);

2
(%o2) quantile_f(-, sqrt(3), 5)

5
(%i3) %,numer;
(%o3) 0.518947838573693

Functionmean f (m,n)
Returns the mean of a F random variable F (m,n), with m > 0, n > 2. To make use
of this function, write first load(distrib).

Functionvar f (m,n)
Returns the variance of a F random variable F (m,n), with m > 0, n > 4. To make
use of this function, write first load(distrib).

Functionstd f (m,n)
Returns the standard deviation of a F random variable F (m,n), with m > 0, n > 4.
To make use of this function, write first load(distrib).

Functionskewness f (m,n)
Returns the skewness coefficient of a F random variable F (m,n), with m > 0, n > 6.
To make use of this function, write first load(distrib).

Functionkurtosis f (m,n)
Returns the kurtosis coefficient of a F random variable F (m,n), with m > 0, n > 8.
To make use of this function, write first load(distrib).

Option variablerandom f algorithm
Default value: inverse
This is the selected algorithm for simulating random F variates. Implemented algo-
rithms are ratio and inverse:
• ratio, based on the fact that if X is a Chi2(m) random variable and Y is a
Chi2(n) random variable, then

F =
nX

mY

is a F random variable with m and n degrees of freedom, F (m,n).
• inverse, based on the general inverse method.

See also random_f.

Chapter 47: distrib 575

Functionrandom f (m,n)
Functionrandom f (m,n,k)

Returns a F random variate F (m,n), with m,n > 0. Calling random_f with a third
argument k, a random sample of size k will be simulated.
There are two algorithms implemented for this function, the one to be used can be
selected giving a certain value to the global variable random_f_algorithm, which
defaults to inverse.
See also random_f_algorithm. To make use of this function, write first
load(distrib).

Functionpdf exp (x,m)
Returns the value at x of the density function of an Exponential(m) random variable,
with m > 0.
The Exponential(m) random variable is equivalent to the Weibull(1, 1/m), therefore
when Maxima has not enough information to get the result, a noun form based on
the Weibull density is returned.

(%i1) load (distrib)$
(%i2) pdf_exp(x,m);

1
(%o2) pdf_weibull(x, 1, -)

m
(%i3) assume(x>0,m>0)$ pdf_exp(x,m);

- m x
(%o4) m %e

Functioncdf exp (x,m)
Returns the value at x of the distribution function of an Exponential(m) random
variable, with m > 0.
The Exponential(m) random variable is equivalent to the Weibull(1, 1/m), therefore
when Maxima has not enough information to get the result, a noun form based on
the Weibull distribution is returned.

(%i1) load (distrib)$
(%i2) cdf_exp(x,m);

1
(%o2) cdf_weibull(x, 1, -)

m
(%i3) assume(x>0,m>0)$ cdf_exp(x,m);

- m x
(%o4) 1 - %e

Functionquantile exp (q,m)
Returns the q-quantile of an Exponential(m) random variable, with m > 0; in other
words, this is the inverse of cdf_exp. Argument q must be an element of [0, 1].
The Exponential(m) random variable is equivalent to the Weibull(1, 1/m), therefore
when Maxima has not enough information to get the result, a noun form based on
the Weibull quantile is returned.

576 Maxima Manual

(%i1) load (distrib)$
(%i2) quantile_exp(0.56,5);
(%o2) .1641961104139661
(%i3) quantile_exp(0.56,m);

1
(%o3) quantile_weibull(0.56, 1, -)

m

Functionmean exp (m)
Returns the mean of an Exponential(m) random variable, with m > 0.
The Exponential(m) random variable is equivalent to the Weibull(1, 1/m), therefore
when Maxima has not enough information to get the result, a noun form based on
the Weibull mean is returned.

(%i1) load (distrib)$
(%i2) mean_exp(m);

1
(%o2) mean_weibull(1, -)

m
(%i3) assume(m>0)$ mean_exp(m);

1
(%o4) -

m

Functionvar exp (m)
Returns the variance of an Exponential(m) random variable, with m > 0.
The Exponential(m) random variable is equivalent to the Weibull(1, 1/m), therefore
when Maxima has not enough information to get the result, a noun form based on
the Weibull variance is returned.

(%i1) load (distrib)$
(%i2) var_exp(m);

1
(%o2) var_weibull(1, -)

m
(%i3) assume(m>0)$ var_exp(m);

1
(%o4) --

2
m

Functionstd exp (m)
Returns the standard deviation of an Exponential(m) random variable, with m > 0.
The Exponential(m) random variable is equivalent to the Weibull(1, 1/m), therefore
when Maxima has not enough information to get the result, a noun form based on
the Weibull standard deviation is returned.

(%i1) load (distrib)$
(%i2) std_exp(m);

1

Chapter 47: distrib 577

(%o2) std_weibull(1, -)
m

(%i3) assume(m>0)$ std_exp(m);
1

(%o4) -
m

Functionskewness exp (m)
Returns the skewness coefficient of an Exponential(m) random variable, with m > 0.

The Exponential(m) random variable is equivalent to the Weibull(1, 1/m), therefore
when Maxima has not enough information to get the result, a noun form based on
the Weibull skewness coefficient is returned.

(%i1) load (distrib)$
(%i2) skewness_exp(m);

1
(%o2) skewness_weibull(1, -)

m
(%i3) assume(m>0)$ skewness_exp(m);
(%o4) 2

Functionkurtosis exp (m)
Returns the kurtosis coefficient of an Exponential(m) random variable, with m > 0.

The Exponential(m) random variable is equivalent to the Weibull(1, 1/m), therefore
when Maxima has not enough information to get the result, a noun form based on
the Weibull kurtosis coefficient is returned.

(%i1) load (distrib)$
(%i2) kurtosis_exp(m);

1
(%o2) kurtosis_weibull(1, -)

m
(%i3) assume(m>0)$ kurtosis_exp(m);
(%o4) 6

Option variablerandom exp algorithm
Default value: inverse

This is the selected algorithm for simulating random exponential variates. Imple-
mented algorithms are inverse, ahrens_cheng and ahrens_dieter

• inverse, based on the general inverse method.

• ahrens_cheng, based on the fact that the Exp(m) random variable is equivalent
to the Gamma(1, 1/m). See random_gamma_algorithm for details.

• ahrens_dieter, based on algorithm described in Ahrens, J.H. and Dieter, U.
(1972) Computer methods for sampling from the exponential and normal distri-
butions. Comm, ACM, 15, Oct., 873-882.

See also random_exp.

578 Maxima Manual

Functionrandom exp (m)
Functionrandom exp (m,k)

Returns an Exponential(m) random variate, with m > 0. Calling random_exp with
a second argument k, a random sample of size k will be simulated.
There are three algorithms implemented for this function, the one to be used can be
selected giving a certain value to the global variable random_exp_algorithm, which
defaults to inverse.
See also random_exp_algorithm. To make use of this function, write first
load(distrib).

Functionpdf lognormal (x,m,s)
Returns the value at x of the density function of a Lognormal(m, s) random variable,
with s > 0. To make use of this function, write first load(distrib).

Functioncdf lognormal (x,m,s)
Returns the value at x of the distribution function of a Lognormal(m, s) random
variable, with s > 0. This function is defined in terms of Maxima’s built-in error
function erf.

(%i1) load (distrib)$
(%i2) assume(x>0, s>0)$ cdf_lognormal(x,m,s);

log(x) - m
erf(----------)

sqrt(2) s 1
(%o3) --------------- + -

2 2

See also erf.

Functionquantile lognormal (q,m,s)
Returns the q-quantile of a Lognormal(m, s) random variable, with s > 0; in other
words, this is the inverse of cdf_lognormal. Argument q must be an element of [0, 1].
To make use of this function, write first load(distrib).

Functionmean lognormal (m,s)
Returns the mean of a Lognormal(m, s) random variable, with s > 0. To make use
of this function, write first load(distrib).

Functionvar lognormal (m,s)
Returns the variance of a Lognormal(m, s) random variable, with s > 0. To make
use of this function, write first load(distrib).

Functionstd lognormal (m,s)
Returns the standard deviation of a Lognormal(m, s) random variable, with s > 0.
To make use of this function, write first load(distrib).

Functionskewness lognormal (m,s)
Returns the skewness coefficient of a Lognormal(m, s) random variable, with s > 0.
To make use of this function, write first load(distrib).

Chapter 47: distrib 579

Functionkurtosis lognormal (m,s)
Returns the kurtosis coefficient of a Lognormal(m, s) random variable, with s > 0.
To make use of this function, write first load(distrib).

Functionrandom lognormal (m,s)
Functionrandom lognormal (m,s,n)

Returns a Lognormal(m, s) random variate, with s > 0. Calling random_lognormal
with a third argument n, a random sample of size n will be simulated.
Log-normal variates are simulated by means of random normal variates. There are two
algorithms implemented for this function, the one to be used can be selected giving
a certain value to the global variable random_normal_algorithm, which defaults to
box_mueller.
See also random_normal_algorithm. To make use of this function, write first
load(distrib).

Functionpdf gamma (x,a,b)
Returns the value at x of the density function of a Gamma(a, b) random variable,
with a, b > 0. To make use of this function, write first load(distrib).

Functioncdf gamma (x,a,b)
Returns the value at x of the distribution function of a Gamma(a, b) random variable,
with a, b > 0.
This function has no closed form and it is numerically computed if the global variable
numer equals true, otherwise it returns a nominal expression.

(%i1) load (distrib)$
(%i2) cdf_gamma(3,5,21);
(%o2) cdf_gamma(3, 5, 21)
(%i3) %,numer;
(%o3) 4.402663157135039E-7

Functionquantile gamma (q,a,b)
Returns the q-quantile of a Gamma(a, b) random variable, with a, b > 0; in other
words, this is the inverse of cdf_gamma. Argument q must be an element of [0, 1]. To
make use of this function, write first load(distrib).

Functionmean gamma (a,b)
Returns the mean of a Gamma(a, b) random variable, with a, b > 0. To make use of
this function, write first load(distrib).

Functionvar gamma (a,b)
Returns the variance of a Gamma(a, b) random variable, with a, b > 0. To make use
of this function, write first load(distrib).

Functionstd gamma (a,b)
Returns the standard deviation of a Gamma(a, b) random variable, with a, b > 0. To
make use of this function, write first load(distrib).

580 Maxima Manual

Functionskewness gamma (a,b)
Returns the skewness coefficient of a Gamma(a, b) random variable, with a, b > 0.
To make use of this function, write first load(distrib).

Functionkurtosis gamma (a,b)
Returns the kurtosis coefficient of a Gamma(a, b) random variable, with a, b > 0. To
make use of this function, write first load(distrib).

Option variablerandom gamma algorithm
Default value: ahrens_cheng
This is the selected algorithm for simulating random gamma variates. Implemented
algorithms are ahrens_cheng and inverse

• ahrens_cheng, this is a combinantion of two procedures, depending on the value
of parameter a:
For a >= 1, Cheng, R.C.H. and Feast, G.M. (1979). Some simple gamma variate
generators. Appl. Stat., 28, 3, 290-295.
For 0 < a < 1, Ahrens, J.H. and Dieter, U. (1974). Computer methods for
sampling from gamma, beta, poisson and binomial cdf tributions. Computing,
12, 223-246.

• inverse, based on the general inverse method.

See also random_gamma.

Functionrandom gamma (a,b)
Functionrandom gamma (a,b,n)

Returns a Gamma(a, b) random variate, with a, b > 0. Calling random_gamma with a
third argument n, a random sample of size n will be simulated.
There are two algorithms implemented for this function, the one to be used can be
selected giving a certain value to the global variable random_gamma_algorithm, which
defaults to ahrens_cheng.
See also random_gamma_algorithm. To make use of this function, write first
load(distrib).

Functionpdf beta (x,a,b)
Returns the value at x of the density function of a Beta(a, b) random variable, with
a, b > 0. To make use of this function, write first load(distrib).

Functioncdf beta (x,a,b)
Returns the value at x of the distribution function of a Beta(a, b) random variable,
with a, b > 0.
This function has no closed form and it is numerically computed if the global variable
numer equals true, otherwise it returns a nominal expression.

(%i1) load (distrib)$
(%i2) cdf_beta(1/3,15,2);

1

Chapter 47: distrib 581

(%o2) cdf_beta(-, 15, 2)
3

(%i3) %,numer;
(%o3) 7.666089131388224E-7

Functionquantile beta (q,a,b)
Returns the q-quantile of a Beta(a, b) random variable, with a, b > 0; in other words,
this is the inverse of cdf_beta. Argument q must be an element of [0, 1]. To make
use of this function, write first load(distrib).

Functionmean beta (a,b)
Returns the mean of a Beta(a, b) random variable, with a, b > 0. To make use of this
function, write first load(distrib).

Functionvar beta (a,b)
Returns the variance of a Beta(a, b) random variable, with a, b > 0. To make use of
this function, write first load(distrib).

Functionstd beta (a,b)
Returns the standard deviation of a Beta(a, b) random variable, with a, b > 0. To
make use of this function, write first load(distrib).

Functionskewness beta (a,b)
Returns the skewness coefficient of a Beta(a, b) random variable, with a, b > 0. To
make use of this function, write first load(distrib).

Functionkurtosis beta (a,b)
Returns the kurtosis coefficient of a Beta(a, b) random variable, with a, b > 0. To
make use of this function, write first load(distrib).

Option variablerandom beta algorithm
Default value: cheng

This is the selected algorithm for simulating random beta variates. Implemented
algorithms are cheng, inverse and ratio

• cheng, this is the algorithm defined in Cheng, R.C.H. (1978). Generating Beta
Variates with Nonintegral Shape Parameters. Communications of the ACM,
21:317-322

• inverse, based on the general inverse method.

• ratio, based on the fact that if X is a random variable Gamma(a, 1) and Y is
Gamma(b, 1), then the ratio X/(X + Y) is distributed as Beta(a, b).

See also random_beta.

582 Maxima Manual

Functionrandom beta (a,b)
Functionrandom beta (a,b,n)

Returns a Beta(a, b) random variate, with a, b > 0. Calling random_beta with a third
argument n, a random sample of size n will be simulated.

There are three algorithms implemented for this function, the one to be used can be
selected giving a certain value to the global variable random_beta_algorithm, which
defaults to cheng.

See also random_beta_algorithm. To make use of this function, write first
load(distrib).

Functionpdf continuous uniform (x,a,b)
Returns the value at x of the density function of a ContinuousUniform(a, b) random
variable, with a < b. To make use of this function, write first load(distrib).

Functioncdf continuous uniform (x,a,b)
Returns the value at x of the distribution function of a ContinuousUniform(a, b)
random variable, with a < b. To make use of this function, write first load(distrib).

Functionquantile continuous uniform (q,a,b)
Returns the q-quantile of a ContinuousUniform(a, b) random variable, with a < b;
in other words, this is the inverse of cdf_continuous_uniform. Argument q must be
an element of [0, 1]. To make use of this function, write first load(distrib).

Functionmean continuous uniform (a,b)
Returns the mean of a ContinuousUniform(a, b) random variable, with a < b. To
make use of this function, write first load(distrib).

Functionvar continuous uniform (a,b)
Returns the variance of a ContinuousUniform(a, b) random variable, with a < b.
To make use of this function, write first load(distrib).

Functionstd continuous uniform (a,b)
Returns the standard deviation of a ContinuousUniform(a, b) random variable, with
a < b. To make use of this function, write first load(distrib).

Functionskewness continuous uniform (a,b)
Returns the skewness coefficient of a ContinuousUniform(a, b) random variable,
with a < b. To make use of this function, write first load(distrib).

Functionkurtosis continuous uniform (a,b)
Returns the kurtosis coefficient of a ContinuousUniform(a, b) random variable, with
a < b. To make use of this function, write first load(distrib).

Chapter 47: distrib 583

Functionrandom continuous uniform (a,b)
Functionrandom continuous uniform (a,b,n)

Returns a ContinuousUniform(a, b) random variate, with a < b. Calling random_
continuous_uniform with a third argument n, a random sample of size n will be
simulated.
This is a direct application of the random built-in Maxima function.
See also random. To make use of this function, write first load(distrib).

Functionpdf logistic (x,a,b)
Returns the value at x of the density function of a Logistic(a, b) random variable ,
with b > 0. To make use of this function, write first load(distrib).

Functioncdf logistic (x,a,b)
Returns the value at x of the distribution function of a Logistic(a, b) random variable
, with b > 0. To make use of this function, write first load(distrib).

Functionquantile logistic (q,a,b)
Returns the q-quantile of a Logistic(a, b) random variable , with b > 0; in other
words, this is the inverse of cdf_logistic. Argument q must be an element of [0, 1].
To make use of this function, write first load(distrib).

Functionmean logistic (a,b)
Returns the mean of a Logistic(a, b) random variable , with b > 0. To make use of
this function, write first load(distrib).

Functionvar logistic (a,b)
Returns the variance of a Logistic(a, b) random variable , with b > 0. To make use
of this function, write first load(distrib).

Functionstd logistic (a,b)
Returns the standard deviation of a Logistic(a, b) random variable , with b > 0. To
make use of this function, write first load(distrib).

Functionskewness logistic (a,b)
Returns the skewness coefficient of a Logistic(a, b) random variable , with b > 0. To
make use of this function, write first load(distrib).

Functionkurtosis logistic (a,b)
Returns the kurtosis coefficient of a Logistic(a, b) random variable , with b > 0. To
make use of this function, write first load(distrib).

Functionrandom logistic (a,b)
Functionrandom logistic (a,b,n)

Returns a Logistic(a, b) random variate, with b > 0. Calling random_logistic with
a third argument n, a random sample of size n will be simulated.
Only the inverse method is implemented. To make use of this function, write first
load(distrib).

584 Maxima Manual

Functionpdf pareto (x,a,b)
Returns the value at x of the density function of a Pareto(a, b) random variable, with
a, b > 0. To make use of this function, write first load(distrib).

Functioncdf pareto (x,a,b)
Returns the value at x of the distribution function of a Pareto(a, b) random variable,
with a, b > 0. To make use of this function, write first load(distrib).

Functionquantile pareto (q,a,b)
Returns the q-quantile of a Pareto(a, b) random variable, with a, b > 0; in other
words, this is the inverse of cdf_pareto. Argument q must be an element of [0, 1].
To make use of this function, write first load(distrib).

Functionmean pareto (a,b)
Returns the mean of a Pareto(a, b) random variable, with a > 1, b > 0. To make use
of this function, write first load(distrib).

Functionvar pareto (a,b)
Returns the variance of a Pareto(a, b) random variable, with a > 2, b > 0. To make
use of this function, write first load(distrib).

Functionstd pareto (a,b)
Returns the standard deviation of a Pareto(a, b) random variable, with a > 2, b > 0.
To make use of this function, write first load(distrib).

Functionskewness pareto (a,b)
Returns the skewness coefficient of a Pareto(a, b) random variable, with a > 3, b > 0.
To make use of this function, write first load(distrib).

Functionkurtosis pareto (a,b)
Returns the kurtosis coefficient of a Pareto(a, b) random variable, with a > 4, b > 0.
To make use of this function, write first load(distrib).

Functionrandom pareto (a,b)
Functionrandom pareto (a,b,n)

Returns a Pareto(a, b) random variate, with a > 0, b > 0. Calling random_pareto
with a third argument n, a random sample of size n will be simulated.
Only the inverse method is implemented. To make use of this function, write first
load(distrib).

Functionpdf weibull (x,a,b)
Returns the value at x of the density function of a Weibull(a, b) random variable,
with a, b > 0. To make use of this function, write first load(distrib).

Functioncdf weibull (x,a,b)
Returns the value at x of the distribution function of a Weibull(a, b) random variable,
with a, b > 0. To make use of this function, write first load(distrib).

Chapter 47: distrib 585

Functionquantile weibull (q,a,b)
Returns the q-quantile of a Weibull(a, b) random variable, with a, b > 0; in other
words, this is the inverse of cdf_weibull. Argument q must be an element of [0, 1].
To make use of this function, write first load(distrib).

Functionmean weibull (a,b)
Returns the mean of a Weibull(a, b) random variable, with a, b > 0. To make use of
this function, write first load(distrib).

Functionvar weibull (a,b)
Returns the variance of a Weibull(a, b) random variable, with a, b > 0. To make use
of this function, write first load(distrib).

Functionstd weibull (a,b)
Returns the standard deviation of a Weibull(a, b) random variable, with a, b > 0. To
make use of this function, write first load(distrib).

Functionskewness weibull (a,b)
Returns the skewness coefficient of a Weibull(a, b) random variable, with a, b > 0. To
make use of this function, write first load(distrib).

Functionkurtosis weibull (a,b)
Returns the kurtosis coefficient of a Weibull(a, b) random variable, with a, b > 0. To
make use of this function, write first load(distrib).

Functionrandom weibull (a,b)
Functionrandom weibull (a,b,n)

Returns a Weibull(a, b) random variate, with a, b > 0. Calling random_weibull with
a third argument n, a random sample of size n will be simulated.
Only the inverse method is implemented. To make use of this function, write first
load(distrib).

Functionpdf rayleigh (x,b)
Returns the value at x of the density function of a Rayleigh(b) random variable, with
b > 0.
The Rayleigh(b) random variable is equivalent to the Weibull(2, 1/b), therefore when
Maxima has not enough information to get the result, a noun form based on the
Weibull density is returned.

(%i1) load (distrib)$
(%i2) pdf_rayleigh(x,b);

1
(%o2) pdf_weibull(x, 2, -)

b
(%i3) assume(x>0,b>0)$ pdf_rayleigh(x,b);

2 2
2 - b x

(%o4) 2 b x %e

586 Maxima Manual

Functioncdf rayleigh (x,b)
Returns the value at x of the distribution function of a Rayleigh(b) random variable,
with b > 0.

The Rayleigh(b) random variable is equivalent to the Weibull(2, 1/b), therefore when
Maxima has not enough information to get the result, a noun form based on the
Weibull distribution is returned.

(%i1) load (distrib)$
(%i2) cdf_rayleigh(x,b);

1
(%o2) cdf_weibull(x, 2, -)

b
(%i3) assume(x>0,b>0)$ cdf_rayleigh(x,b);

2 2
- b x

(%o4) 1 - %e

Functionquantile rayleigh (q,b)
Returns the q-quantile of a Rayleigh(b) random variable, with b > 0; in other words,
this is the inverse of cdf_rayleigh. Argument q must be an element of [0, 1].

The Rayleigh(b) random variable is equivalent to the Weibull(2, 1/b), therefore when
Maxima has not enough information to get the result, a noun form based on the
Weibull quantile is returned.

(%i1) load (distrib)$
(%i2) quantile_rayleigh(0.99,b);

1
(%o2) quantile_weibull(0.99, 2, -)

b
(%i3) assume(x>0,b>0)$ quantile_rayleigh(0.99,b);

2.145966026289347
(%o4) -----------------

b

Functionmean rayleigh (b)
Returns the mean of a Rayleigh(b) random variable, with b > 0.

The Rayleigh(b) random variable is equivalent to the Weibull(2, 1/b), therefore when
Maxima has not enough information to get the result, a noun form based on the
Weibull mean is returned.

(%i1) load (distrib)$
(%i2) mean_rayleigh(b);

1
(%o2) mean_weibull(2, -)

b
(%i3) assume(b>0)$ mean_rayleigh(b);

sqrt(%pi)
(%o4) ---------

2 b

Chapter 47: distrib 587

Functionvar rayleigh (b)
Returns the variance of a Rayleigh(b) random variable, with b > 0.
The Rayleigh(b) random variable is equivalent to the Weibull(2, 1/b), therefore when
Maxima has not enough information to get the result, a noun form based on the
Weibull variance is returned.

(%i1) load (distrib)$
(%i2) var_rayleigh(b);

1
(%o2) var_weibull(2, -)

b
(%i3) assume(b>0)$ var_rayleigh(b);

%pi
1 - ---

4
(%o4) -------

2
b

Functionstd rayleigh (b)
Returns the standard deviation of a Rayleigh(b) random variable, with b > 0.
The Rayleigh(b) random variable is equivalent to the Weibull(2, 1/b), therefore when
Maxima has not enough information to get the result, a noun form based on the
Weibull standard deviation is returned.

(%i1) load (distrib)$
(%i2) std_rayleigh(b);

1
(%o2) std_weibull(2, -)

b
(%i3) assume(b>0)$ std_rayleigh(b);

%pi
sqrt(1 - ---)

4
(%o4) -------------

b

Functionskewness rayleigh (b)
Returns the skewness coefficient of a Rayleigh(b) random variable, with b > 0.
The Rayleigh(b) random variable is equivalent to the Weibull(2, 1/b), therefore when
Maxima has not enough information to get the result, a noun form based on the
Weibull skewness coefficient is returned.

(%i1) load (distrib)$
(%i2) skewness_rayleigh(b);

1
(%o2) skewness_weibull(2, -)

b
(%i3) assume(b>0)$ skewness_rayleigh(b);

3/2

588 Maxima Manual

%pi 3 sqrt(%pi)
------ - -----------
4 4

(%o4) --------------------
%pi 3/2

(1 - ---)
4

Functionkurtosis rayleigh (b)
Returns the kurtosis coefficient of a Rayleigh(b) random variable, with b > 0.
The Rayleigh(b) random variable is equivalent to the Weibull(2, 1/b), therefore when
Maxima has not enough information to get the result, a noun form based on the
Weibull kurtosis coefficient is returned.

(%i1) load (distrib)$
(%i2) kurtosis_rayleigh(b);

1
(%o2) kurtosis_weibull(2, -)

b
(%i3) assume(b>0)$ kurtosis_rayleigh(b);

2
3 %pi

2 - ------
16

(%o4) ---------- - 3
%pi 2

(1 - ---)
4

Functionrandom rayleigh (b)
Functionrandom rayleigh (b,n)

Returns a Rayleigh(b) random variate, with b > 0. Calling random_rayleigh with a
second argument n, a random sample of size n will be simulated.
Only the inverse method is implemented. To make use of this function, write first
load(distrib).

Functionpdf laplace (x,a,b)
Returns the value at x of the density function of a Laplace(a, b) random variable,
with b > 0. To make use of this function, write first load(distrib).

Functioncdf laplace (x,a,b)
Returns the value at x of the distribution function of a Laplace(a, b) random variable,
with b > 0. To make use of this function, write first load(distrib).

Functionquantile laplace (q,a,b)
Returns the q-quantile of a Laplace(a, b) random variable, with b > 0; in other words,
this is the inverse of cdf_laplace. Argument q must be an element of [0, 1]. To make
use of this function, write first load(distrib).

Chapter 47: distrib 589

Functionmean laplace (a,b)
Returns the mean of a Laplace(a, b) random variable, with b > 0. To make use of
this function, write first load(distrib).

Functionvar laplace (a,b)
Returns the variance of a Laplace(a, b) random variable, with b > 0. To make use of
this function, write first load(distrib).

Functionstd laplace (a,b)
Returns the standard deviation of a Laplace(a, b) random variable, with b > 0. To
make use of this function, write first load(distrib).

Functionskewness laplace (a,b)
Returns the skewness coefficient of a Laplace(a, b) random variable, with b > 0. To
make use of this function, write first load(distrib).

Functionkurtosis laplace (a,b)
Returns the kurtosis coefficient of a Laplace(a, b) random variable, with b > 0. To
make use of this function, write first load(distrib).

Functionrandom laplace (a,b)
Functionrandom laplace (a,b,n)

Returns a Laplace(a, b) random variate, with b > 0. Calling random_laplace with a
third argument n, a random sample of size n will be simulated.
Only the inverse method is implemented. To make use of this function, write first
load(distrib).

Functionpdf cauchy (x,a,b)
Returns the value at x of the density function of a Cauchy(a, b) random variable,
with b > 0. To make use of this function, write first load(distrib).

Functioncdf cauchy (x,a,b)
Returns the value at x of the distribution function of a Cauchy(a, b) random variable,
with b > 0. To make use of this function, write first load(distrib).

Functionquantile cauchy (q,a,b)
Returns the q-quantile of a Cauchy(a, b) random variable, with b > 0; in other words,
this is the inverse of cdf_cauchy. Argument q must be an element of [0, 1]. To make
use of this function, write first load(distrib).

Functionrandom cauchy (a,b)
Functionrandom cauchy (a,b,n)

Returns a Cauchy(a, b) random variate, with b > 0. Calling random_cauchy with a
third argument n, a random sample of size n will be simulated.
Only the inverse method is implemented. To make use of this function, write first
load(distrib).

590 Maxima Manual

Functionpdf gumbel (x,a,b)
Returns the value at x of the density function of a Gumbel(a, b) random variable,
with b > 0. To make use of this function, write first load(distrib).

Functioncdf gumbel (x,a,b)
Returns the value at x of the distribution function of a Gumbel(a, b) random variable,
with b > 0. To make use of this function, write first load(distrib).

Functionquantile gumbel (q,a,b)
Returns the q-quantile of a Gumbel(a, b) random variable, with b > 0; in other words,
this is the inverse of cdf_gumbel. Argument q must be an element of [0, 1]. To make
use of this function, write first load(distrib).

Functionmean gumbel (a,b)
Returns the mean of a Gumbel(a, b) random variable, with b > 0.

(%i1) load (distrib)$
(%i2) assume(b>0)$ mean_gumbel(a,b);
(%o3) %gamma b + a

where symbol %gamma stands for the Euler-Mascheroni constant. See also %gamma.

Functionvar gumbel (a,b)
Returns the variance of a Gumbel(a, b) random variable, with b > 0. To make use of
this function, write first load(distrib).

Functionstd gumbel (a,b)
Returns the standard deviation of a Gumbel(a, b) random variable, with b > 0. To
make use of this function, write first load(distrib).

Functionskewness gumbel (a,b)
Returns the skewness coefficient of a Gumbel(a, b) random variable, with b > 0.

(%i1) load (distrib)$
(%i2) assume(b>0)$ skewness_gumbel(a,b);

12 sqrt(6) zeta(3)
(%o3) ------------------

3
%pi

(%i4) numer:true$ skewness_gumbel(a,b);
(%o5) 1.139547099404649

where zeta stands for the Riemann’s zeta function.

Functionkurtosis gumbel (a,b)
Returns the kurtosis coefficient of a Gumbel(a, b) random variable, with b > 0. To
make use of this function, write first load(distrib).

Chapter 47: distrib 591

Functionrandom gumbel (a,b)
Functionrandom gumbel (a,b,n)

Returns a Gumbel(a, b) random variate, with b > 0. Calling random_gumbel with a
third argument n, a random sample of size n will be simulated.

Only the inverse method is implemented. To make use of this function, write first
load(distrib).

47.3 Functions and Variables for discrete distributions

Functionpdf binomial (x,n,p)
Returns the value at x of the probability function of a Binomial(n, p) random vari-
able, with 0 < p < 1 and n a positive integer. To make use of this function, write
first load(distrib).

Functioncdf binomial (x,n,p)
Returns the value at x of the distribution function of a Binomial(n, p) random vari-
able, with 0 < p < 1 and n a positive integer.

This function is numerically computed if the global variable numer equals true, oth-
erwise it returns a nominal expression.

(%i1) load (distrib)$
(%i2) cdf_binomial(5,7,1/6);

1
(%o2) cdf_binomial(5, 7, -)

6
(%i3) cdf_binomial(5,7,1/6), numer;
(%o3) .9998713991769548

Functionquantile binomial (q,n,p)
Returns the q-quantile of a Binomial(n, p) random variable, with 0 < p < 1 and n
a positive integer; in other words, this is the inverse of cdf_binomial. Argument q
must be an element of [0, 1]. To make use of this function, write first load(distrib).

Functionmean binomial (n,p)
Returns the mean of a Binomial(n, p) random variable, with 0 < p < 1 and n a
positive integer. To make use of this function, write first load(distrib).

Functionvar binomial (n,p)
Returns the variance of a Binomial(n, p) random variable, with 0 < p < 1 and n a
positive integer. To make use of this function, write first load(distrib).

Functionstd binomial (n,p)
Returns the standard deviation of a Binomial(n, p) random variable, with 0 < p < 1
and n a positive integer. To make use of this function, write first load(distrib).

592 Maxima Manual

Functionskewness binomial (n,p)
Returns the skewness coefficient of a Binomial(n, p) random variable, with 0 < p < 1
and n a positive integer. To make use of this function, write first load(distrib).

Functionkurtosis binomial (n,p)
Returns the kurtosis coefficient of a Binomial(n, p) random variable, with 0 < p < 1
and n a positive integer. To make use of this function, write first load(distrib).

Option variablerandom binomial algorithm
Default value: kachit
This is the selected algorithm for simulating random binomial variates. Implemented
algorithms are kachit, bernoulli and inverse:
• kachit, based on algorithm described in Kachitvichyanukul, V. and Schmeiser,

B.W. (1988) Binomial Random Variate Generation. Communications of the
ACM, 31, Feb., 216.

• bernoulli, based on simulation of Bernoulli trials.
• inverse, based on the general inverse method.

See also random_binomial.

Functionrandom binomial (n,p)
Functionrandom binomial (n,p,m)

Returns a Binomial(n, p) random variate, with 0 < p < 1 and n a positive integer.
Calling random_binomial with a third argument m, a random sample of size m will
be simulated.
There are three algorithms implemented for this function, the one to be used can be
selected giving a certain value to the global variable random_binomial_algorithm,
which defaults to kachit.
See also random_binomial_algorithm. To make use of this function, write first
load(distrib).

Functionpdf poisson (x,m)
Returns the value at x of the probability function of a Poisson(m) random variable,
with m > 0. To make use of this function, write first load(distrib).

Functioncdf poisson (x,m)
Returns the value at x of the distribution function of a Poisson(m) random variable,
with m > 0.
This function is numerically computed if the global variable numer equals true, oth-
erwise it returns a nominal expression.

(%i1) load (distrib)$
(%i2) cdf_poisson(3,5);
(%o2) cdf_poisson(3, 5)
(%i3) cdf_poisson(3,5), numer;
(%o3) .2650259152973617

Chapter 47: distrib 593

Functionquantile poisson (q,m)
Returns the q-quantile of a Poisson(m) random variable, with m > 0; in other words,
this is the inverse of cdf_poisson. Argument q must be an element of [0, 1]. To make
use of this function, write first load(distrib).

Functionmean poisson (m)
Returns the mean of a Poisson(m) random variable, with m > 0. To make use of
this function, write first load(distrib).

Functionvar poisson (m)
Returns the variance of a Poisson(m) random variable, with m > 0. To make use of
this function, write first load(distrib).

Functionstd poisson (m)
Returns the standard deviation of a Poisson(m) random variable, with m > 0. To
make use of this function, write first load(distrib).

Functionskewness poisson (m)
Returns the skewness coefficient of a Poisson(m) random variable, with m > 0. To
make use of this function, write first load(distrib).

Functionkurtosis poisson (m)
Returns the kurtosis coefficient of a Poisson random variable Poi(m), with m > 0.
To make use of this function, write first load(distrib).

Option variablerandom poisson algorithm
Default value: ahrens_dieter
This is the selected algorithm for simulating random Poisson variates. Implemented
algorithms are ahrens_dieter and inverse:
• ahrens_dieter, based on algorithm described in Ahrens, J.H. and Dieter, U.

(1982) Computer Generation of Poisson Deviates From Modified Normal Distri-
butions. ACM Trans. Math. Software, 8, 2, June,163-179.

• inverse, based on the general inverse method.

See also random_poisson.

Functionrandom poisson (m)
Functionrandom poisson (m,n)

Returns a Poisson(m) random variate, with m > 0. Calling random_poisson with a
second argument n, a random sample of size n will be simulated.
There are two algorithms implemented for this function, the one to be used can be
selected giving a certain value to the global variable random_poisson_algorithm,
which defaults to ahrens_dieter.
See also random_poisson_algorithm. To make use of this function, write first
load(distrib).

594 Maxima Manual

Functionpdf bernoulli (x,p)
Returns the value at x of the probability function of a Bernoulli(p) random variable,
with 0 < p < 1.
The Bernoulli(p) random variable is equivalent to the Binomial(1, p), therefore when
Maxima has not enough information to get the result, a noun form based on the
binomial probability function is returned.

(%i1) load (distrib)$
(%i2) pdf_bernoulli(1,p);
(%o2) pdf_binomial(1, 1, p)
(%i3) assume(0<p,p<1)$ pdf_bernoulli(1,p);
(%o4) p

Functioncdf bernoulli (x,p)
Returns the value at x of the distribution function of a Bernoulli(p) random variable,
with 0 < p < 1. To make use of this function, write first load(distrib).

Functionquantile bernoulli (q,p)
Returns the q-quantile of a Bernoulli(p) random variable, with 0 < p < 1; in other
words, this is the inverse of cdf_bernoulli. Argument q must be an element of [0, 1].
To make use of this function, write first load(distrib).

Functionmean bernoulli (p)
Returns the mean of a Bernoulli(p) random variable, with 0 < p < 1.
The Bernoulli(p) random variable is equivalent to the Binomial(1, p), therefore when
Maxima has not enough information to get the result, a noun form based on the
binomial mean is returned.

(%i1) load (distrib)$
(%i2) mean_bernoulli(p);
(%o2) mean_binomial(1, p)
(%i3) assume(0<p,p<1)$ mean_bernoulli(p);
(%o4) p

Functionvar bernoulli (p)
Returns the variance of a Bernoulli(p) random variable, with 0 < p < 1.
The Bernoulli(p) random variable is equivalent to the Binomial(1, p), therefore when
Maxima has not enough information to get the result, a noun form based on the
binomial variance is returned.

(%i1) load (distrib)$
(%i2) var_bernoulli(p);
(%o2) var_binomial(1, p)
(%i3) assume(0<p,p<1)$ var_bernoulli(p);
(%o4) (1 - p) p

Functionstd bernoulli (p)
Returns the standard deviation of a Bernoulli(p) random variable, with 0 < p < 1.

Chapter 47: distrib 595

The Bernoulli(p) random variable is equivalent to the Binomial(1, p), therefore when
Maxima has not enough information to get the result, a noun form based on the
binomial standard deviation is returned.

(%i1) load (distrib)$
(%i2) std_bernoulli(p);
(%o2) std_binomial(1, p)
(%i3) assume(0<p,p<1)$ std_bernoulli(p);
(%o4) sqrt(1 - p) sqrt(p)

Functionskewness bernoulli (p)
Returns the skewness coefficient of a Bernoulli(p) random variable, with 0 < p < 1.

The Bernoulli(p) random variable is equivalent to the Binomial(1, p), therefore when
Maxima has not enough information to get the result, a noun form based on the
binomial skewness coefficient is returned.

(%i1) load (distrib)$
(%i2) skewness_bernoulli(p);
(%o2) skewness_binomial(1, p)
(%i3) assume(0<p,p<1)$ skewness_bernoulli(p);

1 - 2 p
(%o4) -------------------

sqrt(1 - p) sqrt(p)

Functionkurtosis bernoulli (p)
Returns the kurtosis coefficient of a Bernoulli(p) random variable, with 0 < p < 1.

The Bernoulli(p) random variable is equivalent to the Binomial(1, p), therefore when
Maxima has not enough information to get the result, a noun form based on the
binomial kurtosis coefficient is returned.

(%i1) load (distrib)$
(%i2) kurtosis_bernoulli(p);
(%o2) kurtosis_binomial(1, p)
(%i3) assume(0<p,p<1)$ kurtosis_bernoulli(p);

1 - 6 (1 - p) p
(%o4) ---------------

(1 - p) p

Functionrandom bernoulli (p)
Functionrandom bernoulli (p,n)

Returns a Bernoulli(p) random variate, with 0 < p < 1. Calling random_bernoulli
with a second argument n, a random sample of size n will be simulated.

This is a direct application of the random built-in Maxima function.

See also random. To make use of this function, write first load(distrib).

Functionpdf geometric (x,p)
Returns the value at x of the probability function of a Geometric(p) random variable,
with 0 < p < 1. To make use of this function, write first load(distrib).

596 Maxima Manual

Functioncdf geometric (x,p)
Returns the value at x of the distribution function of a Geometric(p) random variable,
with 0 < p < 1. To make use of this function, write first load(distrib).

Functionquantile geometric (q,p)
Returns the q-quantile of a Geometric(p) random variable, with 0 < p < 1; in other
words, this is the inverse of cdf_geometric. Argument q must be an element of [0, 1].
To make use of this function, write first load(distrib).

Functionmean geometric (p)
Returns the mean of a Geometric(p) random variable, with 0 < p < 1. To make use
of this function, write first load(distrib).

Functionvar geometric (p)
Returns the variance of a Geometric(p) random variable, with 0 < p < 1. To make
use of this function, write first load(distrib).

Functionstd geometric (p)
Returns the standard deviation of a Geometric(p) random variable, with 0 < p < 1.
To make use of this function, write first load(distrib).

Functionskewness geometric (p)
Returns the skewness coefficient of a Geometric(p) random variable, with 0 < p < 1.
To make use of this function, write first load(distrib).

Functionkurtosis geometric (p)
Returns the kurtosis coefficient of a geometric random variable Geo(p), with 0 < p <
1. To make use of this function, write first load(distrib).

Option variablerandom geometric algorithm
Default value: bernoulli

This is the selected algorithm for simulating random geometric variates. Implemented
algorithms are bernoulli, devroye and inverse:

• bernoulli, based on simulation of Bernoulli trials.
• devroye, based on algorithm described in Devroye, L. (1986) Non-Uniform Ran-

dom Variate Generation. Springer Verlag, p. 480.
• inverse, based on the general inverse method.

See also random_geometric.

Functionrandom geometric (p)
Functionrandom geometric (p,n)

Returns a Geometric(p) random variate, with 0 < p < 1. Calling random_geometric
with a second argument n, a random sample of size n will be simulated.

Chapter 47: distrib 597

There are three algorithms implemented for this function, the one to be used can be
selected giving a certain value to the global variable random_geometric_algorithm,
which defaults to bernoulli.
See also random_geometric_algorithm. To make use of this function, write first
load(distrib).

Functionpdf discrete uniform (x,n)
Returns the value at x of the probability function of a DiscreteUniform(n) random
variable, with n a strictly positive integer. To make use of this function, write first
load(distrib).

Functioncdf discrete uniform (x,n)
Returns the value at x of the distribution function of a DiscreteUniform(n) random
variable, with n a strictly positive integer. To make use of this function, write first
load(distrib).

Functionquantile discrete uniform (q,n)
Returns the q-quantile of a DiscreteUniform(n) random variable, with n a strictly
positive integer; in other words, this is the inverse of cdf_discrete_uniform. Ar-
gument q must be an element of [0, 1]. To make use of this function, write first
load(distrib).

Functionmean discrete uniform (n)
Returns the mean of a DiscreteUniform(n) random variable, with n a strictly posi-
tive integer. To make use of this function, write first load(distrib).

Functionvar discrete uniform (n)
Returns the variance of a DiscreteUniform(n) random variable, with n a strictly
positive integer. To make use of this function, write first load(distrib).

Functionstd discrete uniform (n)
Returns the standard deviation of a DiscreteUniform(n) random variable, with n a
strictly positive integer. To make use of this function, write first load(distrib).

Functionskewness discrete uniform (n)
Returns the skewness coefficient of a DiscreteUniform(n) random variable, with n
a strictly positive integer. To make use of this function, write first load(distrib).

Functionkurtosis discrete uniform (n)
Returns the kurtosis coefficient of a DiscreteUniform(n) random variable, with n a
strictly positive integer. To make use of this function, write first load(distrib).

Functionrandom discrete uniform (n)
Functionrandom discrete uniform (n,m)

Returns a DiscreteUniform(n) random variate, with n a strictly positive integer.
Calling random_discrete_uniform with a second argument m, a random sample of
size m will be simulated.

598 Maxima Manual

This is a direct application of the random built-in Maxima function.

See also random. To make use of this function, write first load(distrib).

Functionpdf hypergeometric (x,n1,n2,n)
Returns the value at x of the probability function of a Hypergeometric(n1, n2, n)
random variable, with n1, n2 and n non negative integers and n <= n1 + n2. To
make use of this function, write first load(distrib).

Functioncdf hypergeometric (x,n1,n2,n)
Returns the value at x of the distribution function of a Hypergeometric(n1, n2, n)
random variable, with n1, n2 and n non negative integers and n <= n1 + n2. To
make use of this function, write first load(distrib).

Functionquantile hypergeometric (q,n1,n2,n)
Returns the q-quantile of a Hypergeometric(n1, n2, n) random variable, with n1, n2
and n non negative integers and n <= n1 + n2; in other words, this is the inverse of
cdf_hypergeometric. Argument q must be an element of [0, 1]. To make use of this
function, write first load(distrib).

Functionmean hypergeometric (n1,n2,n)
Returns the mean of a discrete uniform random variable Hyp(n1, n2, n), with n1, n2
and n non negative integers and n <= n1 + n2. To make use of this function, write
first load(distrib).

Functionvar hypergeometric (n1,n2,n)
Returns the variance of a hypergeometric random variable Hyp(n1, n2, n), with n1,
n2 and n non negative integers and n <= n1 + n2. To make use of this function,
write first load(distrib).

Functionstd hypergeometric (n1,n2,n)
Returns the standard deviation of a Hypergeometric(n1, n2, n) random variable, with
n1, n2 and n non negative integers and n <= n1 + n2. To make use of this function,
write first load(distrib).

Functionskewness hypergeometric (n1,n2,n)
Returns the skewness coefficient of a Hypergeometric(n1, n2, n) random variable,
with n1, n2 and n non negative integers and n <= n1 + n2. To make use of this
function, write first load(distrib).

Functionkurtosis hypergeometric (n1,n2,n)
Returns the kurtosis coefficient of a Hypergeometric(n1, n2, n) random variable, with
n1, n2 and n non negative integers and n <= n1 + n2. To make use of this function,
write first load(distrib).

Chapter 47: distrib 599

Option variablerandom hypergeometric algorithm
Default value: kachit

This is the selected algorithm for simulating random hypergeometric variates. Imple-
mented algorithms are kachit and inverse:

• kachit, based on algorithm described in Kachitvichyanukul, V., Schmeiser, B.W.
(1985) Computer generation of hypergeometric random variates. Journal of Sta-
tistical Computation and Simulation 22, 127-145.

• inverse, based on the general inverse method.

See also random_hypergeometric.

Functionrandom hypergeometric (n1,n2,n)
Functionrandom hypergeometric (n1,n2,n,m)

Returns a Hypergeometric(n1, n2, n) random variate, with n1, n2 and n non negative
integers and n <= n1+n2. Calling random_hypergeometric with a fourth argument
m, a random sample of size m will be simulated.

There are two algorithms implemented for this function, the one to be used can
be selected giving a certain value to the global variable random_hypergeometric_
algorithm, which defaults to kachit.

See also random_hypergeometric_algorithm. To make use of this function, write
first load(distrib).

Functionpdf negative binomial (x,n,p)
Returns the value at x of the probability function of a NegativeBinomial(n, p) ran-
dom variable, with 0 < p < 1 and n a positive integer. To make use of this function,
write first load(distrib).

Functioncdf negative binomial (x,n,p)
Returns the value at x of the distribution function of a NegativeBinomial(n, p)
random variable, with 0 < p < 1 and n a positive integer.

This function is numerically computed if the global variable numer equals true, oth-
erwise it returns a nominal expression.

(%i1) load (distrib)$
(%i2) cdf_negative_binomial(3,4,1/8);

1
(%o2) cdf_negative_binomial(3, 4, -)

8
(%i3) cdf_negative_binomial(3,4,1/8), numer;
(%o3) .006238937377929698

Functionquantile negative binomial (q,n,p)
Returns the q-quantile of a NegativeBinomial(n, p) random variable, with 0 < p <
1 and n a positive integer; in other words, this is the inverse of cdf_negative_
binomial. Argument q must be an element of [0, 1]. To make use of this function,
write first load(distrib).

600 Maxima Manual

Functionmean negative binomial (n,p)
Returns the mean of a NegativeBinomial(n, p) random variable, with 0 < p < 1 and
n a positive integer. To make use of this function, write first load(distrib).

Functionvar negative binomial (n,p)
Returns the variance of a NegativeBinomial(n, p) random variable, with 0 < p < 1
and n a positive integer. To make use of this function, write first load(distrib).

Functionstd negative binomial (n,p)
Returns the standard deviation of a NegativeBinomial(n, p) random variable, with
0 < p < 1 and n a positive integer. To make use of this function, write first
load(distrib).

Functionskewness negative binomial (n,p)
Returns the skewness coefficient of a NegativeBinomial(n, p) random variable, with
0 < p < 1 and n a positive integer. To make use of this function, write first
load(distrib).

Functionkurtosis negative binomial (n,p)
Returns the kurtosis coefficient of a NegativeBinomial(n, p) random variable, with
0 < p < 1 and n a positive integer. To make use of this function, write first
load(distrib).

Option variablerandom negative binomial algorithm
Default value: bernoulli
This is the selected algorithm for simulating random negative binomial variates. Im-
plemented algorithms are devroye, bernoulli and inverse:
• devroye, based on algorithm described in Devroye, L. (1986) Non-Uniform Ran-

dom Variate Generation. Springer Verlag, p. 480.
• bernoulli, based on simulation of Bernoulli trials.
• inverse, based on the general inverse method.

See also random_negative_binomial.

Functionrandom negative binomial (n,p)
Functionrandom negative binomial (n,p,m)

Returns a NegativeBinomial(n, p) random variate, with 0 < p < 1 and n a positive
integer. Calling random_negative_binomial with a third argument m, a random
sample of size m will be simulated.
There are three algorithms implemented for this function, the one to be used can be
selected giving a certain value to the global variable random_negative_binomial_
algorithm, which defaults to bernoulli.
See also random_negative_binomial_algorithm. To make use of this function, write
first load(distrib).

Chapter 48: draw 601

48 draw

48.1 Introduction to draw

draw is a Maxima-Gnuplot interface.

There are three main functions to be used at Maxima level: draw2d, draw3d and draw.

Follow this link for more elaborated examples of this package:

http://www.telefonica.net/web2/biomates/maxima/gpdraw

You need Gnuplot 4.2 to run this program.

48.2 Functions and Variables for draw

Graphic optionxrange
Default value: auto

If xrange is auto, the range for the x coordinate is computed automatically.

If the user wants a specific interval for x, it must be given as a Maxima list, as in
xrange=[-2, 3].

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw2d(xrange = [-3,5],

explicit(x^2,x,-1,1))$

See also yrange and zrange.

Graphic optionyrange
Default value: auto

If yrange is auto, the range for the y coordinate is computed automatically.

If the user wants a specific interval for y, it must be given as a Maxima list, as in
yrange=[-2, 3].

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw2d(yrange = [-2,3],

explicit(x^2,x,-1,1),
xrange = [-3,3])$

See also xrange and zrange.

602 Maxima Manual

Graphic optionzrange
Default value: auto
If zrange is auto, the range for the z coordinate is computed automatically.
If the user wants a specific interval for z, it must be given as a Maxima list, as in
zrange=[-2, 3].
Since this is a global graphics option, its position in the scene description does not
matter.
Example:

(%i1) load(draw)$
(%i2) draw3d(yrange = [-3,3],

zrange = [-2,5],
explicit(x^2+y^2,x,-1,1,y,-1,1),
xrange = [-3,3])$

See also xrange and yrange.

Graphic optionlogx
Default value: false
If logx is true, the x axis will be drawn in the logarithmic scale.
Since this is a global graphics option, its position in the scene description does not
matter.
Example:

(%i1) load(draw)$
(%i2) draw2d(explicit(log(x),x,0.01,5),

logx = true)$

See also logy and logz.

Graphic optionlogy
Default value: false
If logy is true, the y axis will be drawn in the logarithmic scale.
Since this is a global graphics option, its position in the scene description does not
matter.
Example:

(%i1) load(draw)$
(%i2) draw2d(logy = true,

explicit(exp(x),x,0,5))$

See also logx and logz.

Graphic optionlogz
Default value: false
If logz is true, the z axis will be drawn in the logarithmic scale.
Since this is a global graphics option, its position in the scene description does not
matter.
Example:

Chapter 48: draw 603

(%i1) load(draw)$
(%i2) draw3d(logz = true,

explicit(exp(u^2+v^2),u,-2,2,v,-2,2))$

See also logx and logy.

Graphic optionterminal
Default value: screen
Selects the terminal to be used by Gnuplot; possible values are: screen (default),
png, jpg, eps, eps_color, gif, animated_gif, wxt and aquaterm.
Since this is a global graphics option, its position in the scene description does not
matter. It can be also used as an argument of function draw.
Examples:

(%i1) load(draw)$
(%i2) /* screen terminal (default) */

draw2d(explicit(x^2,x,-1,1))$
(%i3) /* png file */

draw2d(terminal = ’png,
pic_width = 300,
explicit(x^2,x,-1,1))$

(%i4) /* jpg file */
draw2d(terminal = ’jpg,

pic_width = 300,
pic_height = 300,
explicit(x^2,x,-1,1))$

(%i5) /* eps file */
draw2d(file_name = "myfile",

explicit(x^2,x,-1,1),
terminal = ’eps)$

(%i6) /* wxwidgets window */
draw2d(explicit(x^2,x,-1,1),

terminal = ’wxt)$

An animated gif file,
(%i1) load(draw)$
(%i2) draw(

delay = 100,
file_name = "zzz",
terminal = ’animated_gif,
gr2d(explicit(x^2,x,-1,1)),
gr2d(explicit(x^3,x,-1,1)),
gr2d(explicit(x^4,x,-1,1)));

End of animation sequence
(%o2) [gr2d(explicit), gr2d(explicit), gr2d(explicit)]

Option delay is only active in animated gif’s; it is ignored in any other case.
See also file_name, pic_width, pic_height and delay.

Graphic optionfont
Default value: "" (empty string)

604 Maxima Manual

This option can be used to set the font face to be used by the terminal. Only one
font face and size can be used throughout the plot.
Since this is a global graphics option, its position in the scene description does not
matter.
See also font_size.
Gnuplot doesn’t handle fonts by itself, it leaves this task to the support libraries of
the different terminals, each one with its own philosophy about it. A brief summary
follows:
• x11 : Uses the normal x11 font server mechanism.

Example:
(%i1) load(draw)$
(%i2) draw2d(font = "Arial",

font_size = 20,
label(["Arial font, size 20",1,1]))$

• windows: The windows terminal doesn’t support changing of fonts from inside
the plot. Once the plot has been generated, the font can be changed right-clicking
on the menu of the graph window.

• png, jpeg, gif : The libgd library uses the font path stored in the environment
variable GDFONTPATH; in this case, it is only necessary to set option font to the
font’s name. It is also possible to give the complete path to the font file.
Examples:
Option font can be given the complete path to the font file:

(%i1) load(draw)$
(%i2) path: "/usr/share/fonts/truetype/freefont/" $
(%i3) file: "FreeSerifBoldItalic.ttf" $
(%i4) draw2d(

font = concat(path, file),
font_size = 20,
color = red,
label(["FreeSerifBoldItalic font, size 20",1,1]),
terminal = png)$

If environment variable GDFONTPATH is set to the path where font files are allo-
cated, it is possible to set graphic option font to the name of the font.

(%i1) load(draw)$
(%i2) draw2d(

font = "FreeSerifBoldItalic",
font_size = 20,
color = red,
label(["FreeSerifBoldItalic font, size 20",1,1]),
terminal = png)$

• Postscript : Standard Postscript fonts are: "Times-Roman", "Times-Italic",
"Times-Bold", "Times-BoldItalic", "Helvetica", "Helvetica-Oblique",
"Helvetica-Bold", "Helvetic-BoldOblique", "Courier", "Courier-
Oblique", "Courier-Bold", and "Courier-BoldOblique".
Example:

Chapter 48: draw 605

(%i1) load(draw)$
(%i2) draw2d(

font = "Courier-Oblique",
font_size = 15,
label(["Courier-Oblique font, size 15",1,1]),
terminal = eps)$

• wxt : The pango library finds fonts via the fontconfig utility.
• aqua: Default is "Times-Roman".

The gnuplot documentation is an important source of information about terminals
and fonts.

Graphic optionfont size
Default value: 12
This option can be used to set the font size to be used by the terminal. Only one font
face and size can be used throughout the plot. font_size is active only when option
font is not equal to the empty string.
Since this is a global graphics option, its position in the scene description does not
matter.
See also font.

Graphic optiongrid
Default value: false
If grid is true, a grid will be drawn on the xy plane.
Since this is a global graphics option, its position in the scene description does not
matter.
Example:

(%i1) load(draw)$
(%i2) draw2d(grid = true,

explicit(exp(u),u,-2,2))$

Graphic optiontitle
Default value: "" (empty string)
Option title, a string, is the main title for the scene. By default, no title is written.
Since this is a global graphics option, its position in the scene description does not
matter.
Example:

(%i1) load(draw)$
(%i2) draw2d(explicit(exp(u),u,-2,2),

title = "Exponential function")$

Graphic optionxlabel
Default value: "" (empty string)
Option xlabel, a string, is the label for the x axis. By default, no label is written.

606 Maxima Manual

Since this is a global graphics option, its position in the scene description does not
matter.

Example:
(%i1) load(draw)$
(%i2) draw2d(xlabel = "Time",

explicit(exp(u),u,-2,2),
ylabel = "Population")$

See also ylabel, and zlabel.

Graphic optionylabel
Default value: "" (empty string)

Option ylabel, a string, is the label for the y axis. By default, no label is written.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:
(%i1) load(draw)$
(%i2) draw2d(xlabel = "Time",

ylabel = "Population",
explicit(exp(u),u,-2,2))$

See also xlabel, and zlabel.

Graphic optionzlabel
Default value: "" (empty string)

Option zlabel, a string, is the label for the z axis. By default, no label is written.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:
(%i1) load(draw)$
(%i2) draw3d(zlabel = "Z variable",

ylabel = "Y variable",
explicit(sin(x^2+y^2),x,-2,2,y,-2,2),
xlabel = "X variable")$

See also xlabel, and ylabel.

Graphic optionxtics
Default value: auto

This graphic option controls the way tic marks are drawn on the x axis.

• When option xtics is bounded to symbol auto, tic marks are drawn automati-
cally.

• When option xtics is bounded to symbol none, tic marks are not drawn.
• When option xtics is bounded to a positive number, this is the distance between

two consecutive tic marks.

Chapter 48: draw 607

• When option xtics is bounded to a list of length three of the form
[start,incr,end], tic marks are plotted from start to end at intervals of
length incr.

• When option xtics is bounded to a set of numbers of the form {n1, n2, ...},
tic marks are plotted at values n1, n2, ...

• When option xtics is bounded to a set of pairs of the form {["label1", n1],
["label2", n2], ...}, tic marks corresponding to values n1, n2, ... are labeled
with "label1", "label2", ..., respectively.

Since this is a global graphics option, its position in the scene description does not
matter.

Examples:

Disable tics.
(%i1) load(draw)$
(%i2) draw2d(xtics = ’none,

explicit(x^3,x,-1,1))$

Tics every 1/4 units.
(%i1) load(draw)$
(%i2) draw2d(xtics = 1/4,

explicit(x^3,x,-1,1))$

Tics from -3/4 to 3/4 in steps of 1/8.
(%i1) load(draw)$
(%i2) draw2d(xtics = [-3/4,1/8,3/4],

explicit(x^3,x,-1,1))$

Tics at points -1/2, -1/4 and 3/4.
(%i1) load(draw)$
(%i2) draw2d(xtics = {-1/2,-1/4,3/4},

explicit(x^3,x,-1,1))$

Labeled tics.
(%i1) load(draw)$
(%i2) draw2d(xtics = {["High",0.75],["Medium",0],["Low",-0.75]},

explicit(x^3,x,-1,1))$

See also ytics, and ztics.

Graphic optionytics
Default value: auto

This graphic option controls the way tic marks are drawn on the y axis.

See xtics for a complete description.

Graphic optionztics
Default value: auto

This graphic option controls the way tic marks are drawn on the z axis.

See xtics for a complete description.

608 Maxima Manual

Graphic optionxtics rotate
Default value: false
If xtics_rotate is true, tic marks on the x axis are rotated 90 degrees.
Since this is a global graphics option, its position in the scene description does not
matter.

Graphic optionytics rotate
Default value: false
If ytics_rotate is true, tic marks on the y axis are rotated 90 degrees.
Since this is a global graphics option, its position in the scene description does not
matter.

Graphic optionztics rotate
Default value: false
If ztics_rotate is true, tic marks on the z axis are rotated 90 degrees.
Since this is a global graphics option, its position in the scene description does not
matter.

Graphic optionxtics axis
Default value: false
If xtics_axis is true, tic marks and their labels are plotted just along the x axis, if
it is false tics are plotted on the border.
Since this is a global graphics option, its position in the scene description does not
matter.

Graphic optionytics axis
Default value: false
If ytics_axis is true, tic marks and their labels are plotted just along the y axis, if
it is false tics are plotted on the border.
Since this is a global graphics option, its position in the scene description does not
matter.

Graphic optionztics axis
Default value: false
If ztics_axis is true, tic marks and their labels are plotted just along the z axis, if
it is false tics are plotted on the border.
Since this is a global graphics option, its position in the scene description does not
matter.

Graphic optionxaxis
Default value: false
If xaxis is true, the x axis is drawn.
Since this is a global graphics option, its position in the scene description does not
matter.
Example:

Chapter 48: draw 609

(%i1) load(draw)$
(%i2) draw2d(explicit(x^3,x,-1,1),

xaxis = true,
xaxis_color = blue)$

See also xaxis_width, xaxis_type and xaxis_color.

Graphic optionxaxis width
Default value: 1

xaxis_width is the width of the x axis. Its value must be a positive number.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:
(%i1) load(draw)$
(%i2) draw2d(explicit(x^3,x,-1,1),

xaxis = true,
xaxis_width = 3)$

See also xaxis, xaxis_type and xaxis_color.

Graphic optionxaxis type
Default value: dots

xaxis_type indicates how the x axis is displayed; possible values are solid and dots.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:
(%i1) load(draw)$
(%i2) draw2d(explicit(x^3,x,-1,1),

xaxis = true,
xaxis_type = solid)$

See also xaxis, xaxis_width and xaxis_color.

Graphic optionxaxis color
Default value: "black"

xaxis_color specifies the color for the x axis. See color to know how colors are
defined.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:
(%i1) load(draw)$
(%i2) draw2d(explicit(x^3,x,-1,1),

xaxis = true,
xaxis_color = red)$

See also xaxis, xaxis_width and xaxis_type.

610 Maxima Manual

Graphic optionyaxis
Default value: false
If yaxis is true, the y axis is drawn.
Since this is a global graphics option, its position in the scene description does not
matter.
Example:

(%i1) load(draw)$
(%i2) draw2d(explicit(x^3,x,-1,1),

yaxis = true,
yaxis_color = blue)$

See also yaxis_width, yaxis_type and yaxis_color.

Graphic optionyaxis width
Default value: 1
yaxis_width is the width of the y axis. Its value must be a positive number.
Since this is a global graphics option, its position in the scene description does not
matter.
Example:

(%i1) load(draw)$
(%i2) draw2d(explicit(x^3,x,-1,1),

yaxis = true,
yaxis_width = 3)$

See also yaxis, yaxis_type and yaxis_color.

Graphic optionyaxis type
Default value: dots
yaxis_type indicates how the y axis is displayed; possible values are solid and dots.
Since this is a global graphics option, its position in the scene description does not
matter.
Example:

(%i1) load(draw)$
(%i2) draw2d(explicit(x^3,x,-1,1),

yaxis = true,
yaxis_type = solid)$

See also yaxis, yaxis_width and yaxis_color.

Graphic optionyaxis color
Default value: "black"
yaxis_color specifies the color for the y axis. See color to know how colors are
defined.
Since this is a global graphics option, its position in the scene description does not
matter.
Example:

Chapter 48: draw 611

(%i1) load(draw)$
(%i2) draw2d(explicit(x^3,x,-1,1),

yaxis = true,
yaxis_color = red)$

See also yaxis, yaxis_width and yaxis_type.

Graphic optionzaxis
Default value: false
If zaxis is true, the z axis is drawn in 3D plots. This option has no effect in 2D
scenes.
Since this is a global graphics option, its position in the scene description does not
matter.
Example:

(%i1) load(draw)$
(%i2) draw3d(explicit(x^2+y^2,x,-1,1,y,-1,1),

zaxis = true,
zaxis_type = solid,
zaxis_color = blue)$

See also zaxis_width, zaxis_type and zaxis_color.

Graphic optionzaxis width
Default value: 1
zaxis_width is the width of the z axis. Its value must be a positive number. This
option has no effect in 2D scenes.
Since this is a global graphics option, its position in the scene description does not
matter.
Example:

(%i1) load(draw)$
(%i2) draw3d(explicit(x^2+y^2,x,-1,1,y,-1,1),

zaxis = true,
zaxis_type = solid,
zaxis_width = 3)$

See also zaxis, zaxis_type and zaxis_color.

Graphic optionzaxis type
Default value: dots
zaxis_type indicates how the z axis is displayed; possible values are solid and dots.
This option has no effect in 2D scenes.
Since this is a global graphics option, its position in the scene description does not
matter.
Example:

(%i1) load(draw)$
(%i2) draw3d(explicit(x^2+y^2,x,-1,1,y,-1,1),

zaxis = true,
zaxis_type = solid)$

See also zaxis, zaxis_width and zaxis_color.

612 Maxima Manual

Graphic optionzaxis color
Default value: "black"
zaxis_color specifies the color for the z axis. See color to know how colors are
defined. This option has no effect in 2D scenes.
Since this is a global graphics option, its position in the scene description does not
matter.
Example:

(%i1) load(draw)$
(%i2) draw3d(explicit(x^2+y^2,x,-1,1,y,-1,1),

zaxis = true,
zaxis_type = solid,
zaxis_color = red)$

See also zaxis, zaxis_width and zaxis_type.

Graphic optionxyplane
Default value: false
Allocates the xy-plane in 3D scenes. When xyplane is false, the xy-plane is placed
automatically; when it is a real number, the xy-plane intersects the z-axis at this
level. This option has no effect in 2D scenes.
Since this is a global graphics option, its position in the scene description does not
matter.
Example:

(%i1) load(draw)$
(%i2) draw3d(xyplane = %e-2,

explicit(x^2+y^2,x,-1,1,y,-1,1))$

Graphic optionrot vertical
Default value: 60
rot_vertical is the angle (in degrees) of vertical rotation (around the x axis) to set
the view point in 3d scenes.
The angle is bounded to the [0, 180] interval.
Since this is a global graphics option, its position in the scene description does not
matter.
Example:

(%i1) load(draw)$
(%i2) draw3d(rot_vertical = 170,

explicit(sin(x^2+y^2),x,-2,2,y,-2,2))$

See also rot_horizontal.

Graphic optionrot horizontal
Default value: 30
rot_horizontal is the angle (in degrees) of horizontal rotation (around the z axis)
to set the view point in 3d scenes.

Chapter 48: draw 613

The angle is bounded to the [0, 360] interval.
Since this is a global graphics option, its position in the scene description does not
matter.
Example:

(%i1) load(draw)$
(%i2) draw3d(rot_vertical = 170,

rot_horizontal = 360,
explicit(sin(x^2+y^2),x,-2,2,y,-2,2))$

See also rot_vertical.

Graphic optionxy file
Default value: "" (empty string)
xy_file is the name of the file where the coordinates will be saved after clicking with
the mouse button and hitting the ’x’ key. By default, no coordinates are saved.
Since this is a global graphics option, its position in the scene description does not
matter.

Graphic optionuser preamble
Default value: "" (empty string)
Expert Gnuplot users can make use of this option to fine tune Gnuplot’s behaviour
by writing settings to be sent before the plot or splot command.
The value of this option must be a string or a list of strings (one per line).
Since this is a global graphics option, its position in the scene description does not
matter.
Example:
The dumb terminal is not supported by package draw, but it is possible to set it by
making use of option user_preamble,

(%i1) load(draw)$
(%i2) draw2d(explicit(exp(x)-1,x,-1,1),

parametric(cos(u),sin(u),u,0,2*%pi),
user_preamble="set terminal dumb")$

Graphic optionfile name
Default value: "maxima_out"
This is the name of the file where terminals png, jpg, eps and eps_color will save
the graphic.
Since this is a global graphics option, its position in the scene description does not
matter. It can be also used as an argument of function draw.
Example:

(%i1) load(draw)$
(%i2) draw2d(file_name = "myfile",

explicit(x^2,x,-1,1),
terminal = ’png)$

See also terminal, pic_width, and pic_height.

614 Maxima Manual

Graphic optiondelay
Default value: 5
This is the delay in 1/100 seconds of frames in animated gif files.
Since this is a global graphics option, its position in the scene description does not
matter. It can be also used as an argument of function draw.
Example:

(%i1) load(draw)$
(%i2) draw(

delay = 100,
file_name = "zzz",
terminal = ’animated_gif,
gr2d(explicit(x^2,x,-1,1)),
gr2d(explicit(x^3,x,-1,1)),
gr2d(explicit(x^4,x,-1,1)));

End of animation sequence
(%o2) [gr2d(explicit), gr2d(explicit), gr2d(explicit)]

Option delay is only active in animated gif’s; it is ignored in any other case.
See also terminal, pic_width, and pic_height.

Graphic optionpic width
Default value: 640
This is the width of the bitmap file generated by terminals png and jpg.
Since this is a global graphics option, its position in the scene description does not
matter. It can be also used as an argument of function draw.
Example:

(%i1) load(draw)$
(%i2) draw2d(terminal = ’png,

pic_width = 300,
pic_height = 300,
explicit(x^2,x,-1,1))$

See also terminal, file_name, and pic_height.

Graphic optionpic height
Default value: 640
This is the height of the bitmap file generated by terminals png and jpg.
Since this is a global graphics option, its position in the scene description does not
matter. It can be also used as an argument of function draw.
Example:

(%i1) load(draw)$
(%i2) draw2d(terminal = ’png,

pic_width = 300,
pic_height = 300,
explicit(x^2,x,-1,1))$

See also terminal, file_name, and pic_width.

Chapter 48: draw 615

Graphic optioneps width
Default value: 12
This is the width (measured in cm) of the Postscipt file generated by terminals eps
and eps_color.
Since this is a global graphics option, its position in the scene description does not
matter. It can be also used as an argument of function draw.
Example:

(%i1) load(draw)$
(%i2) draw2d(terminal = ’eps,

eps_width = 3,
eps_height = 3,
explicit(x^2,x,-1,1))$

See also terminal, file_name, and eps_height.

Graphic optioneps height
Default value: 8
This is the height (measured in cm) of the Postscipt file generated by terminals eps
and eps_color.
Since this is a global graphics option, its position in the scene description does not
matter. It can be also used as an argument of function draw.
Example:

(%i1) load(draw)$
(%i2) draw2d(terminal = ’eps,

eps_width = 3,
eps_height = 3,
explicit(x^2,x,-1,1))$

See also terminal, file_name, and eps_width.

Graphic optionaxis bottom
Default value: true
If axis_bottom is true, the bottom axis is shown in 2d scenes.
Since this is a global graphics option, its position in the scene description does not
matter.
Example:

(%i1) load(draw)$
(%i2) draw2d(axis_bottom = false,

explicit(x^3,x,-1,1))$

See also axis_left, axis_top, axis_right, and axis_3d.

Graphic optionaxis left
Default value: true
If axis_left is true, the left axis is shown in 2d scenes.
Since this is a global graphics option, its position in the scene description does not
matter.
Example:

616 Maxima Manual

(%i1) load(draw)$
(%i2) draw2d(axis_left = false,

explicit(x^3,x,-1,1))$

See also axis_bottom, axis_top, axis_right, and axis_3d.

Graphic optionaxis top
Default value: true
If axis_top is true, the top axis is shown in 2d scenes.
Since this is a global graphics option, its position in the scene description does not
matter.
Example:

(%i1) load(draw)$
(%i2) draw2d(axis_top = false,

explicit(x^3,x,-1,1))$

See also axis_bottom, axis_left, axis_right, and axis_3d.

Graphic optionaxis right
Default value: true
If axis_right is true, the right axis is shown in 2d scenes.
Since this is a global graphics option, its position in the scene description does not
matter.
Example:

(%i1) load(draw)$
(%i2) draw2d(axis_right = false,

explicit(x^3,x,-1,1))$

See also axis_bottom, axis_left, axis_top, and axis_3d.

Graphic optionaxis 3d
Default value: true
If axis_3d is true, the x, y and z axis are shown in 3d scenes.
Since this is a global graphics option, its position in the scene description does not
matter.
Example:

(%i1) load(draw)$
(%i2) draw3d(axis_3d = false,

explicit(sin(x^2+y^2),x,-2,2,y,-2,2))$

See also axis_bottom, axis_left, axis_top, and axis_right for axis in 2d.

Graphic optionpalette
Default value: color
palette indicates how to map the real values of a matrix passed to object image onto
color components.
palette is a vector of length three with components ranging from -36 to +36; each
value is an index for a formula mapping the levels onto red, green and blue colors,
respectively:

Chapter 48: draw 617

0: 0 1: 0.5 2: 1
3: x 4: x^2 5: x^3
6: x^4 7: sqrt(x) 8: sqrt(sqrt(x))
9: sin(90x) 10: cos(90x) 11: |x-0.5|
12: (2x-1)^2 13: sin(180x) 14: |cos(180x)|
15: sin(360x) 16: cos(360x) 17: |sin(360x)|
18: |cos(360x)| 19: |sin(720x)| 20: |cos(720x)|
21: 3x 22: 3x-1 23: 3x-2
24: |3x-1| 25: |3x-2| 26: (3x-1)/2
27: (3x-2)/2 28: |(3x-1)/2| 29: |(3x-2)/2|
30: x/0.32-0.78125 31: 2*x-0.84 32: 4x;1;-2x+1.84;x/0.08-11.5
33: |2*x - 0.5| 34: 2*x 35: 2*x - 0.5
36: 2*x - 1

negative numbers mean negative colour component.
palette = gray and palette = color are short cuts for palette = [3,3,3] and
palette = [7,5,15], respectively.
Since this is a global graphics option, its position in the scene description does not
matter.
Examples:

(%i1) load(draw)$
(%i2) im: apply(

’matrix,
makelist(makelist(random(200),i,1,30),i,1,30))$

(%i3) /* palette = color, default */
draw2d(image(im,0,0,30,30))$

(%i4) draw2d(palette = gray, image(im,0,0,30,30))$
(%i5) draw2d(palette = [15,20,-4],

colorbox=false,
image(im,0,0,30,30))$

See also colorbox.

Graphic optioncolorbox
Default value: true
If colorbox is true, a color scale is drawn together with image objects.
Since this is a global graphics option, its position in the scene description does not
matter.
Example:

(%i1) load(draw)$
(%i2) im: apply(’matrix,

makelist(makelist(random(200),i,1,30),i,1,30))$
(%i3) draw2d(image(im,0,0,30,30))$
(%i4) draw2d(colorbox=false, image(im,0,0,30,30))$

See also palette.

Graphic optionenhanced3d
Default value: false

618 Maxima Manual

If enhanced3d is true, surfaces are colored in 3d plots; in other words, it sets Gnu-
plot’s pm3d mode.
See option palette to learn how palettes are specified.
Example:

(%i1) load(draw)$
(%i2) draw3d(surface_hide = true,

enhanced3d = true,
palette = gray,
explicit(20*exp(-x^2-y^2)-10,x,-3,3,y,-3,3))$

Graphic optionpoint size
Default value: 1
point_size sets the size for plotted points. It must be a non negative number.
This option has no effect when graphic option point_type is set to dot.
This option affects the following graphic objects:
• gr2d: points.
• gr3d: points.

Example:
(%i1) load(draw)$
(%i2) draw2d(points(makelist([random(20),random(50)],k,1,10)),

point_size = 5,
points(makelist(k,k,1,20),makelist(random(30),k,1,20)))$

Graphic optionpoint type
Default value: 1
point_type indicates how isolated points are displayed; the value of this option can be
any integer index greater or equal than -1, or the name of a point style: $none (-1), dot
(0), plus (1), multiply (2), asterisk (3), square (4), filled_square (5), circle
(6), filled_circle (7), up_triangle (8), filled_up_triangle (9), down_triangle
(10), filled_down_triangle (11), diamant (12) and filled_diamant (13).
This option affects the following graphic objects:
• gr2d: points.
• gr3d: points.

Example:
(%i1) load(draw)$
(%i2) draw2d(xrange = [0,10],

yrange = [0,10],
point_size = 3,
point_type = diamant,
points([[1,1],[5,1],[9,1]]),
point_type = filled_down_triangle,
points([[1,2],[5,2],[9,2]]),
point_type = asterisk,
points([[1,3],[5,3],[9,3]]),

Chapter 48: draw 619

point_type = filled_diamant,
points([[1,4],[5,4],[9,4]]),
point_type = 5,
points([[1,5],[5,5],[9,5]]),
point_type = 6,
points([[1,6],[5,6],[9,6]]),
point_type = filled_circle,
points([[1,7],[5,7],[9,7]]),
point_type = 8,
points([[1,8],[5,8],[9,8]]),
point_type = filled_diamant,
points([[1,9],[5,9],[9,9]]))$

Graphic optionpoints joined
Default value: false
When points_joined is true, points are joined by lines; when false, isolated points
are drawn. A third possible value for this graphic option is impulses; in such case,
vertical segments are drawn from points to the x-axis (2D) or to the xy-plane (3D).
This option affects the following graphic objects:
• gr2d: points.
• gr3d: points.

Example:
(%i1) load(draw)$
(%i2) draw2d(xrange = [0,10],

yrange = [0,4],
point_size = 3,
point_type = up_triangle,
color = blue,
points([[1,1],[5,1],[9,1]]),
points_joined = true,
point_type = square,
line_type = dots,
points([[1,2],[5,2],[9,2]]),
point_type = circle,
color = red,
line_width = 7,
points([[1,3],[5,3],[9,3]]))$

Graphic optionfilled func
Default value: false
Option filled_func controls how regions limited by functions should be filled.
When filled_func is true, the region bounded by the function defined with object
explicit and the bottom of the graphic window is filled with fill_color. When
filled_func contains a function expression, then the region bounded by this
function and the function defined with object explicit will be filled. By default,
explicit functions are not filled.

620 Maxima Manual

This option affects only the 2d graphic object explicit.
Example:
Region bounded by an explicit object and the bottom of the graphic window.

(%i1) load(draw)$
(%i2) draw2d(fill_color = red,

filled_func = true,
explicit(sin(x),x,0,10))$

Region bounded by an explicit object and the function defined by option filled_
func. Note that the variable in filled_func must be the same as that used in
explicit.

(%i1) load(draw)$
(%i2) draw2d(fill_color = grey,

filled_func = sin(x),
explicit(-sin(x),x,0,%pi));

See also fill_color and explicit.

Graphic optiontransparent
Default value: false
If transparent is true, interior regions of polygons are filled according to fill_
color.
This option affects the following graphic objects:
• gr2d: polygon, rectangle, and ellipse.

Example:
(%i1) load(draw)$
(%i2) draw2d(polygon([[3,2],[7,2],[5,5]]),

transparent = true,
color = blue,
polygon([[5,2],[9,2],[7,5]]))$

Graphic optionborder
Default value: true
If border is true, borders of polygons are painted according to line_type and line_
width.
This option affects the following graphic objects:
• gr2d: polygon, rectangle, and ellipse.

Example:
(%i1) load(draw)$
(%i2) draw2d(color = brown,

line_width = 8,
polygon([[3,2],[7,2],[5,5]]),
border = false,
fill_color = blue,
polygon([[5,2],[9,2],[7,5]]))$

Chapter 48: draw 621

Graphic optionhead both
Default value: false
If head_both is true, vectors are plotted with two arrow heads. If false, only one
arrow is plotted.
This option is relevant only for vector objects.
Example:

(%i1) load(draw)$
(%i2) draw2d(xrange = [0,8],

yrange = [0,8],
head_length = 0.7,
vector([1,1],[6,0]),
head_both = true,
vector([1,7],[6,0]))$

See also head_length, head_angle, and head_type.

Graphic optionhead length
Default value: 2
head_length indicates, in x-axis units, the length of arrow heads.
This option is relevant only for vector objects.
Example:

(%i1) load(draw)$
(%i2) draw2d(xrange = [0,12],

yrange = [0,8],
vector([0,1],[5,5]),
head_length = 1,
vector([2,1],[5,5]),
head_length = 0.5,
vector([4,1],[5,5]),
head_length = 0.25,
vector([6,1],[5,5]))$

See also head_both, head_angle, and head_type.

Graphic optionhead angle
Default value: 45
head_angle indicates the angle, in degrees, between the arrow heads and the segment.
This option is relevant only for vector objects.
Example:

(%i1) load(draw)$
(%i2) draw2d(xrange = [0,10],

yrange = [0,9],
head_length = 0.7,
head_angle = 10,
vector([1,1],[0,6]),
head_angle = 20,
vector([2,1],[0,6]),

622 Maxima Manual

head_angle = 30,
vector([3,1],[0,6]),
head_angle = 40,
vector([4,1],[0,6]),
head_angle = 60,
vector([5,1],[0,6]),
head_angle = 90,
vector([6,1],[0,6]),
head_angle = 120,
vector([7,1],[0,6]),
head_angle = 160,
vector([8,1],[0,6]),
head_angle = 180,
vector([9,1],[0,6]))$

See also head_both, head_length, and head_type.

Graphic optionhead type
Default value: filled
head_type is used to specify how arrow heads are plotted. Possible values are:
filled (closed and filled arrow heads), empty (closed but not filled arrow heads),
and nofilled (open arrow heads).
This option is relevant only for vector objects.
Example:

(%i1) load(draw)$
(%i2) draw2d(xrange = [0,12],

yrange = [0,10],
head_length = 1,
vector([0,1],[5,5]), /* default type */
head_type = ’empty,
vector([3,1],[5,5]),
head_type = ’nofilled,
vector([6,1],[5,5]))$

See also head_both, head_angle, and head_length.

Graphic optionunit vectors
Default value: false
If unit_vectors is true, vectors are plotted with module 1. This is useful for plotting
vector fields. If unit_vectors is false, vectors are plotted with its original length.
This option is relevant only for vector objects.
Example:

(%i1) load(draw)$
(%i2) draw2d(xrange = [-1,6],

yrange = [-1,6],
head_length = 0.1,
vector([0,0],[5,2]),
unit_vectors = true,

Chapter 48: draw 623

color = red,
vector([0,3],[5,2]))$

Graphic optionlabel alignment
Default value: center
label_alignment is used to specify where to write labels with respect to the given
coordinates. Possible values are: center, left, and right.
This option is relevant only for label objects.
Example:

(%i1) load(draw)$
(%i2) draw2d(xrange = [0,10],

yrange = [0,10],
points_joined = true,
points([[5,0],[5,10]]),
color = blue,
label(["Centered alignment (default)",5,2]),
label_alignment = ’left,
label(["Left alignment",5,5]),
label_alignment = ’right,
label(["Right alignment",5,8]))$

See also label_orientation, and color.

Graphic optionlabel orientation
Default value: horizontal
label_orientation is used to specify orientation of labels. Possible values are:
horizontal, and vertical.
This option is relevant only for label objects.
Example:
In this example, a dummy point is added to get an image. Package draw needs always
data to draw an scene.

(%i1) load(draw)$
(%i2) draw2d(xrange = [0,10],

yrange = [0,10],
point_size = 0,
points([[5,5]]),
color = navy,
label(["Horizontal orientation (default)",5,2]),
label_orientation = ’vertical,
color = "#654321",
label(["Vertical orientation",1,5]))$

See also label_alignment and color.

Graphic optioncolor
Default value: "black"
color specifies the color for plotting lines, points, borders of polygons and labels.

624 Maxima Manual

Colors can be given as names or in hexadecimal rgb code.
Available color names are: "white", "black", "gray0", "grey0", "gray10",
"grey10", "gray20", "grey20", "gray30", "grey30", "gray40", "grey40",
"gray50", "grey50", "gray60", "grey60", "gray70", "grey70", "gray80",
"grey80", "gray90", "grey90", "gray100", "grey100", "gray", "grey",
"light-gray", "light-grey", "dark-gray", "dark-grey", "red", "light-
red", "dark-red", "yellow", "light-yellow", "dark-yellow", "green",
"light-green", "dark-green", "spring-green", "forest-green", "sea-green",
"blue", "light-blue", "dark-blue", "midnight-blue", "navy", "medium-blue",
"royalblue", "skyblue", "cyan", "light-cyan", "dark-cyan", "magenta",
"light-magenta", "dark-magenta", "turquoise", "light-turquoise", "dark-
turquoise", "pink", "light-pink", "dark-pink", "coral", "light-coral",
"orange-red", "salmon", "light-salmon", "dark-salmon", "aquamarine",
"khaki", "dark-khaki", "goldenrod", "light-goldenrod", "dark-goldenrod",
"gold", "beige", "brown", "orange", "dark-orange", "violet", "dark-violet",
"plum" and "purple".
Cromatic componentes in hexadecimal code are introduced in the form "#rrggbb".
Example:

(%i1) load(draw)$
(%i2) draw2d(explicit(x^2,x,-1,1), /* default is black */

color = "red",
explicit(0.5 + x^2,x,-1,1),
color = blue,
explicit(1 + x^2,x,-1,1),
color = "light-blue", /* double quotes if - is used */
explicit(1.5 + x^2,x,-1,1),
color = "#23ab0f",
label(["This is a label",0,1.2]))$

See also fill_color.

Graphic optionfill color
Default value: "red"
fill_color specifies the color for filling polygons and 2d explicit functions.
See color to learn how colors are specified.

Graphic optionfill density
Default value: 0
fill_density is a number between 0 and 1 that specifies the intensity of the fill_
color in bars objects.
See bars for examples.

Graphic optionline width
Default value: 1
line_width is the width of plotted lines. Its value must be a positive number.
This option affects the following graphic objects:

Chapter 48: draw 625

• gr2d: points, polygon, rectangle, ellipse, vector, explicit, implicit,
parametric and polar.

• gr3d: points and parametric.

Example:
(%i1) load(draw)$
(%i2) draw2d(explicit(x^2,x,-1,1), /* default width */

line_width = 5.5,
explicit(1 + x^2,x,-1,1),
line_width = 10,
explicit(2 + x^2,x,-1,1))$

See also line_type.

Graphic optionline type
Default value: solid

line_type indicates how lines are displayed; possible values are solid and dots.

This option affects the following graphic objects:

• gr2d: points, polygon, rectangle, ellipse, vector, explicit, implicit,
parametric and polar.

• gr3d: points, explicit, parametric and parametric_surface.

Example:
(%i1) load(draw)$
(%i2) draw2d(line_type = dots,

explicit(1 + x^2,x,-1,1),
line_type = solid, /* default */
explicit(2 + x^2,x,-1,1))$

See also line_width.

Graphic optionnticks
Default value: 30

In 2d, nticks gives the initial number of points used by the adaptive plotting routine
for explicit objects. It is also the number of points that will be shown in parametric
and polar curves.

This option affects the following graphic objects:

• gr2d: ellipse, explicit, parametric and polar.

• gr3d: parametric.

Example:
(%i1) load(draw)$
(%i2) draw2d(transparent = true,

ellipse(0,0,4,2,0,180),
nticks = 5,
ellipse(0,0,4,2,180,180))$

626 Maxima Manual

Graphic optionadapt depth
Default value: 10
adapt_depth is the maximum number of splittings used by the adaptive plotting
routine.
This option is relevant only for 2d explicit functions.

Graphic optionkey
Default value: "" (empty string)
key is the name of a function in the legend. If key is an empty string, no key is
assigned to the function.
This option affects the following graphic objects:
• gr2d: points, polygon, rectangle, ellipse, vector, explicit, implicit,

parametric, and polar.
• gr3d: points, explicit, parametric, and parametric_surface.

Example:
(%i1) load(draw)$
(%i2) draw2d(key = "Sinus",

explicit(sin(x),x,0,10),
key = "Cosinus",
color = red,
explicit(cos(x),x,0,10))$

Graphic optionxu grid
Default value: 30
xu_grid is the number of coordinates of the first variable (x in explicit and u in
parametric 3d surfaces) to build the grid of sample points.
This option affects the following graphic objects:
• gr3d: explicit and parametric_surface.

Example:
(%i1) load(draw)$
(%i2) draw3d(xu_grid = 10,

yv_grid = 50,
explicit(x^2+y^2,x,-3,3,y,-3,3))$

See also yv_grid.

Graphic optionyv grid
Default value: 30
yv_grid is the number of coordinates of the second variable (y in explicit and v in
parametric 3d surfaces) to build the grid of sample points.
This option affects the following graphic objects:
• gr3d: explicit and parametric_surface.

Example:

Chapter 48: draw 627

(%i1) load(draw)$
(%i2) draw3d(xu_grid = 10,

yv_grid = 50,
explicit(x^2+y^2,x,-3,3,y,-3,3))$

See also xu_grid.

Graphic optionsurface hide
Default value: false
If surface_hide is true, hidden parts are not plotted in 3d surfaces.
Since this is a global graphics option, its position in the scene description does not
matter.
Example:

(%i1) load(draw)$
(%i2) draw(columns=2,

gr3d(explicit(exp(sin(x)+cos(x^2)),x,-3,3,y,-3,3)),
gr3d(surface_hide = true,

explicit(exp(sin(x)+cos(x^2)),x,-3,3,y,-3,3)))$

Graphic optioncontour
Default value: none
Option contour enables the user to select where to plot contour lines. Possible values
are:
• none: no contour lines are plotted.
• base: contour lines are projected on the xy plane.
• surface: contour lines are plotted on the surface.
• both: two contour lines are plotted: on the xy plane and on the surface.
• map: contour lines are projected on the xy plane, and the view point is set just

in the vertical.

Since this is a global graphics option, its position in the scene description does not
matter.
Example:

(%i1) load(draw)$
(%i2) draw3d(explicit(20*exp(-x^2-y^2)-10,x,0,2,y,-3,3),

contour_levels = 15,
contour = both,
surface_hide = true) $

Graphic optioncontour levels
Default value: 5
This graphic option controls the way contours are drawn. contour_levels can be set
to a positive integer number, a list of three numbers or an arbitrary set of numbers:
• When option contour_levels is bounded to positive integer n, n contour lines

will be drawn at equal intervals. By default, five equally spaced contours are
plotted.

628 Maxima Manual

• When option contour_levels is bounded to a list of length three of the form
[lowest,s,highest], contour lines are plotted from lowest to highest in steps
of s.

• When option contour_levels is bounded to a set of numbers of the form {n1,
n2, ...}, contour lines are plotted at values n1, n2, ...

Since this is a global graphics option, its position in the scene description does not
matter.
Examples:
Ten equally spaced contour lines. The actual number of levels can be adjusted to give
simple labels.

(%i1) load(draw)$
(%i2) draw3d(color = green,

explicit(20*exp(-x^2-y^2)-10,x,0,2,y,-3,3),
contour_levels = 10,
contour = both,
surface_hide = true) $

From -8 to 8 in steps of 4.
(%i1) load(draw)$
(%i2) draw3d(color = green,

explicit(20*exp(-x^2-y^2)-10,x,0,2,y,-3,3),
contour_levels = [-8,4,8],
contour = both,
surface_hide = true) $

Isolines at levels -7, -6, 0.8 and 5.
(%i1) load(draw)$
(%i2) draw3d(color = green,

explicit(20*exp(-x^2-y^2)-10,x,0,2,y,-3,3),
contour_levels = {-7, -6, 0.8, 5},
contour = both,
surface_hide = true) $

See also contour.

Graphic optioncolumns
Default value: 1
columns is the number of columns in multiple plots.
Since this is a global graphics option, its position in the scene description does not
matter. It can be also used as an argument of function draw.
Example:

(%i1) load(draw)$
(%i2) scene1: gr2d(title="Ellipse",

nticks=30,
parametric(2*cos(t),5*sin(t),t,0,2*%pi))$

(%i3) scene2: gr2d(title="Triangle",
polygon([4,5,7],[6,4,2]))$

(%i4) draw(scene1, scene2, columns = 2)$

Chapter 48: draw 629

Graphic optionip grid
Default value: [50, 50]

ip_grid sets the grid for the first sampling in implicit plots.
This option is relevant only for implicit objects.

Graphic optionip grid in
Default value: [5, 5]

ip_grid_in sets the grid for the second sampling in implicit plots.
This option is relevant only for implicit objects.

Graphic optionx voxel
Default value: 10
x_voxel is the number of voxels in the x direction to be used by the marching cubes
algorithm implemented by the 3d implicit object.

Graphic optiony voxel
Default value: 10
y_voxel is the number of voxels in the y direction to be used by the marching cubes
algorithm implemented by the 3d implicit object.

Graphic optionz voxel
Default value: 10
z_voxel is the number of voxels in the z direction to be used by the marching cubes
algorithm implemented by the 3d implicit object.

Scene constructorgr2d (graphic option, ..., graphic object, ...)
Function gr2d builds an object describing a 2D scene. Arguments are graphic options
and graphic objects. This scene is interpreted sequentially: graphic options affect those
graphic objects placed on its right. Some graphic options affect the global appearence
of the scene.
This is the list of graphic objects available for scenes in two dimensions: points,
polygon, rectangle, bars, ellipse, label, vector, explicit, implicit, polar,
parametric, image and geomap.
See also the following global graphic options: xrange, yrange, logx, logy, terminal,
grid, title, xlabel, ylabel, xtics, ytics, xtics_rotate, ytics_rotate, xtics_
axis, ytics_axis, xaxis, yaxis, xaxis_width, yaxis_width, xaxis_type, yaxis_
type, xaxis_color, yaxis_color, xy_file, file_name, pic_width, pic_height,
eps_width, eps_height, user_preamble, axis_bottom, axis_left, axis_top and
axis_right.
To make use of this function, write first load(draw).

Scene constructorgr3d (graphic option, ..., graphic object, ...)
Function gr3d builds an object describing a 3d scene. Arguments are graphic options
and graphic objects. This scene is interpreted sequentially: graphic options affect those

630 Maxima Manual

graphic objects placed on its right. Some graphic options affect the global appearence
of the scene.
This is the list of graphic objects available for scenes in three dimensions: points,
label, vector, explicit, implicit, parametric, parametric_surface and
geomap.
See also the following global graphic options: xrange, yrange, zrange, logx,
logy, logz, terminal, grid, title, xlabel, ylabel, zlabel, xtics, ytics,
ztics, xtics_rotate, ytics_rotate, ztics_rotate, xtics_axis, ytics_axis,
ztics_axis, xaxis, yaxis, zaxis, xaxis_width, yaxis_width, zaxis_width,
xaxis_type, yaxis_type, zaxis_type, xaxis_color, yaxis_color, zaxis_color,
xy_file, user_preamble, axis_bottom, axis_left, axis_top, file_name,
pic_width, pic_height, eps_width, eps_height, axis_right, rot_vertical,
rot_horizontal, axis_3d, xu_grid, yv_grid, surface_hide, contour,
contour_levels, palette, colorbox and enhanced3d.
To make use of this function, write first load(draw).

Graphic objectpoints ([[x1,y1], [x2,y2],...])
Graphic objectpoints ([x1,x2,...], [y1,y2,...])
Graphic objectpoints ([y1,y2,...])
Graphic objectpoints ([[x1,y1,z1], [x2,y2,z2],...])
Graphic objectpoints ([x1,x2,...], [y1,y2,...], [z1,z2,...])
Graphic objectpoints (matrix)

Draws points in 2D and 3D.
This object is affected by the following graphic options: point_size, point_type,
points_joined, line_width, key, line_type and color.
2D

points ([[x1,y1], [x2,y2],...]) or points ([x1,x2,...], [y1,y2,...]) plots
points [x1,y1], [x2,y2], etc. If abscissas are not given, they are set to consecu-
tive positive integers, so that points ([y1,y2,...]) draws points [1,y1], [2,y2],
etc. If matrix is a two-column or two-row matrix, points (matrix) draws the asso-
ciated points. If matrix is a one-column or one-row matrix, abscissas are assigned
automatically.
Example:

(%i1) load(draw)$
(%i2) draw2d(

key = "Small points",
points(makelist([random(20),random(50)],k,1,10)),
point_type = circle,
point_size = 3,
points_joined = true,
key = "Great points",
points(makelist(k,k,1,20),makelist(random(30),k,1,20)),
point_type = filled_down_triangle,
key = "Automatic abscissas",
color = red,
points([2,12,8]))$

Chapter 48: draw 631

(%i1) load(draw)$
(%i2) draw2d(

points_joined = impulses,
line_width = 2,
color = red,
points(makelist([random(20),random(50)],k,1,10)))$

3D

points ([[x1,y1,z1], [x2,y2,z2],...]) or points ([x1,x2,...],
[y1,y2,...], [z1,z2,...]) plots points [x1,y1,z1], [x2,y2,z2], etc. If matrix is
a three-column or three-row matrix, points (matrix) draws the associated points.

Examples:

One tridimensional sample,
(%i1) load(draw)$
(%i2) load (numericalio)$
(%i3) s2 : read_matrix (file_search ("wind.data"))$
(%i4) draw3d(title = "Daily average wind speeds",

point_size = 2,
points(args(submatrix (s2, 4, 5))))$

Two tridimensional samples,
(%i1) load(draw)$
(%i2) load (numericalio)$
(%i3) s2 : read_matrix (file_search ("wind.data"))$
(%i4) draw3d(

title = "Daily average wind speeds. Two data sets",
point_size = 2,
key = "Sample from stations 1, 2 and 3",
points(args(submatrix (s2, 4, 5))),
point_type = 4,
key = "Sample from stations 1, 4 and 5",
points(args(submatrix (s2, 2, 3))))$

Graphic objectpolygon ([[x1,y1], [x2,y2],...])
Graphic objectpolygon ([x1,x2,...], [y1,y2,...])

Draws polygons in 2D.

2D

polygon ([[x1,y1], [x2,y2],...]) or polygon ([x1,x2,...], [y1,y2,...]):
plots on the plane a polygon with vertices [x1,y1], [x2,y2], etc..

This object is affected by the following graphic options: transparent, fill_color,
border, line_width, key, line_type and color.

Example:
(%i1) load(draw)$
(%i2) draw2d(color = "#e245f0",

line_width = 8,
polygon([[3,2],[7,2],[5,5]]),
border = false,

632 Maxima Manual

fill_color = yellow,
polygon([[5,2],[9,2],[7,5]]))$

Graphic objectrectangle ([x1,y1], [x2,y2])
Draws rectangles in 2D.

2D

rectangle ([x1,y1], [x2,y2]) draws a rectangle with opposite vertices [x1,y1]
and [x2,y2].

This object is affected by the following graphic options: transparent, fill_color,
border, line_width, key, line_type and color.

Example:
(%i1) load(draw)$
(%i2) draw2d(fill_color = red,

line_width = 6,
line_type = dots,
transparent = false,
fill_color = blue,
rectangle([-2,-2],[8,-1]), /* opposite vertices */
transparent = true,
line_type = solid,
line_width = 1,
rectangle([9,4],[2,-1.5]),
xrange = [-3,10],
yrange = [-3,4.5])$

Graphic objectbars ([x1,h1,w1], [x2,h2,w2, ...])
Draws vertical bars in 2D.

2D

bars ([x1,h1,w1], [x2,h2,w2, ...]) draws bars centered at values x1, x2, ... with
heights h1, h2, ... and widths w1, w2, ...

This object is affected by the following graphic options: key, fill_color, fill_
density and line_width.

Example:
(%i1) load(draw)$
(%i2) draw2d(

key = "Group A",
fill_color = blue,
fill_density = 0.2,
bars([0.8,5,0.4],[1.8,7,0.4],[2.8,-4,0.4]),
key = "Group B",
fill_color = red,
fill_density = 0.6,
line_width = 4,
bars([1.2,4,0.4],[2.2,-2,0.4],[3.2,5,0.4]),
xaxis = true);

Chapter 48: draw 633

Graphic objectellipse (xc, yc, a, b, ang1, ang2)
Draws ellipses and circles in 2D.
2D

ellipse (xc, yc, a, b, ang1, ang2) plots an ellipse centered at [xc, yc] with hor-
izontal and vertical semi axis a and b, respectively, from angle ang1 to angle ang2.
This object is affected by the following graphic options: nticks, transparent, fill_
color, border, line_width, line_type, key and color.
Example:

(%i1) load(draw)$
(%i2) draw2d(transparent = false,

fill_color = red,
color = gray30,
transparent = false,
line_width = 5,
ellipse(0,6,3,2,270,-270),
/* center (x,y), a, b, start & end in degrees */
transparent = true,
color = blue,
line_width = 3,
ellipse(2.5,6,2,3,30,-90),
xrange = [-3,6],
yrange = [2,9])$

Graphic objectlabel ([string,x,y],...)
Graphic objectlabel ([string,x,y,z],...)

Writes labels in 2D and 3D.
This object is affected by the following graphic options: label_alignment, label_
orientation and color.
2D

label([string,x,y]) writes the string at point [x,y].
Example:

(%i1) load(draw)$
(%i2) draw2d(yrange = [0.1,1.4],

color = "red",
label(["Label in red",0,0.3]),
color = "#0000ff",
label(["Label in blue",0,0.6]),
color = "light-blue",
label(["Label in light-blue",0,0.9],

["Another light-blue",0,1.2]))$

3D

label([string,x,y,z]) writes the string at point [x,y,z].
Example:

(%i1) load(draw)$
(%i2) draw3d(explicit(exp(sin(x)+cos(x^2)),x,-3,3,y,-3,3),

634 Maxima Manual

color = red,
label(["UP 1",-2,0,3], ["UP 2",1.5,0,4]),
color = blue,
label(["DOWN 1",2,0,-3]))$

Graphic objectvector ([x,y], [dx,dy])
Graphic objectvector ([x,y,z], [dx,dy,dz])

Draws vectors in 2D and 3D.
This object is affected by the following graphic options: head_both, head_length,
head_angle, head_type, line_width, line_type, key and color.
2D

vector([x,y], [dx,dy]) plots vector [dx,dy] with origin in [x,y].
Example:

(%i1) load(draw)$
(%i2) draw2d(xrange = [0,12],

yrange = [0,10],
head_length = 1,
vector([0,1],[5,5]), /* default type */
head_type = ’empty,
vector([3,1],[5,5]),
head_both = true,
head_type = ’nofilled,
line_type = dots,
vector([6,1],[5,5]))$

3D

vector([x,y,z], [dx,dy,dz]) plots vector [dx,dy,dz] with origin in [x,y,z].
Example:

(%i1) load(draw)$
(%i2) draw3d(color = cyan,

vector([0,0,0],[1,1,1]/sqrt(3)),
vector([0,0,0],[1,-1,0]/sqrt(2)),
vector([0,0,0],[1,1,-2]/sqrt(6)))$

Graphic objectexplicit (fcn,var,minval,maxval)
Graphic objectexplicit (fcn,var1,minval1,maxval1,var2,minval2,maxval2)

Draws explicit functions in 2D and 3D.
2D

explicit(fcn,var,minval,maxval) plots explicit function fcn, with variable var tak-
ing values from minval to maxval.
This object is affected by the following graphic options: nticks, adapt_depth, line_
width, line_type, key, filled_func, fill_color and color.
Example:

(%i1) load(draw)$
(%i2) draw2d(line_width = 3,

color = blue,

Chapter 48: draw 635

explicit(x^2,x,-3,3))$
(%i3) draw2d(fill_color = brown,

filled_func = true,
explicit(x^2,x,-3,3))$

3D

explicit(fcn,var1,minval1,maxval1,var2,minval2,maxval2) plots explicit
function fcn, with variable var1 taking values from minval1 to maxval1 and variable
var2 taking values from minval2 to maxval2.
This object is affected by the following graphic options: xu_grid, yv_grid, line_
type, key and color.
Example:

(%i1) load(draw)$
(%i2) draw3d(key = "Gauss",

color = "#a02c00",
explicit(20*exp(-x^2-y^2)-10,x,-3,3,y,-3,3),
yv_grid = 10,
color = blue,
key = "Plane",
explicit(x+y,x,-5,5,y,-5,5),
surface_hide = true)$

See also filled_func for filled functions.

Graphic objectimplicit (fcn,x,xmin,xmax,y,ymin,ymax)
Graphic objectimplicit (fcn,x,xmin,xmax,y,ymin,ymax,z,zmin,zmax)

Draws implicit functions in 2D and 3D.
2D

implicit(fcn,x,xmin,xmax,y,ymin,ymax) plots the implicit function defined by
fcn, with variable x taking values from xmin to xmax, and variable y taking values
from ymin to ymax.
This object is affected by the following graphic options: ip_grid, ip_grid_in, line_
width, line_type, key and color.
Example:

(%i1) load(draw)$
(%i2) draw2d(terminal = eps,

grid = true,
line_type = solid,
key = "y^2=x^3-2*x+1",
implicit(y^2=x^3-2*x+1, x, -4,4, y, -4,4),
line_type = dots,
key = "x^3+y^3 = 3*x*y^2-x-1",
implicit(x^3+y^3 = 3*x*y^2-x-1, x,-4,4, y,-4,4),
title = "Two implicit functions")$

3D

implicit (fcn,x,xmin,xmax, y,ymin,ymax, z,zmin,zmax) plots the implicit sur-
face defined by fcn, with variable x taking values from xmin to xmax, variable y

636 Maxima Manual

taking values from ymin to ymax and variable z taking values from zmin to zmax.
This object implements the marching cubes algorithm.
This object is affected by the following graphic options: x_voxel, y_voxel, z_voxel,
line_width, line_type, key and color.
Example:

(%i1) load(draw)$
(%i2) draw3d(

color=blue,
implicit((x^2+y^2+z^2-1)*(x^2+(y-1.5)^2+z^2-0.5)=0.015,

x,-1,1,y,-1.2,2.3,z,-1,1),
surface_hide=true);

Graphic objectpolar (radius,ang,minang,maxang)
Draws 2D functions defined in polar coordinates.
2D

polar (radius,ang,minang,maxang) plots function radius(ang) defined in polar co-
ordinates, with variable ang taking values from minang to maxang.
This object is affected by the following graphic options: nticks, line_width, line_
type, key and color.
Example:

(%i1) load(draw)$
(%i2) draw2d(user_preamble = "set grid polar",

nticks = 200,
xrange = [-5,5],
yrange = [-5,5],
color = blue,
line_width = 3,
title = "Hyperbolic Spiral",
polar(10/theta,theta,1,10*%pi))$

Graphic objectspherical (radius,azi,minazi,maxazi,zen,minzen,maxzen)
Draws 3D functions defined in spherical coordinates.
3D

spherical (radius,azi,minazi,maxazi,zen,minzen,maxzen) plots function
radius(azi,zen) defined in spherical coordinates, with azimuth azi taking values
from minazi to maxazi and zenith zen taking values from minzen to maxzen.
This object is affected by the following graphic options: xu_grid, yv_grid, line_
type, key and color.
Example:

(%i1) load(draw)$
(%i2) draw3d(spherical(1,a,0,2*%pi,z,0,%pi))$

Graphic objectcylindrical (radius,z,minz,maxz,azi,minazi,maxazi)
Draws 3D functions defined in cylindrical coordinates.

Chapter 48: draw 637

3D

cylindrical (radius,z,minz,maxz,azi,minazi,maxazi) plots function ra-
dius(z,azi) defined in cylindrical coordinates, with variable z taking values from
minz to maxz and azimuth azi taking values from minazi to maxazi.
This object is affected by the following graphic options: xu_grid, yv_grid, line_
type, key and color.
Example:

(%i1) load(draw)$
(%i2) draw3d(cylindrical(1,z,-2,2,az,0,2*%pi))$

Graphic objectparametric (xfun,yfun,par,parmin,parmax)
Graphic objectparametric (xfun,yfun,zfun,par,parmin,parmax)

Draws parametric functions in 2D and 3D.
This object is affected by the following graphic options: nticks, line_width, line_
type, key and color.
2D

parametric (xfun,yfun,par,parmin,parmax) plots parametric function
[xfun,yfun], with parameter par taking values from parmin to parmax.
Example:

(%i1) load(draw)$
(%i2) draw2d(explicit(exp(x),x,-1,3),

color = red,
key = "This is the parametric one!!",
parametric(2*cos(rrr),rrr^2,rrr,0,2*%pi))$

3D

parametric (xfun,yfun,zfun,par,parmin,parmax) plots parametric curve
[xfun,yfun,zfun], with parameter par taking values from parmin to parmax.
Example:

(%i1) load(draw)$
(%i2) draw3d(explicit(exp(sin(x)+cos(x^2)),x,-3,3,y,-3,3),

color = royalblue,
parametric(cos(5*u)^2,sin(7*u),u-2,u,0,2),
color = turquoise,
line_width = 2,
parametric(t^2,sin(t),2+t,t,0,2),
surface_hide = true,
title = "Surface & curves")$

Graphic objectimage (im,x0,y0,width,height)
Renders images in 2D.
2D

image (im,x0,y0,width,height) plots image im in the rectangular region from vertex
(x0,y0) to (x0+width,y0+height) on the real plane. Argument im must be a matrix
of real numbers, a matrix of vectors of length three or a picture object.

638 Maxima Manual

If im is a matrix of real numbers or a levels picture object, pixel values are inter-
preted according to graphic option palette, which is a vector of length three with
components ranging from -36 to +36; each value is an index for a formula mapping
the levels onto red, green and blue colors, respectively:

0: 0 1: 0.5 2: 1
3: x 4: x^2 5: x^3
6: x^4 7: sqrt(x) 8: sqrt(sqrt(x))
9: sin(90x) 10: cos(90x) 11: |x-0.5|
12: (2x-1)^2 13: sin(180x) 14: |cos(180x)|
15: sin(360x) 16: cos(360x) 17: |sin(360x)|
18: |cos(360x)| 19: |sin(720x)| 20: |cos(720x)|
21: 3x 22: 3x-1 23: 3x-2
24: |3x-1| 25: |3x-2| 26: (3x-1)/2
27: (3x-2)/2 28: |(3x-1)/2| 29: |(3x-2)/2|
30: x/0.32-0.78125 31: 2*x-0.84
32: 4x;1;-2x+1.84;x/0.08-11.5
33: |2*x - 0.5| 34: 2*x 35: 2*x - 0.5
36: 2*x - 1

negative numbers mean negative colour component.

palette = gray and palette = color are short cuts for palette = [3,3,3] and
palette = [7,5,15], respectively.

If im is a matrix of vectors of length three or an rgb picture object, they are interpreted
as red, green and blue color components.

Examples:

If im is a matrix of real numbers, pixel values are interpreted according to graphic
option palette.

(%i1) load(draw)$
(%i2) im: apply(

’matrix,
makelist(makelist(random(200),i,1,30),i,1,30))$

(%i3) /* palette = color, default */
draw2d(image(im,0,0,30,30))$

(%i4) draw2d(palette = gray, image(im,0,0,30,30))$
(%i5) draw2d(palette = [15,20,-4],

colorbox=false,
image(im,0,0,30,30))$

See also colorbox.

If im is a matrix of vectors of length three, they are interpreted as red, green and
blue color components.

(%i1) load(draw)$
(%i2) im: apply(

’matrix,
makelist(
makelist([random(300),

random(300),
random(300)],i,1,30),i,1,30))$

Chapter 48: draw 639

(%i3) draw2d(image(im,0,0,30,30))$

Package draw automatically loads package picture. In this example, a level picture
object is built by hand and then rendered.

(%i1) load(draw)$
(%i2) im: make_level_picture([45,87,2,134,204,16],3,2);
(%o2) picture(level, 3, 2, {Array: #(45 87 2 134 204 16)})
(%i3) /* default color palette */

draw2d(image(im,0,0,30,30))$
(%i4) /* gray palette */

draw2d(palette = gray,
image(im,0,0,30,30))$

An xpm file is read and then rendered.
(%i1) load(draw)$
(%i2) im: read_xpm("myfile.xpm")$
(%i3) draw2d(image(im,0,0,10,7))$

See also make_level_picture, make_rgb_picture and read_xpm.
URL http://www.telefonica.net/web2/biomates/maxima/gpdraw/image
contains more elaborated examples.

Global variableboundaries array
Default value: false
boundaries_array is where the graphic object geomap looks for boundaries coordi-
nates.
Each component of boundaries_array is an array of floating point quantities, the
coordinates of a polygonal segment or map boundary.
See also geomap.

Graphic objectgeomap (numlist)
Graphic objectgeomap (numlist,3Dprojection)

Draws cartographic maps in 2D and 3D.
2D

This function works together with global variable boundaries_array.
Argument numlist is a list containing numbers or lists of numbers. All these numbers
must be integers greater or equal than zero, representing the components of global
array boundaries_array.
Each component of boundaries_array is an array of floating point quantities, the
coordinates of a polygonal segment or map boundary.
geomap (numlist) flattens its arguments and draws the associated boundaries in
boundaries_array.
This object is affected by the following graphic options: line_width, line_type and
color.
Examples:
A simple map defined by hand:

640 Maxima Manual

(%i1) load(draw)$
(%i2) /* Vertices of boundary #0: {(1,1),(2,5),(4,3)} */

(bnd0: make_array(flonum,6),
bnd0[0]:1.0, bnd0[1]:1.0, bnd0[2]:2.0,
bnd0[3]:5.0, bnd0[4]:4.0, bnd0[5]:3.0)$

(%i3) /* Vertices of boundary #1: {(4,3),(5,4),(6,4),(5,1)} */
(bnd1: make_array(flonum,8),
bnd1[0]:4.0, bnd1[1]:3.0, bnd1[2]:5.0, bnd1[3]:4.0,
bnd1[4]:6.0, bnd1[5]:4.0, bnd1[6]:5.0, bnd1[7]:1.0)$

(%i4) /* Vertices of boundary #2: {(5,1), (3,0), (1,1)} */
(bnd2: make_array(flonum,6),
bnd2[0]:5.0, bnd2[1]:1.0, bnd2[2]:3.0,
bnd2[3]:0.0, bnd2[4]:1.0, bnd2[5]:1.0)$

(%i5) /* Vertices of boundary #3: {(1,1), (4,3)} */
(bnd3: make_array(flonum,4),
bnd3[0]:1.0, bnd3[1]:1.0, bnd3[2]:4.0, bnd3[3]:3.0)$

(%i6) /* Vertices of boundary #4: {(4,3), (5,1)} */
(bnd4: make_array(flonum,4),
bnd4[0]:4.0, bnd4[1]:3.0, bnd4[2]:5.0, bnd4[3]:1.0)$

(%i7) /* Pack all together in boundaries_array */
(boundaries_array: make_array(any,5),
boundaries_array[0]: bnd0, boundaries_array[1]: bnd1,
boundaries_array[2]: bnd2, boundaries_array[3]: bnd3,
boundaries_array[4]: bnd4)$

(%i8) draw2d(geomap([0,1,2,3,4]))$

Auxiliary package worldmap sets global variable boundaries_array to real world
boundaries in (longitude, latitude) coordinates. These data are in the public domain
and come from http://www-cger.nies.go.jp/grid-e/gridtxt/grid19.html.
Package worldmap defines also boundaries for countries, continents and
coastlines as lists with the necessary components of boundaries_array (see
file share/draw/worldmap.mac for more information). Package draw does not
automatically load worldmap.

(%i1) load(draw)$
(%i2) load(worldmap)$
(%i3) c1: gr2d(geomap(Canada,United_States,

Mexico,Cuba))$
(%i4) c2: gr2d(geomap(Africa))$
(%i5) c3: gr2d(geomap(Oceania,China,Japan))$
(%i6) c4: gr2d(geomap(France,Portugal,Spain,

Morocco,Western_Sahara))$
(%i7) draw(columns = 2,

c1,c2,c3,c4)$

Package worldmap is also useful for plotting countries as polygons. In this case,
graphic object geomap is no longer necessary and the polygon object is used instead.
Since lists are now used and not arrays, maps rendering will be slower. See also
make_poly_country and make_poly_continent to understand the following code.

(%i1) load(draw)$
(%i2) load(worldmap)$

Chapter 48: draw 641

(%i3) mymap: append(
[color = white], /* borders are white */
[fill_color = red], make_poly_country(Bolivia),
[fill_color = cyan], make_poly_country(Paraguay),
[fill_color = green], make_poly_country(Colombia),
[fill_color = blue], make_poly_country(Chile),
[fill_color = "#23ab0f"], make_poly_country(Brazil),
[fill_color = goldenrod], make_poly_country(Argentina),
[fill_color = "midnight-blue"], make_poly_country(Uruguay))$

(%i4) apply(draw2d, mymap)$

3D

geomap (numlist) projects map boundaries on the sphere of radius 1 centered at
(0,0,0). It is possible to change the sphere or the projection type by using geomap
(numlist,3Dprojection).

Available 3D projections:

• [spherical_projection,x,y,z,r]: projects map boundaries on the sphere of
radius r centered at (x,y,z).

(%i1) load(draw)$
(%i2) load(worldmap)$
(%i3) draw3d(geomap(Australia), /* default projection */

geomap(Australia,
[spherical_projection,2,2,2,3]))$

• [cylindrical_projection,x,y,z,r,rc]: re-projects spherical map boundaries
on the cylinder of radius rc and axis passing through the poles of the globe of
radius r centered at (x,y,z).

(%i1) load(draw)$
(%i2) load(worldmap)$
(%i3) draw3d(geomap([America_coastlines,Eurasia_coastlines],

[cylindrical_projection,2,2,2,3,4]))$

• [conic_projection,x,y,z,r,alpha]: re-projects spherical map boundaries on
the cones of angle alpha, with axis passing through the poles of the globe of
radius r centered at (x,y,z). Both the northern and southern cones are tangent
to sphere.

(%i1) load(draw)$
(%i2) load(worldmap)$
(%i3) draw3d(geomap(World_coastlines,

[conic_projection,0,0,0,1,90]))$

See also http://www.telefonica.net/web2/biomates/maxima/gpdraw/geomap for
more elaborated examples.

Graphic objectparametric surface
(xfun,yfun,zfun,par1,par1min,par1max,par2,par2min,par2max)

Draws parametric surfaces in 3D.

3D

642 Maxima Manual

parametric_surface (xfun,yfun,zfun,par1,par1min,par1max,par2,par2min,par2max)
plots parametric surface [xfun,yfun,zfun], with parameter par1 taking values from
par1min to par1max and parameter par2 taking values from par2min to par2max.

This object is affected by the following graphic options: xu_grid, yv_grid, line_
type, key and color.

Example:
(%i1) load(draw)$
(%i2) draw3d(title = "Sea shell",

xu_grid = 100,
yv_grid = 25,
rot_vertical = 100,
rot_horizontal = 20,
surface_hide = true,
parametric_surface(0.5*u*cos(u)*(cos(v)+1),

0.5*u*sin(u)*(cos(v)+1),
u*sin(v) - ((u+3)/8*%pi)^2 - 20,
u, 0, 13*%pi, v, -%pi, %pi))$

Functiondraw (gr2d, ..., gr3d, ..., options, ...)
Plots a series of scenes; its arguments are gr2d and/or gr3d objects, together with
some options. By default, the scenes are put together in one column.

Function draw accepts the following global options: terminal, columns, pic_width,
pic_height, eps_width, eps_height, file_name and delay.

Functions draw2d and draw3d are short cuts to be used when only one scene is
required, in two or three dimensions, respectively.

To make use of this function, write first load(draw).

Example:
(%i1) load(draw)$
(%i2) scene1: gr2d(title="Ellipse",

nticks=30,
parametric(2*cos(t),5*sin(t),t,0,2*%pi))$

(%i3) scene2: gr2d(title="Triangle",
polygon([4,5,7],[6,4,2]))$

(%i4) draw(scene1, scene2, columns = 2)$

The two draw sentences are equivalent:
(%i1) load(draw)$
(%i2) draw(gr3d(explicit(x^2+y^2,x,-1,1,y,-1,1)));
(%o2) [gr3d(explicit)]
(%i3) draw3d(explicit(x^2+y^2,x,-1,1,y,-1,1));
(%o3) [gr3d(explicit)]

An animated gif file:
(%i1) load(draw)$
(%i2) draw(

delay = 100,
file_name = "zzz",

Chapter 48: draw 643

terminal = ’animated_gif,
gr2d(explicit(x^2,x,-1,1)),
gr2d(explicit(x^3,x,-1,1)),
gr2d(explicit(x^4,x,-1,1)));

End of animation sequence
(%o2) [gr2d(explicit), gr2d(explicit), gr2d(explicit)]

See also gr2d, gr3d, draw2d and draw3d..

Functiondraw2d (option, graphic object, ...)
This function is a short cut for draw(gr2d(options, ..., graphic object, ...)).
It can be used to plot a unique scene in 2d.
To make use of this function, write first load(draw).
See also draw and gr2d.

Functiondraw3d (option, graphic object, ...)
This function is a short cut for draw(gr3d(options, ..., graphic object, ...)).
It can be used to plot a unique scene in 3d.
To make use of this function, write first load(draw).
See also draw and gr3d.

48.3 Functions and Variables for pictures

Functionmake level picture (data)
Functionmake level picture (data,width,height)

Returns a levels picture object. make_level_picture (data) builds the picture ob-
ject from matrix data. make_level_picture (data,width,height) builds the object
from a list of numbers; in this case, both the width and the height must be given.
The returned picture object contains the following four parts:
1. symbol level
2. image width
3. image height
4. an integer array with pixel data ranging from 0 to 255. Argument data must

contain only numbers ranged from 0 to 255; negative numbers are substituted by
0, and those which are greater than 255 are set to 255.

Example:
Level picture from matrix.

(%i1) load(draw)$
(%i2) make_level_picture(matrix([3,2,5],[7,-9,3000]));
(%o2) picture(level, 3, 2, {Array: #(3 2 5 7 0 255)})

Level picture from numeric list.
(%i1) load(draw)$
(%i2) make_level_picture([-2,0,54,%pi],2,2);
(%o2) picture(level, 2, 2, {Array: #(0 0 54 3)})

644 Maxima Manual

Functionpicturep (x)
Returns true if the argument is a well formed image, and false otherwise.

Functionpicture equalp (x,y)
Returns true in case of equal pictures, and false otherwise.

Functionmake rgb picture (redlevel,greenlevel,bluelevel)
Returns an rgb-coloured picture object. All three arguments must be levels picture;
with red, green and blue levels.
The returned picture object contains the following four parts:
1. symbol rgb
2. image width
3. image height
4. an integer array of length 3*width*height with pixel data ranging from 0 to 255.

Each pixel is represented by three consecutive numbers (red, green, blue).

Example:
(%i1) load(draw)$
(%i2) red: make_level_picture(matrix([3,2],[7,260]));
(%o2) picture(level, 2, 2, {Array: #(3 2 7 255)})
(%i3) green: make_level_picture(matrix([54,23],[73,-9]));
(%o3) picture(level, 2, 2, {Array: #(54 23 73 0)})
(%i4) blue: make_level_picture(matrix([123,82],[45,32.5698]));
(%o4) picture(level, 2, 2, {Array: #(123 82 45 33)})
(%i5) make_rgb_picture(red,green,blue);
(%o5) picture(rgb, 2, 2,

{Array: #(3 54 123 2 23 82 7 73 45 255 0 33)})

Functiontake channel (im,color)
If argument color is red, green or blue, function take_channel returns the corre-
sponding color channel of picture im. Example:

(%i1) load(draw)$
(%i2) red: make_level_picture(matrix([3,2],[7,260]));
(%o2) picture(level, 2, 2, {Array: #(3 2 7 255)})
(%i3) green: make_level_picture(matrix([54,23],[73,-9]));
(%o3) picture(level, 2, 2, {Array: #(54 23 73 0)})
(%i4) blue: make_level_picture(matrix([123,82],[45,32.5698]));
(%o4) picture(level, 2, 2, {Array: #(123 82 45 33)})
(%i5) make_rgb_picture(red,green,blue);
(%o5) picture(rgb, 2, 2,

{Array: #(3 54 123 2 23 82 7 73 45 255 0 33)})
(%i6) take_channel(%,’green); /* simple quote!!! */
(%o6) picture(level, 2, 2, {Array: #(54 23 73 0)})

Functionnegative picture (pic)
Returns the negative of a (level or rgb) picture.

Chapter 48: draw 645

Functionrgb2level (pic)
Transforms an rgb picture into a level one by averaging the red, green and blue
channels.

Functionget pixel (pic,x,y)
Returns pixel from picture. Coordinates x and y range from 0 to width-1 and
height-1, respectively.

Functionread xpm (xpm file)
Reads a file in xpm and returns a picture object.

48.4 Functions and Variables for worldmap

Functionregion boundaries (x1,y1,x2,y2)
Detects polygonal segments of global variable boundaries_array contained in the
rectangle with vertices (x1,y1) -upper left- and (x2,y2) -bottom right-.
Example:
Returns segment numbers for plotting southern Italy.

(%i1) load(draw)$
(%i2) load(worldmap)$
(%i3) region_boundaries(10.4,41.5,20.7,35.4);
(%o3) [1846, 1863, 1864, 1881, 1888, 1894]
(%i4) draw2d(geomap(%))$

Functionnumbered boundaries (nlist)
Draws a list of polygonal segments (boundaries), labeled by its numbers (boundaries_
array coordinates). This is of great help when building new geographical entities.
Example:
Map of Europe labeling borders with their component number in boundaries_array.

(%i1) load(draw)$
(%i2) load(worldmap)$
(%i3) european_borders:

region_boundaries(-31.81,74.92,49.84,32.06)$
(%i4) numbered_boundaries(european_borders)$

Functionmake polygon (nlist)
Returns a polygon object from boundary indices. Argument nlist is a list of compo-
nents of boundaries_array.
Example:
Bhutan is defined by boundary numbers 171, 173 and 1143, so that make_
polygon([171,173,1143]) appends arrays of coordinates boundaries_array[171],
boundaries_array[173] and boundaries_array[1143] and returns a polygon
object suited to be plotted by draw. To avoid an error message, arrays must be
compatible in the sense that any two consecutive arrays have two coordinates in the

646 Maxima Manual

extremes in common. In this example, the two first components of boundaries_
array[171] are equal to the last two coordinates of boundaries_array[173],
and the two first of boundaries_array[173] are equal to the two first of
boundaries_array[1143]; in conclussion, boundary numbers 171, 173 and 1143 (in
this order) are compatible and the colored polygon can be drawn.

(%i1) load(draw)$
(%i2) load(worldmap)$
(%i3) Bhutan;
(%o3) [[171, 173, 1143]]
(%i4) boundaries_array[171];
(%o4) {Array:

#(88.750549 27.14727 88.806351 27.25305 88.901367 27.282221
88.917877 27.321039)}

(%i5) boundaries_array[173];
(%o5) {Array:

#(91.659554 27.76511 91.6008 27.66666 91.598022 27.62499
91.631348 27.536381 91.765533 27.45694 91.775253 27.4161
92.007751 27.471939 92.11441 27.28583 92.015259 27.168051
92.015533 27.08083 92.083313 27.02277 92.112183 26.920271
92.069977 26.86194 91.997192 26.85194 91.915253 26.893881
91.916924 26.85416 91.8358 26.863331 91.712479 26.799999
91.542191 26.80444 91.492188 26.87472 91.418854 26.873329
91.371353 26.800831 91.307457 26.778049 90.682457 26.77417
90.392197 26.903601 90.344131 26.894159 90.143044 26.75333
89.98996 26.73583 89.841919 26.70138 89.618301 26.72694
89.636093 26.771111 89.360786 26.859989 89.22081 26.81472
89.110237 26.829161 88.921631 26.98777 88.873016 26.95499
88.867737 27.080549 88.843307 27.108601 88.750549
27.14727)}

(%i6) boundaries_array[1143];
(%o6) {Array:

#(91.659554 27.76511 91.666924 27.88888 91.65831 27.94805
91.338028 28.05249 91.314972 28.096661 91.108856 27.971109
91.015808 27.97777 90.896927 28.05055 90.382462 28.07972
90.396088 28.23555 90.366074 28.257771 89.996353 28.32333
89.83165 28.24888 89.58609 28.139999 89.35997 27.87166
89.225517 27.795 89.125793 27.56749 88.971077 27.47361
88.917877 27.321039)}

(%i7) Bhutan_polygon: make_polygon([171,173,1143])$
(%i8) draw2d(Bhutan_polygon)$

Functionmake poly country (country name)
Makes the necessary polygons to draw a colored country. If islands exist, one country
can be defined with more than just one polygon.
Example:

(%i1) load(draw)$
(%i2) load(worldmap)$
(%i3) make_poly_country(India)$

Chapter 48: draw 647

(%i4) apply(draw2d, %)$

Functionmake poly continent (continent name)
Functionmake poly continent (country list)

Makes the necessary polygons to draw a colored continent or a list of countries.
Example:

(%i1) load(draw)$
(%i2) load(worldmap)$
(%i3) /* A continent */

make_poly_continent(Africa)$
(%i4) apply(draw2d, %)$
(%i5) /* A list of countries */

make_poly_continent([Germany,Denmark,Poland])$
(%i6) apply(draw2d, %)$

648 Maxima Manual

Chapter 49: dynamics 649

49 dynamics

49.1 Introduction to dynamics

The additional package dynamics includes several functions to create various graphical
representations of discrete dynamical systems and fractals, and an implementation of the
Runge-Kutta 4th-order numerical method for solving systems of differential equations.

To use the functions in this package you must first load it with load("dynamics").

Changes introduced in Maxima 5.12

Starting with Maxima 5.12, the dynamics package now uses the function plot2d to
do the graphs. The commands that produce graphics (with the exception of julia and
mandelbrot) now accept any options of plot2d, including the option to change among
the various graphical interfaces, using different plot styles and colors, and representing one
or both axes in a logarithmic scale. The old options domain, pointsize, xcenter, xradius,
ycenter, yradius, xaxislabel and yaxislabel are not accepted in this new version.

All programs will now accept any variables names, and not just x and y as in the older
versions. Two required parameters have changes in two of the programs: evolution2d now
requires a list naming explicitely the two independent variables, and the horizontal range
for orbits no longer requires a step size; the range should only specify the variable name,
and the minimum and maximum values; the number of steps can now be changed with the
option nticks.

49.2 Functions and Variables for dynamics

Functionchaosgame ([[x1, y1]...[xm, ym]], [x0, y0], b, n, ..., options, ...);
Implements the so-called chaos game: the initial point (x0, y0) is plotted and then
one of the m points [x1, y1]...[xm, ym] will be selected at random. The next point
plotted will be on the segment from the previous point plotted to the point chosen
randomly, at a distance from the random point which will be b times that segment’s
length. The procedure is repeated n times.

Functionevolution (F, y0, n, ..., options, ...);
Draws n+1 points in a two-dimensional graph, where the horizontal coordinates of the
points are the integers 0, 1, 2, ..., n, and the vertical coordinates are the corresponding
values y(n) of the sequence defined by the recurrence relation

yn+1 = F (yn)

With initial value y(0) equal to y0. F must be an expression that depends only on
one variable (in the example, it depend on y, but any other variable can be used), y0
must be a real number and n must be a positive integer.

650 Maxima Manual

Functionevolution2d ([F, G], [u, v], [u0, y0], n, ..., options, ...);
Shows, in a two-dimensional plot, the first n+1 points in the sequence of points defined
by the two-dimensional discrete dynamical system with recurrence relations{

un+1 = F (un, vn)
vn+1 = G(un, vn)

With initial values u0 and v0. F and G must be two expressions that depend only
on two variables, u and v, which must be named explicitely in a list.

Functionifs ([r1, ..., rm], [A1, ..., Am], [[x1, y1], ..., [xm, ym]], [x0, y0], n, ...,
options, ...);

Implements the Iterated Function System method. This method is similar to the
method described in the function chaosgame, but instead of shrinking the segment
from the current point to the randomly chosen point, the 2 components of that seg-
ment will be multiplied by the 2 by 2 matrix Ai that corresponds to the point chosen
randomly.

The random choice of one of the m attractive points can be made with a non-uniform
probability distribution defined by the weights r1,...,rm. Those weights are given in
cumulative form; for instance if there are 3 points with probabilities 0.2, 0.5 and 0.3,
the weights r1, r2 and r3 could be 2, 7 and 10.

Functionjulia (x, y, ...options...)
Creates a graphics file with the representation of the Julia set for the complex number
(x + i y). The parameters x and y must be real. The file is created in the current
directory or in the user’s directory, using the XPM graphics format. The program
may take several seconds to run and after it is finished, a message will be printed
with the name of the file created.

The points which do not belong to the Julia set are assigned different colors, according
to the number of iterations it takes the sequence starting at that point to move out
of the convergence circle of radius 2. The maximum number of iterations is set with
the option levels; after that number of iterations, if the sequence is still inside the
convergence circle, the point will be painted with the color defined by the option
color.

All the colors used for the points that do not belong to the Julia set will have the same
saturation and value, but with different hue angles distributed uniformly between hue
and (hue + huerange).

options is an optional sequence of options. The list of accepted options is given in a
section below.

Functionmandelbrot (options)
Creates a graphics file with the representation of the Mandelbrot set. The file is
created in the current directory or in the user’s directory, using the XPM graphics
format. The program may take several seconds to run and after it is finished, a
message will be printed with the name of the file created.

Chapter 49: dynamics 651

The points which do not belong to the Mandelbrot set are assigned different colors,
according to the number of iterations it takes the sequence generated with that point
to move out of the convergence circle o radius 2. The maximum number of iterations
is set with the option levels; after that number of iterations, if the sequence is still
inside the convergence circle, the point will be painted with the color defined by the
option color.
All the colors used for the points that do not belong to the Mandelbrot set will have
the same saturation and value, but with different hue angles distributed uniformly
between hue and (hue + huerange).
options is an optional sequence of options. The list of accepted options is given in a
section below.

Functionorbits (F, y0, n1, n2, [x, x0, xf, xstep], ...options...);
Draws the orbits diagram for a family of one-dimensional discrete dynamical systems,
with one parameter x; that kind of diagram is used to study the bifurcations of a
one-dimensional discrete system.
The function F(y) defines a sequence with a starting value of y0, as in the case of the
function evolution, but in this case that function will also depend on a parameter
x that will take values in the interval from x0 to xf with increments of xstep. Each
value used for the parameter x is shown on the horizontal axis. The vertical axis will
show the n2 values of the sequence y(n1+1),..., y(n1+n2+1) obtained after letting the
sequence evolve n1 iterations.

Functionrk (ODE, var, initial, domain)
Functionrk ([ODE1,...,ODEm], [v1,...,vm], [init1,...,initm], domain)

The first form solves numerically one first-order ordinary differential equation, and the
second form solves a system of m of those equations, using the 4th order Runge-Kutta
method. var represents the dependent variable. ODE must be an expression that
depends only on the independent and dependent variables and defines the derivative
of the dependent variable with respect to the independent variable.
The independent variable is specified with domain, which must be a list of four ele-
ments as, for instance:

[t, 0, 10, 0.1]

the first element of the list identifies the independent variable, the second and third
elements are the initial and final values for that variable, and the last element sets
the increments that should be used within that interval.
If m equations are going to be solved, there should be m dependent variables v1, v2,
..., vm. The initial values for those variables will be init1, init2, ..., initm. There
will still be just one independent variable defined by domain, as in the previous case.
ODE1, ..., ODEm are the expressions that define the derivatives of each dependent
variable in terms of the independent variable. The only variables that may appear in
those expressions are the independent variable and any of the dependent variables. It
is important to give the derivatives ODE1, ..., ODEm in the list in exactly the same
order used for the dependent variables; for instance, the third element in the list will
be interpreted as the derivative of the third dependent variable.

652 Maxima Manual

The program will try to integrate the equations from the initial value of the inde-
pendent variable until its last value, using constant increments. If at some step one
of the dependent variables takes an absolute value too large, the integration will be
interrupted at that point. The result will be a list with as many elements as the
number of iterations made. Each element in the results list is itself another list with
m+1 elements: the value of the independent variable, followed by the values of the
dependent variables corresponding to that point.

Functionstaircase (F, y0, n, ...options...);
Draws a staircase diagram for the sequence defined by the recurrence relation

yn+1 = F (yn)

The interpretation and allowed values of the input parameters is the same as for
the function evolution. A staircase diagram consists of a plot of the function F(y),
together with the line G(y) = y. A vertical segment is drawn from the point (y0,
y0) on that line until the point where it intersects the function F. From that point a
horizontal segment is drawn until it reaches the point (y1, y1) on the line, and the
procedure is repeated n times until the point (yn, yn) is reached.

Options

Each option is a list of two or more items. The first item is the name of the option, and
the remainder comprises the arguments for the option.

The options accepted by the functions evolution, evolution2d, staircase, orbits,
ifs and chaosgame are the same as the options for plot2d. In addition to those options,
orbits accepts and extra option pixels that sets up the maximum number of different points
that will be represented in the vertical direction.

The following options are accepted by the functions julia and mandelbrot:
• size takes either one or two arguments. If only one argument is given, the width and

height of the graphic file created will be equal to that value, in pixels. If two arguments
are given, they will define the width and height. The default value is 400 pixels for both
the width and height. If the two values are not equal, the set will appear distorted.

• levels defines the maximum number of iterations, which is also equal to the number of
colors used for points not belonging to the set. The default value is 12; larger values
mean much longer processing times.

• huerange defines the range of hue angles used for the hue of points not belonging to the
set. The default value is 360, which means that the colors will expand all the range of
hues. Values bigger than 360, will mean repeated ranges of the hue, and negative values
can be used to make the hue angle decrease as the number of iterations increases.

• hue sets the hue, in degrees, of the first color used for the points which do not belong
to the set. Its default value is 300 degrees, which corresponds to magenta; the values
for other standard colors are 0 for red, 45 for orange, 60 for yellow, 120 for green, 180
for cyan and 240 for blue. See also option huerange.

• saturation sets the value of the saturation used for points not belonging to the set. It
must be between 0 and 1. The default is 0.46.

Chapter 49: dynamics 653

• value sets the value of the colors used for points not belonging to the set. It must be
between 0 and 1; the higher the value, the brighter the colors. The default is 0.96

• color must be followed by three parameters that define the hue, saturation and value,
for the color used to represent the points of the set. The default value is 0 for the three
parameters, which corresponds to black. For an explanation of the range of allowed
values, see options hue, saturation and value.

• center must be followed by two real parameters, which give the coordinates, on the
complex plane, of the point in the center of the region shown. The default value is 0
for both coordinates (the origin).

• radius sets the radius of the biggest circle inside the square region that will be displayed.
The default value is 2.

• filename gives the name of the file where the resulting graph will be saved. The exten-
sion .xpm will be added to that name. If the file already exists, it will be replaced by
the file generated by the function. The default values are julia for the Julia set, and
mandelbrot for the Mandelbrot set.

Examples

Graphical representation and staircase diagram for the sequence: 2, cos(2), cos(cos(2)),...

(%i1) load("dynamics")$

(%i2) evolution(cos(y), 2, 11);

(%i3) staircase(cos(y), 1, 11, [y, 0, 1.2]);

-0.5

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10

y(
n)

n

654 Maxima Manual

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1 1.2

y(
n+

1)

y(n)

If your system is slow, you’ll have to reduce the number of iterations in the following
examples. And if the dots appear too small in your monitor, you might want to try a
different style, such as [style,[points,0.8]].

Orbits diagram for the quadratic map, with a parameter a.

xn+1 = a+ x2
n

(%i4) orbits(x^2+a, 0, 50, 200, [a, -2, 0.25], [style, dots]);

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0

x

a

To enlarge the region around the lower bifurcation near x = -1.25 use:

(%i5) orbits(x+y^2, 0, 100, 400, [a,-1,-1.53], [x,-1.6,-0.8],

Chapter 49: dynamics 655

[nticks, 400], [style,dots]);

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

-0.9

-0.8

-1.5 -1.4 -1.3 -1.2 -1.1 -1

x

a

Evolution of a two-dimensional system that leads to a fractal:

(%i6) f: 0.6*x*(1+2*x)+0.8*y*(x-1)-y^2-0.9$

(%i7) g: 0.1*x*(1-6*x+4*y)+0.1*y*(1+9*y)-0.4$

(%i8) evolution2d([f,g], [x,y], [-0.5,0], 50000, [style,dots]);

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

y

x

And an enlargement of a small region in that fractal:

(%i9) evolution2d([f,g], [x,y], [-0.5,0], 300000, [x,-0.8,-0.6],

656 Maxima Manual

[y,-0.4,-0.2], [style, dots]);

-0.4

-0.35

-0.3

-0.25

-0.2

-0.8 -0.75 -0.7 -0.65 -0.6

y

x

A plot of Sierpinsky’s triangle, obtained with the chaos game:
(%i9) chaosgame([[0, 0], [1, 0], [0.5, sqrt(3)/2]], [0.1, 0.1], 1/2,

30000, [style, dots]);

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

co
nt

ra
ct

io
n

fa
ct

or
: 0

.5

The chaos game with 3 points

Barnsley’s fern, obtained with an Iterated Function System:
(%i10) a1: matrix([0.85,0.04],[-0.04,0.85])$

(%i11) a2: matrix([0.2,-0.26],[0.23,0.22])$

(%i12) a3: matrix([-0.15,0.28],[0.26,0.24])$

(%i13) a4: matrix([0,0],[0,0.16])$

(%i14) p1: [0,1.6]$

(%i15) p2: [0,1.6]$

(%i16) p3: [0,0.44]$

Chapter 49: dynamics 657

(%i17) p4: [0,0]$

(%i18) w: [85,92,99,100]$

(%i19) ifs(w, [a1,a2,a3,a4], [p1,p2,p3,p4], [5,0], 50000, [style,dots]);

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

-3 -2 -1 0 1 2 3 4 5

Iterated Function System of 4 transformations

To create a file named dynamics9.xpm with a graphical representation of the Mandelbrot
set, with 12 colors, use:

mandelbrot([filename,"dynamics9"])$

and the Julia set for the number (-0.55 + i 0.6) can be obtained with:
julia(-0.55, 0.6, [levels, 36], [center, 0, 0.6], [radius, 0.3],

[hue, 240], [huerange, -180], [filename, "dynamics10"])$

658 Maxima Manual

the graph will be saved in the file dynamics10.xpm and will show the region from -0.3 to
0.3 in the x direction, and from 0.3 to 0.9 in the y direction. 36 colors will be used, starting
with blue and ending with yellow.

To solve numerically the differential equation

dx

dt
= t− x2

With initial value x(t=0) = 1, in the interval of t from 0 to 8 and with increments of 0.1
for t, use:

(%i20) results: rk(t-x^2,x,1,[t,0,8,0.1])$

the results will be saved in the list results.
To solve numerically the system:

dx
dt = 4− x2 − 4y2

dy
dt = y2 − x2 + 1

for t between 0 and 4, and with values of -1.25 and 0.75 for x and y at t=0:
(%i21) sol: rk([4-x^2-4*y^2,y^2-x^2+1],[x,y],[-1.25,0.75],[t,0,4,0.02])$

Chapter 50: f90 659

50 f90

50.1 Functions and Variables for f90

Functionf90 (expr)
The f90 command is an update to the original maxima fortran command. The
primary difference is the way long lines are broken.
In the next example, notice how the fortran command breaks lines within symbols.
The f90 command never breaks within a symbol.

(%i1) load("f90")$

(%i2) expr:expand((xxx+yyy+7)^4);
4 3 3 2 2

(%o2) yyy + 4 xxx yyy + 28 yyy + 6 xxx yyy
2 2 3 2

+ 84 xxx yyy + 294 yyy + 4 xxx yyy + 84 xxx yyy
4 3 2

+ 588 xxx yyy + 1372 yyy + xxx + 28 xxx + 294 xxx
+ 1372 xxx + 2401
(%i3) fortran(expr);

yyy**4+4*xxx*yyy**3+28*yyy**3+6*xxx**2*yyy**2+84*xxx*yyy**2+294*yy
1 y**2+4*xxx**3*yyy+84*xxx**2*yyy+588*xxx*yyy+1372*yyy+xxx**4+28*
2 xxx**3+294*xxx**2+1372*xxx+2401

(%o3) done
(%i4) f90(expr);
yyy**4+4*xxx*yyy**3+28*yyy**3+6*xxx**2*yyy**2+84*xxx*yyy**2+294* &

yyy**2+4*xxx**3*yyy+84*xxx**2*yyy+588*xxx*yyy+1372*yyy+xxx** &
4+28*xxx**3+294*xxx**2+1372*xxx+2401

(%o4) done

The f90 implementation was done as a quick hack. It is not a necessarily a good
example upon which to base other language translations.
To use this function write first load("f90").

660 Maxima Manual

Chapter 51: ggf 661

51 ggf

51.1 Functions and Variables for ggf

Option variableGGFINFINITY
Default value: 3
This is an option variable for function ggf.
When computing the continued fraction of the generating function, a partial quotient
having a degree (strictly) greater than GGFINFINITY will be discarded and the
current convergent will be considered as the exact value of the generating function;
most often the degree of all partial quotients will be 0 or 1; if you use a greater
value, then you should give enough terms in order to make the computation accurate
enough.
See also ggf.

Option variableGGFCFMAX
Default value: 3
This is an option variable for function ggf.
When computing the continued fraction of the generating function, if no good result
has been found (see the GGFINFINITY flag) after having computed GGFCFMAX
partial quotients, the generating function will be considered as not being a fraction
of two polynomials and the function will exit. Put freely a greater value for more
complicated generating functions.
See also ggf.

Functionggf (l)
Compute the generating function (if it is a fraction of two polynomials) of a sequence,
its first terms being given. l is a list of numbers.
The solution is returned as a fraction of two polynomials. If no solution has been
found, it returns with done.
This function is controlled by global variables GGFINFINITY and GGFCFMAX. See
also GGFINFINITY and GGFCFMAX.
To use this function write first load("ggf").

662 Maxima Manual

Chapter 52: graphs 663

52 graphs

52.1 Introduction to graphs

The graphs package provides graph and digraph data structure for Maxima. Graphs
and digraphs are simple (have no multiple edges nor loops), although digraphs can have a
directed edge from u to v and a directed edge from v to u.

Internally graphs are represented by adjacency lists and implemented as a lisp structures.
Vertices are identified by their ids (an id is an integer). Edges/arcs are represented by lists
of length 2. Labels can be assigned to vertices of graphs/digraphs and weights can be
assigned to edges/arcs of graphs/digraphs.

There is a draw_graph function for drawing graphs. Graphs are drawn using a force
based vertex positioning algorithm. draw_graph can also use graphviz programs available
from http://www.graphviz.org. draw_graph is based on the maxima draw package.

To use the graphs package, first load it with load(graphs).

52.2 Functions and Variables for graphs

52.2.1 Building graphs

Functioncreate graph (v list, e list)
Functioncreate graph (n, e list)
Functioncreate graph (v list, e list, directed)

Creates a new graph on the set of vertices v list and with edges e list.

v list is a list of vertices ([v1, v2,..., vn]) or a list of vertices together with vertex
labels ([[v1,l1], [v2,l2],..., [vn,ln]]).

n is the number of vertices. Vertices will be identified by integers from 0 to n-1.

e list is a list of edges ([e1, e2,..., em]) or a list of edges together with edge-weights
([[e1, w1], ..., [em, wm]]).

If directed is not false, a directed graph will be returned.

Example 1: create a cycle on 3 vertices:

(%i1) load (graphs)$
(%i2) g : create_graph([1,2,3], [[1,2], [2,3], [1,3]])$
(%i3) print_graph(g)$
Graph on 3 vertices with 3 edges.
Adjacencies:
3 : 1 2
2 : 3 1
1 : 3 2

Example 2: create a cycle on 3 vertices with edge weights:

664 Maxima Manual

(%i1) load (graphs)$
(%i2) g : create_graph([1,2,3], [[[1,2], 1.0], [[2,3], 2.0],

[[1,3], 3.0]])$
(%i3) print_graph(g)$
Graph on 3 vertices with 3 edges.
Adjacencies:
3 : 1 2
2 : 3 1
1 : 3 2

Example 3: create a directed graph:
(%i1) load (graphs)$
(%i2) d : create_graph(

[1,2,3,4],
[
[1,3], [1,4],
[2,3], [2,4]
],
’directed = true)$

(%i3) print_graph(d)$
Digraph on 4 vertices with 4 arcs.
Adjacencies:

4 :
3 :
2 : 4 3
1 : 4 3

Functioncopy graph (g)
Returns a copy of the graph g.

Functioncirculant graph (n, d)
Returns the circulant graph with parameters n and d.

Example:
(%i1) load (graphs)$
(%i2) g : circulant_graph(10, [1,3])$
(%i3) print_graph(g)$
Graph on 10 vertices with 20 edges.
Adjacencies:

9 : 2 6 0 8
8 : 1 5 9 7
7 : 0 4 8 6
6 : 9 3 7 5
5 : 8 2 6 4
4 : 7 1 5 3
3 : 6 0 4 2
2 : 9 5 3 1
1 : 8 4 2 0
0 : 7 3 9 1

Chapter 52: graphs 665

Functionclebsch graph ()
Returns the Clebsch graph.

Functioncomplement graph (g)
Returns the complement of the graph g.

Functioncomplete bipartite graph (n, m)
Returns the complete bipartite graph on n+m vertices.

Functioncomplete graph (n)
Returns the complete graph on n vertices.

Functioncycle digraph (n)
Returns the directed cycle on n vertices.

Functioncycle graph (n)
Returns the cycle on n vertices.

Functioncube graph (n)
Returns the n-dimensional cube.

Functiondodecahedron graph ()
Returns the dodecahedron graph.

Functionempty graph (n)
Returns the empty graph on n vertices.

Functionflower snark (n)
Returns the flower graph on 4n vertices.
Example:

(%i1) load (graphs)$
(%i2) f5 : flower_snark(5)$
(%i3) chromatic_index(f5);
(%o3) 4

Functionfrom adjacency matrix (A)
Returns the graph represented by its adjacency matrix A.

Functionfrucht graph ()
Returns the Frucht graph.

Functiongraph product (g1, g1)
Returns the direct product of graphs g1 and g2.
Example:

(%i1) load (graphs)$
(%i2) grid : graph_product(path_graph(3), path_graph(4))$
(%i3) draw_graph(grid)$

666 Maxima Manual

Functiongraph union (g1, g1)
Returns the union (sum) of graphs g1 and g2.

Functiongrid graph (n, m)
Returns the n x m grid.

Functiongrotzch graph ()
Returns the Grotzch graph.

Functionheawood graph ()
Returns the Heawood graph.

Functionicosahedron graph ()
Returns the icosahedron graph.

Functioninduced subgraph (V, g)
Returns the graph induced on the subset V of vertices of the graph g.
Example:

(%i1) load (graphs)$
(%i2) p : petersen_graph()$
(%i3) V : [0,1,2,3,4]$
(%i4) g : induced_subgraph(V, p)$
(%i5) print_graph(g)$
Graph on 5 vertices with 5 edges.
Adjacencies:

4 : 3 0
3 : 2 4
2 : 1 3
1 : 0 2
0 : 1 4

Functionline graph (g)
Returns the line graph of the graph g.

Functionmake graph (vrt, f)
Functionmake graph (vrt, f, oriented)

Creates a graph using a predicate function f.
vrt is a list/set of vertices or an integer. If vrt is an integer, then vertices of the graph
will be integers from 1 to vrt.
f is a predicate function. Two vertices a and b will be connected if f(a,b)=true.
If directed is not false, then the graph will be directed.
Example 1:

(%i1) load(graphs)$
(%i2) g : make_graph(powerset({1,2,3,4,5}, 2), disjointp)$
(%i3) is_isomorphic(g, petersen_graph());

Chapter 52: graphs 667

(%o3) true
(%i4) get_vertex_label(1, g);
(%o4) {1, 2}

Example 2:
(%i1) load(graphs)$
(%i2) f(i, j) := is (mod(j, i)=0)$
(%i3) g : make_graph(20, f, directed=true)$
(%i4) out_neighbors(4, g);
(%o4) [8, 12, 16, 20]
(%i5) in_neighbors(18, g);
(%o5) [1, 2, 3, 6, 9]

Functionmycielski graph (g)
Returns the mycielskian graph of the graph g.

Functionnew graph ()
Returns the graph with no vertices and no edges.

Functionpath digraph (n)
Returns the directed path on n vertices.

Functionpath graph (n)
Returns the path on n vertices.

Functionpetersen graph ()
Functionpetersen graph (n, d)

Returns the petersen graph P {n,d}. The default values for n and d are n=5 and d=2.

Functionrandom bipartite graph (a, b, p)
Returns a random bipartite graph on a+b vertices. Each edge is present with proba-
bility p.

Functionrandom digraph (n, p)
Returns a random directed graph on n vertices. Each arc is present with probability
p.

Functionrandom regular graph (n)
Functionrandom regular graph (n, d)

Returns a random d-regular graph on n vertices. The default value for d is d=3.

Functionrandom graph (n, p)
Returns a random graph on n vertices. Each edge is present with probability p.

Functionrandom graph1 (n, m)
Returns a random graph on n vertices and random m edges.

668 Maxima Manual

Functionrandom network (n, p, w)
Returns a random network on n vertices. Each arc is present with probability p and
has a weight in the range [0,w]. The function returns a list [network, source,
sink].
Example:

(%i1) load (graphs)$
(%i2) [net, s, t] : random_network(50, 0.2, 10.0);
(%o2) [DIGRAPH, 50, 51]
(%i3) max_flow(net, s, t)$
(%i4) first(%);
(%o4) 27.65981397932507

Functionrandom tournament (n)
Returns a random tournament on n vertices.

Functionrandom tree (n)
Returns a random tree on n vertices.

Functiontutte graph ()
Returns the Tutte graph.

Functionunderlying graph (g)
Returns the underlying graph of the directed graph g.

Functionwheel graph (n)
Returns the wheel graph on n+1 vertices.

52.2.2 Graph properties

Functionadjacency matrix (gr)
Returns the adjacency matrix of the graph gr.
Example:

(%i1) load (graphs)$
(%i2) c5 : cycle_graph(4)$
(%i3) adjacency_matrix(c5);

[0 1 0 1]
[]
[1 0 1 0]

(%o3) []
[0 1 0 1]
[]
[1 0 1 0]

Functionaverage degree (gr)
Returns the average degree of vertices in the graph gr.
Example:

Chapter 52: graphs 669

(%i1) load (graphs)$
(%i2) average_degree(grotzch_graph());

40
(%o2) --

11

Functionbiconected components (gr)
Returns the (vertex sets of) 2-connected components of the graph gr.

Example:
(%i1) load (graphs)$
(%i2) g : create_graph(

[1,2,3,4,5,6,7],
[
[1,2],[2,3],[2,4],[3,4],
[4,5],[5,6],[4,6],[6,7]
])$

(%i3) biconnected_components(g);
(%o3) [[6, 7], [4, 5, 6], [1, 2], [2, 3, 4]]

Functionbipartition (gr)
Returns a bipartition of the vertices of the graph gr or an empty list if gr is not
bipartite.

Example:
(%i1) load (graphs)$
(%i2) h : heawood_graph()$
(%i3) [A,B]:bipartition(h);
(%o3) [[8, 12, 6, 10, 0, 2, 4], [13, 5, 11, 7, 9, 1, 3]]
(%i4) draw_graph(h, show_vertices=A, program=circular)$

Functionchromatic index (gr)
Returns the chromatic index of the graph gr.

Example:
(%i1) load (graphs)$
(%i2) p : petersen_graph()$
(%i3) chromatic_index(p);
(%o3) 4

Functionchromatic number (gr)
Returns the chromatic number of the graph gr.

Example:
(%i1) load (graphs)$
(%i2) chromatic_number(cycle_graph(5));
(%o2) 3
(%i3) chromatic_number(cycle_graph(6));
(%o3) 2

670 Maxima Manual

Functionclear edge weight (e, gr)
Removes the weight of the edge e in the graph gr.

Example:

(%i1) load (graphs)$
(%i2) g : create_graph(3, [[[0,1], 1.5], [[1,2], 1.3]])$
(%i3) get_edge_weight([0,1], g);
(%o3) 1.5
(%i4) clear_edge_weight([0,1], g)$
(%i5) get_edge_weight([0,1], g);
(%o5) 1

Functionclear vertex label (v, gr)
Removes the label of the vertex v in the graph gr.

Example:

(%i1) load (graphs)$
(%i2) g : create_graph([[0,"Zero"], [1, "One"]], [[0,1]])$
(%i3) get_vertex_label(0, g);
(%o3) Zero
(%i4) clear_vertex_label(0, g);
(%o4) done
(%i5) get_vertex_label(0, g);
(%o5) false

Functionconnected components (gr)
Returns the (vertex sets of) connected components of the graph gr.

Example:

(%i1) load (graphs)$
(%i2) g: graph_union(cycle_graph(5), path_graph(4))$
(%i3) connected_components(g);
(%o3) [[1, 2, 3, 4, 0], [8, 7, 6, 5]]

Functiondiameter (gr)
Returns the diameter of the graph gr.

Example:

(%i1) load (graphs)$
(%i2) diameter(dodecahedron_graph());
(%o2) 5

Functionedge coloring (gr)
Returns an optimal coloring of the edges of the graph gr.

The function returns the chromatic index and a list representing the coloring of the
edges of gr.

Example:

Chapter 52: graphs 671

(%i1) load (graphs)$
(%i2) p : petersen_graph()$
(%i3) [ch_index, col] : edge_coloring(p);
(%o3) [4, [[[0, 5], 3], [[5, 7], 1], [[0, 1], 1], [[1, 6], 2],
[[6, 8], 1], [[1, 2], 3], [[2, 7], 4], [[7, 9], 2], [[2, 3], 2],
[[3, 8], 3], [[5, 8], 2], [[3, 4], 1], [[4, 9], 4], [[6, 9], 3],
[[0, 4], 2]]]
(%i4) assoc([0,1], col);
(%o4) 1
(%i5) assoc([0,5], col);
(%o5) 3

Functiondegree sequence (gr)
Returns the list of vertex degrees of the graph gr.

Example:
(%i1) load (graphs)$
(%i2) degree_sequence(random_graph(10, 0.4));
(%o2) [2, 2, 3, 3, 3, 4, 4, 4, 4, 5]

Functionedges (gr)
Returns the list of edges (arcs) in a (directed) graph gr.

Example:
(%i1) load (graphs)$
(%i2) edges(complete_graph(4));
(%o2) [[2, 3], [1, 3], [1, 2], [0, 3], [0, 2], [0, 1]]

Functionget edge weight (e, gr)
Functionget edge weight (e, gr, ifnot)

Returns the weight of the edge e in the graph gr.

If there is no weight assigned to the edge, the function returns 1. If the edge is not
present in the graph, the function signals an error or returns the optional argument
ifnot.

Example:
(%i1) load (graphs)$
(%i2) c5 : cycle_graph(5)$
(%i3) get_edge_weight([1,2], c5);
(%o3) 1
(%i4) set_edge_weight([1,2], 2.0, c5);
(%o4) done
(%i5) get_edge_weight([1,2], c5);
(%o5) 2.0

Functionget vertex label (v, gr)
Returns the label of the vertex v in the graph gr.

Example:

672 Maxima Manual

(%i1) load (graphs)$
(%i2) g : create_graph([[0,"Zero"], [1, "One"]], [[0,1]])$
(%i3) get_vertex_label(0, g);
(%o3) Zero

Functiongraph charpoly (gr, x)
Returns the characteristic polynomial (in variable x) of the graph gr.
Example:

(%i1) load (graphs)$
(%i2) p : petersen_graph()$
(%i3) graph_charpoly(p, x), factor;

5 4
(%o3) (x - 3) (x - 1) (x + 2)

Functiongraph center (gr)
Returns the center of the graph gr.
Example:

(%i1) load (graphs)$
(%i2) g : grid_graph(5,5)$
(%i3) graph_center(g);
(%o3) [12]

Functiongraph eigenvalues (gr)
Returns the eigenvalues of the graph gr. The function returns eigenvalues in the same
format as maxima eigenvalue function.
Example:

(%i1) load (graphs)$
(%i2) p : petersen_graph()$
(%i3) graph_eigenvalues(p);
(%o3) [[3, - 2, 1], [1, 4, 5]]

Functiongraph periphery (gr)
Returns the periphery of the graph gr.
Example:

(%i1) load (graphs)$
(%i2) g : grid_graph(5,5)$
(%i3) graph_periphery(g);
(%o3) [0, 4, 20, 24]

Functiongraph size (gr)
Returns the number of vertices in the graph gr.
Example:

(%i1) load (graphs)$
(%i2) p : petersen_graph()$
(%i3) graph_size(p);
(%o3) 10

Chapter 52: graphs 673

Functiongraph order (gr)
Returns the number of edges in the graph gr.

Example:
(%i1) load (graphs)$
(%i2) p : petersen_graph()$
(%i3) graph_order(p);
(%o3) 15

Functiongirth (gr)
Returns the length of the shortest cycle in gr.

Example:
(%i1) load (graphs)$
(%i2) g : heawood_graph()$
(%i3) girth(g);
(%o3) 6

Functionhamilton cycle (gr)
Returns the Hamilton cycle of the graph gr or an empty list if gr is not hamiltonian.

Example:
(%i1) load (graphs)$
(%i2) c : cube_graph(3)$
(%i3) hc : hamilton_cycle(c);
(%o3) [7, 3, 2, 6, 4, 0, 1, 5, 7]
(%i4) draw_graph(c, show_edges=vertices_to_cycle(hc))$

Functionhamilton path (gr)
Returns the Hamilton path of the graph gr or an empty list if gr does not have a
Hamilton path.

Example:
(%i1) load (graphs)$
(%i2) p : petersen_graph()$
(%i3) hp : hamilton_path(p);
(%o3) [0, 5, 7, 2, 1, 6, 8, 3, 4, 9]
(%i4) draw_graph(p, show_edges=vertices_to_path(hp))$

Functionisomorphism (gr1, gr2)
Returns a hash table representing an isomorphism between graphs/digraphs gr1 and
gr2. If gr1 and gr2 are not isomorphic, it returns false.

Example:
(%i1) load (graphs)$
(%i2) clk5:complement_graph(line_graph(complete_graph(5)))$
(%i3) hash_table_data(isomorphism(clk5, petersen_graph()));
(%o3) [8 -> 9, 7 -> 8, 4 -> 7, 3 -> 6, 1 -> 5, 0 -> 4, 5 -> 3,

6 -> 2, 2 -> 1, 9 -> 0]

674 Maxima Manual

Functionin neighbors (v, gr)
Returns the list of in-neighbors of the vertex v in the directed graph gr.

Example:

(%i1) load (graphs)$
(%i2) p : path_digraph(3)$
(%i3) in_neighbors(2, p);
(%o3) [1]
(%i4) out_neighbors(2, p);
(%o4) []

Functionis biconnected (gr)
Returns true if gr is 2-connected and false otherwise.

Example:

(%i1) load (graphs)$
(%i2) is_biconnected(cycle_graph(5));
(%o2) true
(%i3) is_biconnected(path_graph(5));
(%o3) false

Functionis bipartite (gr)
Returns true if gr is bipartite (2-colorable) and false otherwise.

Example:

(%i1) load (graphs)$
(%i2) is_bipartite(petersen_graph());
(%o2) false
(%i3) is_bipartite(heawood_graph());
(%o3) true

Functionis connected (gr)
Returns true if the graph gr is connected and false otherwise.

Example:

(%i1) load (graphs)$
(%i2) is_connected(graph_union(cycle_graph(4), path_graph(3)));
(%o2) false

Functionis digraph (gr)
Returns true if gr is a directed graph and false otherwise.

Example:

(%i1) load (graphs)$
(%i2) is_digraph(path_graph(5));
(%o2) false
(%i3) is_digraph(path_digraph(5));
(%o3) true

Chapter 52: graphs 675

Functionis edge in graph (e, gr)
Returns true if e is an edge (arc) in the (directed) graph g and false otherwise.
Example:

(%i1) load (graphs)$
(%i2) c4 : cycle_graph(4)$
(%i3) is_edge_in_graph([2,3], c4);
(%o3) true
(%i4) is_edge_in_graph([3,2], c4);
(%o4) true
(%i5) is_edge_in_graph([2,4], c4);
(%o5) false
(%i6) is_edge_in_graph([3,2], cycle_digraph(4));
(%o6) false

Functionis graph (gr)
Returns true if gr is a graph and false otherwise.
Example:

(%i1) load (graphs)$
(%i2) is_graph(path_graph(5));
(%o2) true
(%i3) is_graph(path_digraph(5));
(%o3) false

Functionis graph or digraph (gr)
Returns true if gr is a graph or a directed graph and false otherwise.
Example:

(%i1) load (graphs)$
(%i2) is_graph_or_digraph(path_graph(5));
(%o2) true
(%i3) is_graph_or_digraph(path_digraph(5));
(%o3) true

Functionis isomorphic (gr1, gr2)
Returns true if graphs/digraphs gr1 and gr2 are isomorphic and false otherwise.
See also isomorphism.
Example:

(%i1) load (graphs)$
(%i2) clk5:complement_graph(line_graph(complete_graph(5)))$
(%i3) is_isomorphic(clk5, petersen_graph());
(%o3) true

Functionis planar (gr)
Returns true if gr is a planar graph and false otherwise.
The algorithm used is the Demoucron’s algorithm, which is a quadratic time algo-
rithm.
Example:

676 Maxima Manual

(%i1) load (graphs)$
(%i2) is_planar(dodecahedron_graph());
(%o2) true
(%i3) is_planar(petersen_graph());
(%o3) false
(%i4) is_planar(petersen_graph(10,2));
(%o4) true

Functionis sconnected (gr)
Returns true if the directed graph gr is strongly connected and false otherwise.
Example:

(%i1) load (graphs)$
(%i2) is_sconnected(cycle_digraph(5));
(%o2) true
(%i3) is_sconnected(path_digraph(5));
(%o3) false

Functionis vertex in graph (v, gr)
Returns true if v is a vertex in the graph g and false otherwise.
Example:

(%i1) load (graphs)$
(%i2) c4 : cycle_graph(4)$
(%i3) is_vertex_in_graph(0, c4);
(%o3) true
(%i4) is_vertex_in_graph(6, c4);
(%o4) false

Functionis tree (gr)
Returns true if gr is a tree and false otherwise.
Example:

(%i1) load (graphs)$
(%i2) is_tree(random_tree(4));
(%o2) true
(%i3) is_tree(graph_union(random_tree(4), random_tree(5)));
(%o3) false

Functionlaplacian matrix (gr)
Returns the laplacian matrix of the graph gr.
Example:

(%i1) load (graphs)$
(%i2) laplacian_matrix(cycle_graph(5));

[2 - 1 0 0 - 1]
[]
[- 1 2 - 1 0 0]
[]

(%o2) [0 - 1 2 - 1 0]

Chapter 52: graphs 677

[]
[0 0 - 1 2 - 1]
[]
[- 1 0 0 - 1 2]

Functionmax clique (gr)
Returns a maximum clique of the graph gr.
Example:

(%i1) load (graphs)$
(%i2) g : random_graph(100, 0.5)$
(%i3) max_clique(g);
(%o3) [20, 28, 42, 44, 47, 65, 69, 75, 87, 98]

Functionmax degree (gr)
Returns the maximal degree of vertices of the graph gr and a vertex of maximal
degree.
Example:

(%i1) load (graphs)$
(%i2) g : random_graph(100, 0.02)$
(%i3) max_degree(g);
(%o3) [6, 70]
(%i4) vertex_degree(95, g);
(%o4) 3

Functionmax flow (net, s, t)
Returns a maximum flow through the network net with the source s and the sink t.
The function returns the value of the maximal flow and a list representing the weights
of the arcs in the optimal flow.
Example:

(%i1) load (graphs)$
(%i2) net : create_graph(
[1,2,3,4,5,6],
[[[1,2], 1.0],
[[1,3], 0.3],
[[2,4], 0.2],
[[2,5], 0.3],
[[3,4], 0.1],
[[3,5], 0.1],
[[4,6], 1.0],
[[5,6], 1.0]],
directed=true)$

(%i3) [flow_value, flow] : max_flow(net, 1, 6);
(%o3) [0.7, [[[1, 2], 0.5], [[1, 3], 0.2], [[2, 4], 0.2],
[[2, 5], 0.3], [[3, 4], 0.1], [[3, 5], 0.1], [[4, 6], 0.3],
[[5, 6], 0.4]]]
(%i4) fl : 0$
(%i5) for u in out_neighbors(1, net)

678 Maxima Manual

do fl : fl + assoc([1, u], flow)$
(%i6) fl;
(%o6) 0.7

Functionmax independent set (gr)
Returns a maximum independent set of the graph gr.

Example:
(%i1) load (graphs)$
(%i2) d : dodecahedron_graph()$
(%i3) mi : max_independent_set(d);
(%o3) [0, 3, 5, 9, 10, 11, 18, 19]
(%i4) draw_graph(d, show_vertices=mi)$

Functionmax matching (gr)
Returns a maximum matching of the graph gr.

Example:
(%i1) load (graphs)$
(%i2) d : dodecahedron_graph()$
(%i3) m : max_matching(d);
(%o3) [[1, 2], [3, 4], [0, 15], [11, 16], [12, 17], [13, 18],

[14, 19], [6, 10], [8, 9], [5, 7]]
(%i4) draw_graph(d, show_edges=m)$

Functionmin degree (gr)
Returns the minimum degree of vertices of the graph gr and a vertex of minimum
degree.

Example:
(%i1) load (graphs)$
(%i2) g : random_graph(100, 0.1)$
(%i3) min_degree(g);
(%o3) [4, 83]
(%i4) vertex_degree(21, g);
(%o4) 12

Functionmin vertex cover (gr)
Returns the minimum vertex cover of the graph gr.

Functionminimum spanning tree (gr)
Returns the minimum spanning tree of the graph gr.

Example:
(%i1) load (graphs)$
(%i2) g : graph_product(path_graph(10), path_graph(10))$
(%i3) t : minimum_spanning_tree(g)$
(%i4) draw_graph(g, show_edges=edges(t))$

Chapter 52: graphs 679

Functionneighbors (v, gr)
Returns the list of neighbors of the vertex v in the graph gr.

Example:
(%i1) load (graphs)$
(%i2) p : petersen_graph()$
(%i3) neighbors(3, p);
(%o3) [4, 8, 2]

Functionodd girth (gr)
Returns the length of the shortest odd cycle in the graph gr.

Example:
(%i1) load (graphs)$
(%i2) g : graph_product(cycle_graph(4), cycle_graph(7))$
(%i3) girth(g);
(%o3) 4
(%i4) odd_girth(g);
(%o4) 7

Functionout neighbors (v, gr)
Returns the list of out-neighbors of the vertex v in the directed graph gr.

Example:
(%i1) load (graphs)$
(%i2) p : path_digraph(3)$
(%i3) in_neighbors(2, p);
(%o3) [1]
(%i4) out_neighbors(2, p);
(%o4) []

Functionplanar embedding (gr)
Returns the list of facial walks in a planar embedding of gr and false if gr is not a
planar graph.

The graph gr must be biconnected.

The algorithm used is the Demoucron’s algorithm, which is a quadratic time algo-
rithm.

Example:
(%i1) load (graphs)$
(%i2) planar_embedding(grid_graph(3,3));
(%o2) [[3, 6, 7, 8, 5, 2, 1, 0], [4, 3, 0, 1], [3, 4, 7, 6],

[8, 7, 4, 5], [1, 2, 5, 4]]

Functionprint graph (gr)
Prints some information about the graph gr.

Example:

680 Maxima Manual

(%i1) load (graphs)$
(%i2) c5 : cycle_graph(5)$
(%i3) print_graph(c5)$
Graph on 5 vertices with 5 edges.
Adjacencies:
4 : 0 3
3 : 4 2
2 : 3 1
1 : 2 0
0 : 4 1

(%i4) dc5 : cycle_digraph(5)$
(%i5) print_graph(dc5)$
Digraph on 5 vertices with 5 arcs.
Adjacencies:
4 : 0
3 : 4
2 : 3
1 : 2
0 : 1

(%i6) out_neighbors(0, dc5);
(%o6) [1]

Functionradius (gr)
Returns the radius of the graph gr.
Example:

(%i1) load (graphs)$
(%i2) radius(dodecahedron_graph());
(%o2) 5

Functionset edge weight (e, w, gr)
Assigns the weight w to the edge e in the graph gr.
Example:

(%i1) load (graphs)$
(%i2) g : create_graph([1, 2], [[[1,2], 1.2]])$
(%i3) get_edge_weight([1,2], g);
(%o3) 1.2
(%i4) set_edge_weight([1,2], 2.1, g);
(%o4) done
(%i5) get_edge_weight([1,2], g);
(%o5) 2.1

Functionset vertex label (v, l, gr)
Assigns the label l to the vertex v in the graph gr.
Example:

(%i1) load (graphs)$
(%i2) g : create_graph([[1, "One"], [2, "Two"]], [[1,2]])$
(%i3) get_vertex_label(1, g);

Chapter 52: graphs 681

(%o3) One
(%i4) set_vertex_label(1, "oNE", g);
(%o4) done
(%i5) get_vertex_label(1, g);
(%o5) oNE

Functionshortest path (u, v, gr)
Returns the shortest path from u to v in the graph gr.
Example:

(%i1) load (graphs)$
(%i2) d : dodecahedron_graph()$
(%i3) path : shortest_path(0, 7, d);
(%o3) [0, 1, 19, 13, 7]
(%i4) draw_graph(d, show_edges=vertices_to_path(path))$

Functionstrong components (gr)
Returns the strong components of a directed graph gr.
Example:

(%i1) load (graphs)$
(%i2) t : random_tournament(4)$
(%i3) strong_components(t);
(%o3) [[2], [0], [1], [3]]
(%i4) vertex_out_degree(3, t);
(%o4) 2

Functiontopological sort (dag)
Returns a topological sorting of the vertices of a directed graph dag or an empty list
if dag is not a directed acyclic graph.
Example:

(%i1) load (graphs)$
(%i2) g:create_graph(

[1,2,3,4,5],
[
[1,2], [2,5], [5,3],
[5,4], [3,4], [1,3]
],
directed=true)$

(%i3) topological_sort(g);
(%o3) [1, 2, 5, 3, 4]

Functionvertex degree (v, gr)
Returns the degree of the vertex v in the graph gr.

Functionvertex distance (u, v, gr)
Returns the length of the shortest path between u and v in the (directed) graph gr.
Example:

682 Maxima Manual

(%i1) load (graphs)$
(%i2) d : dodecahedron_graph()$
(%i3) vertex_distance(0, 7, d);
(%o3) 4
(%i4) shortest_path(0, 7, d);
(%o4) [0, 1, 19, 13, 7]

Functionvertex eccentricity (v, gr)
Returns the eccentricity of the vertex v in the graph gr.
Example:

(%i1) load (graphs)$
(%i2) g:cycle_graph(7)$
(%i3) vertex_eccentricity(0, g);
(%o3) 3

Functionvertex in degree (v, gr)
Returns the in-degree of the vertex v in the directed graph gr.
Example:

(%i1) load (graphs)$
(%i2) p5 : path_digraph(5)$
(%i3) print_graph(p5)$
Digraph on 5 vertices with 4 arcs.
Adjacencies:
4 :
3 : 4
2 : 3
1 : 2
0 : 1

(%i4) vertex_in_degree(4, p5);
(%o4) 1
(%i5) in_neighbors(4, p5);
(%o5) [3]

Functionvertex out degree (v, gr)
Returns the out-degree of the vertex v in the directed graph gr.
Example:

(%i1) load (graphs)$
(%i2) t : random_tournament(10)$
(%i3) vertex_out_degree(0, t);
(%o3) 6
(%i4) out_neighbors(0, t);
(%o4) [9, 6, 4, 3, 2, 1]

Functionvertices (gr)
Returns the list of vertices in the graph gr.
Example:

Chapter 52: graphs 683

(%i1) load (graphs)$
(%i2) vertices(complete_graph(4));
(%o2) [3, 2, 1, 0]

52.2.3 Modifying graphs

Functionadd edge (e, gr)
Adds the edge e to the graph gr.
Example:

(%i1) load (graphs)$
(%i2) p : path_graph(4)$
(%i3) neighbors(0, p);
(%o3) [1]
(%i4) add_edge([0,3], p);
(%o4) done
(%i5) neighbors(0, p);
(%o5) [3, 1]

Functionadd edges (e list, gr)
Adds all edges in the list e list to the graph gr.
Example:

(%i1) load (graphs)$
(%i2) g : empty_graph(3)$
(%i3) add_edges([[0,1],[1,2]], g)$
(%i4) print_graph(g)$
Graph on 3 vertices with 2 edges.
Adjacencies:
2 : 1
1 : 2 0
0 : 1

Functionadd vertex (v, gr)
Adds the vertex v to the graph gr.
Example:

(%i1) load (graphs)$
(%i2) g : path_graph(2)$
(%i3) add_vertex(2, g)$
(%i4) print_graph(g)$
Graph on 3 vertices with 1 edges.
Adjacencies:

2 :
1 : 0
0 : 1

Functionadd vertices (v list, gr)
Adds all vertices in the list v list to the graph gr.

684 Maxima Manual

Functionconnect vertices (v list, u list, gr)
Connects all vertices from the list v list with the vertices in the list u list in the graph
gr.
v list and u list can be single vertices or lists of vertices.
Example:

(%i1) load (graphs)$
(%i2) g : empty_graph(4)$
(%i3) connect_vertices(0, [1,2,3], g)$
(%i4) print_graph(g)$
Graph on 4 vertices with 3 edges.
Adjacencies:
3 : 0
2 : 0
1 : 0
0 : 3 2 1

Functioncontract edge (e, gr)
Contracts the edge e in the graph gr.
Example:

(%i1) load (graphs)$
(%i2) g: create_graph(

8, [[0,3],[1,3],[2,3],[3,4],[4,5],[4,6],[4,7]])$
(%i3) print_graph(g)$
Graph on 8 vertices with 7 edges.
Adjacencies:
7 : 4
6 : 4
5 : 4
4 : 7 6 5 3
3 : 4 2 1 0
2 : 3
1 : 3
0 : 3

(%i4) contract_edge([3,4], g)$
(%i5) print_graph(g)$
Graph on 7 vertices with 6 edges.
Adjacencies:
7 : 3
6 : 3
5 : 3
3 : 5 6 7 2 1 0
2 : 3
1 : 3
0 : 3

Functionremove edge (e, gr)
Removes the edge e from the graph gr.
Example:

Chapter 52: graphs 685

(%i1) load (graphs)$
(%i2) c3 : cycle_graph(3)$
(%i3) remove_edge([0,1], c3)$
(%i4) print_graph(c3)$
Graph on 3 vertices with 2 edges.
Adjacencies:
2 : 0 1
1 : 2
0 : 2

Functionremove vertex (v, gr)
Removes the vertex v from the graph gr.

Functionvertex coloring (gr)
Returns an optimal coloring of the vertices of the graph gr.
The function returns the chromatic number and a list representing the coloring of the
vertices of gr.
Example:

(%i1) load (graphs)$
(%i2) p:petersen_graph()$
(%i3) vertex_coloring(p);
(%o3) [3, [[0, 2], [1, 3], [2, 2], [3, 3], [4, 1], [5, 3],

[6, 1], [7, 1], [8, 2], [9, 2]]]

52.2.4 Reading and writing to files

Functiondimacs export (gr, fl)
Functiondimacs export (gr, fl, comment1, ..., commentn)

Exports the graph into the file fl in the DIMACS format. Optional comments will be
added to the top of the file.

Functiondimacs import (fl)
Returns the graph from file fl in the DIMACS format.

Functiongraph6 decode (str)
Returns the graph encoded in the graph6 format in the string str.

Functiongraph6 encode (gr)
Returns a string which encodes the graph gr in the graph6 format.

Functiongraph6 export (gr list, fl)
Exports graphs in the list gr list to the file fl in the graph6 format.

Functiongraph6 import (fl)
Returns a list of graphs from the file fl in the graph6 format.

686 Maxima Manual

Functionsparse6 decode (str)
Returns the graph encoded in the sparse6 format in the string str.

Functionsparse6 encode (gr)
Returns a string which encodes the graph gr in the sparse6 format.

Functionsparse6 export (gr list, fl)
Exports graphs in the list gr list to the file fl in the sparse6 format.

Functionsparse6 import (fl)
Returns a list of graphs from the file fl in the sparse6 format.

52.2.5 Visualization

Functiondraw graph (graph)
Functiondraw graph (graph, option1, ..., optionk)

Draws the graph using the draw package.
The algorithm used to position vertices is specified by the optional argument program.
The default value is program=spring_embedding. spring embedding can also use the
graphviz programs for positioning vertices, but graphviz must be installed separately.
Optional arguments to the draw graph function can be:
• show id=show : if show is true then ids of the vertices are displayed.
• show label=show : if show is true then labels of the vertices are displayed.
• label alignment=pos: how to align the label/id of the vertices. Can be left,

center or right. The default is left.
• show weight=show : if show is true then weights of the edges are displayed.
• vertex type=type: defines how vertices are displayed. See the point type option

for the draw package.
• vertex size=size: the size of vertices.
• vertex color=c: color used for displaying vertices.
• show vertices=v list: display vertices in the list v list using a different color.
• show vertex type=type: defines how vertices in show vertices are displayed. See

the point type option for the draw package.
• show vertex size=size: the size of vertices in show vertices.
• show vertex color=c: color used for displaying vertices in the show vertices list.
• vertex partition=part: a partition [[v1,v2,...],...,[vk,...,vn]] of the ver-

tices of the graph. The vertices of each list in the partition will be drawn in a
different color.

• vertex coloring=col: coloring of the vertices. The coloring col must be specified
in the format as returned by vertex coloring.

• edge color=c: color used for displaying edges.
• edge width=width: the width of edges.

Chapter 52: graphs 687

• edge type=type: defines how edges are displayed. See the line type option for
the draw package.

• show edges=e list: display edges in the list e list using a different color.
• show edge color=c: color used for displaying edges in the show edges list.
• show edge width=width: the width of edges in show edges.
• show edge type=type: defines how edges in show edges are displayed. See the

line type option for the draw package.
• edge partition=partition: a partition [[e1,e2,...],...,[ek,...,em]] of

edges of the graph. The edges of each list in the partition will be drawn using a
different color.

• edge coloring=col: the coloring of edges. The coloring col must be specified in
the format as returned by the function edge coloring.

• redraw=r: if redraw is true, vertex positions are recomputed even if the positions
have been saved from a previous drawing of the graph.

• head angle=angle: the angle for the arrows displayed on arcs (in directed graphs).
Default value: 15.

• head length=len: the length for the arrows displayed on arcs (in directed graphs).
Default value: 0.1.

• spring embedding depth=depth: the number of iterations in the spring embed-
ding graph drawing algorithm. Default value: 50.

• terminal=term: the terminal used for drawing (see the terminal option in the
draw package).

• file name=file: the filename of the drawing if terminal is not screen.
• program=prg : defines the program used for positioning vertices of the graph.

Can be one of the graphviz programs (dot, neato, twopi, circ, fdp), circular,
spring embedding or planar embedding. planar embedding is only available for
2-connected planar graphs. When program=spring_embedding, a set of vertices
with fixed position can be specified with the fixed vertices option.

• fixed vertices=[]: specifies a list of vertices which will have positions fixed along
a regular polygon. Can be used when program=spring_embedding.

Example 1:
(%i1) load (graphs)$
(%i2) g:grid_graph(10,10)$
(%i3) m:max_matching(g)$
(%i4) draw_graph(g,

spring_embedding_depth=100,
show_edges=m, edge_type=dots,
vertex_size=0)$

Example 2:
(%i1) load (graphs)$
(%i2) g:create_graph(16,

[
[0,1],[1,3],[2,3],[0,2],[3,4],[2,4],

688 Maxima Manual

[5,6],[6,4],[4,7],[6,7],[7,8],[7,10],[7,11],
[8,10],[11,10],[8,9],[11,12],[9,15],[12,13],
[10,14],[15,14],[13,14]
])$

(%i3) t:minimum_spanning_tree(g)$
(%i4) draw_graph(

g,
show_edges=edges(t),
show_edge_width=4,
show_edge_color=green,
vertex_type=filled_square,
vertex_size=2
)$

Example 3:

(%i1) load (graphs)$
(%i2) g:create_graph(16,

[
[0,1],[1,3],[2,3],[0,2],[3,4],[2,4],
[5,6],[6,4],[4,7],[6,7],[7,8],[7,10],[7,11],
[8,10],[11,10],[8,9],[11,12],[9,15],[12,13],
[10,14],[15,14],[13,14]
])$

(%i3) mi : max_independent_set(g)$
(%i4) draw_graph(

g,
show_vertices=mi,
show_vertex_type=filled_up_triangle,
show_vertex_size=2,
edge_color=cyan,
edge_width=3,
show_id=true,
text_color=brown
)$

Example 4:

(%i1) load (graphs)$
(%i2) net : create_graph(

[0,1,2,3,4,5],
[
[[0,1], 3], [[0,2], 2],
[[1,3], 1], [[1,4], 3],
[[2,3], 2], [[2,4], 2],
[[4,5], 2], [[3,5], 2]
],
directed=true
)$

(%i3) draw_graph(
net,
show_weight=true,

Chapter 52: graphs 689

vertex_size=0,
show_vertices=[0,5],
show_vertex_type=filled_square,
head_length=0.2,
head_angle=10,
edge_color="dark-green",
text_color=blue
)$

Option variabledraw graph program
Default value: spring embedding.
The default value for the program used to position vertices in draw_graph program.

Functionvertices to path (v list)
Converts a list v list of vertices to a list of edges of the path defined by v list.

Functionvertices to cycle (v list)
Converts a list v list of vertices to a list of edges of the cycle defined by v list.

690 Maxima Manual

Chapter 53: grobner 691

53 grobner

53.1 Introduction to grobner

grobner is a package for working with Groebner bases in Maxima.
A tutorial on Groebner Bases can be found at
http://www.geocities.com/CapeCanaveral/Hall/3131/

To use the following functions you must load the ‘grobner.lisp’ package.
load(grobner);

A demo can be started by
demo("grobner.demo");

or
batch("grobner.demo")

Some of the calculation in the demo will take a lot of time therefore the output
‘grobner-demo.output’ of the demo can be found in the same directory as the demo file.

53.1.1 Notes on the grobner package

The package was written by
Marek Rychlik
http://alamos.math.arizona.edu

and is released 2002-05-24 under the terms of the General Public License(GPL) (see file
‘grobner.lisp’. This documentation was extracted from the files
‘README’, ‘grobner.lisp’, ‘grobner.demo’, ‘grobner-demo.output’
by Günter Nowak. Suggestions for improvement of the documentation can be discussed at
the maxima-mailing-list maxima@math.utexas.edu. The code is a little bit out of date now.
Modern implementation use the fast F4 algorithm described in
A new efficient algorithm for computing Gröbner bases (F4)
Jean-Charles Faugère
LIP6/CNRS Université Paris VI
January 20, 1999

53.1.2 Implementations of admissible monomial orders in grobner

• lex

pure lexicographic, default order for monomial comparisons
• grlex

total degree order, ties broken by lexicographic
• grevlex

total degree, ties broken by reverse lexicographic
• invlex

inverse lexicographic order

mailto:maxima@math.utexas.edu

692 Maxima Manual

53.2 Functions and Variables for grobner

53.2.1 Global switches for grobner

Option variablepoly monomial order
Default value: lex

This global switch controls which monomial order is used in polynomial and Groebner
Bases calculations. If not set, lex will be used.

Option variablepoly coefficient ring
Default value: expression_ring

This switch indicates the coefficient ring of the polynomials that will be used in
grobner calculations. If not set, maxima’s general expression ring will be used. This
variable may be set to ring_of_integers if desired.

Option variablepoly primary elimination order
Default value: false

Name of the default order for eliminated variables in elimination-based functions. If
not set, lex will be used.

Option variablepoly secondary elimination order
Default value: false

Name of the default order for kept variables in elimination-based functions. If not
set, lex will be used.

Option variablepoly elimination order
Default value: false

Name of the default elimination order used in elimination calculations. If set, it
overrides the settings in variables poly_primary_elimination_order and poly_
secondary_elimination_order. The user must ensure that this is a true elimination
order valid for the number of eliminated variables.

Option variablepoly return term list
Default value: false

If set to true, all functions in this package will return each polynomial as a list of
terms in the current monomial order rather than a maxima general expression.

Option variablepoly grobner debug
Default value: false

If set to true, produce debugging and tracing output.

Chapter 53: grobner 693

Option variablepoly grobner algorithm
Default value: buchberger
Possible values:

buchberger

parallel_buchberger

gebauer_moeller

The name of the algorithm used to find the Groebner Bases.

Option variablepoly top reduction only
Default value: false
If not false, use top reduction only whenever possible. Top reduction means that
division algorithm stops after the first reduction.

53.2.2 Simple operators in grobner

poly_add, poly_subtract, poly_multiply and poly_expt are the arithmetical opera-
tions on polynomials. These are performed using the internal representation, but the results
are converted back to the maxima general form.

Functionpoly add (poly1, poly2, varlist)
Adds two polynomials poly1 and poly2.

(%i1) poly_add(z+x^2*y,x-z,[x,y,z]);
2

(%o1) x y + x

Functionpoly subtract (poly1, poly2, varlist)
Subtracts a polynomial poly2 from poly1.

(%i1) poly_subtract(z+x^2*y,x-z,[x,y,z]);
2

(%o1) 2 z + x y - x

Functionpoly multiply (poly1, poly2, varlist)
Returns the product of polynomials poly1 and poly2.

(%i2) poly_multiply(z+x^2*y,x-z,[x,y,z])-(z+x^2*y)*(x-z),expand;
(%o1) 0

Functionpoly s polynomial (poly1, poly2, varlist)
Returns the syzygy polynomial (S-polynomial) of two polynomials poly1 and poly2.

Functionpoly primitive part (poly1, varlist)
Returns the polynomial poly divided by the GCD of its coefficients.

(%i1) poly_primitive_part(35*y+21*x,[x,y]);
(%o1) 5 y + 3 x

694 Maxima Manual

Functionpoly normalize (poly, varlist)
Returns the polynomial poly divided by the leading coefficient. It assumes that the
division is possible, which may not always be the case in rings which are not fields.

53.2.3 Other functions in grobner

Functionpoly expand (poly, varlist)
This function parses polynomials to internal form and back. It is equivalent to
expand(poly) if poly parses correctly to a polynomial. If the representation is not
compatible with a polynomial in variables varlist, the result is an error. It can be
used to test whether an expression correctly parses to the internal representation.
The following examples illustrate that indexed and transcendental function variables
are allowed.

(%i1) poly_expand((x-y)*(y+x),[x,y]);
2 2

(%o1) x - y
(%i2) poly_expand((y+x)^2,[x,y]);

2 2
(%o2) y + 2 x y + x
(%i3) poly_expand((y+x)^5,[x,y]);

5 4 2 3 3 2 4 5
(%o3) y + 5 x y + 10 x y + 10 x y + 5 x y + x
(%i4) poly_expand(-1-x*exp(y)+x^2/sqrt(y),[x]);

2
y x

(%o4) - x %e + ------- - 1
sqrt(y)

(%i5) poly_expand(-1-sin(x)^2+sin(x),[sin(x)]);
2

(%o5) - sin (x) + sin(x) - 1

Functionpoly expt (poly, number, varlist)
exponentitates poly by a positive integer number. If number is not a positive integer
number an error will be raised.

(%i1) poly_expt(x-y,3,[x,y])-(x-y)^3,expand;
(%o1) 0

Functionpoly content (poly. varlist)
poly_content extracts the GCD of its coefficients

(%i1) poly_content(35*y+21*x,[x,y]);
(%o1) 7

Chapter 53: grobner 695

Functionpoly pseudo divide (poly, polylist, varlist)
Pseudo-divide a polynomial poly by the list of n polynomials polylist. Return multiple
values. The first value is a list of quotients a. The second value is the remainder r.
The third argument is a scalar coefficient c, such that c ∗ poly can be divided by
polylist within the ring of coefficients, which is not necessarily a field. Finally, the
fourth value is an integer count of the number of reductions performed. The resulting
objects satisfy the equation:

c ∗ poly =
n∑
i=1

(ai ∗ polylisti) + r

Functionpoly exact divide (poly1, poly2, varlist)
Divide a polynomial poly1 by another polynomial poly2. Assumes that exact division
with no remainder is possible. Returns the quotient.

Functionpoly normal form (poly, polylist, varlist)
poly_normal_form finds the normal form of a polynomial poly with respect to a set
of polynomials polylist.

Functionpoly buchberger criterion (polylist, varlist)
Returns true if polylist is a Groebner basis with respect to the current term order,
by using the Buchberger criterion: for every two polynomials h1 and h2 in polylist
the S-polynomial S(h1, h2) reduces to 0 modulo polylist.

Functionpoly buchberger (polylist fl varlist)
poly_buchberger performs the Buchberger algorithm on a list of polynomials and
returns the resulting Groebner basis.

53.2.4 Standard postprocessing of Groebner Bases

The k-th elimination ideal Ik of an ideal I over K[x1, ..., x1] is I ∩K[xk+1, ..., xn].

The colon ideal I : J is the ideal {h|∀w ∈ J : wh ∈ I}.
The ideal I : p∞ is the ideal {h|∃n ∈ N : pnh ∈ I}.
The ideal I : J∞ is the ideal {h|∃n ∈ N, ∃p ∈ J : pnh ∈ I}.
The radical ideal

√
I is the ideal {h|∃n ∈ N : hn ∈ I}.

Functionpoly reduction (polylist, varlist)
poly_reduction reduces a list of polynomials polylist, so that each polynomial is
fully reduced with respect to the other polynomials.

Functionpoly minimization (polylist, varlist)
Returns a sublist of the polynomial list polylist spanning the same monomial ideal as
polylist but minimal, i.e. no leading monomial of a polynomial in the sublist divides
the leading monomial of another polynomial.

696 Maxima Manual

Functionpoly normalize list (polylist, varlist)
poly_normalize_list applies poly_normalize to each polynomial in the list. That
means it divides every polynomial in a list polylist by its leading coefficient.

Functionpoly grobner (polylist, varlist)
Returns a Groebner basis of the ideal span by the polynomials polylist. Affected by
the global flags.

Functionpoly reduced grobner (polylist, varlist)
Returns a reduced Groebner basis of the ideal span by the polynomials polylist.
Affected by the global flags.

Functionpoly depends p (poly, var, varlist)
poly_depends tests whether a polynomial depends on a variable var.

Functionpoly elimination ideal (polylist, number, varlist)
poly_elimination_ideal returns the grobner basis of the number-th elimination
ideal of an ideal specified as a list of generating polynomials (not necessarily Groebner
basis).

Functionpoly colon ideal (polylist1, polylist2, varlist)
Returns the reduced Groebner basis of the colon ideal

I(polylist1) : I(polylist2)

where polylist1 and polylist2 are two lists of polynomials.

Functionpoly ideal intersection (polylist1, polylist2, varlist)
poly_ideal_intersection returns the intersection of two ideals.

Functionpoly lcm (poly1, poly2, varlist)
Returns the lowest common multiple of poly1 and poly2.

Functionpoly gcd (poly1, poly2, varlist)
Returns the greatest common divisor of poly1 and poly2.

Functionpoly grobner equal (polylist1, polylist2, varlist)
poly_grobner_equal tests whether two Groebner Bases generate the same ideal. Re-
turns true if two lists of polynomials polylist1 and polylist2, assumed to be Groebner
Bases, generate the same ideal, and false otherwise. This is equivalent to checking
that every polynomial of the first basis reduces to 0 modulo the second basis and vice
versa. Note that in the example below the first list is not a Groebner basis, and thus
the result is false.

(%i1) poly_grobner_equal([y+x,x-y],[x,y],[x,y]);
(%o1) false

Chapter 53: grobner 697

Functionpoly grobner subsetp (polylist1, polylist2, varlist)
poly_grobner_subsetp tests whether an ideal generated by polylist1 is contained in
the ideal generated by polylist2. For this test to always succeed, polylist2 must be a
Groebner basis.

Functionpoly grobner member (poly, polylist, varlist)
Returns true if a polynomial poly belongs to the ideal generated by the polynomial
list polylist, which is assumed to be a Groebner basis. Returns false otherwise.
poly_grobner_member tests whether a polynomial belongs to an ideal generated by a
list of polynomials, which is assumed to be a Groebner basis. Equivalent to normal_
form being 0.

Functionpoly ideal saturation1 (polylist, poly, varlist)
Returns the reduced Groebner basis of the saturation of the ideal

I(polylist) : poly∞

Geometrically, over an algebraically closed field, this is the set of polynomials in the
ideal generated by polylist which do not identically vanish on the variety of poly.

Functionpoly ideal saturation (polylist1, polylist2, varlist)
Returns the reduced Groebner basis of the saturation of the ideal

I(polylist1) : I(polylist2)∞

Geometrically, over an algebraically closed field, this is the set of polynomials in the
ideal generated by polylist1 which do not identically vanish on the variety of polylist2.

Functionpoly ideal polysaturation1 (polylist1, polylist2, varlist)
polylist2 ist a list of n polynomials [poly1,...,polyn]. Returns the reduced Groeb-
ner basis of the ideal

I(polylist) : poly1∞ : ... : polyn∞

obtained by a sequence of successive saturations in the polynomials of the polynomial
list polylist2 of the ideal generated by the polynomial list polylist1.

Functionpoly ideal polysaturation (polylist, polylistlist, varlist)
polylistlist is a list of n list of polynomials [polylist1,...,polylistn]. Returns
the reduced Groebner basis of the saturation of the ideal

I(polylist) : I(polylist1)∞ : ... : I(polylistn)∞

Functionpoly saturation extension (poly, polylist, varlist1, varlist2)
poly_saturation_extension implements the famous Rabinowitz trick.

Functionpoly polysaturation extension (poly, polylist, varlist1, varlist2)

698 Maxima Manual

Chapter 54: impdiff 699

54 impdiff

54.1 Functions and Variables for impdiff

Functionimplicit derivative (f,indvarlist,orderlist,depvar)
This subroutine computes implicit derivatives of multivariable functions. f is an array
function, the indexes are the derivative degree in the indvarlist order; indvarlist is the
independent variable list; orderlist is the order desired; and depvar is the dependent
variable.
To use this function write first load("impdiff").

700 Maxima Manual

Chapter 55: implicit plot 701

55 implicit plot

55.1 Functions and Variables for implicit plot

Functionimplicit plot (expr, x range, y range)
Functionimplicit plot ([expr 1, ..., expr n], x range, y range)

Displays a plot of one or more expressions in implicit form. expr is the expression
to be plotted, x range the range of the horizontal axis and y range the range of
vertical axis. implicit_plot respects global setting for the gnuplot driver set by the
set plot option function. Options can also be passed to implicit_plot function as
optional arguments.
implicit_plot works by tracking sign changes on the area given by x range and
y range and can fail for complicated expressions.
load(implicit_plot) loads this function.
Example:

(%i1) implicit_plot (x^2 = y^3 - 3*y + 1, [x, -4, 4], [y, -4, 4],
[gnuplot_preamble, "set zeroaxis"]);

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1 2 3 4

x2 = y3-3*y+1

702 Maxima Manual

Chapter 56: interpol 703

56 interpol

56.1 Introduction to interpol

Package interpol defines the Lagrangian, the linear and the cubic splines methods for
polynomial interpolation.

For comments, bugs or suggestions, please contact me at ’mario AT edu DOT xunta
DOT es’.

56.2 Functions and Variables for interpol

Functionlagrange (points)
Functionlagrange (points, option)

Computes the polynomial interpolation by the Lagrangian method. Argument points
must be either:
• a two column matrix, p:matrix([2,4],[5,6],[9,3]),
• a list of pairs, p: [[2,4],[5,6],[9,3]],
• a list of numbers, p: [4,6,3], in which case the abscissas will be assigned auto-

matically to 1, 2, 3, etc.

In the first two cases the pairs are ordered with respect to the first coordinate before
making computations.
With the option argument it is possible to select the name for the independent vari-
able, which is ’x by default; to define another one, write something like varname=’z.
Note that when working with high degree polynomials, floating point evaluations are
instable.
Examples:

(%i1) load(interpol)$
(%i2) p:[[7,2],[8,2],[1,5],[3,2],[6,7]]$
(%i3) lagrange(p);

4 3 2
73 x 701 x 8957 x 5288 x 186

(%o3) ----- - ------ + ------- - ------ + ---
420 210 420 105 5

(%i4) f(x):=’’%;
4 3 2

73 x 701 x 8957 x 5288 x 186
(%o4) f(x) := ----- - ------ + ------- - ------ + ---

420 210 420 105 5
(%i5) /* Evaluate the polynomial at some points */

map(f,[2.3,5/7,%pi]);
919062

(%o5) [- 1.567534999999992, ------,
84035

4 3 2

704 Maxima Manual

73 %pi 701 %pi 8957 %pi 5288 %pi 186
------- - -------- + --------- - -------- + ---]
420 210 420 105 5

(%i6) %,numer;
(%o6) [- 1.567534999999992, 10.9366573451538, 2.89319655125692]
(%i7) load(draw)$ /* load draw package */
(%i8) /* Plot the polynomial together with points */

draw2d(
color = red,
key = "Lagrange polynomial",
explicit(f(x),x,0,10),
point_size = 3,
color = blue,
key = "Sample points",
points(p))$

(%i9) /* Change variable name */
lagrange(p, varname=w);

4 3 2
73 w 701 w 8957 w 5288 w 186

(%o9) ----- - ------ + ------- - ------ + ---
420 210 420 105 5

Functioncharfun2 (x, a, b)
Returns true if number x belongs to the interval [a, b), and false otherwise.

Functionlinearinterpol (points)
Functionlinearinterpol (points, option)

Computes the polynomial interpolation by the linear method. Argument points must
be either:
• a two column matrix, p:matrix([2,4],[5,6],[9,3]),
• a list of pairs, p: [[2,4],[5,6],[9,3]],
• a list of numbers, p: [4,6,3], in which case the abscissas will be assigned auto-

matically to 1, 2, 3, etc.

In the first two cases the pairs are ordered with respect to the first coordinate before
making computations.
With the option argument it is possible to select the name for the independent vari-
able, which is ’x by default; to define another one, write something like varname=’z.
Examples:

(%i1) load(interpol)$
(%i2) p: matrix([7,2],[8,3],[1,5],[3,2],[6,7])$
(%i3) linearinterpol(p);

13 3 x
(%o3) (-- - ---) charfun2(x, minf, 3)

2 2
+ (x - 5) charfun2(x, 7, inf) + (37 - 5 x) charfun2(x, 6, 7)

5 x

Chapter 56: interpol 705

+ (--- - 3) charfun2(x, 3, 6)
3

(%i4) f(x):=’’%;
13 3 x

(%o4) f(x) := (-- - ---) charfun2(x, minf, 3)
2 2

+ (x - 5) charfun2(x, 7, inf) + (37 - 5 x) charfun2(x, 6, 7)
5 x

+ (--- - 3) charfun2(x, 3, 6)
3

(%i5) /* Evaluate the polynomial at some points */
map(f,[7.3,25/7,%pi]);

62 5 %pi
(%o5) [2.3, --, ----- - 3]

21 3
(%i6) %,numer;
(%o6) [2.3, 2.952380952380953, 2.235987755982989]
(%i7) load(draw)$ /* load draw package */
(%i8) /* Plot the polynomial together with points */

draw2d(
color = red,
key = "Linear interpolator",
explicit(f(x),x,-5,20),
point_size = 3,
color = blue,
key = "Sample points",
points(args(p)))$

(%i9) /* Change variable name */
linearinterpol(p, varname=’s);
13 3 s

(%o9) (-- - ---) charfun2(s, minf, 3)
2 2

+ (s - 5) charfun2(s, 7, inf) + (37 - 5 s) charfun2(s, 6, 7)
5 s

+ (--- - 3) charfun2(s, 3, 6)
3

Functioncspline (points)
Functioncspline (points, option1, option2, ...)

Computes the polynomial interpolation by the cubic splines method. Argument points
must be either:
• a two column matrix, p:matrix([2,4],[5,6],[9,3]),
• a list of pairs, p: [[2,4],[5,6],[9,3]],
• a list of numbers, p: [4,6,3], in which case the abscissas will be assigned auto-

matically to 1, 2, 3, etc.

In the first two cases the pairs are ordered with respect to the first coordinate before
making computations.

706 Maxima Manual

There are three options to fit specific needs:
• ’d1, default ’unknown, is the first derivative at x1; if it is ’unknown, the second

derivative at x1 is made equal to 0 (natural cubic spline); if it is equal to a
number, the second derivative is calculated based on this number.

• ’dn, default ’unknown, is the first derivative at xn; if it is ’unknown, the second
derivative at xn is made equal to 0 (natural cubic spline); if it is equal to a
number, the second derivative is calculated based on this number.

• ’varname, default ’x, is the name of the independent variable.

Examples:
(%i1) load(interpol)$
(%i2) p:[[7,2],[8,2],[1,5],[3,2],[6,7]]$
(%i3) /* Unknown first derivatives at the extremes

is equivalent to natural cubic splines */
cspline(p);

3 2
1159 x 1159 x 6091 x 8283

(%o3) (------- - ------- - ------ + ----) charfun2(x, minf, 3)
3288 1096 3288 1096

3 2
2587 x 5174 x 494117 x 108928

+ (- ------- + ------- - -------- + ------) charfun2(x, 7, inf)
1644 137 1644 137

3 2
4715 x 15209 x 579277 x 199575

+ (------- - -------- + -------- - ------) charfun2(x, 6, 7)
1644 274 1644 274

3 2
3287 x 2223 x 48275 x 9609

+ (- ------- + ------- - ------- + ----) charfun2(x, 3, 6)
4932 274 1644 274

(%i4) f(x):=’’%$
(%i5) /* Some evaluations */

map(f,[2.3,5/7,%pi]), numer;
(%o5) [1.991460766423356, 5.823200187269903, 2.227405312429507]
(%i6) load(draw)$ /* load draw package */
(%i7) /* Plotting interpolating function */

draw2d(
color = red,
key = "Cubic splines",
explicit(f(x),x,0,10),
point_size = 3,
color = blue,
key = "Sample points",
points(p))$

(%i8) /* New call, but giving values at the derivatives */
cspline(p,d1=0,dn=0);

3 2

Chapter 56: interpol 707

1949 x 11437 x 17027 x 1247
(%o8) (------- - -------- + ------- + ----) charfun2(x, minf, 3)

2256 2256 2256 752
3 2

1547 x 35581 x 68068 x 173546
+ (- ------- + -------- - ------- + ------) charfun2(x, 7, inf)

564 564 141 141
3 2

607 x 35147 x 55706 x 38420
+ (------ - -------- + ------- - -----) charfun2(x, 6, 7)

188 564 141 47
3 2

3895 x 1807 x 5146 x 2148
+ (- ------- + ------- - ------ + ----) charfun2(x, 3, 6)

5076 188 141 47
(%i8) /* Defining new interpolating function */

g(x):=’’%$
(%i9) /* Plotting both functions together */

draw2d(
color = black,
key = "Cubic splines (default)",
explicit(f(x),x,0,10),
color = red,
key = "Cubic splines (d1=0,dn=0)",
explicit(g(x),x,0,10),
point_size = 3,
color = blue,
key = "Sample points",
points(p))$

708 Maxima Manual

Chapter 57: lapack 709

57 lapack

57.1 Introduction to lapack

lapack is a Common Lisp translation (via the program f2c) of the Fortran library
LAPACK, as obtained from the SLATEC project.

57.2 Functions and Variables for lapack

Functiondgeev (A)
Functiondgeev (A, right p, left p)

Computes the eigenvalues and, optionally, the eigenvectors of a matrix A. All elements
of A must be integer or floating point numbers. A must be square (same number of
rows and columns). A might or might not be symmetric.
dgeev(A) computes only the eigenvalues of A. dgeev(A, right p, left p) computes
the eigenvalues of A and the right eigenvectors when right p = true and the left
eigenvectors when left p = true.
A list of three items is returned. The first item is a list of the eigenvalues. The
second item is false or the matrix of right eigenvectors. The third item is false or
the matrix of left eigenvectors.
The right eigenvector v(j) (the j-th column of the right eigenvector matrix) satisfies
A.v(j) = lambda(j).v(j)
where lambda(j) is the corresponding eigenvalue. The left eigenvector u(j) (the j-th
column of the left eigenvector matrix) satisfies
u(j) ∗ ∗H.A = lambda(j).u(j) ∗ ∗H
where u(j) ∗ ∗H denotes the conjugate transpose of u(j). The Maxima function
ctranspose computes the conjugate transpose.
The computed eigenvectors are normalized to have Euclidean norm equal to 1, and
largest component has imaginary part equal to zero.
Example:

(%i1) load (lapack)$
(%i2) fpprintprec : 6;
(%o2) 6
(%i3) M : matrix ([9.5, 1.75], [3.25, 10.45]);

[9.5 1.75]
(%o3) []

[3.25 10.45]
(%i4) dgeev (M);
(%o4) [[7.54331, 12.4067], false, false]
(%i5) [L, v, u] : dgeev (M, true, true);

[- .666642 - .515792]
(%o5) [[7.54331, 12.4067], [],

[.745378 - .856714]

710 Maxima Manual

[- .856714 - .745378]
[]]
[.515792 - .666642]

(%i6) D : apply (diag_matrix, L);
[7.54331 0]

(%o6) []
[0 12.4067]

(%i7) M . v - v . D;
[0.0 - 8.88178E-16]

(%o7) []
[- 8.88178E-16 0.0]

(%i8) transpose (u) . M - D . transpose (u);
[0.0 - 4.44089E-16]

(%o8) []
[0.0 0.0]

Functiondgesvd (A)
Functiondgesvd (A, left p, right p)

Computes the singular value decomposition (SVD) of a matrix A, comprising the
singular values and, optionally, the left and right singular vectors. All elements of A
must be integer or floating point numbers. A might or might not be square (same
number of rows and columns).
Let m be the number of rows, and n the number of columns of A. The singular value
decomposition of A comprises three matrices, U, Sigma, and V^T, such that
A = U .Sigma.VT

where U is an m-by-m unitary matrix, Sigma is an m-by-n diagonal matrix, and V^T
is an n-by-n unitary matrix.
Let sigma[i] be a diagonal element of Sigma, that is, Sigma[i, i] = sigma[i]. The
elements sigma[i] are the so-called singular values of A; these are real and nonnegative,
and returned in descending order. The first min(m,n) columns of U and V are the
left and right singular vectors of A. Note that dgesvd returns the transpose of V, not
V itself.
dgesvd(A) computes only the singular values of A. dgesvd(A, left p, right p) com-
putes the singular values of A and the left singular vectors when left p = true and
the right singular vectors when right p = true.
A list of three items is returned. The first item is a list of the singular values. The
second item is false or the matrix of left singular vectors. The third item is false
or the matrix of right singular vectors.
Example:

(%i1) load (lapack)$
(%i2) fpprintprec : 6;
(%o2) 6
(%i3) M: matrix([1, 2, 3], [3.5, 0.5, 8], [-1, 2, -3], [4, 9, 7]);

[1 2 3]
[]
[3.5 0.5 8]

Chapter 57: lapack 711

(%o3) []
[- 1 2 - 3]
[]
[4 9 7]

(%i4) dgesvd (M);
(%o4) [[14.4744, 6.38637, .452547], false, false]
(%i5) [sigma, U, VT] : dgesvd (M, true, true);
(%o5) [[14.4744, 6.38637, .452547],
[- .256731 .00816168 .959029 - .119523]
[]
[- .526456 .672116 - .206236 - .478091]
[],
[.107997 - .532278 - .0708315 - 0.83666]
[]
[- .803287 - .514659 - .180867 .239046]
[- .374486 - .538209 - .755044]
[]
[.130623 - .836799 0.5317]]
[]
[- .917986 .100488 .383672]
(%i6) m : length (U);
(%o6) 4
(%i7) n : length (VT);
(%o7) 3
(%i8) Sigma:

genmatrix(lambda ([i, j], if i=j then sigma[i] else 0),
m, n);
[14.4744 0 0]
[]
[0 6.38637 0]

(%o8) []
[0 0 .452547]
[]
[0 0 0]

(%i9) U . Sigma . VT - M;
[1.11022E-15 0.0 1.77636E-15]
[]
[1.33227E-15 1.66533E-15 0.0]

(%o9) []
[- 4.44089E-16 - 8.88178E-16 4.44089E-16]
[]
[8.88178E-16 1.77636E-15 8.88178E-16]

(%i10) transpose (U) . U;
[1.0 5.55112E-17 2.498E-16 2.77556E-17]
[]
[5.55112E-17 1.0 5.55112E-17 4.16334E-17]

(%o10) []
[2.498E-16 5.55112E-17 1.0 - 2.08167E-16]
[]

712 Maxima Manual

[2.77556E-17 4.16334E-17 - 2.08167E-16 1.0]
(%i11) VT . transpose (VT);

[1.0 0.0 - 5.55112E-17]
[]

(%o11) [0.0 1.0 5.55112E-17]
[]
[- 5.55112E-17 5.55112E-17 1.0]

Functiondlange (norm, A)
Functionzlange (norm, A)

Computes a norm or norm-like function of the matrix A.

max Compute max(abs(A(i, j))) where i and j range over the rows and
columns, respectively, of A. Note that this function is not a proper
matrix norm.

one_norm Compute the L[1] norm of A, that is, the maximum of the sum of the
absolute value of elements in each column.

inf_norm Compute the L[inf] norm of A, that is, the maximum of the sum of the
absolute value of elements in each row.

frobenius
Compute the Frobenius norm of A, that is, the square root of the sum of
squares of the matrix elements.

Chapter 58: lbfgs 713

58 lbfgs

58.1 Introduction to lbfgs

lbfgs is an implementation of the L-BFGS algorithm [1] to solve unconstrained min-
imization problems via a limited-memory quasi-Newton (BFGS) algorithm. It is called a
limited-memory method because a low-rank approximation of the Hessian matrix inverse is
stored instead of the entire Hessian inverse. The program was originally written in Fortran
[2] by Jorge Nocedal, incorporating some functions originally written by Jorge J. Moré and
David J. Thuente, and translated into Lisp automatically via the program f2cl. The Max-
ima package lbfgs comprises the translated code plus an interface function which manages
some details.

References:
[1] D. Liu and J. Nocedal. "On the limited memory BFGS method for large scale

optimization". Mathematical Programming B 45:503–528 (1989)
[2] http://netlib.org/opt/lbfgs_um.shar

58.2 Functions and Variables for lbfgs

Functionlbfgs (FOM, X, X0, epsilon, iprint)
Finds an approximate solution of the unconstrained minimization of the figure of
merit FOM over the list of variables X, starting from initial estimates X0, such that
normgradFOM < epsilonmax(1, normX).
The algorithm applied is a limited-memory quasi-Newton (BFGS) algorithm [1]. It
is called a limited-memory method because a low-rank approximation of the Hessian
matrix inverse is stored instead of the entire Hessian inverse. Each iteration of the
algorithm is a line search, that is, a search along a ray in the variables X, with
the search direction computed from the approximate Hessian inverse. The FOM is
always decreased by a successful line search. Usually (but not always) the norm of
the gradient of FOM also decreases.
iprint controls progress messages printed by lbfgs.

iprint[1]
iprint[1] controls the frequency of progress messages.

iprint[1] < 0
No progress messages.

iprint[1] = 0
Messages at the first and last iterations.

iprint[1] > 0
Print a message every iprint[1] iterations.

iprint[2]
iprint[2] controls the verbosity of progress messages.

714 Maxima Manual

iprint[2] = 0
Print out iteration count, number of evaluations of FOM,
value of FOM, norm of the gradient of FOM, and step length.

iprint[2] = 1
Same as iprint[2] = 0, plus X0 and the gradient of FOM
evaluated at X0.

iprint[2] = 2
Same as iprint[2] = 1, plus values of X at each iteration.

iprint[2] = 3
Same as iprint[2] = 2, plus the gradient of FOM at each
iteration.

The columns printed by lbfgs are the following.

I Number of iterations. It is incremented for each line search.

NFN Number of evaluations of the figure of merit.

FUNC Value of the figure of merit at the end of the most recent line search.

GNORM Norm of the gradient of the figure of merit at the end of the most recent
line search.

STEPLENGTH
An internal parameter of the search algorithm.

Additional information concerning details of the algorithm are found in the comments
of the original Fortran code [2].
See also lbfgs_nfeval_max and lbfgs_ncorrections.
References:
[1] D. Liu and J. Nocedal. "On the limited memory BFGS method for large scale
optimization". Mathematical Programming B 45:503–528 (1989)
[2] http://netlib.org/opt/lbfgs_um.shar
Examples:
The same FOM as computed by FGCOMPUTE in the program sdrive.f in the LBFGS
package from Netlib. Note that the variables in question are subscripted variables.
The FOM has an exact minimum equal to zero at u[k] = 1 for k = 1, ..., 8.

(%i1) load (lbfgs);
(%o1) /usr/share/maxima/5.10.0cvs/share/lbfgs/lbfgs.mac
(%i2) t1[j] := 1 - u[j];
(%o2) t1 := 1 - u

j j
(%i3) t2[j] := 10*(u[j + 1] - u[j]^2);

2
(%o3) t2 := 10 (u - u)

j j + 1 j
(%i4) n : 8;
(%o4) 8

Chapter 58: lbfgs 715

(%i5) FOM : sum (t1[2*j - 1]^2 + t2[2*j - 1]^2, j, 1, n/2);
2 2 2 2 2 2

(%o5) 100 (u - u) + (1 - u) + 100 (u - u) + (1 - u)
8 7 7 6 5 5

2 2 2 2 2 2
+ 100 (u - u) + (1 - u) + 100 (u - u) + (1 - u)

4 3 3 2 1 1
(%i6) lbfgs (FOM, ’[u[1],u[2],u[3],u[4],u[5],u[6],u[7],u[8]],

[-1.2, 1, -1.2, 1, -1.2, 1, -1.2, 1], 1e-3, [1, 0]);

N= 8 NUMBER OF CORRECTIONS=25
INITIAL VALUES

F= 9.680000000000000D+01 GNORM= 4.657353755084532D+02

I NFN FUNC GNORM STEPLENGTH

1 3 1.651479526340304D+01 4.324359291335977D+00 7.926153934390631D-04
2 4 1.650209316638371D+01 3.575788161060007D+00 1.000000000000000D+00
3 5 1.645461701312851D+01 6.230869903601577D+00 1.000000000000000D+00
4 6 1.636867301275588D+01 1.177589920974980D+01 1.000000000000000D+00
5 7 1.612153014409201D+01 2.292797147151288D+01 1.000000000000000D+00
6 8 1.569118407390628D+01 3.687447158775571D+01 1.000000000000000D+00
7 9 1.510361958398942D+01 4.501931728123680D+01 1.000000000000000D+00
8 10 1.391077875774294D+01 4.526061463810632D+01 1.000000000000000D+00
9 11 1.165625686278198D+01 2.748348965356917D+01 1.000000000000000D+00
10 12 9.859422687859137D+00 2.111494974231644D+01 1.000000000000000D+00
11 13 7.815442521732281D+00 6.110762325766556D+00 1.000000000000000D+00
12 15 7.346380905773160D+00 2.165281166714631D+01 1.285316401779533D-01
13 16 6.330460634066370D+00 1.401220851762050D+01 1.000000000000000D+00
14 17 5.238763939851439D+00 1.702473787613255D+01 1.000000000000000D+00
15 18 3.754016790406701D+00 7.981845727704576D+00 1.000000000000000D+00
16 20 3.001238402309352D+00 3.925482944716691D+00 2.333129631296807D-01
17 22 2.794390709718290D+00 8.243329982546473D+00 2.503577283782332D-01
18 23 2.563783562918759D+00 1.035413426521790D+01 1.000000000000000D+00
19 24 2.019429976377856D+00 1.065187312346769D+01 1.000000000000000D+00
20 25 1.428003167670903D+00 2.475962450826961D+00 1.000000000000000D+00
21 27 1.197874264861340D+00 8.441707983493810D+00 4.303451060808756D-01
22 28 9.023848941942773D-01 1.113189216635162D+01 1.000000000000000D+00
23 29 5.508226405863770D-01 2.380830600326308D+00 1.000000000000000D+00
24 31 3.902893258815567D-01 5.625595816584421D+00 4.834988416524465D-01
25 32 3.207542206990315D-01 1.149444645416472D+01 1.000000000000000D+00
26 33 1.874468266362791D-01 3.632482152880997D+00 1.000000000000000D+00
27 34 9.575763380706598D-02 4.816497446154354D+00 1.000000000000000D+00
28 35 4.085145107543406D-02 2.087009350166495D+00 1.000000000000000D+00
29 36 1.931106001379290D-02 3.886818608498966D+00 1.000000000000000D+00
30 37 6.894000721499670D-03 3.198505796342214D+00 1.000000000000000D+00
31 38 1.443296033051864D-03 1.590265471025043D+00 1.000000000000000D+00

716 Maxima Manual

32 39 1.571766603154336D-04 3.098257063980634D-01 1.000000000000000D+00
33 40 1.288011776581970D-05 1.207784183577257D-02 1.000000000000000D+00
34 41 1.806140173752971D-06 4.587890233385193D-02 1.000000000000000D+00
35 42 1.769004645459358D-07 1.790537375052208D-02 1.000000000000000D+00
36 43 3.312164100763217D-10 6.782068426119681D-04 1.000000000000000D+00

THE MINIMIZATION TERMINATED WITHOUT DETECTING ERRORS.
IFLAG = 0
(%o6) [u = 1.000005339815974, u = 1.000009942839805,

1 2
u = 1.000005339815974, u = 1.000009942839805,
3 4
u = 1.000005339815974, u = 1.000009942839805,
5 6
u = 1.000005339815974, u = 1.000009942839805]
7 8

A regression problem. The FOM is the mean square difference between the predicted
value F (X[i]) and the observed value Y [i]. The function F is a bounded monotone
function (a so-called "sigmoidal" function). In this example, lbfgs computes approx-
imate values for the parameters of F and plot2d displays a comparison of F with
the observed data.

(%i1) load (lbfgs);
(%o1) /usr/share/maxima/5.10.0cvs/share/lbfgs/lbfgs.mac
(%i2) FOM : ’((1/length(X))*sum((F(X[i]) - Y[i])^2, i, 1,

length(X)));
2

sum((F(X) - Y) , i, 1, length(X))
i i

(%o2) -----------------------------------
length(X)

(%i3) X : [1, 2, 3, 4, 5];
(%o3) [1, 2, 3, 4, 5]
(%i4) Y : [0, 0.5, 1, 1.25, 1.5];
(%o4) [0, 0.5, 1, 1.25, 1.5]
(%i5) F(x) := A/(1 + exp(-B*(x - C)));

A
(%o5) F(x) := ----------------------

1 + exp((- B) (x - C))
(%i6) ’’FOM;

A 2 A 2
(%o6) ((----------------- - 1.5) + (----------------- - 1.25)

- B (5 - C) - B (4 - C)
%e + 1 %e + 1

A 2 A 2
+ (----------------- - 1) + (----------------- - 0.5)

- B (3 - C) - B (2 - C)
%e + 1 %e + 1

2

Chapter 58: lbfgs 717

A
+ --------------------)/5

- B (1 - C) 2
(%e + 1)

(%i7) estimates : lbfgs (FOM, ’[A, B, C], [1, 1, 1], 1e-4, [1, 0]);

N= 3 NUMBER OF CORRECTIONS=25

INITIAL VALUES
F= 1.348738534246918D-01 GNORM= 2.000215531936760D-01

I NFN FUNC GNORM STEPLENGTH

1 3 1.177820636622582D-01 9.893138394953992D-02 8.554435968992371D-01
2 6 2.302653892214013D-02 1.180098521565904D-01 2.100000000000000D+01
3 8 1.496348495303005D-02 9.611201567691633D-02 5.257340567840707D-01
4 9 7.900460841091139D-03 1.325041647391314D-02 1.000000000000000D+00
5 10 7.314495451266917D-03 1.510670810312237D-02 1.000000000000000D+00
6 11 6.750147275936680D-03 1.914964958023047D-02 1.000000000000000D+00
7 12 5.850716021108205D-03 1.028089194579363D-02 1.000000000000000D+00
8 13 5.778664230657791D-03 3.676866074530332D-04 1.000000000000000D+00
9 14 5.777818823650782D-03 3.010740179797255D-04 1.000000000000000D+00

THE MINIMIZATION TERMINATED WITHOUT DETECTING ERRORS.
IFLAG = 0
(%o7) [A = 1.461933911464101, B = 1.601593973254802,

C = 2.528933072164854]
(%i8) plot2d ([F(x), [discrete, X, Y]], [x, -1, 6]), ’’estimates;
(%o8)

Variablelbfgs nfeval max
Default value: 100
lbfgs_nfeval_max is the maximum number of evaluations of the figure of merit
(FOM) in lbfgs. When lbfgs_nfeval_max is reached, lbfgs returns the result of
the last successful line search.

Variablelbfgs ncorrections
Default value: 25
lbfgs_ncorrections is the number of corrections applied to the approximate inverse
Hessian matrix which is maintained by lbfgs.

718 Maxima Manual

Chapter 59: lindstedt 719

59 lindstedt

59.1 Functions and Variables for lindstedt

FunctionLindstedt (eq,pvar,torder,ic)
This is a first pass at a Lindstedt code. It can solve problems with initial conditions
entered, which can be arbitrary constants, (just not %k1 and %k2) where the initial
conditions on the perturbation equations are z[i] = 0, z′[i] = 0 for i > 0. ic is the list
of initial conditions.
Problems occur when initial conditions are not given, as the constants in the perturba-
tion equations are the same as the zero order equation solution. Also, problems occur
when the initial conditions for the perturbation equations are not z[i] = 0, z′[i] = 0
for i > 0, such as the Van der Pol equation.
Example:

(%i1) load("makeOrders")$

(%i2) load("lindstedt")$

(%i3) Lindstedt(’diff(x,t,2)+x-(e*x^3)/6,e,2,[1,0]);
2
e (cos(5 T) - 24 cos(3 T) + 23 cos(T))

(%o3) [[[---------------------------------------
36864

e (cos(3 T) - cos(T))
- --------------------- + cos(T)],

192
2

7 e e
T = (- ---- - -- + 1) t]]

3072 16

To use this function write first load("makeOrders") and load("lindstedt").

720 Maxima Manual

Chapter 60: linearalgebra 721

60 linearalgebra

60.1 Introduction to linearalgebra

linearalgebra is a collection of functions for linear algebra.
Example:

(%i1) M : matrix ([1, 2], [1, 2]);
[1 2]

(%o1) []
[1 2]

(%i2) nullspace (M);
[1]
[]

(%o2) span([1])
[- -]
[2]

(%i3) columnspace (M);
[1]

(%o3) span([])
[1]

(%i4) ptriangularize (M - z*ident(2), z);
[1 2 - z]

(%o4) []
[2]
[0 3 z - z]

(%i5) M : matrix ([1, 2, 3], [4, 5, 6], [7, 8, 9]) - z*ident(3);
[1 - z 2 3]
[]

(%o5) [4 5 - z 6]
[]
[7 8 9 - z]

(%i6) MM : ptriangularize (M, z);
[4 5 - z 6]
[]
[2]
[66 z 102 z 132]
[0 -- - -- + ----- + ---]

(%o6) [49 7 49 49]
[]
[3 2]
[49 z 245 z 147 z]
[0 0 ----- - ------ - -----]
[264 88 44]

(%i7) algebraic : true;
(%o7) true
(%i8) tellrat (MM [3, 3]);

3 2
(%o8) [z - 15 z - 18 z]

722 Maxima Manual

(%i9) MM : ratsimp (MM);
[4 5 - z 6]
[]
[2]

(%o9) [66 7 z - 102 z - 132]
[0 -- - ------------------]
[49 49]
[]
[0 0 0]

(%i10) nullspace (MM);
[1]
[]
[2]
[z - 14 z - 16]
[--------------]

(%o10) span([8])
[]
[2]
[z - 18 z - 12]
[- --------------]
[12]

(%i11) M : matrix ([1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12],
[13, 14, 15, 16]);

[1 2 3 4]
[]
[5 6 7 8]

(%o11) []
[9 10 11 12]
[]
[13 14 15 16]

(%i12) columnspace (M);
[1] [2]
[] []
[5] [6]

(%o12) span([], [])
[9] [10]
[] []
[13] [14]

(%i13) apply (’orthogonal_complement, args (nullspace (transpose (M))));
[0] [1]
[] []
[1] [0]

(%o13) span([], [])
[2] [- 1]
[] []
[3] [- 2]

60.2 Functions and Variables for linearalgebra

Chapter 60: linearalgebra 723

Functionaddmatrices (f, M 1, ..., M n)
Using the function f as the addition function, return the sum of the matrices M 1,
..., M n. The function f must accept any number of arguments (a Maxima nary
function).
Examples:

(%i1) m1 : matrix([1,2],[3,4])$
(%i2) m2 : matrix([7,8],[9,10])$
(%i3) addmatrices(’max,m1,m2);
(%o3) matrix([7,8],[9,10])
(%i4) addmatrices(’max,m1,m2,5*m1);
(%o4) matrix([7,10],[15,20])

Functionblockmatrixp (M)
Return true if and only if M is a matrix and every entry of M is a matrix.

Functioncolumnop (M, i, j, theta)
If M is a matrix, return the matrix that results from doing the column operation C_i
<- C_i - theta * C_j. If M doesn’t have a row i or j, signal an error.

Functioncolumnswap (M, i, j)
If M is a matrix, swap columns i and j. If M doesn’t have a column i or j, signal an
error.

Functioncolumnspace (M)
If M is a matrix, return span (v_1, ..., v_n), where the set {v_1, ..., v_n} is a
basis for the column space of M. The span of the empty set is {0}. Thus, when the
column space has only one member, return span ().

Functioncopy (e)
Return a copy of the Maxima expression e. Although e can be any Maxima expression,
the copy function is the most useful when e is either a list or a matrix; consider:

(%i1) m : [1,[2,3]]$
(%i2) mm : m$
(%i3) mm[2][1] : x$
(%i4) m;
(%o4) [1,[x,3]]
(%i5) mm;
(%o5) [1,[x,3]]

Let’s try the same experiment, but this time let mm be a copy of m

(%i6) m : [1,[2,3]]$
(%i7) mm : copy(m)$
(%i8) mm[2][1] : x$
(%i9) m;
(%o9) [1,[2,3]]
(%i10) mm;
(%o10) [1,[x,3]]

This time, the assignment to mm does not change the value of m.

724 Maxima Manual

Functioncholesky (M)
Functioncholesky (M, field)

Return the Cholesky factorization of the matrix selfadjoint (or hermitian) matrix M.
The second argument defaults to ’generalring.’ For a description of the possible values
for field, see lu_factor.

Functionctranspose (M)
Return the complex conjugate transpose of the matrix M. The function ctranspose
uses matrix_element_transpose to transpose each matrix element.

Functiondiag matrix (d 1, d 2,...,d n)
Return a diagonal matrix with diagonal entries d 1, d 2,...,d n. When the diagonal
entries are matrices, the zero entries of the returned matrix are zero matrices of the
appropriate size; for example:

(%i1) diag_matrix(diag_matrix(1,2),diag_matrix(3,4));

[[1 0] [0 0]]
[[] []]
[[0 2] [0 0]]

(%o1) []
[[0 0] [3 0]]
[[] []]
[[0 0] [0 4]]

(%i2) diag_matrix(p,q);

[p 0]
(%o2) []

[0 q]

Functiondotproduct (u, v)
Return the dotproduct of vectors u and v. This is the same as conjugate (transpose
(u)) . v . The arguments u and v must be column vectors.

Functioneigens by jacobi (A)
Functioneigens by jacobi (A, field type)

Computes the eigenvalues and eigenvectors of A by the method of Jacobi rotations.
A must be a symmetric matrix (but it need not be positive definite nor positive
semidefinite). field type indicates the computational field, either floatfield or
bigfloatfield. If field type is not specified, it defaults to floatfield.
The elements of A must be numbers or expressions which evaluate to numbers via
float or bfloat (depending on field type).
Examples:

(%i1) S: matrix([1/sqrt(2), 1/sqrt(2)],[-1/sqrt(2), 1/sqrt(2)]);
[1 1]
[------- -------]
[sqrt(2) sqrt(2)]

(%o1) []

Chapter 60: linearalgebra 725

[1 1]
[- ------- -------]
[sqrt(2) sqrt(2)]

(%i2) L : matrix ([sqrt(3), 0], [0, sqrt(5)]);
[sqrt(3) 0]

(%o2) []
[0 sqrt(5)]

(%i3) M : S . L . transpose (S);
[sqrt(5) sqrt(3) sqrt(5) sqrt(3)]
[------- + ------- ------- - -------]
[2 2 2 2]

(%o3) []
[sqrt(5) sqrt(3) sqrt(5) sqrt(3)]
[------- - ------- ------- + -------]
[2 2 2 2]

(%i4) eigens_by_jacobi (M);
The largest percent change was 0.1454972243679
The largest percent change was 0.0
number of sweeps: 2
number of rotations: 1
(%o4) [[1.732050807568877, 2.23606797749979],

[0.70710678118655 0.70710678118655]
[]]
[- 0.70710678118655 0.70710678118655]

(%i5) float ([[sqrt(3), sqrt(5)], S]);
(%o5) [[1.732050807568877, 2.23606797749979],

[0.70710678118655 0.70710678118655]
[]]
[- 0.70710678118655 0.70710678118655]

(%i6) eigens_by_jacobi (M, bigfloatfield);
The largest percent change was 1.454972243679028b-1
The largest percent change was 0.0b0
number of sweeps: 2
number of rotations: 1
(%o6) [[1.732050807568877b0, 2.23606797749979b0],

[7.071067811865475b-1 7.071067811865475b-1]
[]]
[- 7.071067811865475b-1 7.071067811865475b-1]

Functionget lu factors (x)
When x = lu_factor (A), then get_lu_factors returns a list of the form [P, L,
U], where P is a permutation matrix, L is lower triangular with ones on the diagonal,
and U is upper triangular, and A = P L U .

Functionhankel (col)
Functionhankel (col, row)

Return a Hankel matrix H. The first column of H is col; except for the first entry,
the last row of H is row. The default for row is the zero vector with the same length
as col.

726 Maxima Manual

Functionhessian (f, x)
Returns the Hessian matrix of f with respect to the list of variables x. The (i, j)-th
element of the Hessian matrix is diff(f, x[i], 1, x[j], 1).
Examples:

(%i1) hessian (x * sin (y), [x, y]);
[0 cos(y)]

(%o1) []
[cos(y) - x sin(y)]

(%i2) depends (F, [a, b]);
(%o2) [F(a, b)]
(%i3) hessian (F, [a, b]);

[2 2]
[d F d F]
[--- -----]
[2 da db]
[da]

(%o3) []
[2 2]
[d F d F]
[----- ---]
[da db 2]
[db]

Functionhilbert matrix (n)
Return the n by n Hilbert matrix. When n isn’t a positive integer, signal an error.

Functionidentfor (M)
Functionidentfor (M, fld)

Return an identity matrix that has the same shape as the matrix M. The diagonal
entries of the identity matrix are the multiplicative identity of the field fld; the default
for fld is generalring.
The first argument M should be a square matrix or a non-matrix. When M is a
matrix, each entry of M can be a square matrix – thus M can be a blocked Maxima
matrix. The matrix can be blocked to any (finite) depth.
See also zerofor

Functioninvert by lu (M, (rng generalring))
Invert a matrix M by using the LU factorization. The LU factorization is done using
the ring rng.

Functionjacobian (f, x)
Returns the Jacobian matrix of the list of functions f with respect to the list of
variables x. The (i, j)-th element of the Jacobian matrix is diff(f [i], x[j]).
Examples:

(%i1) jacobian ([sin (u - v), sin (u * v)], [u, v]);
[cos(v - u) - cos(v - u)]

Chapter 60: linearalgebra 727

(%o1) []
[v cos(u v) u cos(u v)]

(%i2) depends ([F, G], [y, z]);
(%o2) [F(y, z), G(y, z)]
(%i3) jacobian ([F, G], [y, z]);

[dF dF]
[-- --]
[dy dz]

(%o3) []
[dG dG]
[-- --]
[dy dz]

Functionkronecker product (A, B)
Return the Kronecker product of the matrices A and B.

Functionlistp (e, p)
Functionlistp (e)

Given an optional argument p, return true if e is a Maxima list and p evaluates to
true for every list element. When listp is not given the optional argument, return
true if e is a Maxima list. In all other cases, return false.

Functionlocate matrix entry (M, r 1, c 1, r 2, c 2, f, rel)
The first argument must be a matrix; the arguments r 1 through c 2 determine a
sub-matrix of M that consists of rows r 1 through r 2 and columns c 1 through c 2.
Find a entry in the sub-matrix M that satisfies some property. Three cases:
(1) rel = ’bool and f a predicate:
Scan the sub-matrix from left to right then top to bottom, and return the index of the
first entry that satisfies the predicate f. If no matrix entry satisfies f, return false.
(2) rel = ’max and f real-valued:
Scan the sub-matrix looking for an entry that maximizes f. Return the index of a
maximizing entry.
(3) rel = ’min and f real-valued:
Scan the sub-matrix looking for an entry that minimizes f. Return the index of a
minimizing entry.

Functionlu backsub (M, b)
When M = lu_factor (A, field), then lu_backsub (M, b) solves the linear system
A x = b.

Functionlu factor (M, field)
Return a list of the form [LU, perm, fld], or [LU, perm, fld, lower-cnd upper-
cnd], where
(1) The matrix LU contains the factorization of M in a packed form. Packed form
means three things: First, the rows of LU are permuted according to the list perm.

728 Maxima Manual

If, for example, perm is the list [3,2,1], the actual first row of the LU factorization
is the third row of the matrix LU. Second, the lower triangular factor of m is the
lower triangular part of LU with the diagonal entries replaced by all ones. Third, the
upper triangular factor of M is the upper triangular part of LU.
(2) When the field is either floatfield or complexfield, the numbers lower-cnd
and upper-cnd are lower and upper bounds for the infinity norm condition number
of M. For all fields, the condition number might not be estimated; for such fields,
lu_factor returns a two item list. Both the lower and upper bounds can differ from
their true values by arbitrarily large factors. (See also mat_cond.)
The argument M must be a square matrix.
The optional argument fld must be a symbol that determines a ring or field. The
pre-defined fields and rings are:
(a) generalring – the ring of Maxima expressions, (b) floatfield – the field of
floating point numbers of the type double, (c) complexfield – the field of complex
floating point numbers of the type double, (d) crering – the ring of Maxima CRE
expressions, (e) rationalfield – the field of rational numbers, (f) runningerror
– track the all floating point rounding errors, (g) noncommutingring – the ring of
Maxima expressions where multiplication is the non-commutative dot operator.
When the field is floatfield, complexfield, or runningerror, the algorithm uses
partial pivoting; for all other fields, rows are switched only when needed to avoid a
zero pivot.
Floating point addition arithmetic isn’t associative, so the meaning of ’field’ differs
from the mathematical definition.
A member of the field runningerror is a two member Maxima list of the form
[x,n],where x is a floating point number and n is an integer. The relative differ-
ence between the ’true’ value of x and x is approximately bounded by the machine
epsilon times n. The running error bound drops some terms that of the order the
square of the machine epsilon.
There is no user-interface for defining a new field. A user that is familiar with Common
Lisp should be able to define a new field. To do this, a user must define functions for
the arithmetic operations and functions for converting from the field representation
to Maxima and back. Additionally, for ordered fields (where partial pivoting will
be used), a user must define functions for the magnitude and for comparing field
members. After that all that remains is to define a Common Lisp structure mring.
The file mring has many examples.
To compute the factorization, the first task is to convert each matrix entry to a mem-
ber of the indicated field. When conversion isn’t possible, the factorization halts with
an error message. Members of the field needn’t be Maxima expressions. Members
of the complexfield, for example, are Common Lisp complex numbers. Thus af-
ter computing the factorization, the matrix entries must be converted to Maxima
expressions.
See also get_lu_factors.
Examples:

(%i1) w[i,j] := random (1.0) + %i * random (1.0);

Chapter 60: linearalgebra 729

(%o1) w := random(1.) + %i random(1.)
i, j

(%i2) showtime : true$
Evaluation took 0.00 seconds (0.00 elapsed)
(%i3) M : genmatrix (w, 100, 100)$
Evaluation took 7.40 seconds (8.23 elapsed)
(%i4) lu_factor (M, complexfield)$
Evaluation took 28.71 seconds (35.00 elapsed)
(%i5) lu_factor (M, generalring)$
Evaluation took 109.24 seconds (152.10 elapsed)
(%i6) showtime : false$

(%i7) M : matrix ([1 - z, 3], [3, 8 - z]);
[1 - z 3]

(%o7) []
[3 8 - z]

(%i8) lu_factor (M, generalring);
[1 - z 3]
[]

(%o8) [[3 9], [1, 2], generalring]
[----- - z - ----- + 8]
[1 - z 1 - z]

(%i9) get_lu_factors (%);
[1 0] [1 - z 3]

[1 0] [] []
(%o9) [[], [3], [9]]

[0 1] [----- 1] [0 - z - ----- + 8]
[1 - z] [1 - z]

(%i10) %[1] . %[2] . %[3];
[1 - z 3]

(%o10) []
[3 8 - z]

Functionmat cond (M, 1)
Functionmat cond (M, inf)

Return the p-norm matrix condition number of the matrix m. The allowed values
for p are 1 and inf. This function uses the LU factorization to invert the matrix
m. Thus the running time for mat_cond is proportional to the cube of the matrix
size; lu_factor determines lower and upper bounds for the infinity norm condition
number in time proportional to the square of the matrix size.

Functionmat norm (M, 1)
Functionmat norm (M, inf)
Functionmat norm (M, frobenius)

Return the matrix p-norm of the matrix M. The allowed values for p are 1, inf,
and frobenius (the Frobenius matrix norm). The matrix M should be an unblocked
matrix.

730 Maxima Manual

Functionmatrixp (e, p)
Functionmatrixp (e)

Given an optional argument p, return true if e is a matrix and p evaluates to true
for every matrix element. When matrixp is not given an optional argument, return
true if e is a matrix. In all other cases, return false.

See also blockmatrixp

Functionmatrix size (M)
Return a two member list that gives the number of rows and columns, respectively of
the matrix M.

Functionmat fullunblocker (M)
If M is a block matrix, unblock the matrix to all levels. If M is a matrix, return M ;
otherwise, signal an error.

Functionmat trace (M)
Return the trace of the matrix M. If M isn’t a matrix, return a noun form. When
M is a block matrix, mat_trace(M) returns the same value as does mat_trace(mat_
unblocker(m)).

Functionmat unblocker (M)
If M is a block matrix, unblock M one level. If M is a matrix, mat_unblocker (M)
returns M ; otherwise, signal an error.

Thus if each entry of M is matrix, mat_unblocker (M) returns an unblocked matrix,
but if each entry of M is a block matrix, mat_unblocker (M) returns a block matrix
with one less level of blocking.

If you use block matrices, most likely you’ll want to set matrix_element_mult to "."
and matrix_element_transpose to ’transpose. See also mat_fullunblocker.

Example:
(%i1) A : matrix ([1, 2], [3, 4]);

[1 2]
(%o1) []

[3 4]
(%i2) B : matrix ([7, 8], [9, 10]);

[7 8]
(%o2) []

[9 10]
(%i3) matrix ([A, B]);

[[1 2] [7 8]]
(%o3) [[] []]

[[3 4] [9 10]]
(%i4) mat_unblocker (%);

[1 2 7 8]
(%o4) []

[3 4 9 10]

Chapter 60: linearalgebra 731

Functionnonnegintegerp (n)
Return true if and only if n >= 0 and n is an integer.

Functionnullspace (M)
If M is a matrix, return span (v_1, ..., v_n), where the set {v_1, ..., v_n} is
a basis for the nullspace of M. The span of the empty set is {0}. Thus, when the
nullspace has only one member, return span ().

Functionnullity (M)
If M is a matrix, return the dimension of the nullspace of M.

Functionorthogonal complement (v 1, ..., v n)
Return span (u_1, ..., u_m), where the set {u_1, ..., u_m} is a basis for the or-
thogonal complement of the set (v_1, ..., v_n).

Each vector v 1 through v n must be a column vector.

Functionpolynomialp (p, L, coeffp, exponp)
Functionpolynomialp (p, L, coeffp)
Functionpolynomialp (p, L)

Return true if p is a polynomial in the variables in the list L, The predicate coeffp
must evaluate to true for each coefficient, and the predicate exponp must evaluate
to true for all exponents of the variables in L. If you want to use a non-default value
for exponp, you must supply coeffp with a value even if you want to use the default
for coeffp.

polynomialp (p, L, coeffp) is equivalent to polynomialp (p, L, coeffp,
’nonnegintegerp).

polynomialp (p, L) is equivalent to polynomialp (p, L, ’constantp,
’nonnegintegerp).

The polynomial needn’t be expanded:
(%i1) polynomialp ((x + 1)*(x + 2), [x]);
(%o1) true
(%i2) polynomialp ((x + 1)*(x + 2)^a, [x]);
(%o2) false

An example using non-default values for coeffp and exponp:
(%i1) polynomialp ((x + 1)*(x + 2)^(3/2), [x], numberp, numberp);
(%o1) true
(%i2) polynomialp ((x^(1/2) + 1)*(x + 2)^(3/2), [x], numberp,

numberp);
(%o2) true

Polynomials with two variables:
(%i1) polynomialp (x^2 + 5*x*y + y^2, [x]);
(%o1) false
(%i2) polynomialp (x^2 + 5*x*y + y^2, [x, y]);
(%o2) true

732 Maxima Manual

Functionpolytocompanion (p, x)
If p is a polynomial in x, return the companion matrix of p. For a monic polynomial
p of degree n, we have p = (-1)^n charpoly (polytocompanion (p, x)).
When p isn’t a polynomial in x, signal an error.

Functionptriangularize (M, v)
If M is a matrix with each entry a polynomial in v, return a matrix M2 such that
(1) M2 is upper triangular,
(2) M2 = E n ... E 1 M , where E 1 through E n are elementary matrices whose
entries are polynomials in v,
(3) |det (M)| = |det (M2)|,
Note: This function doesn’t check that every entry is a polynomial in v.

Functionrowop (M, i, j, theta)
If M is a matrix, return the matrix that results from doing the row operation R_i <-
R_i - theta * R_j. If M doesn’t have a row i or j, signal an error.

Functionrank (M)
Return the rank of that matrix M. The rank is the dimension of the column space.
Example:

(%i1) rank(matrix([1,2],[2,4]));
(%o1) 1
(%i2) rank(matrix([1,b],[c,d]));
Proviso: {d - b c # 0}
(%o2) 2

Functionrowswap (M, i, j)
If M is a matrix, swap rows i and j. If M doesn’t have a row i or j, signal an error.

Functiontoeplitz (col)
Functiontoeplitz (col, row)

Return a Toeplitz matrix T. The first first column of T is col; except for the first
entry, the first row of T is row. The default for row is complex conjugate of col.
Example:

(%i1) toeplitz([1,2,3],[x,y,z]);

[1 y z]
[]

(%o1) [2 1 y]
[]
[3 2 1]

(%i2) toeplitz([1,1+%i]);

[1 1 - %I]
(%o2) []

[%I + 1 1]

Chapter 60: linearalgebra 733

Functionvandermonde matrix ([x 1, ..., x n])
Return a n by n matrix whose i-th row is [1, x i, x i^2, ... x i^(n-1)].

Functionzerofor (M)
Functionzerofor (M, fld)

Return a zero matrix that has the same shape as the matrix M. Every entry of the
zero matrix is the additive identity of the field fld; the default for fld is generalring.
The first argument M should be a square matrix or a non-matrix. When M is a
matrix, each entry of M can be a square matrix – thus M can be a blocked Maxima
matrix. The matrix can be blocked to any (finite) depth.
See also identfor

Functionzeromatrixp (M)
If M is not a block matrix, return true if is (equal (e, 0)) is true for each element
e of the matrix M. If M is a block matrix, return true if zeromatrixp evaluates to
true for each element of e.

734 Maxima Manual

Chapter 61: lsquares 735

61 lsquares

61.1 Introduction to lsquares

lsquares is a collection of functions to implement the method of least squares to estimate
parameters for a model from numerical data.

61.2 Functions and Variables for lsquares

Functionlsquares estimates (D, x, e, a)
Functionlsquares estimates (D, x, e, a, initial = L, tol = t)

Estimate parameters a to best fit the equation e in the variables x and a to the data
D, as determined by the method of least squares. lsquares_estimates first seeks an
exact solution, and if that fails, then seeks an approximate solution.
The return value is a list of lists of equations of the form [a = ..., b = ..., c =
...]. Each element of the list is a distinct, equivalent minimum of the mean square
error.
The data D must be a matrix. Each row is one datum (which may be called a ‘record’
or ‘case’ in some contexts), and each column contains the values of one variable
across all data. The list of variables x gives a name for each column of D, even the
columns which do not enter the analysis. The list of parameters a gives the names
of the parameters for which estimates are sought. The equation e is an expression or
equation in the variables x and a; if e is not an equation, it is treated the same as e
= 0.
Additional arguments to lsquares_estimates are specified as equations and passed
on verbatim to the function lbfgs which is called to find estimates by a numerical
method when an exact result is not found.
If some exact solution can be found (via solve), the data D may contain non-numeric
values. However, if no exact solution is found, each element of D must have a nu-
meric value. This includes numeric constants such as %pi and %e as well as literal
numbers (integers, rationals, ordinary floats, and bigfloats). Numerical calculations
are carried out with ordinary floating-point arithmetic, so all other kinds of numbers
are converted to ordinary floats for calculations.
load(lsquares) loads this function.
See also lsquares_estimates_exact, lsquares_estimates_approximate,
lsquares_mse, lsquares_residuals, and lsquares_residual_mse.
Examples:
A problem for which an exact solution is found.

(%i1) load (lsquares)$
(%i2) M : matrix (

[1,1,1], [3/2,1,2], [9/4,2,1], [3,2,2], [2,2,1]);
[1 1 1]
[]

736 Maxima Manual

[3]
[- 1 2]
[2]
[]

(%o2) [9]
[- 2 1]
[4]
[]
[3 2 2]
[]
[2 2 1]

(%i3) lsquares_estimates (
M, [z,x,y], (z+D)^2 = A*x+B*y+C, [A,B,C,D]);

59 27 10921 107
(%o3) [[A = - --, B = - --, C = -----, D = - ---]]

16 16 1024 32

A problem for which no exact solution is found, so lsquares_estimates resorts to
numerical approximation.

(%i1) load (lsquares)$
(%i2) M : matrix ([1, 1], [2, 7/4], [3, 11/4], [4, 13/4]);

[1 1]
[]
[7]
[2 -]
[4]
[]

(%o2) [11]
[3 --]
[4]
[]
[13]
[4 --]
[4]

(%i3) lsquares_estimates (
M, [x,y], y=a*x^b+c, [a,b,c], initial=[3,3,3], iprint=[-1,0]);

(%o3) [[a = 1.387365874920637, b = .7110956639593767,
c = - .4142705622439105]]

Functionlsquares estimates exact (MSE, a)
Estimate parameters a to minimize the mean square error MSE, by constructing a
system of equations and attempting to solve them symbolically via solve. The mean
square error is an expression in the parameters a, such as that returned by lsquares_
mse.

The return value is a list of lists of equations of the form [a = ..., b = ..., c =
...]. The return value may contain zero, one, or two or more elements. If two or
more elements are returned, each represents a distinct, equivalent minimum of the
mean square error.

Chapter 61: lsquares 737

See also lsquares_estimates, lsquares_estimates_approximate, lsquares_mse,
lsquares_residuals, and lsquares_residual_mse.

Example:
(%i1) load (lsquares)$
(%i2) M : matrix (

[1,1,1], [3/2,1,2], [9/4,2,1], [3,2,2], [2,2,1]);
[1 1 1]
[]
[3]
[- 1 2]
[2]
[]

(%o2) [9]
[- 2 1]
[4]
[]
[3 2 2]
[]
[2 2 1]

(%i3) mse : lsquares_mse (M, [z, x, y], (z + D)^2 = A*x + B*y + C);
5
====
\ 2 2
> ((D + M) - C - M B - M A)
/ i, 1 i, 3 i, 2
====
i = 1

(%o3) ---
5

(%i4) lsquares_estimates_exact (mse, [A, B, C, D]);
59 27 10921 107

(%o4) [[A = - --, B = - --, C = -----, D = - ---]]
16 16 1024 32

Functionlsquares estimates approximate (MSE, a, initial = L, tol = t)
Estimate parameters a to minimize the mean square error MSE, via the numerical
minimization function lbfgs. The mean square error is an expression in the param-
eters a, such as that returned by lsquares_mse.

The solution returned by lsquares_estimates_approximate is a local (perhaps
global) minimum of the mean square error. For consistency with lsquares_
estimates_exact, the return value is a nested list which contains one element,
namely a list of equations of the form [a = ..., b = ..., c = ...].

Additional arguments to lsquares_estimates_approximate are specified as equa-
tions and passed on verbatim to the function lbfgs.

MSE must evaluate to a number when the parameters are assigned numeric values.
This requires that the data from which MSE was constructed comprise only numeric
constants such as %pi and %e and literal numbers (integers, rationals, ordinary floats,

738 Maxima Manual

and bigfloats). Numerical calculations are carried out with ordinary floating-point
arithmetic, so all other kinds of numbers are converted to ordinary floats for calcula-
tions.

load(lsquares) loads this function.

See also lsquares_estimates, lsquares_estimates_exact, lsquares_mse,
lsquares_residuals, and lsquares_residual_mse.

Example:
(%i1) load (lsquares)$
(%i2) M : matrix (

[1,1,1], [3/2,1,2], [9/4,2,1], [3,2,2], [2,2,1]);
[1 1 1]
[]
[3]
[- 1 2]
[2]
[]

(%o2) [9]
[- 2 1]
[4]
[]
[3 2 2]
[]
[2 2 1]

(%i3) mse : lsquares_mse (M, [z, x, y], (z + D)^2 = A*x + B*y + C);
5
====
\ 2 2
> ((D + M) - C - M B - M A)
/ i, 1 i, 3 i, 2
====
i = 1

(%o3) ---
5

(%i4) lsquares_estimates_approximate (
mse, [A, B, C, D], iprint = [-1, 0]);

(%o4) [[A = - 3.67850494740174, B = - 1.683070351177813,
C = 10.63469950148635, D = - 3.340357993175206]]

Functionlsquares mse (D, x, e)
Returns the mean square error (MSE), a summation expression, for the equation e in
the variables x, with data D.

The MSE is defined as:
n
====
\ 2
> (lhs(e) - rhs(e))
/ i i

Chapter 61: lsquares 739

====
i = 1

n

where n is the number of data and e[i] is the equation e evaluated with the variables
in x assigned values from the i-th datum, D[i].

load(lsquares) loads this function.

Example:

(%i1) load (lsquares)$
(%i2) M : matrix (

[1,1,1], [3/2,1,2], [9/4,2,1], [3,2,2], [2,2,1]);
[1 1 1]
[]
[3]
[- 1 2]
[2]
[]

(%o2) [9]
[- 2 1]
[4]
[]
[3 2 2]
[]
[2 2 1]

(%i3) mse : lsquares_mse (M, [z, x, y], (z + D)^2 = A*x + B*y + C);
5
====
\ 2 2
> ((D + M) - C - M B - M A)
/ i, 1 i, 3 i, 2
====
i = 1

(%o3) ---
5

(%i4) diff (mse, D);
5
====
\ 2

4 > (D + M) ((D + M) - C - M B - M A)
/ i, 1 i, 1 i, 3 i, 2
====
i = 1

(%o4) --
5

(%i5) ’’mse, nouns;
2 2 9 2 2

(%o5) (((D + 3) - C - 2 B - 2 A) + ((D + -) - C - B - 2 A)
4

740 Maxima Manual

2 2 3 2 2
+ ((D + 2) - C - B - 2 A) + ((D + -) - C - 2 B - A)

2
2 2

+ ((D + 1) - C - B - A))/5

Functionlsquares residuals (D, x, e, a)
Returns the residuals for the equation e with specified parameters a and data D.
D is a matrix, x is a list of variables, e is an equation or general expression; if not an
equation, e is treated as if it were e = 0. a is a list of equations which specify values
for any free parameters in e aside from x.
The residuals are defined as:

lhs(e) - rhs(e)
i i

where e[i] is the equation e evaluated with the variables in x assigned values from
the i-th datum, D[i], and assigning any remaining free variables from a.
load(lsquares) loads this function.
Example:

(%i1) load (lsquares)$
(%i2) M : matrix (

[1,1,1], [3/2,1,2], [9/4,2,1], [3,2,2], [2,2,1]);
[1 1 1]
[]
[3]
[- 1 2]
[2]
[]

(%o2) [9]
[- 2 1]
[4]
[]
[3 2 2]
[]
[2 2 1]

(%i3) a : lsquares_estimates (
M, [z,x,y], (z+D)^2 = A*x+B*y+C, [A,B,C,D]);

59 27 10921 107
(%o3) [[A = - --, B = - --, C = -----, D = - ---]]

16 16 1024 32
(%i4) lsquares_residuals (

M, [z,x,y], (z+D)^2 = A*x+B*y+C, first(a));
13 13 13 13 13

(%o4) [--, - --, - --, --, --]
64 64 32 64 64

Functionlsquares residual mse (D, x, e, a)
Returns the residual mean square error (MSE) for the equation e with specified pa-
rameters a and data D.

Chapter 61: lsquares 741

The residual MSE is defined as:
n
====
\ 2
> (lhs(e) - rhs(e))
/ i i
====
i = 1

n

where e[i] is the equation e evaluated with the variables in x assigned values from
the i-th datum, D[i], and assigning any remaining free variables from a.
load(lsquares) loads this function.
Example:

(%i1) load (lsquares)$
(%i2) M : matrix (

[1,1,1], [3/2,1,2], [9/4,2,1], [3,2,2], [2,2,1]);
[1 1 1]
[]
[3]
[- 1 2]
[2]
[]

(%o2) [9]
[- 2 1]
[4]
[]
[3 2 2]
[]
[2 2 1]

(%i3) a : lsquares_estimates (
M, [z,x,y], (z+D)^2 = A*x+B*y+C, [A,B,C,D]);

59 27 10921 107
(%o3) [[A = - --, B = - --, C = -----, D = - ---]]

16 16 1024 32
(%i4) lsquares_residual_mse (

M, [z,x,y], (z + D)^2 = A*x + B*y + C, first (a));
169

(%o4) ----
2560

Functionplsquares (Mat,VarList,depvars)
Functionplsquares (Mat,VarList,depvars,maxexpon)
Functionplsquares (Mat,VarList,depvars,maxexpon,maxdegree)

Multivariable polynomial adjustment of a data table by the "least squares" method.
Mat is a matrix containing the data, VarList is a list of variable names (one for each
Mat column, but use "-" instead of varnames to ignore Mat columns), depvars is the

742 Maxima Manual

name of a dependent variable or a list with one or more names of dependent variables
(which names should be in VarList), maxexpon is the optional maximum exponent
for each independent variable (1 by default), and maxdegree is the optional maximum
polynomial degree (maxexpon by default); note that the sum of exponents of each
term must be equal or smaller than maxdegree, and if maxdgree = 0 then no limit is
applied.

If depvars is the name of a dependent variable (not in a list), plsquares returns
the adjusted polynomial. If depvars is a list of one or more dependent variables,
plsquares returns a list with the adjusted polynomial(s). The Coefficients of De-
termination are displayed in order to inform about the goodness of fit, which ranges
from 0 (no correlation) to 1 (exact correlation). These values are also stored in the
global variable DETCOEF (a list if depvars is a list).

A simple example of multivariable linear adjustment:
(%i1) load("plsquares")$

(%i2) plsquares(matrix([1,2,0],[3,5,4],[4,7,9],[5,8,10]),
[x,y,z],z);

Determination Coefficient for z = .9897039897039897
11 y - 9 x - 14

(%o2) z = ---------------
3

The same example without degree restrictions:
(%i3) plsquares(matrix([1,2,0],[3,5,4],[4,7,9],[5,8,10]),

[x,y,z],z,1,0);
Determination Coefficient for z = 1.0

x y + 23 y - 29 x - 19
(%o3) z = ----------------------

6

How many diagonals does a N-sides polygon have? What polynomial degree should
be used?

(%i4) plsquares(matrix([3,0],[4,2],[5,5],[6,9],[7,14],[8,20]),
[N,diagonals],diagonals,5);

Determination Coefficient for diagonals = 1.0
2
N - 3 N

(%o4) diagonals = --------
2

(%i5) ev(%, N=9); /* Testing for a 9 sides polygon */
(%o5) diagonals = 27

How many ways do we have to put two queens without they are threatened into a n
x n chessboard?

(%i6) plsquares(matrix([0,0],[1,0],[2,0],[3,8],[4,44]),
[n,positions],[positions],4);

Determination Coefficient for [positions] = [1.0]
4 3 2

3 n - 10 n + 9 n - 2 n

Chapter 61: lsquares 743

(%o6) [positions = -------------------------]
6

(%i7) ev(%[1], n=8); /* Testing for a (8 x 8) chessboard */
(%o7) positions = 1288

An example with six dependent variables:
(%i8) mtrx:matrix([0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,0],

[1,0,0,1,1,1,0,0],[1,1,1,1,0,0,0,1])$
(%i8) plsquares(mtrx,[a,b,_And,_Or,_Xor,_Nand,_Nor,_Nxor],

[_And,_Or,_Xor,_Nand,_Nor,_Nxor],1,0);
Determination Coefficient for

[_And, _Or, _Xor, _Nand, _Nor, _Nxor] =
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
(%o2) [_And = a b, _Or = - a b + b + a,
_Xor = - 2 a b + b + a, _Nand = 1 - a b,
_Nor = a b - b - a + 1, _Nxor = 2 a b - b - a + 1]

To use this function write first load("lsquares").

744 Maxima Manual

Chapter 62: makeOrders 745

62 makeOrders

62.1 Functions and Variables for makeOrders

FunctionmakeOrders (indvarlist,orderlist)
Returns a list of all powers for a polynomial up to and including the arguments.

(%i1) load("makeOrders")$

(%i2) makeOrders([a,b],[2,3]);
(%o2) [[0, 0], [0, 1], [0, 2], [0, 3], [1, 0], [1, 1],

[1, 2], [1, 3], [2, 0], [2, 1], [2, 2], [2, 3]]
(%i3) expand((1+a+a^2)*(1+b+b^2+b^3));

2 3 3 3 2 2 2 2 2
(%o3) a b + a b + b + a b + a b + b + a b + a b

2
+ b + a + a + 1

where [0, 1] is associated with the term b and [2, 3] with a2b3.
To use this function write first load("makeOrders").

746 Maxima Manual

Chapter 63: mnewton 747

63 mnewton

63.1 Introduction to mnewton

mnewton is an implementation of Newton’s method for solving nonlinear equations in
one or more variables.

63.2 Functions and Variables for mnewton

Option variablenewtonepsilon
Default value: 10.0^(-fpprec/2)
Precision to determine when the mnewton function has converged towards the solution.
See also mnewton.

Option variablenewtonmaxiter
Default value: 50
Maximum number of iterations to stop the mnewton function if it does not converge
or if it converges too slowly.
See also mnewton.

Functionmnewton (FuncList,VarList,GuessList)
Multiple nonlinear functions solution using the Newton method. FuncList is the list
of functions to solve, VarList is the list of variable names, and GuessList is the list of
initial approximations.
The solution is returned in the same format that solve() returns. If the solution
isn’t found, [] is returned.
This function is controlled by global variables newtonepsilon and newtonmaxiter.

(%i1) load("mnewton")$

(%i2) mnewton([x1+3*log(x1)-x2^2, 2*x1^2-x1*x2-5*x1+1],
[x1, x2], [5, 5]);

(%o2) [[x1 = 3.756834008012769, x2 = 2.779849592817897]]
(%i3) mnewton([2*a^a-5],[a],[1]);
(%o3) [[a = 1.70927556786144]]
(%i4) mnewton([2*3^u-v/u-5, u+2^v-4], [u, v], [2, 2]);
(%o4) [[u = 1.066618389595407, v = 1.552564766841786]]

To use this function write first load("mnewton"). See also newtonepsilon and
newtonmaxiter.

748 Maxima Manual

Chapter 64: numericalio 749

64 numericalio

64.1 Introduction to numericalio

numericalio is a collection of functions to read and write files and streams. Functions
for plain-text input and output can read and write numbers (integer, float, or bigfloat),
symbols, and strings. Functions for binary input and output can read and write only
floating-point numbers.

If there already exists a list, matrix, or array object to store input data, numericalio
input functions can write data into that object. Otherwise, numericalio can guess, to
some degree, the structure of an object to store the data, and return that object.

64.1.1 Plain-text input and output

In plain-text input and output, it is assumed that each item to read or write is an
atom: an integer, float, bigfloat, string, or symbol, and not a rational or complex number
or any other kind of nonatomic expression. The numericalio functions may attempt to do
something sensible faced with nonatomic expressions, but the results are not specified here
and subject to change.

Atoms in both input and output files have the same format as in Maxima batch files
or the interactive console. In particular, strings are enclosed in double quotes, backslash
\ prevents any special interpretation of the next character, and the question mark ? is
recognized at the beginning of a symbol to mean a Lisp symbol (as opposed to a Maxima
symbol). No continuation character (to join broken lines) is recognized.

64.1.2 Separator flag values for input

The functions for plain-text input and output take an optional argument, separator flag,
that tells what character separates data.

For plain-text input, these values of separator flag are recognized: comma for comma
separated values, pipe for values separated by the vertical bar character |, semicolon for
values separated by semicolon ;, and space for values separated by space or tab characters.
If the file name ends in .csv and separator flag is not specified, comma is assumed. If the
file name ends in something other than .csv and separator_flag is not specified, space
is assumed.

In plain-text input, multiple successive space and tab characters count as a single sepa-
rator. However, multiple comma, pipe, or semicolon characters are significant. Successive
comma, pipe, or semicolon characters (with or without intervening spaces or tabs) are con-
sidered to have false between the separators. For example, 1234,,Foo is treated the same
as 1234,false,Foo.

64.1.3 Separator flag values for output

For plain-text output, tab, for values separated by the tab character, is recognized as a
value of separator flag, as well as comma, pipe, semicolon, and space.

In plain-text output, false atoms are written as such; a list [1234, false, Foo] is
written 1234,false,Foo, and there is no attempt to collapse the output to 1234,,Foo.

750 Maxima Manual

64.1.4 Binary floating-point input and output

numericalio functions can read and write 8-byte IEEE 754 floating-point numbers.
These numbers can be stored either least significant byte first or most significant byte
first, according to the global flag set by assume_external_byte_order. If not specified,
numericalio assumes the external byte order is most-significant byte first.

Other kinds of numbers are coerced to 8-byte floats; numericalio cannot read or write
non-numeric data.

Some Lisp implementations do not recognize IEEE 754 special values (positive and
negative infinity, not-a-number values, denormalized values). The effect of reading such
values with numericalio is undefined.

numericalio includes functions to open a stream for reading or writing a stream of
bytes.

64.2 Functions and Variables for plain-text input and
output

Functionread matrix (S)
Functionread matrix (S, M)
Functionread matrix (S, separator flag)
Functionread matrix (S, M, separator flag)

read_matrix(S) reads the source S and returns its entire content as a matrix. The
size of the matrix is inferred from the input data; each line of the file becomes one
row of the matrix. If some lines have different lengths, read_matrix complains.
read_matrix(S, M) read the source S into the matrix M, until M is full or the source
is exhausted. Input data are read into the matrix in row-major order; the input need
not have the same number of rows and columns as M.
The source S may be a file name or a stream.
The recognized values of separator flag are comma, pipe, semicolon, and space. If
separator flag is not specified, the file is assumed space-delimited.

Functionread array (S, A)
Functionread array (S, A, separator flag)

Reads the source S into the array A, until A is full or the source is exhausted. Input
data are read into the array in row-major order; the input need not conform to the
dimensions of A.
The source S may be a file name or a stream.
The recognized values of separator flag are comma, pipe, semicolon, and space. If
separator flag is not specified, the file is assumed space-delimited.

Functionread hashed array (S, A)
Functionread hashed array (S, A, separator flag)

Reads the source S and returns its entire content as a hashed array. The source S
may be a file name or a stream.

Chapter 64: numericalio 751

read_hashed_array treats the first item on each line as a hash key, and associates
the remainder of the line (as a list) with the key. For example, the line 567 12 17
32 55 is equivalent to A[567]: [12, 17, 32, 55]$. Lines need not have the same
numbers of elements.
The recognized values of separator flag are comma, pipe, semicolon, and space. If
separator flag is not specified, the file is assumed space-delimited.

Functionread nested list (S)
Functionread nested list (S, separator flag)

Reads the source S and returns its entire content as a nested list. The source S may
be a file name or a stream.
read_nested_list returns a list which has a sublist for each line of input. Lines
need not have the same numbers of elements. Empty lines are not ignored: an empty
line yields an empty sublist.
The recognized values of separator flag are comma, pipe, semicolon, and space. If
separator flag is not specified, the file is assumed space-delimited.

Functionread list (S)
Functionread list (S, L)
Functionread list (S, separator flag)
Functionread list (S, L, separator flag)

read_list(S) reads the source S and returns its entire content as a flat list.
read_list(S, L) reads the source S into the list L, until L is full or the source is
exhausted.
The source S may be a file name or a stream.
The recognized values of separator flag are comma, pipe, semicolon, and space. If
separator flag is not specified, the file is assumed space-delimited.

Functionwrite data (X, D)
Functionwrite data (X, D, separator flag)

Writes the object X to the destination D.
write_data writes a matrix in row-major order, with one line per row.
write_data writes an array created by array or make_array in row-major order,
with a new line at the end of every slab. Higher-dimensional slabs are separated by
additional new lines.
write_data writes a hashed array with each key followed by its associated list on one
line.
write_data writes a nested list with each sublist on one line.
write_data writes a flat list all on one line.
The destination D may be a file name or a stream. When the destination is a file
name, the global variable file_output_append governs whether the output file is
appended or truncated. When the destination is a stream, no special action is taken
by write_data after all the data are written; in particular, the stream remains open.
The recognized values of separator flag are comma, pipe, semicolon, space, and tab.
If separator flag is not specified, the file is assumed space-delimited.

752 Maxima Manual

64.3 Functions and Variables for binary input and output

Functionassume external byte order (byte order flag)
Tells numericalio the byte order for reading and writing binary data. Two values
of byte order flag are recognized: lsb which indicates least-significant byte first, also
called little-endian byte order; and msb which indicates most-significant byte first,
also called big-endian byte order.
If not specified, numericalio assumes the external byte order is most-significant byte
first.

Functionopenr binary (file name)
Returns an input stream of 8-bit unsigned bytes to read the file named by file name.

Functionopenw binary (file name)
Returns an output stream of 8-bit unsigned bytes to write the file named by file name.

Functionopena binary (file name)
Returns an output stream of 8-bit unsigned bytes to append the file named by
file name.

Functionread binary matrix (S, M)
Reads binary 8-byte floating point numbers from the source S into the matrix M until
M is full, or the source is exhausted. Elements of M are read in row-major order.
The source S may be a file name or a stream.
The byte order in elements of the source is specified by assume_external_byte_
order.

Functionread binary array (S, A)
Reads binary 8-byte floating point numbers from the source S into the array A until
A is full, or the source is exhausted. A must be an array created by array or make_
array. Elements of A are read in row-major order.
The source S may be a file name or a stream.
The byte order in elements of the source is specified by assume_external_byte_
order.

Functionread binary list (S)
Functionread binary list (S, L)

read_binary_list(S) reads the entire content of the source S as a sequence of binary
8-byte floating point numbers, and returns it as a list. The source S may be a file
name or a stream.
read_binary_list(S, L) reads 8-byte binary floating point numbers from the source
S until the list L is full, or the source is exhausted.
The byte order in elements of the source is specified by assume_external_byte_
order.

Chapter 64: numericalio 753

Functionwrite binary data (X, D)
Writes the object X, comprising binary 8-byte IEEE 754 floating-point numbers, to
the destination D. Other kinds of numbers are coerced to 8-byte floats. write_
binary_data cannot write non-numeric data.
The object X may be a list, a nested list, a matrix, or an array created by array or
make_array; X cannot be an undeclared array or any other type of object. write_
binary_data writes nested lists, matrices, and arrays in row-major order.
The destination D may be a file name or a stream. When the destination is a file name,
the global variable file_output_append governs whether the output file is appended
or truncated. When the destination is a stream, no special action is taken by write_
binary_data after all the data are written; in particular, the stream remains open.
The byte order in elements of the destination is specified by assume_external_byte_
order.

754 Maxima Manual

Chapter 65: opsubst 755

65 opsubst

65.1 Functions and Variables for opsubst

Functionopsubst (f,g,e)
Functionopsubst (g=f,e)
Functionopsubst ([g1=f1,g2=f2,..., gn=fn],e)

The function opsubst is similar to the function subst, except that opsubst only
makes substitutions for the operators in an expression. In general, When f is an
operator in the expression e, substitute g for f in the expression e.

To determine the operator, opsubst sets inflag to true. This means opsubst sub-
stitutes for the internal, not the displayed, operator in the expression.

Examples:

(%i1) load (opsubst)$

(%i2) opsubst(f,g,g(g(x)));
(%o2) f(f(x))
(%i3) opsubst(f,g,g(g));
(%o3) f(g)
(%i4) opsubst(f,g[x],g[x](z));
(%o4) f(z)
(%i5) opsubst(g[x],f, f(z));
(%o5) g (z)

x
(%i6) opsubst(tan, sin, sin(sin));
(%o6) tan(sin)
(%i7) opsubst([f=g,g=h],f(x));
(%o7) h(x)

Internally, Maxima does not use the unary negation, division, or the subtraction
operators; thus:

(%i8) opsubst("+","-",a-b);
(%o8) a - b
(%i9) opsubst("f","-",-a);
(%o9) - a
(%i10) opsubst("^^","/",a/b);

a
(%o10) -

b

The internal representation of -a*b is *(-1,a,b); thus

(%i11) opsubst("[","*", -a*b);
(%o11) [- 1, a, b]

When either operator isn’t a Maxima symbol, generally some other function will signal
an error:

756 Maxima Manual

(%i12) opsubst(a+b,f, f(x));

Improper name or value in functional position:
b + a
-- an error. Quitting. To debug this try debugmode(true);

However, subscripted operators are allowed:
(%i13) opsubst(g[5],f, f(x));
(%o13) g (x)

5

To use this function write first load("opsubst").

Chapter 66: orthopoly 757

66 orthopoly

66.1 Introduction to orthogonal polynomials

orthopoly is a package for symbolic and numerical evaluation of several kinds of or-
thogonal polynomials, including Chebyshev, Laguerre, Hermite, Jacobi, Legendre, and ul-
traspherical (Gegenbauer) polynomials. Additionally, orthopoly includes support for the
spherical Bessel, spherical Hankel, and spherical harmonic functions.

For the most part, orthopoly follows the conventions of Abramowitz and Stegun Hand-
book of Mathematical Functions, Chapter 22 (10th printing, December 1972); additionally,
we use Gradshteyn and Ryzhik, Table of Integrals, Series, and Products (1980 corrected
and enlarged edition), and Eugen Merzbacher Quantum Mechanics (2nd edition, 1970).

Barton Willis of the University of Nebraska at Kearney (UNK) wrote the orthopoly
package and its documentation. The package is released under the GNU General Public
License (GPL).

66.1.1 Getting Started with orthopoly

load (orthopoly) loads the orthopoly package.
To find the third-order Legendre polynomial,

(%i1) legendre_p (3, x);
3 2

5 (1 - x) 15 (1 - x)
(%o1) - ---------- + ----------- - 6 (1 - x) + 1

2 2

To express this as a sum of powers of x, apply ratsimp or rat to the result.
(%i2) [ratsimp (%), rat (%)];

3 3
5 x - 3 x 5 x - 3 x

(%o2)/R/ [----------, ----------]
2 2

Alternatively, make the second argument to legendre_p (its “main” variable) a canonical
rational expression (CRE).

(%i1) legendre_p (3, rat (x));
3

5 x - 3 x
(%o1)/R/ ----------

2

For floating point evaluation, orthopoly uses a running error analysis to estimate an
upper bound for the error. For example,

(%i1) jacobi_p (150, 2, 3, 0.2);
(%o1) interval(- 0.062017037936715, 1.533267919277521E-11)

Intervals have the form interval (c, r), where c is the center and r is the radius of the
interval. Since Maxima does not support arithmetic on intervals, in some situations, such

758 Maxima Manual

as graphics, you want to suppress the error and output only the center of the interval. To
do this, set the option variable orthopoly_returns_intervals to false.

(%i1) orthopoly_returns_intervals : false;
(%o1) false
(%i2) jacobi_p (150, 2, 3, 0.2);
(%o2) - 0.062017037936715

Refer to the section see [Floating point Evaluation], page 761 for more information.

Most functions in orthopoly have a gradef property; thus
(%i1) diff (hermite (n, x), x);
(%o1) 2 n H (x)

n - 1
(%i2) diff (gen_laguerre (n, a, x), x);

(a) (a)
n L (x) - (n + a) L (x) unit_step(n)

n n - 1
(%o2) --

x

The unit step function in the second example prevents an error that would otherwise
arise by evaluating with n equal to 0.

(%i3) ev (%, n = 0);
(%o3) 0

The gradef property only applies to the “main” variable; derivatives with respect other
arguments usually result in an error message; for example

(%i1) diff (hermite (n, x), x);
(%o1) 2 n H (x)

n - 1
(%i2) diff (hermite (n, x), n);

Maxima doesn’t know the derivative of hermite with respect the first
argument
-- an error. Quitting. To debug this try debugmode(true);

Generally, functions in orthopoly map over lists and matrices. For the mapping to
fully evaluate, the option variables doallmxops and listarith must both be true (the
defaults). To illustrate the mapping over matrices, consider

(%i1) hermite (2, x);
2

(%o1) - 2 (1 - 2 x)
(%i2) m : matrix ([0, x], [y, 0]);

[0 x]
(%o2) []

[y 0]
(%i3) hermite (2, m);

[2]
[- 2 - 2 (1 - 2 x)]

(%o3) []
[2]

Chapter 66: orthopoly 759

[- 2 (1 - 2 y) - 2]

In the second example, the i, j element of the value is hermite (2, m[i,j]); this is
not the same as computing -2 + 4 m . m, as seen in the next example.

(%i4) -2 * matrix ([1, 0], [0, 1]) + 4 * m . m;
[4 x y - 2 0]

(%o4) []
[0 4 x y - 2]

If you evaluate a function at a point outside its domain, generally orthopoly returns
the function unevaluated. For example,

(%i1) legendre_p (2/3, x);
(%o1) P (x)

2/3

orthopoly supports translation into TeX; it also does two-dimensional output on a
terminal.

(%i1) spherical_harmonic (l, m, theta, phi);
m

(%o1) Y (theta, phi)
l

(%i2) tex (%);
$$Y_{l}^{m}\left(\vartheta,\varphi\right)$$
(%o2) false
(%i3) jacobi_p (n, a, a - b, x/2);

(a, a - b) x
(%o3) P (-)

n 2
(%i4) tex (%);
$$P_{n}^{\left(a,a-b\right)}\left({{x}\over{2}}\right)$$
(%o4) false

66.1.2 Limitations

When an expression involves several orthogonal polynomials with symbolic orders, it’s
possible that the expression actually vanishes, yet Maxima is unable to simplify it to zero.
If you divide by such a quantity, you’ll be in trouble. For example, the following expression
vanishes for integers n greater than 1, yet Maxima is unable to simplify it to zero.

(%i1) (2*n - 1) * legendre_p (n - 1, x) * x - n * legendre_p (n, x)
+ (1 - n) * legendre_p (n - 2, x);

(%o1) (2 n - 1) P (x) x - n P (x) + (1 - n) P (x)
n - 1 n n - 2

For a specific n, we can reduce the expression to zero.
(%i2) ev (% ,n = 10, ratsimp);
(%o2) 0

Generally, the polynomial form of an orthogonal polynomial is ill-suited for floating point
evaluation. Here’s an example.

(%i1) p : jacobi_p (100, 2, 3, x)$

760 Maxima Manual

(%i2) subst (0.2, x, p);
(%o2) 3.4442767023833592E+35
(%i3) jacobi_p (100, 2, 3, 0.2);
(%o3) interval(0.18413609135169, 6.8990300925815987E-12)
(%i4) float(jacobi_p (100, 2, 3, 2/10));
(%o4) 0.18413609135169

The true value is about 0.184; this calculation suffers from extreme subtractive cancel-
lation error. Expanding the polynomial and then evaluating, gives a better result.

(%i5) p : expand(p)$
(%i6) subst (0.2, x, p);
(%o6) 0.18413609766122982

This isn’t a general rule; expanding the polynomial does not always result in an expres-
sion that is better suited for numerical evaluation. By far, the best way to do numerical
evaluation is to make one or more of the function arguments floating point numbers. By
doing that, specialized floating point algorithms are used for evaluation.

Maxima’s float function is somewhat indiscriminate; if you apply float to an expres-
sion involving an orthogonal polynomial with a symbolic degree or order parameter, these
parameters may be converted into floats; after that, the expression will not evaluate fully.
Consider

(%i1) assoc_legendre_p (n, 1, x);
1

(%o1) P (x)
n

(%i2) float (%);
1.0

(%o2) P (x)
n

(%i3) ev (%, n=2, x=0.9);
1.0

(%o3) P (0.9)
2

The expression in (%o3) will not evaluate to a float; orthopoly doesn’t recognize floating
point values where it requires an integer. Similarly, numerical evaluation of the pochhammer
function for orders that exceed pochhammer_max_index can be troublesome; consider

(%i1) x : pochhammer (1, 10), pochhammer_max_index : 5;
(%o1) (1)

10

Applying float doesn’t evaluate x to a float
(%i2) float (x);
(%o2) (1.0)

10.0

To evaluate x to a float, you’ll need to bind pochhammer_max_index to 11 or greater
and apply float to x.

(%i3) float (x), pochhammer_max_index : 11;
(%o3) 3628800.0

Chapter 66: orthopoly 761

The default value of pochhammer_max_index is 100; change its value after loading
orthopoly.

Finally, be aware that reference books vary on the definitions of the orthogonal polyno-
mials; we’ve generally used the conventions of conventions of Abramowitz and Stegun.

Before you suspect a bug in orthopoly, check some special cases to determine if your
definitions match those used by orthopoly. Definitions often differ by a normalization; oc-
casionally, authors use “shifted” versions of the functions that makes the family orthogonal
on an interval other than (−1, 1). To define, for example, a Legendre polynomial that is
orthogonal on (0, 1), define

(%i1) shifted_legendre_p (n, x) := legendre_p (n, 2*x - 1)$

(%i2) shifted_legendre_p (2, rat (x));
2

(%o2)/R/ 6 x - 6 x + 1
(%i3) legendre_p (2, rat (x));

2
3 x - 1

(%o3)/R/ --------
2

66.1.3 Floating point Evaluation

Most functions in orthopoly use a running error analysis to estimate the error in float-
ing point evaluation; the exceptions are the spherical Bessel functions and the associated
Legendre polynomials of the second kind. For numerical evaluation, the spherical Bessel
functions call SLATEC functions. No specialized method is used for numerical evaluation
of the associated Legendre polynomials of the second kind.

The running error analysis ignores errors that are second or higher order in the machine
epsilon (also known as unit roundoff). It also ignores a few other errors. It’s possible
(although unlikely) that the actual error exceeds the estimate.

Intervals have the form interval (c, r), where c is the center of the interval and r is
its radius. The center of an interval can be a complex number, and the radius is always a
positive real number.

Here is an example.
(%i1) fpprec : 50$

(%i2) y0 : jacobi_p (100, 2, 3, 0.2);
(%o2) interval(0.1841360913516871, 6.8990300925815987E-12)
(%i3) y1 : bfloat (jacobi_p (100, 2, 3, 1/5));
(%o3) 1.8413609135168563091370224958913493690868904463668b-1

Let’s test that the actual error is smaller than the error estimate
(%i4) is (abs (part (y0, 1) - y1) < part (y0, 2));
(%o4) true

Indeed, for this example the error estimate is an upper bound for the true error.

Maxima does not support arithmetic on intervals.

762 Maxima Manual

(%i1) legendre_p (7, 0.1) + legendre_p (8, 0.1);
(%o1) interval(0.18032072148437508, 3.1477135311021797E-15)

+ interval(- 0.19949294375000004, 3.3769353084291579E-15)

A user could define arithmetic operators that do interval math. To define interval addi-
tion, we can define

(%i1) infix ("@+")$

(%i2) "@+"(x,y) := interval (part (x, 1) + part (y, 1), part (x, 2)
+ part (y, 2))$

(%i3) legendre_p (7, 0.1) @+ legendre_p (8, 0.1);
(%o3) interval(- 0.019172222265624955, 6.5246488395313372E-15)

The special floating point routines get called when the arguments are complex. For
example,

(%i1) legendre_p (10, 2 + 3.0*%i);
(%o1) interval(- 3.876378825E+7 %i - 6.0787748E+7,

1.2089173052721777E-6)

Let’s compare this to the true value.

(%i1) float (expand (legendre_p (10, 2 + 3*%i)));
(%o1) - 3.876378825E+7 %i - 6.0787748E+7

Additionally, when the arguments are big floats, the special floating point routines get
called; however, the big floats are converted into double floats and the final result is a
double.

(%i1) ultraspherical (150, 0.5b0, 0.9b0);
(%o1) interval(- 0.043009481257265, 3.3750051301228864E-14)

66.1.4 Graphics and orthopoly

To plot expressions that involve the orthogonal polynomials, you must do two things:

1. Set the option variable orthopoly_returns_intervals to false,

2. Quote any calls to orthopoly functions.

If function calls aren’t quoted, Maxima evaluates them to polynomials before plotting;
consequently, the specialized floating point code doesn’t get called. Here is an example of
how to plot an expression that involves a Legendre polynomial.

(%i1) plot2d (’(legendre_p (5, x)), [x, 0, 1]),
orthopoly_returns_intervals : false;

Chapter 66: orthopoly 763

(%o1)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

-63*(1-x)5/8+315*(1-x)4/8-70*(1-x)3+105*(1-x)2/2-15*(1-x)+1

The entire expression legendre_p (5, x) is quoted; this is different than just quoting
the function name using ’legendre_p (5, x).

66.1.5 Miscellaneous Functions

The orthopoly package defines the Pochhammer symbol and a unit step function.
orthopoly uses the Kronecker delta function and the unit step function in gradef state-
ments.

To convert Pochhammer symbols into quotients of gamma functions, use makegamma.
(%i1) makegamma (pochhammer (x, n));

gamma(x + n)
(%o1) ------------

gamma(x)
(%i2) makegamma (pochhammer (1/2, 1/2));

1
(%o2) ---------

sqrt(%pi)

Derivatives of the Pochhammer symbol are given in terms of the psi function.
(%i1) diff (pochhammer (x, n), x);
(%o1) (x) (psi (x + n) - psi (x))

n 0 0
(%i2) diff (pochhammer (x, n), n);
(%o2) (x) psi (x + n)

n 0

You need to be careful with the expression in (%o1); the difference of the psi func-
tions has polynomials when x = -1, -2, .., -n. These polynomials cancel with factors in
pochhammer (x, n) making the derivative a degree n - 1 polynomial when n is a positive
integer.

The Pochhammer symbol is defined for negative orders through its representation as a
quotient of gamma functions. Consider

764 Maxima Manual

(%i1) q : makegamma (pochhammer (x, n));
gamma(x + n)

(%o1) ------------
gamma(x)

(%i2) sublis ([x=11/3, n= -6], q);
729

(%o2) - ----
2240

Alternatively, we can get this result directly.
(%i1) pochhammer (11/3, -6);

729
(%o1) - ----

2240

The unit step function is left-continuous; thus
(%i1) [unit_step (-1/10), unit_step (0), unit_step (1/10)];
(%o1) [0, 0, 1]

If you need a unit step function that is neither left or right continuous at zero, define
your own using signum; for example,

(%i1) xunit_step (x) := (1 + signum (x))/2$

(%i2) [xunit_step (-1/10), xunit_step (0), xunit_step (1/10)];
1

(%o2) [0, -, 1]
2

Do not redefine unit_step itself; some code in orthopoly requires that the unit step
function be left-continuous.

66.1.6 Algorithms

Generally, orthopoly does symbolic evaluation by using a hypergeometic representation
of the orthogonal polynomials. The hypergeometic functions are evaluated using the (un-
documented) functions hypergeo11 and hypergeo21. The exceptions are the half-integer
Bessel functions and the associated Legendre function of the second kind. The half-integer
Bessel functions are evaluated using an explicit representation, and the associated Legendre
function of the second kind is evaluated using recursion.

For floating point evaluation, we again convert most functions into a hypergeometic form;
we evaluate the hypergeometic functions using forward recursion. Again, the exceptions are
the half-integer Bessel functions and the associated Legendre function of the second kind.
Numerically, the half-integer Bessel functions are evaluated using the SLATEC code.

66.2 Functions and Variables for orthogonal polynomials

Functionassoc legendre p (n, m, x)
The associated Legendre function of the first kind of degree n and order m.
Reference: Abramowitz and Stegun, equations 22.5.37, page 779, 8.6.6 (second equa-
tion), page 334, and 8.2.5, page 333.

Chapter 66: orthopoly 765

Functionassoc legendre q (n, m, x)
The associated Legendre function of the second kind of degree n and order m.

Reference: Abramowitz and Stegun, equation 8.5.3 and 8.1.8.

Functionchebyshev t (n, x)
The Chebyshev function of the first kind.

Reference: Abramowitz and Stegun, equation 22.5.47, page 779.

Functionchebyshev u (n, x)
The Chebyshev function of the second kind.

Reference: Abramowitz and Stegun, equation 22.5.48, page 779.

Functiongen laguerre (n, a, x)
The generalized Laguerre polynomial of degree n.

Reference: Abramowitz and Stegun, equation 22.5.54, page 780.

Functionhermite (n, x)
The Hermite polynomial.

Reference: Abramowitz and Stegun, equation 22.5.55, page 780.

Functionintervalp (e)
Return true if the input is an interval and return false if it isn’t.

Functionjacobi p (n, a, b, x)
The Jacobi polynomial.

The Jacobi polynomials are actually defined for all a and b; however, the Jacobi
polynomial weight (1 - x)^a (1 + x)^b isn’t integrable for a <= -1 or b <= -1.

Reference: Abramowitz and Stegun, equation 22.5.42, page 779.

Functionlaguerre (n, x)
The Laguerre polynomial.

Reference: Abramowitz and Stegun, equations 22.5.16 and 22.5.54, page 780.

Functionlegendre p (n, x)
The Legendre polynomial of the first kind.

Reference: Abramowitz and Stegun, equations 22.5.50 and 22.5.51, page 779.

Functionlegendre q (n, x)
The Legendre polynomial of the first kind.

Reference: Abramowitz and Stegun, equations 8.5.3 and 8.1.8.

766 Maxima Manual

Functionorthopoly recur (f, args)
Returns a recursion relation for the orthogonal function family f with arguments args.
The recursion is with respect to the polynomial degree.

(%i1) orthopoly_recur (legendre_p, [n, x]);
(2 n - 1) P (x) x + (1 - n) P (x)

n - 1 n - 2
(%o1) P (x) = ---

n n

The second argument to orthopoly_recur must be a list with the correct number of
arguments for the function f ; if it isn’t, Maxima signals an error.

(%i1) orthopoly_recur (jacobi_p, [n, x]);

Function jacobi_p needs 4 arguments, instead it received 2
-- an error. Quitting. To debug this try debugmode(true);

Additionally, when f isn’t the name of one of the families of orthogonal polynomials,
an error is signalled.

(%i1) orthopoly_recur (foo, [n, x]);

A recursion relation for foo isn’t known to Maxima
-- an error. Quitting. To debug this try debugmode(true);

Variableorthopoly returns intervals
Default value: true
When orthopoly_returns_intervals is true, floating point results are returned in
the form interval (c, r), where c is the center of an interval and r is its radius. The
center can be a complex number; in that case, the interval is a disk in the complex
plane.

Functionorthopoly weight (f, args)
Returns a three element list; the first element is the formula of the weight for the
orthogonal polynomial family f with arguments given by the list args; the second and
third elements give the lower and upper endpoints of the interval of orthogonality.
For example,

(%i1) w : orthopoly_weight (hermite, [n, x]);
2

- x
(%o1) [%e , - inf, inf]
(%i2) integrate(w[1]*hermite(3, x)*hermite(2, x), x, w[2], w[3]);
(%o2) 0

The main variable of f must be a symbol; if it isn’t, Maxima signals an error.

Functionpochhammer (n, x)
The Pochhammer symbol. For nonnegative integers n with n <= pochhammer_max_
index, the expression pochhammer (x, n) evaluates to the product x (x + 1) (x +
2) ... (x + n - 1) when n > 0 and to 1 when n = 0. For negative n, pochhammer (x,
n) is defined as (-1)^n / pochhammer (1 - x, -n). Thus

Chapter 66: orthopoly 767

(%i1) pochhammer (x, 3);
(%o1) x (x + 1) (x + 2)
(%i2) pochhammer (x, -3);

1
(%o2) - -----------------------

(1 - x) (2 - x) (3 - x)

To convert a Pochhammer symbol into a quotient of gamma functions, (see
Abramowitz and Stegun, equation 6.1.22) use makegamma; for example

(%i1) makegamma (pochhammer (x, n));
gamma(x + n)

(%o1) ------------
gamma(x)

When n exceeds pochhammer_max_index or when n is symbolic, pochhammer returns
a noun form.

(%i1) pochhammer (x, n);
(%o1) (x)

n

Variablepochhammer max index
Default value: 100
pochhammer (n, x) expands to a product if and only if n <= pochhammer_max_index.
Examples:

(%i1) pochhammer (x, 3), pochhammer_max_index : 3;
(%o1) x (x + 1) (x + 2)
(%i2) pochhammer (x, 4), pochhammer_max_index : 3;
(%o2) (x)

4

Reference: Abramowitz and Stegun, equation 6.1.16, page 256.

Functionspherical bessel j (n, x)
The spherical Bessel function of the first kind.
Reference: Abramowitz and Stegun, equations 10.1.8, page 437 and 10.1.15, page 439.

Functionspherical bessel y (n, x)
The spherical Bessel function of the second kind.
Reference: Abramowitz and Stegun, equations 10.1.9, page 437 and 10.1.15, page 439.

Functionspherical hankel1 (n, x)
The spherical Hankel function of the first kind.
Reference: Abramowitz and Stegun, equation 10.1.36, page 439.

Functionspherical hankel2 (n, x)
The spherical Hankel function of the second kind.
Reference: Abramowitz and Stegun, equation 10.1.17, page 439.

768 Maxima Manual

Functionspherical harmonic (n, m, x, y)
The spherical harmonic function.
Reference: Merzbacher 9.64.

Functionunit step (x)
The left-continuous unit step function; thus unit_step (x) vanishes for x <= 0 and
equals 1 for x > 0.
If you want a unit step function that takes on the value 1/2 at zero, use (1 + signum
(x))/2.

Functionultraspherical (n, a, x)
The ultraspherical polynomial (also known as the Gegenbauer polynomial).
Reference: Abramowitz and Stegun, equation 22.5.46, page 779.

Chapter 67: plotdf 769

67 plotdf

67.1 Introduction to plotdf

The function plotdf creates a plot of the direction field of a first-order Ordinary Differ-
ential Equation (ODE) or a system of two autonomous first-order ODE’s.

Since this is an additional package, in order to use it you must first load it with
load("plotdf"). Plotdf requires Openmath, which is provided by the package Xmax-
ima (Xmaxima is not only used as a graphical console for Maxima but also to plot graphs
in the Openmath format).

To plot the direction field of a single ODE, the ODE must be written in the form:

dy

dx
= F (x, y)

and the function F should be given as the argument for plotdf. If the independent and
dependent variables are not x, and y, as in the equation above, then those two variables
should be named explicitly in a list given as an argument to the plotdf command (see the
examples).

To plot the direction field of a set of two autonomous ODE’s, they must be written in
the form

dx

dt
= G(x, y)

dy

dt
= F (x, y)

and the argument for plotdf should be a list with the two functions G and F, in that
order; namely, the first expression in the list will be taken to be the time derivative of
the variable represented on the horizontal axis, and the second expression will be the time
derivative of the variable represented on the vertical axis. Those two variables do not have
to be x and y, but if they are not, then the second argument given to plotdf must be another
list naming the two variables, first the one on the horizontal axis and then the one on the
vertical axis.

If only one ODE is given, plotdf will implicitly admit x=t, and G(x,y)=1, transforming
the non-autonomous equation into a system of two autonomous equations.

67.2 Functions and Variables for plotdf

Functionplotdf (dydx, ...options...)
Functionplotdf (dvdu, [u,v], ...options...)
Functionplotdf ([dxdt,dydt], ...options...)
Functionplotdf ([dudt,dvdt], [u,v], ...options...)

Displays a direction field in two dimensions x and y.

dydx, dxdt and dydt are expressions that depend on x and y. dvdu, dudt and dvdt
are expressions that depend on u and v. In addition to those two variables, the
expressions can also depend on a set of parameters, with numerical values given with

770 Maxima Manual

the parameters option (the option syntax is given below), or with a range of allowed
values specified by a sliders option.

Several other options can be given within the command, or selected in the menu. Inte-
gral curves can be obtained by clicking on the plot, or with the option trajectory_at.
The direction of the integration can be controlled with the direction option, which
can have values of forward, backward or both. The number of integration steps is
given by nsteps and the time interval between them is set up with the tstep option.
The Adams Moulton method is used for the integration; it is also possible to switch
to an adaptive Runge-Kutta 4th order method.

Plot window menu:

The menu in the plot window has the following options: Zoom, will change the be-
havior of the mouse so that it will allow you to zoom in on a region of the plot by
clicking with the left button. Each click near a point magnifies the plot, keeping the
center at the point where you clicked. Holding the 〈Shift〉 key while clicking, zooms
out to the previous magnification. To resume computing trajectories when you click
on a point, select Integrate from the menu.

The option Config in the menu can be used to change the ODE(s) in use and various
other settings. After configuration changes are made, the menu option Replot should
be selected, to activate the new settings. If a pair of coordinates are entered in the
field Trajectory at in the Config dialog menu, and the 〈enter〉 key is pressed, a new
integral curve will be shown, in addition to the ones already shown. When Replot is
selected, only the last integral curve entered will be shown.

Holding the right mouse button down while the cursor is moved, can be used to drag
the plot sideways or up and down. Additional parameters such as the number of
steps, the initial value of t and the x and y centers and radii, may be set in the Config
menu.

A copy of the plot can be saved as a postscript file, using the menu option Save.

Plot options:

The plotdf command may include several commands, each command is a list of two
or more items. The first item is the name of the option, and the remainder comprises
the value or values assigned to the option.

The options which are recognized by plotdf are the following:

• tstep defines the length of the increments on the independent variable t, used to
compute an integral curve. If only one expression dydx is given to plotdf, the
x variable will be directly proportional to t. The default value is 0.1.

• nsteps defines the number of steps of length tstep that will be used for the
independent variable, to compute an integral curve. The default value is 100.

• direction defines the direction of the independent variable that will be followed to
compute an integral curve. Possible values are forward, to make the independent
variable increase nsteps times, with increments tstep, backward, to make the
independent variable decrease, or both that will lead to an integral curve that
extends nsteps forward, and nsteps backward. The keywords right and left
can be used as synonyms for forward and backward. The default value is both.

Chapter 67: plotdf 771

• tinitial defines the initial value of variable t used to compute integral curves.
Since the differential equations are autonomous, that setting will only appear in
the plot of the curves as functions of t. The default value is 0.

• versus t is used to create a second plot window, with a plot of an integral curve,
as two functions x, y, of the independent variable t. If versus_t is given any
value different from 0, the second plot window will be displayed. The second plot
window includes another menu, similar to the menu of the main plot window.
The default value is 0.

• trajectory at defines the coordinates xinitial and yinitial for the starting point
of an integral curve. The option is empty by default.

• parameters defines a list of parameters, and their numerical values, used in the
definition of the differential equations. The name and values of the parameters
must be given in a string with a comma-separated sequence of pairs name=value.

• sliders defines a list of parameters that will be changed interactively using slider
buttons, and the range of variation of those parameters. The names and ranges
of the parameters must be given in a string with a comma-separated sequence of
elements name=min:max

• xfun defines a string with semi-colon-separated sequence of functions of x to be
displayed, on top of the direction field. Those functions will be parsed by Tcl
and not by Maxima.

• x should be followed by two numbers, which will set up the minimum and max-
imum values shown on the horizontal axis. If the variable on the horizontal axis
is not x, then this option should have the name of the variable on the horizontal
axis. The default horizontal range is from -10 to 10.

• y should be followed by two numbers, which will set up the minimum and max-
imum values shown on the vertical axis. If the variable on the vertical axis is
not y, then this option should have the name of the variable on the vertical axis.
The default vertical range is from -10 to 10.

Examples:

• To show the direction field of the differential equation y′ = exp(−x) + y and the
solution that goes through (2,−0.1):

(%i1) load("plotdf")$

772 Maxima Manual

(%i2) plotdf(exp(-x)+y,[trajectory_at,2,-0.1])$

2

2

-5

-5

0

0

5

5

-5 -5

0 0

5 5

• To obtain the direction field for the equation diff(y, x) = x−y2 and the solution
with initial condition y(−1) = 3, we can use the command:

(%i3) plotdf(x-y^2,[xfun,"sqrt(x);-sqrt(x)"],
[trajectory_at,-1,3], [direction,forward],
[y,-5,5], [x,-4,16])$

The graph also shows the function y = sqrt(x).

sqrt(x)
-sqrt(x)

2 10

1

0

0

5

5

10

10

15

15

-2.5 -2.5

0 0

2.5 2.5

• The following example shows the direction field of a harmonic oscillator, defined
by the two equations dz/dt = v and dv/dt = −k ∗ z/m, and the integral curve

Chapter 67: plotdf 773

through (z, v) = (6, 0), with a slider that will allow you to change the value of m
interactively (k is fixed at 2):

(%i4) plotdf([v,-k*z/m], [z,v], [parameters,"m=2,k=2"],
[sliders,"m=1:5"], [trajectory_at,6,0])$

2

2

-5

-5

0

0

5

5

-5 -5

0 0

5 5

m: 2.00

• To plot the direction field of the Duffing equation, m∗x′′+c∗x′+k∗x+b∗x3 = 0,
we introduce the variable y = x′ and use:

(%i5) plotdf([y,-(k*x + c*y + b*x^3)/m],
[parameters,"k=-1,m=1.0,c=0,b=1"],
[sliders,"k=-2:2,m=-1:1"],[tstep,0.1])$

-10 2

2

10

-10

-10

-5

-5

0

0

5

5

-5 -5

0 0

5 5

10 10

m: 1.00

k: -1.00

774 Maxima Manual

• The direction field for a damped pendulum, including the solution for the given
initial conditions, with a slider that can be used to change the value of the mass
m, and with a plot of the two state variables as a function of time:

(%i6) plotdf([w,-g*sin(a)/l - b*w/m/l], [a,w],
[parameters,"g=9.8,l=0.5,m=0.3,b=0.05"],
[trajectory_at,1.05,-9],[tstep,0.01],
[a,-10,2], [w,-14,14], [direction,forward],
[nsteps,300], [sliders,"m=0.1:1"], [versus_t,1])$

5

-5

-5

0

0

-10 -10

0 0

10 10

m: 0.297

x(t)
y(t)

0.5 2.5

0

0

1

1

2

2

3

3

-5 -5

0 0

Chapter 68: romberg 775

68 romberg

68.1 Functions and Variables for romberg

Functionromberg (expr, x, a, b)
Functionromberg (F, a, b)

Computes a numerical integration by Romberg’s method.
romberg(expr, x, a, b) returns an estimate of the integral integrate(expr, x, a,
b). expr must be an expression which evaluates to a floating point value when x is
bound to a floating point value.
romberg(F, a, b) returns an estimate of the integral integrate(F(x), x, a, b)
where x represents the unnamed, sole argument of F; the actual argument is not
named x. F must be a Maxima or Lisp function which returns a floating point value
when the argument is a floating point value. F may name a translated or compiled
Maxima function.
The accuracy of romberg is governed by the global variables rombergabs and
rombergtol. romberg terminates successfully when the absolute difference between
successive approximations is less than rombergabs, or the relative difference in
successive approximations is less than rombergtol. Thus when rombergabs is 0.0
(the default) only the relative error test has any effect on romberg.
romberg halves the stepsize at most rombergit times before it gives up; the maxi-
mum number of function evaluations is therefore 2^rombergit. If the error criterion
established by rombergabs and rombergtol is not satisfied, romberg prints an error
message. romberg always makes at least rombergmin iterations; this is a heuristic
intended to prevent spurious termination when the integrand is oscillatory.
romberg repeatedly evaluates the integrand after binding the variable of integration
to a specific value (and not before). This evaluation policy makes it possible to
nest calls to romberg, to compute multidimensional integrals. However, the error
calculations do not take the errors of nested integrations into account, so errors may
be underestimated. Also, methods devised especially for multidimensional problems
may yield the same accuracy with fewer function evaluations.
load(romberg) loads this function.
See also QUADPACK, a collection of numerical integration functions.
Examples:
A 1-dimensional integration.

(%i1) load (romberg);
(%o1) /usr/share/maxima/5.11.0/share/numeric/romberg.lisp
(%i2) f(x) := 1/((x - 1)^2 + 1/100) + 1/((x - 2)^2 + 1/1000)

+ 1/((x - 3)^2 + 1/200);
1 1 1

(%o2) f(x) := -------------- + --------------- + --------------
2 1 2 1 2 1

(x - 1) + --- (x - 2) + ---- (x - 3) + ---

776 Maxima Manual

100 1000 200
(%i3) rombergtol : 1e-6;
(%o3) 9.9999999999999995E-7
(%i4) rombergit : 15;
(%o4) 15
(%i5) estimate : romberg (f(x), x, -5, 5);
(%o5) 173.6730736617464
(%i6) exact : integrate (f(x), x, -5, 5);
(%o6) 10 sqrt(10) atan(70 sqrt(10))
+ 10 sqrt(10) atan(30 sqrt(10)) + 10 sqrt(2) atan(80 sqrt(2))
+ 10 sqrt(2) atan(20 sqrt(2)) + 10 atan(60) + 10 atan(40)
(%i7) abs (estimate - exact) / exact, numer;
(%o7) 7.5527060865060088E-11

A 2-dimensional integration, implemented by nested calls to romberg.

(%i1) load (romberg);
(%o1) /usr/share/maxima/5.11.0/share/numeric/romberg.lisp
(%i2) g(x, y) := x*y / (x + y);

x y
(%o2) g(x, y) := -----

x + y
(%i3) rombergtol : 1e-6;
(%o3) 9.9999999999999995E-7
(%i4) estimate : romberg (romberg (g(x, y), y, 0, x/2), x, 1, 3);
(%o4) 0.81930239628356
(%i5) assume (x > 0);
(%o5) [x > 0]
(%i6) integrate (integrate (g(x, y), y, 0, x/2), x, 1, 3);

3
2 log(-) - 1

9 2 9
(%o6) - 9 log(-) + 9 log(3) + ------------ + -

2 6 2
(%i7) exact : radcan (%);

26 log(3) - 26 log(2) - 13
(%o7) - --------------------------

3
(%i8) abs (estimate - exact) / exact, numer;
(%o8) 1.3711979871851024E-10

Option variablerombergabs
Default value: 0.0

The accuracy of romberg is governed by the global variables rombergabs and
rombergtol. romberg terminates successfully when the absolute difference between
successive approximations is less than rombergabs, or the relative difference in
successive approximations is less than rombergtol. Thus when rombergabs is 0.0
(the default) only the relative error test has any effect on romberg.

See also rombergit and rombergmin.

Chapter 68: romberg 777

Option variablerombergit
Default value: 11
romberg halves the stepsize at most rombergit times before it gives up; the max-
imum number of function evaluations is therefore 2^rombergit. romberg always
makes at least rombergmin iterations; this is a heuristic intended to prevent spurious
termination when the integrand is oscillatory.
See also rombergabs and rombergtol.

Option variablerombergmin
Default value: 0
romberg always makes at least rombergmin iterations; this is a heuristic intended to
prevent spurious termination when the integrand is oscillatory.
See also rombergit, rombergabs, and rombergtol.

Option variablerombergtol
Default value: 1e-4
The accuracy of romberg is governed by the global variables rombergabs and
rombergtol. romberg terminates successfully when the absolute difference between
successive approximations is less than rombergabs, or the relative difference in
successive approximations is less than rombergtol. Thus when rombergabs is 0.0
(the default) only the relative error test has any effect on romberg.
See also rombergit and rombergmin.

778 Maxima Manual

Chapter 69: simplex 779

69 simplex

69.1 Introduction to simplex

simplex is a package for linear optimization using the simplex algorithm.

Example:
(%i1) load("simplex")$
(%i2) minimize_lp(x+y, [3*x+2*y>2, x+4*y>3]);

9 7 1
(%o2) [--, [y = --, x = -]]

10 10 5

69.2 Functions and Variables for simplex

Option variableepsilon lp
Default value: 10^-8

Epsilon used for numerical computations in linear_program.

See also: linear_program.

Functionlinear program (A, b, c)
linear_program is an implementation of the simplex algorithm. linear_program(A,
b, c) computes a vector x for which c.x is minimum possible among vectors for which
A.x = b and x >= 0. Argument A is a matrix and arguments b and c are lists.

linear_program returns a list which contains the minimizing vector x and the min-
imum value c.x. If the problem is not bounded, it returns "Problem not bounded!"
and if the problem is not feasible, it returns "Problem not feasible!".

To use this function first load the simplex package with load(simplex);.

Example:
(%i2) A: matrix([1,1,-1,0], [2,-3,0,-1], [4,-5,0,0])$
(%i3) b: [1,1,6]$
(%i4) c: [1,-2,0,0]$
(%i5) linear_program(A, b, c);

13 19 3
(%o5) [[--, 4, --, 0], - -]

2 2 2

See also: minimize_lp, scale_lp, and epsilon_lp.

Functionmaximize lp (obj, cond, [pos])
Maximizes linear objective function obj subject to some linear constraints cond. See
minimize_lp for detailed description of arguments and return value.

See also: minimize_lp.

780 Maxima Manual

Functionminimize lp (obj, cond, [pos])
Minimizes a linear objective function obj subject to some linear constraints cond.
cond a list of linear equations or inequalities. In strict inequalities > is replaced by
>= and < by <=. The optional argument pos is a list of decision variables which are
assumed to be positive.
If the minimum exists, minimize_lp returns a list which contains the minimum value
of the objective function and a list of decision variable values for which the mini-
mum is attained. If the problem is not bounded, minimize_lp returns "Problem not
bounded!" and if the problem is not feasible, it returns "Ploblem not feasible!".
The decision variables are not assumed to be nonegative by default. If all decision
variables are nonegative, set nonegative_lp to true. If only some of decision vari-
ables are positive, list them in the optional argument pos (note that this is more
efficient than adding constraints).
minimize_lp uses the simplex algorithm which is implemented in maxima linear_
program function.
To use this function first load the simplex package with load(simplex);.
Examples:

(%i1) minimize_lp(x+y, [3*x+y=0, x+2*y>2]);
4 6 2

(%o1) [-, [y = -, x = - -]]
5 5 5

(%i2) minimize_lp(x+y, [3*x+y>0, x+2*y>2]), nonegative_lp=true;
(%o2) [1, [y = 1, x = 0]]
(%i3) minimize_lp(x+y, [3*x+y=0, x+2*y>2]), nonegative_lp=true;
(%o3) Problem not feasible!
(%i4) minimize_lp(x+y, [3*x+y>0]);
(%o4) Problem not bounded!

See also: maximize_lp, nonegative_lp, epsilon_lp.

Option variablenonegative lp
Default value: false
If nonegative_lp is true all decision variables to minimize_lp and maximize_lp are
assumed to be positive.
See also: minimize_lp.

Chapter 70: simplification 781

70 simplification

70.1 Introduction to simplification

The directory maxima/share/simplification contains several scripts which implement
simplification rules and functions, and also some functions not related to simplification.

70.2 Package absimp

The absimp package contains pattern-matching rules that extend the built-in simplifi-
cation rules for the abs and signum functions. absimp respects relations established with
the built-in assume function and by declarations such as modedeclare (m, even, n, odd)
for even or odd integers.

absimp defines unitramp and unitstep functions in terms of abs and signum.
load (absimp) loads this package. demo (absimp) shows a demonstration of this pack-

age.
Examples:

(%i1) load (absimp)$
(%i2) (abs (x))^2;

2
(%o2) x
(%i3) diff (abs (x), x);

x
(%o3) ------

abs(x)
(%i4) cosh (abs (x));
(%o4) cosh(x)

70.3 Package facexp

The facexp package contains several related functions that provide the user with the
ability to structure expressions by controlled expansion. This capability is especially useful
when the expression contains variables that have physical meaning, because it is often true
that the most economical form of such an expression can be obtained by fully expanding
the expression with respect to those variables, and then factoring their coefficients. While
it is true that this procedure is not difficult to carry out using standard Maxima functions,
additional fine-tuning may also be desirable, and these finishing touches can be more difficult
to apply.

The function facsum and its related forms provide a convenient means for controlling
the structure of expressions in this way. Another function, collectterms, can be used
to add two or more expressions that have already been simplified to this form, without
resimplifying the whole expression again. This function may be useful when the expressions
are very large.

load (facexp) loads this package. demo (facexp) shows a demonstration of this pack-
age.

782 Maxima Manual

Functionfacsum (expr, arg 1, ..., arg n)
Returns a form of expr which depends on the arguments arg 1, ..., arg n. The argu-
ments can be any form suitable for ratvars, or they can be lists of such forms. If the
arguments are not lists, then the form returned is fully expanded with respect to the
arguments, and the coefficients of the arguments are factored. These coefficients are
free of the arguments, except perhaps in a non-rational sense.

If any of the arguments are lists, then all such lists are combined into a single list,
and instead of calling factor on the coefficients of the arguments, facsum calls itself
on these coefficients, using this newly constructed single list as the new argument list
for this recursive call. This process can be repeated to arbitrary depth by nesting the
desired elements in lists.

It is possible that one may wish to facsum with respect to more complicated subex-
pressions, such as log (x + y). Such arguments are also permissible. With no vari-
able specification, for example facsum (expr), the result returned is the same as that
returned by ratsimp (expr).

Occasionally the user may wish to obtain any of the above forms for expressions which
are specified only by their leading operators. For example, one may wish to facsum
with respect to all log’s. In this situation, one may include among the arguments
either the specific log’s which are to be treated in this way, or alternatively, either
the expression operator (log) or ’operator (log). If one wished to facsum the
expression expr with respect to the operators op 1, ..., op n, one would evaluate
facsum (expr, operator (op 1, ..., op n)). The operator form may also appear
inside list arguments.

In addition, the setting of the switches facsum_combine and nextlayerfactor may
affect the result of facsum.

Global variablenextlayerfactor
Default value: false

When nextlayerfactor is true, recursive calls of facsum are applied to the factors
of the factored form of the coefficients of the arguments.

When false, facsum is applied to each coefficient as a whole whenever recusive calls
to facsum occur.

Inclusion of the atom nextlayerfactor in the argument list of facsum has the ef-
fect of nextlayerfactor: true, but for the next level of the expression only. Since
nextlayerfactor is always bound to either true or false, it must be presented
single-quoted whenever it appears in the argument list of facsum.

Global variablefacsum combine
Default value: true

facsum_combine controls the form of the final result returned by facsum when its
argument is a quotient of polynomials. If facsum_combine is false then the form will
be returned as a fully expanded sum as described above, but if true, then the expres-
sion returned is a ratio of polynomials, with each polynomial in the form described
above.

Chapter 70: simplification 783

The true setting of this switch is useful when one wants to facsum both the numerator
and denominator of a rational expression, but does not want the denominator to be
multiplied through the terms of the numerator.

Functionfactorfacsum (expr, arg 1, ... arg n)
Returns a form of expr which is obtained by calling facsum on the factors of expr
with arg 1, ... arg n as arguments. If any of the factors of expr is raised to a power,
both the factor and the exponent will be processed in this way.

Functioncollectterms (expr, arg 1, ..., arg n)
If several expressions have been simplified with facsum, factorfacsum,
factenexpand, facexpten or factorfacexpten, and they are to be added together,
it may be desirable to combine them using the function collecterms. collecterms
can take as arguments all of the arguments that can be given to these other
associated functions with the exception of nextlayerfactor, which has no effect on
collectterms. The advantage of collectterms is that it returns a form similar to
facsum, but since it is adding forms that have already been processed by facsum,
it does not need to repeat that effort. This capability is especially useful when the
expressions to be summed are very large.

70.4 Package functs

Functionrempart (expr, n)
Removes part n from the expression expr.
If n is a list of the form [l, m] then parts l thru m are removed.
To use this function write first load(functs).

Functionwronskian ([f 1, ..., f n], x)
Returns the Wronskian matrix of the functions f 1, ..., f n in the variable x.
f 1, ..., f n may be the names of user-defined functions, or expressions in the variable
x.
The determinant of the Wronskian matrix is the Wronskian determinant of the set of
functions. The functions are linearly dependent if this determinant is zero.
To use this function write first load(functs).

Functiontracematrix (M)
Returns the trace (sum of the diagonal elements) of matrix M.
To use this function write first load(functs).

Functionrational (z)
Multiplies numerator and denominator of z by the complex conjugate of denominator,
thus rationalizing the denominator. Returns canonical rational expression (CRE)
form if given one, else returns general form.
To use this function write first load(functs).

784 Maxima Manual

Functionlogand (x,y)
Returns logical (bit-wise) "and" of arguments x and y.
To use this function write first load(functs).

Functionlogor (x,y)
Returns logical (bit-wise) "or" of arguments x and y.
To use this function write first load(functs).

Functionlogxor (x,y)
Returns logical (bit-wise) exclusive-or of arguments x and y.
To use this function write first load(functs).

Functionnonzeroandfreeof (x, expr)
Returns true if expr is nonzero and freeof (x, expr) returns true. Returns false
otherwise.
To use this function write first load(functs).

Functionlinear (expr, x)
When expr is an expression linear in variable x, linear returns a*x + b where a is
nonzero, and a and b are free of x. Otherwise, linear returns expr.
To use this function write first load(functs).

Functiongcdivide (p, q)
When takegcd is true, gcdivide divides the polynomials p and q by their greatest
common divisor and returns the ratio of the results.
When takegcd is false, gcdivide returns the ratio p/q.
To use this function write first load(functs).

Functionarithmetic (a, d, n)
Returns the n-th term of the arithmetic series a, a + d, a + 2*d, ..., a + (n -
1)*d.
To use this function write first load(functs).

Functiongeometric (a, r, n)
Returns the n-th term of the geometric series a, a*r, a*r^2, ..., a*r^(n - 1).
To use this function write first load(functs).

Functionharmonic (a, b, c, n)
Returns the n-th term of the harmonic series a/b, a/(b + c), a/(b + 2*c), ...,
a/(b + (n - 1)*c).
To use this function write first load(functs).

Functionarithsum (a, d, n)
Returns the sum of the arithmetic series from 1 to n.
To use this function write first load(functs).

Chapter 70: simplification 785

Functiongeosum (a, r, n)
Returns the sum of the geometric series from 1 to n. If n is infinity (inf) then a sum
is finite only if the absolute value of r is less than 1.

To use this function write first load(functs).

Functiongaussprob (x)
Returns the Gaussian probability function %e^(-x^2/2) / sqrt(2*%pi).

To use this function write first load(functs).

Functiongd (x)
Returns the Gudermannian function 2 * atan(%e^x - %pi/2).

To use this function write first load(functs).

Functionagd (x)
Returns the inverse Gudermannian function log (tan (%pi/4 + x/2))).

To use this function write first load(functs).

Functionvers (x)
Returns the versed sine 1 - cos (x).

To use this function write first load(functs).

Functioncovers (x)
Returns the coversed sine 1 - sin (x).

To use this function write first load(functs).

Functionexsec (x)
Returns the exsecant sec (x) - 1.

To use this function write first load(functs).

Functionhav (x)
Returns the haversine (1 - cos(x))/2.

To use this function write first load(functs).

Functioncombination (n, r)
Returns the number of combinations of n objects taken r at a time.

To use this function write first load(functs).

Functionpermutation (n, r)
Returns the number of permutations of r objects selected from a set of n objects.

To use this function write first load(functs).

786 Maxima Manual

70.5 Package ineq

The ineq package contains simplification rules for inequalities.

Example session:

(%i1) load(ineq)$
Warning: Putting rules on ’+’ or ’*’ is inefficient, and may not work.
Warning: Putting rules on ’+’ or ’*’ is inefficient, and may not work.
Warning: Putting rules on ’+’ or ’*’ is inefficient, and may not work.
Warning: Putting rules on ’+’ or ’*’ is inefficient, and may not work.
Warning: Putting rules on ’+’ or ’*’ is inefficient, and may not work.
Warning: Putting rules on ’+’ or ’*’ is inefficient, and may not work.
Warning: Putting rules on ’+’ or ’*’ is inefficient, and may not work.
Warning: Putting rules on ’+’ or ’*’ is inefficient, and may not work.
(%i2) a>=4; /* a sample inequality */
(%o2) a >= 4
(%i3) (b>c)+%; /* add a second, strict inequality */
(%o3) b + a > c + 4
(%i4) 7*(x<y); /* multiply by a positive number */
(%o4) 7 x < 7 y
(%i5) -2*(x>=3*z); /* multiply by a negative number */
(%o5) - 2 x <= - 6 z
(%i6) (1+a^2)*(1/(1+a^2)<=1); /* Maxima knows that 1+a^2 > 0 */

2
(%o6) 1 <= a + 1
(%i7) assume(x>0)$ x*(2<3); /* assuming x>0 */
(%o7) 2 x < 3 x
(%i8) a>=b; /* another inequality */
(%o8) a >= b
(%i9) 3+%; /* add something */
(%o9) a + 3 >= b + 3
(%i10) %-3; /* subtract it out */
(%o10) a >= b
(%i11) a>=c-b; /* yet another inequality */
(%o11) a >= c - b
(%i12) b+%; /* add b to both sides */
(%o12) b + a >= c
(%i13) %-c; /* subtract c from both sides */
(%o13) - c + b + a >= 0
(%i14) -%; /* multiply by -1 */
(%o14) c - b - a <= 0
(%i15) (z-1)^2>-2*z; /* determining truth of assertion */

2
(%o15) (z - 1) > - 2 z
(%i16) expand(%)+2*z; /* expand this and add 2*z to both sides */

2
(%o16) z + 1 > 0
(%i17) %,pred;
(%o17) true

Chapter 70: simplification 787

Be careful about using parentheses around the inequalities: when the user types in (A
> B) + (C = 5) the result is A + C > B + 5, but A > B + C = 5 is a syntax error, and (A > B +
C) = 5 is something else entirely.

Do disprule (all) to see a complete listing of the rule definitions.
The user will be queried if Maxima is unable to decide the sign of a quantity multiplying

an inequality.
The most common mis-feature is illustrated by:

(%i1) eq: a > b;
(%o1) a > b
(%i2) 2*eq;
(%o2) 2 (a > b)
(%i3) % - eq;
(%o3) a > b

Another problem is 0 times an inequality; the default to have this turn into 0 has been
left alone. However, if you type X*some inequality and Maxima asks about the sign of
X and you respond zero (or z), the program returns X*some inequality and not use the
information that X is 0. You should do ev (%, x: 0) in such a case, as the database will
only be used for comparison purposes in decisions, and not for the purpose of evaluating X.

The user may note a slower response when this package is loaded, as the simplifier is
forced to examine more rules than without the package, so you might wish to remove the
rules after making use of them. Do kill (rules) to eliminate all of the rules (including
any that you might have defined); or you may be more selective by killing only some of
them; or use remrule on a specific rule.

Note that if you load this package after defining your own rules you will clobber your
rules that have the same name. The rules in this package are: *rule1, ..., *rule8, +rule1,
..., +rule18, and you must enclose the rulename in quotes to refer to it, as in remrule
("+", "+rule1") to specifically remove the first rule on "+" or disprule ("*rule2") to
display the definition of the second multiplicative rule.

70.6 Package rducon

Functionreduce consts (expr)
Replaces constant subexpressions of expr with constructed constant atoms, saving the
definition of all these constructed constants in the list of equations const_eqns, and
returning the modified expr. Those parts of expr are constant which return true when
operated on by the function constantp. Hence, before invoking reduce_consts, one
should do

declare ([objects to be given the constant property], constant)$

to set up a database of the constant quantities occurring in your expressions.
If you are planning to generate Fortran output after these symbolic calculations, one
of the first code sections should be the calculation of all constants. To generate this
code segment, do

map (’fortran, const_eqns)$

Variables besides const_eqns which affect reduce_consts are:

788 Maxima Manual

const_prefix (default value: xx) is the string of characters used to prefix all symbols
generated by reduce_consts to represent constant subexpressions.
const_counter (default value: 1) is the integer index used to generate unique symbols
to represent each constant subexpression found by reduce_consts.
load (rducon) loads this function. demo (rducon) shows a demonstration of this
function.

70.7 Package scifac

Functiongcfac (expr)
gcfac is a factoring function that attempts to apply the same heuristics which scien-
tists apply in trying to make expressions simpler. gcfac is limited to monomial-type
factoring. For a sum, gcfac does the following:
1. Factors over the integers.
2. Factors out the largest powers of terms occurring as coefficients, regardless of the

complexity of the terms.
3. Uses (1) and (2) in factoring adjacent pairs of terms.
4. Repeatedly and recursively applies these techniques until the expression no longer

changes.

Item (3) does not necessarily do an optimal job of pairwise factoring because of the
combinatorially-difficult nature of finding which of all possible rearrangements of the
pairs yields the most compact pair-factored result.
load (scifac) loads this function. demo (scifac) shows a demonstration of this
function.

70.8 Package sqdnst

Functionsqrtdenest (expr)
Denests sqrt of simple, numerical, binomial surds, where possible. E.g.

(%i1) load (sqdnst)$
(%i2) sqrt(sqrt(3)/2+1)/sqrt(11*sqrt(2)-12);

sqrt(3)
sqrt(------- + 1)

2
(%o2) ---------------------

sqrt(11 sqrt(2) - 12)
(%i3) sqrtdenest(%);

sqrt(3) 1
------- + -

2 2
(%o3) -------------

1/4 3/4
3 2 - 2

Chapter 70: simplification 789

Sometimes it helps to apply sqrtdenest more than once, on such as (19601-13860
sqrt(2))^(7/4).
load (sqdnst) loads this function.

790 Maxima Manual

Chapter 71: solve rec 791

71 solve rec

71.1 Introduction to solve rec

solve_rec is a package for solving linear recurrences with polynomial coefficients.
A demo is available with demo(solve_rec);.
Example:

(%i1) load("solve_rec")$
(%i2) solve_rec((n+4)*s[n+2] + s[n+1] - (n+1)*s[n], s[n]);

n
%k (2 n + 3) (- 1) %k

1 2
(%o2) s = -------------------- + ---------------

n (n + 1) (n + 2) (n + 1) (n + 2)

71.2 Functions and Variables for solve rec

Functionreduce order (rec, sol, var)
Reduces the order of linear recurrence rec when a particular solution sol is known.
The reduced reccurence can be used to get other solutions.
Example:

(%i3) rec: x[n+2] = x[n+1] + x[n]/n;
x
n

(%o3) x = x + --
n + 2 n + 1 n

(%i4) solve_rec(rec, x[n]);
WARNING: found some hypergeometrical solutions!
(%o4) x = %k n

n 1
(%i5) reduce_order(rec, n, x[n]);
(%t5) x = n %z

n n

n - 1
====
\

(%t6) %z = > %u
n / %j

====
%j = 0

(%o6) (- n - 2) %u - %u
n + 1 n

(%i6) solve_rec((n+2)*%u[n+1] + %u[n], %u[n]);

792 Maxima Manual

n
%k (- 1)
1

(%o6) %u = ----------
n (n + 1)!

So the general solution is

n - 1
==== j
\ (- 1)

%k n > -------- + %k n
2 / (j + 1)! 1

====
j = 0

Option variablesimplify products
Default value: true

If simplify_products is true, solve_rec will try to simplify products in result.

See also: solve_rec.

Functionsimplify sum (expr)
Tries to simplify all sums appearing in expr to a closed form.

To use this function first load the simplify_sum package with load(simplify_sum).

Example:
(%i1) load("simplify_sum")$
(%i2) sum(binom(n+k,k)/2^k, k, 0, n)

+ sum(binom(2*n, 2*k), k, 0, n);
n n
==== ====
\ binomial(n + k, k) \

(%o2) > ------------------ + > binomial(2 n, 2 k)
/ k /
==== 2 ====
k = 0 k = 0

(%i3) simplify_sum(%);
n

4 n
(%o3) -- + 2

2

Functionsolve rec (eqn, var, [init])
Solves for hypergeometrical solutions to linear recurrence eqn with polynomials coef-
ficient in variable var. Optional arguments init are initial conditions.

solve_rec can solve linear recurrences with constant coefficients, finds hypergeomet-
rical solutions to homogeneous linear recurrences with polynomial coefficients, rational

Chapter 71: solve rec 793

solutions to linear recurrences with polynomial coefficients and can solve Ricatti type
recurrences.
Note that the running time of the algorithm used to find hypergeometrical solutions
is exponential in the degree of the leading and trailing coefficient.
To use this function first load the solve_rec package with load(solve_rec);.
Example of linear recurrence with constant coefficients:

(%i2) solve_rec(a[n]=a[n-1]+a[n-2]+n/2^n, a[n]);
n n

(sqrt(5) - 1) %k (- 1)
1 n

(%o2) a = ------------------------- - ----
n n n

2 5 2
n

(sqrt(5) + 1) %k
2 2

+ ------------------ - ----
n n
2 5 2

Example of linear recurrence with polynomial coefficients:
(%i7) 2*x*(x+1)*y[x] - (x^2+3*x-2)*y[x+1] + (x-1)*y[x+2];

2
(%o7) (x - 1) y - (x + 3 x - 2) y + 2 x (x + 1) y

x + 2 x + 1 x
(%i8) solve_rec(%, y[x], y[1]=1, y[3]=3);

x
3 2 x!

(%o9) y = ---- - --
x 4 2

Example of Ricatti type recurrence:
(%i2) x*y[x+1]*y[x] - y[x+1]/(x+2) + y[x]/(x-1) = 0;

y y
x + 1 x

(%o2) x y y - ------ + ----- = 0
x x + 1 x + 2 x - 1

(%i3) solve_rec(%, y[x], y[3]=5)$
(%i4) ratsimp(minfactorial(factcomb(%)));

3
30 x - 30 x

(%o4) y = - ---
x 6 5 4 3 2

5 x - 3 x - 25 x + 15 x + 20 x - 12 x - 1584

See also: solve_rec_rat, simplify_products, and product_use_gamma.

Functionsolve rec rat (eqn, var, [init])
Solves for rational solutions to linear recurrences. See solve rec for description of
arguments.

794 Maxima Manual

To use this function first load the solve_rec package with load(solve_rec);.
Example:

(%i1) (x+4)*a[x+3] + (x+3)*a[x+2] - x*a[x+1] + (x^2-1)*a[x];
(%o1) (x + 4) a + (x + 3) a - x a

x + 3 x + 2 x + 1
2

+ (x - 1) a
x

(%i2) solve_rec_rat(% = (x+2)/(x+1), a[x]);
1

(%o2) a = ---------------
x (x - 1) (x + 1)

See also: solve_rec.

Option variableproduct use gamma
Default value: true
When simplifying products, solve_rec introduces gamma function into the expres-
sion if product_use_gamma is true.
See also: simplify_products, solve_rec.

Functionsummand to rec (summand, k, n)
Functionsummand to rec (summand, [k, lo, hi], n)

Returns the recurrence sattisfied by the sum
hi
====
\
> summand
/
====

k = lo

where summand is hypergeometrical in k and n. If lo and hi are omited, they are
assumed to be lo = -inf and hi = inf.
To use this function first load the simplify_sum package with load(simplify_sum).
Example:

(%i1) load("simplify_sum")$
(%i2) summand: binom(n,k);
(%o2) binomial(n, k)
(%i3) summand_to_rec(summand,k,n);
(%o3) 2 sm - sm = 0

n n + 1
(%i7) summand: binom(n, k)/(k+1);

binomial(n, k)
(%o7) --------------

k + 1
(%i8) summand_to_rec(summand, [k, 0, n], n);
(%o8) 2 (n + 1) sm - (n + 2) sm = - 1

n n + 1

Chapter 72: stats 795

72 stats

72.1 Introduction to stats

Package stats contains a set of classical statistical inference and hypothesis testing
procedures.

All these functions return an inference_result Maxima object which contains the
necessary results for population inferences and decision making.

Global variable stats_numer controls whether results are given in floating point or
symbolic and rational format; its default value is true and results are returned in floating
point format.

Package descriptive contains some utilities to manipulate data structures (lists and
matrices); for example, to extract subsamples. It also contains some examples on how to use
package numericalio to read data from plain text files. See descriptive and numericalio
for more details.

Package stats loads packages descriptive, distrib and inference_result.
For comments, bugs or suggestions, please contact the author at
’mario AT edu DOT xunta DOT es’.

72.2 Functions and Variables for inference result

Functioninference result (title, values, numbers)
Constructs an inference_result object of the type returned by the stats functions.
Argument title is a string with the name of the procedure; values is a list with
elements of the form symbol = value and numbers is a list with positive integer
numbers ranging from one to length(values), indicating which values will be shown
by default.
Example:
This is a simple example showing results concerning a rectangle. The title of this
object is the string "Rectangle", it stores five results, named ’base, ’height,
’diagonal, ’area, and ’perimeter, but only the first, second, fifth, and fourth
will be displayed. The ’diagonal is stored in this object, but it is not displayed; to
access its value, make use of function take_inference.

(%i1) load(inference_result)$
(%i2) b: 3$ h: 2$
(%i3) inference_result("Rectangle",

[’base=b,
’height=h,
’diagonal=sqrt(b^2+h^2),
’area=b*h,
’perimeter=2*(b+h)],
[1,2,5,4]);
| Rectangle

796 Maxima Manual

|
| base = 3
|

(%o3) | height = 2
|
| perimeter = 10
|
| area = 6

(%i4) take_inference(’diagonal,%);
(%o4) sqrt(13)

See also take_inference.

Functioninferencep (obj)
Returns true or false, depending on whether obj is an inference_result object
or not.

Functionitems inference (obj)
Returns a list with the names of the items stored in obj, which must be an inference_
result object.
Example:
The inference_result object stores two values, named ’pi and ’e, but only the
second is displayed. The items_inference function returns the names of all items,
no matter they are displayed or not.

(%i1) load(inference_result)$
(%i2) inference_result("Hi", [’pi=%pi,’e=%e],[2]);

| Hi
(%o2) |

| e = %e
(%i3) items_inference(%);
(%o3) [pi, e]

Functiontake inference (n, obj)
Functiontake inference (name, obj)
Functiontake inference (list, obj)

Returns the n-th value stored in obj if n is a positive integer, or the item named
name if this is the name of an item. If the first argument is a list of numbers and/or
symbols, function take_inference returns a list with the corresponding results.
Example:
Given an inference_result object, function take_inference is called in order to
extract some information stored in it.

(%i1) load(inference_result)$
(%i2) b: 3$ h: 2$
(%i3) sol: inference_result("Rectangle",

[’base=b,
’height=h,
’diagonal=sqrt(b^2+h^2),

Chapter 72: stats 797

’area=b*h,
’perimeter=2*(b+h)],
[1,2,5,4]);

| Rectangle
|
| base = 3
|

(%o3) | height = 2
|
| perimeter = 10
|
| area = 6

(%i4) take_inference(’base,sol);
(%o4) 3
(%i5) take_inference(5,sol);
(%o5) 10
(%i6) take_inference([1,’diagonal],sol);
(%o6) [3, sqrt(13)]
(%i7) take_inference(items_inference(sol),sol);
(%o7) [3, 2, sqrt(13), 6, 10]

See also inference_result and take_inference.

72.3 Functions and Variables for stats

Option variablestats numer
Default value: true
If stats_numer is true, inference statistical functions return their results in floating
point numbers. If it is false, results are given in symbolic and rational format.

Functiontest mean (x)
Functiontest mean (x, option 1, option 2, ...)

This is the mean t-test. Argument x is a list or a column matrix containing a one
dimensional sample. It also performs an asymptotic test based on the Central Limit
Theorem if option ’asymptotic is true.
Options:
• ’mean, default 0, is the mean value to be checked.
• ’alternative, default ’twosided, is the alternative hypothesis; valid values are:

’twosided, ’greater and ’less.
• ’dev, default ’unknown, this is the value of the standard deviation when it is

known; valid values are: ’unknown or a positive expression.
• ’conflevel, default 95/100, confidence level for the confidence interval; it must

be an expression which takes a value in (0,1).
• ’asymptotic, default false, indicates whether it performs an exact t-test or an

asymptotic one based on the Central Limit Theorem; valid values are true and
false.

798 Maxima Manual

The output of function test_mean is an inference_result Maxima object showing
the following results:
1. ’mean_estimate: the sample mean.
2. ’conf_level: confidence level selected by the user.
3. ’conf_interval: confidence interval for the population mean.
4. ’method: inference procedure.
5. ’hypotheses: null and alternative hypotheses to be tested.
6. ’statistic: value of the sample statistic used for testing the null hypothesis.
7. ’distribution: distribution of the sample statistic, together with its parame-

ter(s).
8. ’p_value: p-value of the test.

Examples:
Performs an exact t-test with unknown variance. The null hypothesis is H0 : mean =
50 against the one sided alternative H1 : mean < 50; according to the results, the
p-value is too great, there are no evidence for rejecting H0.

(%i1) load("stats")$
(%i2) data: [78,64,35,45,45,75,43,74,42,42]$
(%i3) test_mean(data,’conflevel=0.9,’alternative=’less,’mean=50);

| MEAN TEST
|
| mean_estimate = 54.3
|
| conf_level = 0.9
|
| conf_interval = [minf, 61.51314273502712]
|

(%o3) | method = Exact t-test. Unknown variance.
|
| hypotheses = H0: mean = 50 , H1: mean < 50
|
| statistic = .8244705235071678
|
| distribution = [student_t, 9]
|
| p_value = .7845100411786889

This time Maxima performs an asymptotic test, based on the Central Limit Theorem.
The null hypothesis is H0 : equal(mean, 50) against the two sided alternative H1 :
notequal(mean, 50); according to the results, the p-value is very small, H0 should
be rejected in favor of the alternative H1. Note that, as indicated by the Method
component, this procedure should be applied to large samples.

(%i1) load("stats")$
(%i2) test_mean([36,118,52,87,35,256,56,178,57,57,89,34,25,98,35,

98,41,45,198,54,79,63,35,45,44,75,42,75,45,45,
45,51,123,54,151],
’asymptotic=true,’mean=50);

Chapter 72: stats 799

| MEAN TEST
|
| mean_estimate = 74.88571428571429
|
| conf_level = 0.95
|
| conf_interval = [57.72848600856194, 92.04294256286663]
|

(%o2) | method = Large sample z-test. Unknown variance.
|
| hypotheses = H0: mean = 50 , H1: mean # 50
|
| statistic = 2.842831192874313
|
| distribution = [normal, 0, 1]
|
| p_value = .004471474652002261

Functiontest means difference (x1, x2)
Functiontest means difference (x1, x2, option 1, option 2, ...)

This is the difference of means t-test for two samples. Arguments x1 and x2 are lists
or column matrices containing two independent samples. In case of different unknown
variances (see options ’dev1, ’dev2 and ’varequal bellow), the degrees of freedom
are computed by means of the Welch approximation. It also performs an asymptotic
test based on the Central Limit Theorem if option ’asymptotic is set to true.
Options:
•
• ’alternative, default ’twosided, is the alternative hypothesis; valid values are:

’twosided, ’greater and ’less.
• ’dev1, default ’unknown, this is the value of the standard deviation of the x1

sample when it is known; valid values are: ’unknown or a positive expression.
• ’dev2, default ’unknown, this is the value of the standard deviation of the x2

sample when it is known; valid values are: ’unknown or a positive expression.
• ’varequal, default false, whether variances should be considered to be equal

or not; this option takes effect only when ’dev1 and/or ’dev2 are ’unknown.
• ’conflevel, default 95/100, confidence level for the confidence interval; it must

be an expression which takes a value in (0,1).
• ’asymptotic, default false, indicates whether it performs an exact t-test or an

asymptotic one based on the Central Limit Theorem; valid values are true and
false.

The output of function test_means_difference is an inference_result Maxima
object showing the following results:
1. ’diff_estimate: the difference of means estimate.
2. ’conf_level: confidence level selected by the user.
3. ’conf_interval: confidence interval for the difference of means.

800 Maxima Manual

4. ’method: inference procedure.
5. ’hypotheses: null and alternative hypotheses to be tested.
6. ’statistic: value of the sample statistic used for testing the null hypothesis.
7. ’distribution: distribution of the sample statistic, together with its parame-

ter(s).
8. ’p_value: p-value of the test.

Examples:
The equality of means is tested with two small samples x and y, against the alternative
H1 : m1 > m2, being m1 and m2 the populations means; variances are unknown and
supposed to be different.

(%i1) load("stats")$
(%i2) x: [20.4,62.5,61.3,44.2,11.1,23.7]$
(%i3) y: [1.2,6.9,38.7,20.4,17.2]$
(%i4) test_means_difference(x,y,’alternative=’greater);

| DIFFERENCE OF MEANS TEST
|
| diff_estimate = 20.31999999999999
|
| conf_level = 0.95
|
| conf_interval = [- .04597417812882298, inf]
|

(%o4) | method = Exact t-test. Welch approx.
|
| hypotheses = H0: mean1 = mean2 , H1: mean1 > mean2
|
| statistic = 1.838004300728477
|
| distribution = [student_t, 8.62758740184604]
|
| p_value = .05032746527991905

The same test as before, but now variances are supposed to be equal.
(%i1) load("stats")$
(%i2) x: [20.4,62.5,61.3,44.2,11.1,23.7]$
(%i3) y: matrix([1.2],[6.9],[38.7],[20.4],[17.2])$
(%i4) test_means_difference(x,y,’alternative=’greater,

’varequal=true);
| DIFFERENCE OF MEANS TEST
|
| diff_estimate = 20.31999999999999
|
| conf_level = 0.95
|
| conf_interval = [- .7722627696897568, inf]
|

(%o4) | method = Exact t-test. Unknown equal variances
|

Chapter 72: stats 801

| hypotheses = H0: mean1 = mean2 , H1: mean1 > mean2
|
| statistic = 1.765996124515009
|
| distribution = [student_t, 9]
|
| p_value = .05560320992529344

Functiontest variance (x)
Functiontest variance (x, option 1, option 2, ...)

This is the variance chi^2-test. Argument x is a list or a column matrix containing a
one dimensional sample taken from a normal population.
Options:
• ’mean, default ’unknown, is the population’s mean, when it is known.
• ’alternative, default ’twosided, is the alternative hypothesis; valid values are:

’twosided, ’greater and ’less.
• ’variance, default 1, this is the variance value (positive) to be checked.
• ’conflevel, default 95/100, confidence level for the confidence interval; it must

be an expression which takes a value in (0,1).

The output of function test_variance is an inference_result Maxima object show-
ing the following results:
1. ’var_estimate: the sample variance.
2. ’conf_level: confidence level selected by the user.
3. ’conf_interval: confidence interval for the population variance.
4. ’method: inference procedure.
5. ’hypotheses: null and alternative hypotheses to be tested.
6. ’statistic: value of the sample statistic used for testing the null hypothesis.
7. ’distribution: distribution of the sample statistic, together with its parameter.
8. ’p_value: p-value of the test.

Examples:
It is tested whether the variance of a population with unknown mean is equal to or
greater than 200.

(%i1) load("stats")$
(%i2) x: [203,229,215,220,223,233,208,228,209]$
(%i3) test_variance(x,’alternative=’greater,’variance=200);

| VARIANCE TEST
|
| var_estimate = 110.75
|
| conf_level = 0.95
|
| conf_interval = [57.13433376937479, inf]
|

802 Maxima Manual

(%o3) | method = Variance Chi-square test. Unknown mean.
|
| hypotheses = H0: var = 200 , H1: var > 200
|
| statistic = 4.43
|
| distribution = [chi2, 8]
|
| p_value = .8163948512777689

Functiontest variance ratio (x1, x2)
Functiontest variance ratio (x1, x2, option 1, option 2, ...)

This is the variance ratio F-test for two normal populations. Arguments x1 and x2
are lists or column matrices containing two independent samples.
Options:
• ’alternative, default ’twosided, is the alternative hypothesis; valid values are:

’twosided, ’greater and ’less.
• ’mean1, default ’unknown, when it is known, this is the mean of the population

from which x1 was taken.
• ’mean2, default ’unknown, when it is known, this is the mean of the population

from which x2 was taken.
• ’conflevel, default 95/100, confidence level for the confidence interval of the

ratio; it must be an expression which takes a value in (0,1).

The output of function test_variance_ratio is an inference_result Maxima ob-
ject showing the following results:
1. ’ratio_estimate: the sample variance ratio.
2. ’conf_level: confidence level selected by the user.
3. ’conf_interval: confidence interval for the variance ratio.
4. ’method: inference procedure.
5. ’hypotheses: null and alternative hypotheses to be tested.
6. ’statistic: value of the sample statistic used for testing the null hypothesis.
7. ’distribution: distribution of the sample statistic, together with its parame-

ters.
8. ’p_value: p-value of the test.

Examples:
The equality of the variances of two normal populations is checked against the alter-
native that the first is greater than the second.

(%i1) load("stats")$
(%i2) x: [20.4,62.5,61.3,44.2,11.1,23.7]$
(%i3) y: [1.2,6.9,38.7,20.4,17.2]$
(%i4) test_variance_ratio(x,y,’alternative=’greater);

| VARIANCE RATIO TEST
|

Chapter 72: stats 803

| ratio_estimate = 2.316933391522034
|
| conf_level = 0.95
|
| conf_interval = [.3703504689507268, inf]
|

(%o4) | method = Variance ratio F-test. Unknown means.
|
| hypotheses = H0: var1 = var2 , H1: var1 > var2
|
| statistic = 2.316933391522034
|
| distribution = [f, 5, 4]
|
| p_value = .2179269692254457

Functiontest sign (x)
Functiontest sign (x, option 1, option 2, ...)

This is the non parametric sign test for the median of a continuous population. Ar-
gument x is a list or a column matrix containing a one dimensional sample.
Options:
• ’alternative, default ’twosided, is the alternative hypothesis; valid values are:

’twosided, ’greater and ’less.
• ’median, default 0, is the median value to be checked.

The output of function test_sign is an inference_result Maxima object showing
the following results:
1. ’med_estimate: the sample median.
2. ’method: inference procedure.
3. ’hypotheses: null and alternative hypotheses to be tested.
4. ’statistic: value of the sample statistic used for testing the null hypothesis.
5. ’distribution: distribution of the sample statistic, together with its parame-

ter(s).
6. ’p_value: p-value of the test.

Examples:
Checks whether the population from which the sample was taken has median 6,
against the alternative H1 : median > 6.

(%i1) load("stats")$
(%i2) x: [2,0.1,7,1.8,4,2.3,5.6,7.4,5.1,6.1,6]$
(%i3) test_sign(x,’median=6,’alternative=’greater);

| SIGN TEST
|
| med_estimate = 5.1
|
| method = Non parametric sign test.
|

804 Maxima Manual

(%o3) | hypotheses = H0: median = 6 , H1: median > 6
|
| statistic = 7
|
| distribution = [binomial, 10, 0.5]
|
| p_value = .05468749999999989

Functiontest signed rank (x)
Functiontest signed rank (x, option 1, option 2, ...)

This is the Wilcoxon signed rank test to make inferences about the median of a
continuous population. Argument x is a list or a column matrix containing a one
dimensional sample. Performs normal approximation if the sample size is greater
than 20, or if there are zeroes or ties.
See also pdf_rank_test and cdf_rank_test.
Options:
• ’median, default 0, is the median value to be checked.
• ’alternative, default ’twosided, is the alternative hypothesis; valid values are:

’twosided, ’greater and ’less.

The output of function test_signed_rank is an inference_result Maxima object
with the following results:
1. ’med_estimate: the sample median.
2. ’method: inference procedure.
3. ’hypotheses: null and alternative hypotheses to be tested.
4. ’statistic: value of the sample statistic used for testing the null hypothesis.
5. ’distribution: distribution of the sample statistic, together with its parame-

ter(s).
6. ’p_value: p-value of the test.

Examples:
Checks the null hypothesis H0 : median = 15 against the alternative H1 : median >
15. This is an exact test, since there are no ties.

(%i1) load("stats")$
(%i2) x: [17.1,15.9,13.7,13.4,15.5,17.6]$
(%i3) test_signed_rank(x,median=15,alternative=greater);

| SIGNED RANK TEST
|
| med_estimate = 15.7
|
| method = Exact test
|

(%o3) | hypotheses = H0: med = 15 , H1: med > 15
|
| statistic = 14
|

Chapter 72: stats 805

| distribution = [signed_rank, 6]
|
| p_value = 0.28125

Checks the null hypothesis H0 : equal(median, 2.5) against the alternative H1 :
notequal(median, 2.5). This is an approximated test, since there are ties.

(%i1) load("stats")$
(%i2) y:[1.9,2.3,2.6,1.9,1.6,3.3,4.2,4,2.4,2.9,1.5,3,2.9,4.2,3.1]$
(%i3) test_signed_rank(y,median=2.5);

| SIGNED RANK TEST
|
| med_estimate = 2.9
|
| method = Asymptotic test. Ties
|

(%o3) | hypotheses = H0: med = 2.5 , H1: med # 2.5
|
| statistic = 76.5
|
| distribution = [normal, 60.5, 17.58195097251724]
|
| p_value = .3628097734643669

Functiontest rank sum (x1, x2)
Functiontest rank sum (x1, x2, option 1)

This is the Wilcoxon-Mann-Whitney test for comparing the medians of two continuous
populations. The first two arguments x1 and x2 are lists or column matrices with
the data of two independent samples. Performs normal approximation if any of the
sample sizes is greater than 10, or if there are ties.
Option:
• ’alternative, default ’twosided, is the alternative hypothesis; valid values are:

’twosided, ’greater and ’less.

The output of function test_rank_sum is an inference_result Maxima object with
the following results:
1. ’method: inference procedure.
2. ’hypotheses: null and alternative hypotheses to be tested.
3. ’statistic: value of the sample statistic used for testing the null hypothesis.
4. ’distribution: distribution of the sample statistic, together with its parame-

ters.
5. ’p_value: p-value of the test.

Examples:
Checks whether populations have similar medians. Samples sizes are small and an
exact test is made.

(%i1) load("stats")$
(%i2) x:[12,15,17,38,42,10,23,35,28]$

806 Maxima Manual

(%i3) y:[21,18,25,14,52,65,40,43]$
(%i4) test_rank_sum(x,y);

| RANK SUM TEST
|
| method = Exact test
|
| hypotheses = H0: med1 = med2 , H1: med1 # med2

(%o4) |
| statistic = 22
|
| distribution = [rank_sum, 9, 8]
|
| p_value = .1995886466474702

Now, with greater samples and ties, the procedure makes normal approximation. The
alternative hypothesis is H1 : median1 < median2.

(%i1) load("stats")$
(%i2) x: [39,42,35,13,10,23,15,20,17,27]$
(%i3) y: [20,52,66,19,41,32,44,25,14,39,43,35,19,56,27,15]$
(%i4) test_rank_sum(x,y,’alternative=’less);

| RANK SUM TEST
|
| method = Asymptotic test. Ties
|
| hypotheses = H0: med1 = med2 , H1: med1 < med2

(%o4) |
| statistic = 48.5
|
| distribution = [normal, 79.5, 18.95419580097078]
|
| p_value = .05096985666598441

Functiontest normality (x)
Shapiro-Wilk test for normality. Argument x is a list of numbers, and sample size must
be greater than 2 and less or equal than 5000, otherwise, function test_normality
signals an error message.
Reference:
[1] Algorithm AS R94, Applied Statistics (1995), vol.44, no.4, 547-551
The output of function test_normality is an inference_result Maxima object
with the following results:
1. ’statistic: value of the W statistic.
2. ’p_value: p-value under normal assumption.

Examples:
Checks for the normality of a population, based on a sample of size 9.

(%i1) load("stats")$
(%i2) x:[12,15,17,38,42,10,23,35,28]$
(%i3) test_normality(x);

Chapter 72: stats 807

| SHAPIRO - WILK TEST
|

(%o3) | statistic = .9251055695162436
|
| p_value = .4361763918860381

Functionsimple linear regression (x)
Functionsimple linear regression (x option 1)

Simple linear regression, yi = a + bxi + ei, where ei are N(0, sigma) independent
random variables. Argument x must be a two column matrix or a list of pairs.
Options:
• ’conflevel, default 95/100, confidence level for the confidence interval; it must

be an expression which takes a value in (0,1).
• ’regressor, default ’x, name of the independent variable.

The output of function simple_linear_regression is an inference_result Max-
ima object with the following results:
1. ’model: the fitted equation. Useful to make new predictions. See examples

bellow.
2. ’means: bivariate mean.
3. ’variances: variances of both variables.
4. ’correlation: correlation coefficient.
5. ’adc: adjusted determination coefficient.
6. ’a_estimation: estimation of parameter a.
7. ’a_conf_int: confidence interval of parameter a.
8. ’b_estimation: estimation of parameter b.
9. ’b_conf_int: confidence interval of parameter b.

10. ’hypotheses: null and alternative hypotheses about parameter b.
11. ’statistic: value of the sample statistic used for testing the null hypothesis.
12. ’distribution: distribution of the sample statistic, together with its parameter.
13. ’p_value: p-value of the test about b.
14. ’v_estimation: unbiased variance estimation, or residual variance.
15. ’v_conf_int: variance confidence interval.
16. ’cond_mean_conf_int: confidence interval for the conditioned mean. See exam-

ples bellow.
17. ’new_pred_conf_int: confidence interval for a new prediction. See examples

bellow.
18. ’residuals: list of pairs (prediction, residual), ordered with respect to predic-

tions. This is useful for goodness of fit analysis. See examples bellow.

Only items 1, 4, 14, 9, 10, 11, 12, and 13 above, in this order, are shown by default.
The rest remain hidden until the user makes use of functions items_inference and
take_inference.

808 Maxima Manual

Example:

Fitting a linear model to a bivariate sample. Input %i4 plots the sample together with
the regression line; input %i5 computes y given x=113; the means and the confidence
interval for a new prediction when x=113 are also calculated.

(%i1) load("stats")$
(%i2) s:[[125,140.7], [130,155.1], [135,160.3], [140,167.2],

[145,169.8]]$
(%i3) z:simple_linear_regression(s,conflevel=0.99);

| SIMPLE LINEAR REGRESSION
|
| model = 1.405999999999985 x - 31.18999999999804
|
| correlation = .9611685255255155
|
| v_estimation = 13.57966666666665
|

(%o3) | b_conf_int = [.04469633662525263, 2.767303663374718]
|
| hypotheses = H0: b = 0 ,H1: b # 0
|
| statistic = 6.032686683658114
|
| distribution = [student_t, 3]
|
| p_value = 0.0038059549413203

(%i4) plot2d([[discrete, s], take_inference(model,z)],
[x,120,150],
[gnuplot_curve_styles, ["with points","with lines"]])$

(%i5) take_inference(model,z), x=133;
(%o5) 155.808
(%i6) take_inference(means,z);
(%o6) [135.0, 158.62]
(%i7) take_inference(new_pred_conf_int,z), x=133;
(%o7) [132.0728595995113, 179.5431404004887]

72.4 Functions and Variables for special distributions

Functionpdf signed rank (x, n)
Probability density function of the exact distribution of the signed rank statistic.
Argument x is a real number and n a positive integer.

See also test_signed_rank.

Functioncdf signed rank (x, n)
Cumulative density function of the exact distribution of the signed rank statistic.
Argument x is a real number and n a positive integer.

See also test_signed_rank.

Chapter 72: stats 809

Functionpdf rank sum (x, n, m)
Probability density function of the exact distribution of the rank sum statistic. Ar-
gument x is a real number and n and m are both positive integers.
See also test_rank_sum.

Functioncdf rank sum (x, n, m)
Cumulative density function of the exact distribution of the rank sum statistic. Ar-
gument x is a real number and n and m are both positive integers.
See also test_rank_sum.

810 Maxima Manual

Chapter 73: stirling 811

73 stirling

73.1 Functions and Variables for stirling

Functionstirling (z,n)
Replace gamma(x) with the O(1/x(2n− 1)) Stirling formula. when n isn’t a nonneg-
ative integer, signal an error.
Reference: Abramowitz & Stegun, " Handbook of mathematical functions", 6.1.40.
Examples:

(%i1) load (stirling)$

(%i2) stirling(gamma(%alpha+x)/gamma(x),1);
1/2 - x x + %alpha - 1/2

(%o2) x (x + %alpha)
1 1

--------------- - ---- - %alpha
12 (x + %alpha) 12 x

%e
(%i3) taylor(%,x,inf,1);

%alpha 2 %alpha
%alpha x %alpha - x %alpha

(%o3)/T/ x + -------------------------------- + . . .
2 x

(%i4) map(’factor,%);
%alpha - 1

%alpha (%alpha - 1) %alpha x
(%o4) x + -------------------------------

2

The function stirling knows the difference between the variable ’gamma’ and the
function gamma:

(%i5) stirling(gamma + gamma(x),0);
x - 1/2 - x

(%o5) gamma + sqrt(2) sqrt(%pi) x %e
(%i6) stirling(gamma(y) + gamma(x),0);

y - 1/2 - y
(%o6) sqrt(2) sqrt(%pi) y %e

x - 1/2 - x
+ sqrt(2) sqrt(%pi) x %e

To use this function write first load("stirling").

812 Maxima Manual

Chapter 74: stringproc 813

74 stringproc

74.1 Introduction to string processing

stringproc.lisp enlarges Maximas capabilities of working with strings and adds some
useful functions for file in/output.

For questions and bugs please mail to van.nek at arcor.de .
In Maxima a string is easily constructed by typing "text". stringp tests for strings.

(%i1) m: "text";
(%o1) text
(%i2) stringp(m);
(%o2) true

Characters are represented as strings of length 1. These are not Lisp characters. Tests
can be done with charp (respectively lcharp and conversion from Lisp to Maxima charac-
ters with cunlisp).

(%i1) c: "e";
(%o1) e
(%i2) [charp(c),lcharp(c)];
(%o2) [true, false]
(%i3) supcase(c);
(%o3) E
(%i4) charp(%);
(%o4) true

All functions in stringproc.lisp that return characters, return Maxima-characters.
Due to the fact, that the introduced characters are strings of length 1, you can use a lot of
string functions also for characters. As seen, supcase is one example.

It is important to know, that the first character in a Maxima-string is at position 1. This
is designed due to the fact that the first element in a Maxima-list is at position 1 too. See
definitions of charat and charlist for examples.

In applications string-functions are often used when working with files. You will find
some useful stream- and print-functions in stringproc.lisp. The following example shows
some of the here introduced functions at work.

Example:
openw returns an output stream to a file, printf then allows formatted writing to this

file. See printf for details.
(%i1) s: openw("E:/file.txt");
(%o1) #<output stream E:/file.txt>
(%i2) for n:0 thru 10 do printf(s, "~d ", fib(n));
(%o2) done
(%i3) printf(s, "~%~d ~f ~a ~a ~f ~e ~a~%",

42,1.234,sqrt(2),%pi,1.0e-2,1.0e-2,1.0b-2);
(%o3) false
(%i4) close(s);
(%o4) true

814 Maxima Manual

After closing the stream you can open it again, this time with input direction. readline
returns the entire line as one string. The stringproc package now offers a lot of functions
for manipulating strings. Tokenizing can be done by split or tokens.

(%i5) s: openr("E:/file.txt");
(%o5) #<input stream E:/file.txt>
(%i6) readline(s);
(%o6) 0 1 1 2 3 5 8 13 21 34 55
(%i7) line: readline(s);
(%o7) 42 1.234 sqrt(2) %pi 0.01 1.0E-2 1.0b-2
(%i8) list: tokens(line);
(%o8) [42, 1.234, sqrt(2), %pi, 0.01, 1.0E-2, 1.0b-2]
(%i9) map(parse_string, list);
(%o9) [42, 1.234, sqrt(2), %pi, 0.01, 0.01, 1.0b-2]
(%i10) float(%);
(%o10) [42.0, 1.234, 1.414213562373095, 3.141592653589793, 0.01,

0.01, 0.01]
(%i11) readline(s);
(%o11) false
(%i12) close(s)$

readline returns false when the end of file occurs.

74.2 Functions and Variables for input and output

Example:

(%i1) s: openw("E:/file.txt");
(%o1) #<output stream E:/file.txt>
(%i2) control:
"~2tAn atom: ~20t~a~%~2tand a list: ~20t~{~r ~}~%~2t\
and an integer: ~20t~d~%"$
(%i3) printf(s,control, ’true,[1,2,3],42)$
(%o3) false
(%i4) close(s);
(%o4) true
(%i5) s: openr("E:/file.txt");
(%o5) #<input stream E:/file.txt>
(%i6) while stringp(tmp:readline(s)) do print(tmp)$
An atom: true
and a list: one two three
and an integer: 42

(%i7) close(s)$

Functionclose (stream)
Closes stream and returns true if stream had been open.

Functionflength (stream)
Returns the number of elements in stream.

Chapter 74: stringproc 815

Functionfposition (stream)
Functionfposition (stream, pos)

Returns the current position in stream, if pos is not used. If pos is used, fposition
sets the position in stream. pos has to be a positive number, the first element in
stream is in position 1.

Functionfreshline ()
Functionfreshline (stream)

Writes a new line (to stream), if the position is not at the beginning of a line. See
also newline.

Functionnewline ()
Functionnewline (stream)

Writes a new line (to stream). See sprint for an example of using newline(). Note
that there are some cases, where newline() does not work as expected.

Functionopena (file)
Returns an output stream to file. If an existing file is opened, opena appends elements
at the end of file.

Functionopenr (file)
Returns an input stream to file. If file does not exist, it will be created.

Functionopenw (file)
Returns an output stream to file. If file does not exist, it will be created. If an
existing file is opened, openw destructively modifies file.

Functionprintf (dest, string)
Functionprintf (dest, string, expr 1, ..., expr n)

Makes the Common Lisp function FORMAT available in Maxima. (From gcl.info:
"format produces formatted output by outputting the characters of control-string
string and observing that a tilde introduces a directive. The character after the
tilde, possibly preceded by prefix parameters and modifiers, specifies what kind of
formatting is desired. Most directives use one or more elements of args to create their
output.")
The following description and the examples may give an idea of using printf. See a
Lisp reference for more information.

~% new line
~& fresh line
~t tab
~$ monetary
~d decimal integer
~b binary integer
~o octal integer
~x hexadecimal integer
~br base-b integer

816 Maxima Manual

~r spell an integer
~p plural
~f floating point
~e scientific notation
~g ~f or ~e, depending upon magnitude
~h bigfloat
~a uses Maxima function string
~s like ~a, but output enclosed in "double quotes"
~~ ~
~< justification, ~> terminates
~(case conversion, ~) terminates
~[selection, ~] terminates
~{ iteration, ~} terminates

Note that the selection directive ~[is zero-indexed. Also note that the directive ~*
is not supported.

(%i1) printf(false, "~a ~a ~4f ~a ~@r",
"String",sym,bound,sqrt(12),144), bound = 1.234;

(%o1) String sym 1.23 2*sqrt(3) CXLIV
(%i2) printf(false,"~{~a ~}",["one",2,"THREE"]);
(%o2) one 2 THREE
(%i3) printf(true,"~{~{~9,1f ~}~%~}",mat),

mat = args(matrix([1.1,2,3.33],[4,5,6],[7,8.88,9]))$
1.1 2.0 3.3
4.0 5.0 6.0
7.0 8.9 9.0

(%i4) control: "~:(~r~) bird~p ~[is~;are~] singing."$
(%i5) printf(false,control, n,n,if n=1 then 0 else 1), n=2;
(%o5) Two birds are singing.

If dest is a stream or true, then printf returns false. Otherwise, printf returns a
string containing the output.

Functionreadline (stream)
Returns a string containing the characters from the current position in stream up to
the end of the line or false if the end of the file is encountered.

Functionsprint (expr 1, ..., expr n)
Evaluates and displays its arguments one after the other ‘on a line’ starting at the
leftmost position. The numbers are printed with the ’-’ right next to the number, and
it disregards line length. newline(), which will be autoloaded from stringproc.lisp
might be useful, if you whish to place intermediate line breaking.

(%i1) for n:0 thru 20 do sprint(fib(n))$
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765
(%i2) for n:0 thru 22 do (

sprint(fib(n)), if mod(n,10)=9 then newline())$
0 1 1 2 3 5 8 13 21 34
55 89 144 233 377 610 987 1597 2584 4181
6765 10946 17711

Chapter 74: stringproc 817

74.3 Functions and Variables for characters

Functionalphacharp (char)
Returns true if char is an alphabetic character.

Functionalphanumericp (char)
Returns true if char is an alphabetic character or a digit.

Functionascii (int)
Returns the character corresponding to the ASCII number int. (-1 < int < 256)

(%i1) for n from 0 thru 255 do (
tmp: ascii(n), if alphacharp(tmp) then sprint(tmp),

if n=96 then newline())$
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z

Functioncequal (char 1, char 2)
Returns true if char 1 and char 2 are the same.

Functioncequalignore (char 1, char 2)
Like cequal but ignores case.

Functioncgreaterp (char 1, char 2)
Returns true if the ASCII number of char 1 is greater than the number of char 2.

Functioncgreaterpignore (char 1, char 2)
Like cgreaterp but ignores case.

Functioncharp (obj)
Returns true if obj is a Maxima-character. See introduction for example.

Functioncint (char)
Returns the ASCII number of char.

Functionclessp (char 1, char 2)
Returns true if the ASCII number of char 1 is less than the number of char 2.

Functionclesspignore (char 1, char 2)
Like clessp but ignores case.

Functionconstituent (char)
Returns true if char is a graphic character and not the space character. A graphic
character is a character one can see, plus the space character. (constituent is defined
by Paul Graham, ANSI Common Lisp, 1996, page 67.)

818 Maxima Manual

(%i1) for n from 0 thru 255 do (
tmp: ascii(n), if constituent(tmp) then sprint(tmp))$
! " # % ’ () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B
C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ^ _ ‘ a b c
d e f g h i j k l m n o p q r s t u v w x y z { | } ~

Functioncunlisp (lisp char)
Converts a Lisp-character into a Maxima-character. (You won’t need it.)

Functiondigitcharp (char)
Returns true if char is a digit.

Functionlcharp (obj)
Returns true if obj is a Lisp-character. (You won’t need it.)

Functionlowercasep (char)
Returns true if char is a lowercase character.

Variablenewline
The newline character.

Variablespace
The space character.

Variabletab
The tab character.

Functionuppercasep (char)
Returns true if char is an uppercase character.

74.4 Functions and Variables for strings

Functionstringp (obj)
Returns true if obj is a string. See introduction for example.

Functioncharat (string, n)
Returns the n-th character of string. The first character in string is returned with n
= 1.

(%i1) charat("Lisp",1);
(%o1) L

Functioncharlist (string)
Returns the list of all characters in string.

(%i1) charlist("Lisp");
(%o1) [L, i, s, p]
(%i2) %[1];
(%o2) L

Chapter 74: stringproc 819

Functioneval string (str)
Parse the string str as a Maxima expression and evaluate it. The string str may or
may not have a terminator (dollar sign $ or semicolon ;). Only the first expression
is parsed and evaluated, if there is more than one.

Complain if str is not a string.

Examples:

(%i1) eval_string ("foo: 42; bar: foo^2 + baz");
(%o1) 42
(%i2) eval_string ("(foo: 42, bar: foo^2 + baz)");
(%o2) baz + 1764

See also parse_string.

Functionparse string (str)
Parse the string str as a Maxima expression (do not evaluate it). The string str may
or may not have a terminator (dollar sign $ or semicolon ;). Only the first expression
is parsed, if there is more than one.

Complain if str is not a string.

Examples:

(%i1) parse_string ("foo: 42; bar: foo^2 + baz");
(%o1) foo : 42
(%i2) parse_string ("(foo: 42, bar: foo^2 + baz)");

2
(%o2) (foo : 42, bar : foo + baz)

See also eval_string.

Functionscopy (string)
Returns a copy of string as a new string.

Functionsdowncase (string)
Functionsdowncase (string, start)
Functionsdowncase (string, start, end)

Like supcase, but uppercase characters are converted to lowercase.

Functionsequal (string 1, string 2)
Returns true if string 1 and string 2 are the same length and contain the same
characters.

Functionsequalignore (string 1, string 2)
Like sequal but ignores case.

Functionsexplode (string)
sexplode is an alias for function charlist.

820 Maxima Manual

Functionsimplode (list)
Functionsimplode (list, delim)

simplode takes a list of expressions and concatenates them into a string. If no
delimiter delim is specified, simplode uses no delimiter. delim can be any string.

(%i1) simplode(["xx[",3,"]:",expand((x+y)^3)]);
(%o1) xx[3]:y^3+3*x*y^2+3*x^2*y+x^3
(%i2) simplode(sexplode("stars")," * ");
(%o2) s * t * a * r * s
(%i3) simplode(["One","more","coffee."]," ");
(%o3) One more coffee.

Functionsinsert (seq, string, pos)
Returns a string that is a concatenation of substring (string, 1, pos - 1), the string
seq and substring (string, pos). Note that the first character in string is in position
1.

(%i1) s: "A submarine."$
(%i2) concat(substring(s,1,3),"yellow ",substring(s,3));
(%o2) A yellow submarine.
(%i3) sinsert("hollow ",s,3);
(%o3) A hollow submarine.

Functionsinvertcase (string)
Functionsinvertcase (string, start)
Functionsinvertcase (string, start, end)

Returns string except that each character from position start to end is inverted. If
end is not given, all characters from start to the end of string are replaced.

(%i1) sinvertcase("sInvertCase");
(%o1) SiNVERTcASE

Functionslength (string)
Returns the number of characters in string.

Functionsmake (num, char)
Returns a new string with a number of num characters char.

(%i1) smake(3,"w");
(%o1) www

Functionsmismatch (string 1, string 2)
Functionsmismatch (string 1, string 2, test)

Returns the position of the first character of string 1 at which string 1 and string 2
differ or false. Default test function for matching is sequal. If smismatch should
ignore case, use sequalignore as test.

(%i1) smismatch("seven","seventh");
(%o1) 6

Chapter 74: stringproc 821

Functionsplit (string)
Functionsplit (string, delim)
Functionsplit (string, delim, multiple)

Returns the list of all tokens in string. Each token is an unparsed string. split uses
delim as delimiter. If delim is not given, the space character is the default delimiter.
multiple is a boolean variable with true by default. Multiple delimiters are read as
one. This is useful if tabs are saved as multiple space characters. If multiple is set to
false, each delimiter is noted.

(%i1) split("1.2 2.3 3.4 4.5");
(%o1) [1.2, 2.3, 3.4, 4.5]
(%i2) split("first;;third;fourth",";",false);
(%o2) [first, , third, fourth]

Functionsposition (char, string)
Returns the position of the first character in string which matches char. The first
character in string is in position 1. For matching characters ignoring case see ssearch.

Functionsremove (seq, string)
Functionsremove (seq, string, test)
Functionsremove (seq, string, test, start)
Functionsremove (seq, string, test, start, end)

Returns a string like string but without all substrings matching seq. Default test
function for matching is sequal. If sremove should ignore case while searching for
seq, use sequalignore as test. Use start and end to limit searching. Note that the
first character in string is in position 1.

(%i1) sremove("n’t","I don’t like coffee.");
(%o1) I do like coffee.
(%i2) sremove ("DO ",%,’sequalignore);
(%o2) I like coffee.

Functionsremovefirst (seq, string)
Functionsremovefirst (seq, string, test)
Functionsremovefirst (seq, string, test, start)
Functionsremovefirst (seq, string, test, start, end)

Like sremove except that only the first substring that matches seq is removed.

Functionsreverse (string)
Returns a string with all the characters of string in reverse order.

Functionssearch (seq, string)
Functionssearch (seq, string, test)
Functionssearch (seq, string, test, start)
Functionssearch (seq, string, test, start, end)

Returns the position of the first substring of string that matches the string seq.
Default test function for matching is sequal. If ssearch should ignore case, use
sequalignore as test. Use start and end to limit searching. Note that the first
character in string is in position 1.

822 Maxima Manual

(%i1) ssearch("~s","~{~S ~}~%",’sequalignore);
(%o1) 4

Functionssort (string)
Functionssort (string, test)

Returns a string that contains all characters from string in an order such there are no
two successive characters c and d such that test (c, d) is false and test (d, c) is
true. Default test function for sorting is clessp. The set of test functions is {clessp,
clesspignore, cgreaterp, cgreaterpignore, cequal, cequalignore}.

(%i1) ssort("I don’t like Mondays.");
(%o1) ’.IMaddeiklnnoosty
(%i2) ssort("I don’t like Mondays.",’cgreaterpignore);
(%o2) ytsoonnMlkIiedda.’

Functionssubst (new, old, string)
Functionssubst (new, old, string, test)
Functionssubst (new, old, string, test, start)
Functionssubst (new, old, string, test, start, end)

Returns a string like string except that all substrings matching old are replaced
by new. old and new need not to be of the same length. Default test function
for matching is sequal. If ssubst should ignore case while searching for old, use
sequalignore as test. Use start and end to limit searching. Note that the first
character in string is in position 1.

(%i1) ssubst("like","hate","I hate Thai food. I hate green tea.");
(%o1) I like Thai food. I like green tea.
(%i2) ssubst("Indian","thai",%,’sequalignore,8,12);
(%o2) I like Indian food. I like green tea.

Functionssubstfirst (new, old, string)
Functionssubstfirst (new, old, string, test)
Functionssubstfirst (new, old, string, test, start)
Functionssubstfirst (new, old, string, test, start, end)

Like subst except that only the first substring that matches old is replaced.

Functionstrim (seq,string)
Returns a string like string, but with all characters that appear in seq removed from
both ends.

(%i1) "/* comment */"$
(%i2) strim(" /*",%);
(%o2) comment
(%i3) slength(%);
(%o3) 7

Functionstriml (seq, string)
Like strim except that only the left end of string is trimmed.

Chapter 74: stringproc 823

Functionstrimr (seq, string)
Like strim except that only the right end of string is trimmed.

Functionsubstring (string, start)
Functionsubstring (string, start, end)

Returns the substring of string beginning at position start and ending at position
end. The character at position end is not included. If end is not given, the substring
contains the rest of the string. Note that the first character in string is in position 1.

(%i1) substring("substring",4);
(%o1) string
(%i2) substring(%,4,6);
(%o2) in

Functionsupcase (string)
Functionsupcase (string, start)
Functionsupcase (string, start, end)

Returns string except that lowercase characters from position start to end are replaced
by the corresponding uppercase ones. If end is not given, all lowercase characters from
start to the end of string are replaced.

(%i1) supcase("english",1,2);
(%o1) English

Functiontokens (string)
Functiontokens (string, test)

Returns a list of tokens, which have been extracted from string. The tokens are sub-
strings whose characters satisfy a certain test function. If test is not given, constituent
is used as the default test. {constituent, alphacharp, digitcharp, lowercasep,
uppercasep, charp, characterp, alphanumericp} is the set of test functions. (The
Lisp-version of tokens is written by Paul Graham. ANSI Common Lisp, 1996, page
67.)

(%i1) tokens("24 October 2005");
(%o1) [24, October, 2005]
(%i2) tokens("05-10-24",’digitcharp);
(%o2) [05, 10, 24]
(%i3) map(parse_string,%);
(%o3) [5, 10, 24]

824 Maxima Manual

Chapter 75: unit 825

75 unit

75.1 Introduction to Units

The unit package enables the user to convert between arbitrary units and work with
dimensions in equations. The functioning of this package is radically different from the
original Maxima units package - whereas the original was a basic list of definitions, this
package uses rulesets to allow the user to chose, on a per dimension basis, what unit final
answers should be rendered in. It will separate units instead of intermixing them in the
display, allowing the user to readily identify the units associated with a particular answer.
It will allow a user to simplify an expression to its fundamental Base Units, as well as
providing fine control over simplifying to derived units. Dimensional analysis is possible,
and a variety of tools are available to manage conversion and simplification options. In
addition to customizable automatic conversion, units also provides a traditional manual
conversion option.

Note - when unit conversions are inexact Maxima will make approximations resulting
in fractions. This is a consequence of the techniques used to simplify units. The messages
warning of this type of substitution are disabled by default in the case of units (normally
they are on) since this situation occurs frequently and the warnings clutter the output.
(The existing state of ratprint is restored after unit conversions, so user changes to that
setting will be preserved otherwise.) If the user needs this information for units, they can
set unitverbose:on to reactivate the printing of warnings from the unit conversion process.

unit is included in Maxima in the share/contrib/unit directory. It obeys normal Maxima
package loading conventions:

(%i1) load("unit")$

* Units version 0.50 *
* Definitions based on the NIST Reference on *
* Constants, Units, and Uncertainty *
* Conversion factors from various sources including *
* NIST and the GNU units package *

Redefining necessary functions...
WARNING: DEFUN/DEFMACRO: redefining function TOPLEVEL-MACSYMA-EVAL ...
WARNING: DEFUN/DEFMACRO: redefining function MSETCHK ...
WARNING: DEFUN/DEFMACRO: redefining function KILL1 ...
WARNING: DEFUN/DEFMACRO: redefining function NFORMAT ...
Initializing unit arrays...
Done.

The WARNING messages are expected and not a cause for concern - they indicate the
unit package is redefining functions already defined in Maxima proper. This is necessary in
order to properly handle units. The user should be aware that if other changes have been
made to these functions by other packages those changes will be overwritten by this loading
process.

826 Maxima Manual

The unit.mac file also loads a lisp file unit-functions.lisp which contains the lisp functions
needed for the package.

Clifford Yapp is the primary author. He has received valuable assistance from Barton
Willis of the University of Nebraska at Kearney (UNK), Robert Dodier, and other intrepid
folk of the Maxima mailing list.

There are probably lots of bugs. Let me know. float and numer don’t do what is
expected.

TODO : dimension functionality, handling of temperature, showabbr and friends. Show
examples with addition of quantities containing units.

75.2 Functions and Variables for Units

Functionsetunits (list)
By default, the unit package does not use any derived dimensions, but will convert
all units to the seven fundamental dimensions using MKS units.

(%i2) N;
kg m

(%o2) ----
2
s

(%i3) dyn;
1 kg m

(%o3) (------) (----)
100000 2

s
(%i4) g;

1
(%o4) (----) (kg)

1000
(%i5) centigram*inch/minutes^2;

127 kg m
(%o5) (-------------) (----)

1800000000000 2
s

In some cases this is the desired behavior. If the user wishes to use other units, this
is achieved with the setunits command:

(%i6) setunits([centigram,inch,minute]);
(%o6) done
(%i7) N;

1800000000000 %in cg
(%o7) (-------------) (------)

127 2
%min

(%i8) dyn;
18000000 %in cg

(%o8) (--------) (------)

Chapter 75: unit 827

127 2
%min

(%i9) g;
(%o9) (100) (cg)
(%i10) centigram*inch/minutes^2;

%in cg
(%o10) ------

2
%min

The setting of units is quite flexible. For example, if we want to get back to kilograms,
meters, and seconds as defaults for those dimensions we can do:

(%i11) setunits([kg,m,s]);
(%o11) done
(%i12) centigram*inch/minutes^2;

127 kg m
(%o12) (-------------) (----)

1800000000000 2
s

Derived units are also handled by this command:
(%i17) setunits(N);
(%o17) done
(%i18) N;
(%o18) N
(%i19) dyn;

1
(%o19) (------) (N)

100000
(%i20) kg*m/s^2;
(%o20) N
(%i21) centigram*inch/minutes^2;

127
(%o21) (-------------) (N)

1800000000000

Notice that the unit package recognized the non MKS combination of mass, length,
and inverse time squared as a force, and converted it to Newtons. This is how Maxima
works in general. If, for example, we prefer dyne to Newtons, we simply do the
following:

(%i22) setunits(dyn);
(%o22) done
(%i23) kg*m/s^2;
(%o23) (100000) (dyn)
(%i24) centigram*inch/minutes^2;

127
(%o24) (--------) (dyn)

18000000

To discontinue simplifying to any force, we use the uforget command:
(%i26) uforget(dyn);

828 Maxima Manual

(%o26) false
(%i27) kg*m/s^2;

kg m
(%o27) ----

2
s

(%i28) centigram*inch/minutes^2;
127 kg m

(%o28) (-------------) (----)
1800000000000 2

s

This would have worked equally well with uforget(N) or uforget(%force).
See also uforget. To use this function write first load("unit").

Functionuforget (list)
By default, the unit package converts all units to the seven fundamental dimensions
using MKS units. This behavior can be changed with the setunits command. After
that, the user can restore the default behavior for a particular dimension by means
of the uforget command:

(%i13) setunits([centigram,inch,minute]);
(%o13) done
(%i14) centigram*inch/minutes^2;

%in cg
(%o14) ------

2
%min

(%i15) uforget([cg,%in,%min]);
(%o15) [false, false, false]
(%i16) centigram*inch/minutes^2;

127 kg m
(%o16) (-------------) (----)

1800000000000 2
s

uforget operates on dimensions, not units, so any unit of a particular dimension will
work. The dimension itself is also a legal argument.
See also setunits. To use this function write first load("unit").

Functionconvert (expr, list)
When resetting the global environment is overkill, there is the convert command,
which allows one time conversions. It can accept either a single argument or a list
of units to use in conversion. When a convert operation is done, the normal global
evaluation system is bypassed, in order to avoid the desired result being converted
again. As a consequence, for inexact calculations "rat" warnings will be visible if the
global environment controlling this behavior (ratprint) is true. This is also useful
for spot-checking the accuracy of a global conversion. Another feature is convert will
allow a user to do Base Dimension conversions even if the global environment is set
to simplify to a Derived Dimension.

Chapter 75: unit 829

(%i2) kg*m/s^2;
kg m

(%o2) ----
2
s

(%i3) convert(kg*m/s^2,[g,km,s]);
g km

(%o3) ----
2
s

(%i4) convert(kg*m/s^2,[g,inch,minute]);

‘rat’ replaced 39.37007874015748 by 5000/127 = 39.37007874015748
18000000000 %in g

(%o4) (-----------) (-----)
127 2

%min
(%i5) convert(kg*m/s^2,[N]);
(%o5) N
(%i6) convert(kg*m^2/s^2,[N]);
(%o6) m N
(%i7) setunits([N,J]);
(%o7) done
(%i8) convert(kg*m^2/s^2,[N]);
(%o8) m N
(%i9) convert(kg*m^2/s^2,[N,inch]);

‘rat’ replaced 39.37007874015748 by 5000/127 = 39.37007874015748
5000

(%o9) (----) (%in N)
127

(%i10) convert(kg*m^2/s^2,[J]);
(%o10) J
(%i11) kg*m^2/s^2;
(%o11) J
(%i12) setunits([g,inch,s]);
(%o12) done
(%i13) kg*m/s^2;
(%o13) N
(%i14) uforget(N);
(%o14) false
(%i15) kg*m/s^2;

5000000 %in g
(%o15) (-------) (-----)

127 2
s

(%i16) convert(kg*m/s^2,[g,inch,s]);

‘rat’ replaced 39.37007874015748 by 5000/127 = 39.37007874015748

830 Maxima Manual

5000000 %in g
(%o16) (-------) (-----)

127 2
s

See also setunits and uforget. To use this function write first load("unit").

Optional variableusersetunits
Default value: none
If a user wishes to have a default unit behavior other than that described, they can
make use of maxima-init.mac and the usersetunits variable. The unit package will
check on startup to see if this variable has been assigned a list. If it has, it will use
setunits on that list and take the units from that list to be defaults. uforget will
revert to the behavior defined by usersetunits over its own defaults. For example, if
we have a maxima-init.mac file containing:

usersetunits : [N,J];

we would see the following behavior:
(%i1) load("unit")$

* Units version 0.50 *
* Definitions based on the NIST Reference on *
* Constants, Units, and Uncertainty *
* Conversion factors from various sources including *
* NIST and the GNU units package *

Redefining necessary functions...
WARNING: DEFUN/DEFMACRO: redefining function
TOPLEVEL-MACSYMA-EVAL ...
WARNING: DEFUN/DEFMACRO: redefining function MSETCHK ...
WARNING: DEFUN/DEFMACRO: redefining function KILL1 ...
WARNING: DEFUN/DEFMACRO: redefining function NFORMAT ...
Initializing unit arrays...
Done.
User defaults found...
User defaults initialized.
(%i2) kg*m/s^2;
(%o2) N
(%i3) kg*m^2/s^2;
(%o3) J
(%i4) kg*m^3/s^2;
(%o4) J m
(%i5) kg*m*km/s^2;
(%o5) (1000) (J)
(%i6) setunits([dyn,eV]);
(%o6) done
(%i7) kg*m/s^2;
(%o7) (100000) (dyn)
(%i8) kg*m^2/s^2;

Chapter 75: unit 831

(%o8) (6241509596477042688) (eV)
(%i9) kg*m^3/s^2;
(%o9) (6241509596477042688) (eV m)
(%i10) kg*m*km/s^2;
(%o10) (6241509596477042688000) (eV)
(%i11) uforget([dyn,eV]);
(%o11) [false, false]
(%i12) kg*m/s^2;
(%o12) N
(%i13) kg*m^2/s^2;
(%o13) J
(%i14) kg*m^3/s^2;
(%o14) J m
(%i15) kg*m*km/s^2;
(%o15) (1000) (J)

Without usersetunits, the initial inputs would have been converted to MKS, and
uforget would have resulted in a return to MKS rules. Instead, the user preferences are
respected in both cases. Notice these can still be overridden if desired. To completely
eliminate this simplification - i.e. to have the user defaults reset to factory defaults
- the dontusedimension command can be used. uforget can restore user settings
again, but only if usedimension frees it for use. Alternately, kill(usersetunits)
will completely remove all knowledge of the user defaults from the session. Here are
some examples of how these various options work.

(%i2) kg*m/s^2;
(%o2) N
(%i3) kg*m^2/s^2;
(%o3) J
(%i4) setunits([dyn,eV]);
(%o4) done
(%i5) kg*m/s^2;
(%o5) (100000) (dyn)
(%i6) kg*m^2/s^2;
(%o6) (6241509596477042688) (eV)
(%i7) uforget([dyn,eV]);
(%o7) [false, false]
(%i8) kg*m/s^2;
(%o8) N
(%i9) kg*m^2/s^2;
(%o9) J
(%i10) dontusedimension(N);
(%o10) [%force]
(%i11) dontusedimension(J);
(%o11) [%energy, %force]
(%i12) kg*m/s^2;

kg m
(%o12) ----

2
s

832 Maxima Manual

(%i13) kg*m^2/s^2;
2

kg m
(%o13) -----

2
s

(%i14) setunits([dyn,eV]);
(%o14) done
(%i15) kg*m/s^2;

kg m
(%o15) ----

2
s

(%i16) kg*m^2/s^2;
2

kg m
(%o16) -----

2
s

(%i17) uforget([dyn,eV]);
(%o17) [false, false]
(%i18) kg*m/s^2;

kg m
(%o18) ----

2
s

(%i19) kg*m^2/s^2;
2

kg m
(%o19) -----

2
s

(%i20) usedimension(N);
Done. To have Maxima simplify to this dimension, use
setunits([unit]) to select a unit.
(%o20) true
(%i21) usedimension(J);
Done. To have Maxima simplify to this dimension, use
setunits([unit]) to select a unit.
(%o21) true
(%i22) kg*m/s^2;

kg m
(%o22) ----

2
s

(%i23) kg*m^2/s^2;
2

kg m
(%o23) -----

Chapter 75: unit 833

2
s

(%i24) setunits([dyn,eV]);
(%o24) done
(%i25) kg*m/s^2;
(%o25) (100000) (dyn)
(%i26) kg*m^2/s^2;
(%o26) (6241509596477042688) (eV)
(%i27) uforget([dyn,eV]);
(%o27) [false, false]
(%i28) kg*m/s^2;
(%o28) N
(%i29) kg*m^2/s^2;
(%o29) J
(%i30) kill(usersetunits);
(%o30) done
(%i31) uforget([dyn,eV]);
(%o31) [false, false]
(%i32) kg*m/s^2;

kg m
(%o32) ----

2
s

(%i33) kg*m^2/s^2;
2

kg m
(%o33) -----

2
s

Unfortunately this wide variety of options is a little confusing at first, but once the
user grows used to them they should find they have very full control over their working
environment.

Functionmetricexpandall (x)
Rebuilds global unit lists automatically creating all desired metric units. x is a
numerical argument which is used to specify how many metric prefixes the user wishes
defined. The arguments are as follows, with each higher number defining all lower
numbers’ units:

0 - none. Only base units
1 - kilo, centi, milli

(default) 2 - giga, mega, kilo, hecto, deka, deci, centi, milli,
micro, nano

3 - peta, tera, giga, mega, kilo, hecto, deka, deci,
centi, milli, micro, nano, pico, femto

4 - all

Normally, Maxima will not define the full expansion since this results in a very large
number of units, but metricexpandall can be used to rebuild the list in a more or
less complete fashion. The relevant variable in the unit.mac file is %unitexpand.

834 Maxima Manual

Variable%unitexpand
Default value: 2
This is the value supplied to metricexpandall during the initial loading of unit.

Chapter 76: zeilberger 835

76 zeilberger

76.1 Introduction to zeilberger

zeilberger is a implementation of Zeilberger’s algorithm for definite hypergeometric
summation, and also Gosper’s algorithm for indefinite hypergeometric summation.

zeilberger makes use of the "filtering" optimization method developed by Axel Riese.

zeilberger was developed by Fabrizio Caruso.

load (zeilberger) loads this package.

76.1.0.1 The indefinite summation problem

zeilberger implements Gosper’s algorithm for indefinite hypergeometric summation.
Given a hypergeometric term Fk in k we want to find its hypergeometric anti-difference,
that is, a hypergeometric term fk such that Fk = f(k + 1)− fk.

76.1.0.2 The definite summation problem

zeilberger implements Zeilberger’s algorithm for definite hypergeometric summation.
Given a proper hypergeometric term (in n and k) F(n, k) and a positive integer d we want
to find a d-th order linear recurrence with polynomial coefficients (in n) for F(n, k) and a
rational function R in n and k such that

a0F(n, k) + ...+ adF(n+ d), k = DeltaK(R(n, k)F(n, k))

where Deltak is the k-forward difference operator, i.e., Deltak(tk) := t(k + 1)− tk.

76.1.1 Verbosity levels

There are also verbose versions of the commands which are called by adding one of the
following prefixes:

Summary Just a summary at the end is shown

Verbose Some information in the intermidiate steps

VeryVerbose
More information

Extra Even more information including information on the linear system in Zeil-
berger’s algorithm

For example: GosperVerbose, parGosperVeryVerbose, ZeilbergerExtra,
AntiDifferenceSummary.

836 Maxima Manual

76.2 Functions and Variables for zeilberger

FunctionAntiDifference (F k, k)
Returns the hypergeometric anti-difference of F k, if it exists. Otherwise
AntiDifference returns no_hyp_antidifference.

FunctionGosper (F k, k)
Returns the rational certificate R(k) for F k, that is, a rational function such that
Fk = R(k + 1)F(k + 1)−R(k)Fk
if it exists. Otherwise, Gosper returns no_hyp_sol.

FunctionGosperSum (F k, k, a, b)
Returns the summmation of F k from k = a to k = b if F k has a hypergeometric
anti-difference. Otherwise, GosperSum returns nongosper_summable.
Examples:

(%i1) load (zeilberger);
(%o1) /usr/share/maxima/share/contrib/Zeilberger/zeilberger.mac
(%i2) GosperSum ((-1)^k*k / (4*k^2 - 1), k, 1, n);

Dependent equations eliminated: (1)
3 n + 1

(n + -) (- 1)
2 1

(%o2) - ------------------ - -
2 4

2 (4 (n + 1) - 1)
(%i3) GosperSum (1 / (4*k^2 - 1), k, 1, n);

3
- n - -

2 1
(%o3) -------------- + -

2 2
4 (n + 1) - 1

(%i4) GosperSum (x^k, k, 1, n);
n + 1

x x
(%o4) ------ - -----

x - 1 x - 1
(%i5) GosperSum ((-1)^k*a! / (k!*(a - k)!), k, 1, n);

n + 1
a! (n + 1) (- 1) a!

(%o5) - ------------------------- - ----------
a (- n + a - 1)! (n + 1)! a (a - 1)!

(%i6) GosperSum (k*k!, k, 1, n);

Dependent equations eliminated: (1)
(%o6) (n + 1)! - 1

Chapter 76: zeilberger 837

(%i7) GosperSum ((k + 1)*k! / (k + 1)!, k, 1, n);
(n + 1) (n + 2) (n + 1)!

(%o7) ------------------------ - 1
(n + 2)!

(%i8) GosperSum (1 / ((a - k)!*k!), k, 1, n);
(%o8) nonGosper_summable

FunctionparGosper (F {n,k}, k, n, d)
Attempts to find a d-th order recurrence for F {n,k}.
The algorithm yields a sequence [s1, s2, ..., sm] of solutions. Each solution has the
form
[R(n, k), [a0, a1, ..., ad]]
parGosper returns [] if it fails to find a recurrence.

FunctionZeilberger (F {n,k}, k, n)
Attempts to compute the indefinite hypergeometric summation of F {n,k}.
Zeilberger first invokes Gosper, and if that fails to find a solution, then invokes
parGosper with order 1, 2, 3, ..., up to MAX_ORD. If Zeilberger finds a solution before
reaching MAX_ORD, it stops and returns the solution.
The algorithms yields a sequence [s1, s2, ..., sm] of solutions. Each solution has the
form
[R(n, k), [a0, a1, ..., ad]]
Zeilberger returns [] if it fails to find a solution.
Zeilberger invokes Gosper only if gosper_in_zeilberger is true.

76.3 General global variables

Global variableMAX ORD
Default value: 5
MAX_ORD is the maximum recurrence order attempted by Zeilberger.

Global variablesimplified output
Default value: false
When simplified_output is true, functions in the zeilberger package attempt
further simplification of the solution.

Global variablelinear solver
Default value: linsolve
linear_solver names the solver which is used to solve the system of equations in
Zeilberger’s algorithm.

Global variablewarnings
Default value: true
When warnings is true, functions in the zeilberger package print warning messages
during execution.

838 Maxima Manual

Global variablegosper in zeilberger
Default value: true
When gosper_in_zeilberger is true, the Zeilberger function calls Gosper before
calling parGosper. Otherwise, Zeilberger goes immediately to parGosper.

Global variabletrivial solutions
Default value: true
When trivial_solutions is true, Zeilberger returns solutions which have certifi-
cate equal to zero, or all coefficients equal to zero.

76.4 Variables related to the modular test

Global variablemod test
Default value: false
When mod_test is true, parGosper executes a modular test for discarding systems
with no solutions.

Global variablemodular linear solver
Default value: linsolve
modular_linear_solver names the linear solver used by the modular test in
parGosper.

Global variableev point
Default value: big_primes[10]
ev_point is the value at which the variable n is evaluated when executing the modular
test in parGosper.

Global variablemod big prime
Default value: big_primes[1]
mod_big_prime is the modulus used by the modular test in parGosper.

Global variablemod threshold
Default value: 4
mod_threshold is the greatest order for which the modular test in parGosper is
attempted.

Chapter 77: Indices 839

77 Indices

840 Maxima Manual

Appendix A: Function and Variable Index 841

Appendix A Function and Variable Index

!
! (Operator) . 32
!! (Operator) . 33

#
(Operator) . 33

%
% (System variable) . 125
%% (System variable) . 125
%c (Variable) . 532
%e (Constant) . 181
%e_to_numlog (Option variable) 185
%edispflag (Option variable) 125
%emode (Option variable) . 74
%enumer (Option variable) . 74
%gamma (Constant) . 390
%i (Constant) . 181
%iargs (Option variable) . 190
%k1 (Variable) . 533
%k2 (Variable) . 533
%phi (Constant) . 181
%pi (Constant) . 182
%piargs (Option variable) 189
%rnum_list (System variable) 243
%th (Function) . 126
%unitexpand (Variable) . 834

’
’ (Operator) . 13
’’ (Operator) . 14

*
* (Operator) . 27
** (Operator) . 30

+
+ (Operator) . 27

-
- (Operator) . 27

.

. (Operator) . 34

/
/ (Operator) . 27

:
: (Operator) . 34
:: (Operator) . 35
::= (Operator) . 35
:= (Operator) . 37

<
< (Operator) . 30
<= (Operator) . 31

=
= (Operator) . 38

>
> (Operator) . 31
>= (Operator) . 31

?
? (Special symbol) . 126
?? (Special symbol) . 126

[
[(Special symbol) . 304

]
] (Special symbol) . 304

^
^ (Operator) . 27
^^ (Operator) . 32

_ (System variable) . 124
__ (System variable) . 123

|
| (Operator) . 338

842 Maxima Manual

~
~ (Operator) . 337

A
abasep (Function) . 374
abs (Function) . 40
absboxchar (Option variable) 126
absint (Function) . 270
absolute_real_time (Function) 415
acos (Function) . 190
acosh (Function) . 190
acot (Function) . 190
acoth (Function) . 190
acsc (Function) . 190
acsch (Function) . 191
activate (Function) . 153
activecontexts (System variable) 153
adapt_depth (Graphic option) 626
add_edge (Function) . 683
add_edges (Function) . 683
add_vertex (Function) . 683
add_vertices (Function) . 683
addcol (Function) . 284
additive (Keyword) . 40
addmatrices (Function) . 723
addrow (Function) . 284
adim (Variable) . 373
adjacency_matrix (Function) 668
adjoin (Function) . 453
adjoint (Function) . 284
af (Function) . 374
aform (Variable) . 373
agd (Function) . 785
airy_ai (Function) . 197
airy_bi (Function) . 198
airy_dai (Function) . 197
airy_dbi (Function) . 198
alg_type (Function) . 373
algebraic (Option variable) 159
algepsilon (Option variable) 151
algexact (Option variable) 243
algsys (Function) . 243
alias (Function) . 17
aliases (System variable) 417
all_dotsimp_denoms (Option variable) 307
allbut (Keyword) . 41
allroots (Function) . 245
allsym (Option variable) . 322
alphabetic (Declaration) 417
alphacharp (Function) . 817
alphanumericp (Function) 817
and (Operator) . 39
antid (Function) . 213
antidiff (Function) . 214
AntiDifference (Function). 836
antisymmetric (Declaration) 41
append (Function) . 443

appendfile (Function) . 126

apply (Function) . 482

apply1 (Function) . 425

apply2 (Function) . 425

applyb1 (Function) . 425

apropos (Function) . 417

args (Function) . 418

arithmetic (Function) . 784

arithsum (Function) . 784

array (Function) . 273

arrayapply (Function) . 273

arrayinfo (Function) . 273

arraymake (Function) . 275

arrays (System variable) . 276

ascii (Function) . 817

asec (Function) . 191

asech (Function) . 191

asin (Function) . 191

asinh (Function) . 191

askexp (System variable) . 93

askinteger (Function) . 93

asksign (Function) . 93

assoc (Function) . 443

assoc_legendre_p (Function) 764

assoc_legendre_q (Function) 765

assume (Function) . 153

assume_external_byte_order (Function) 752

assume_pos (Option variable) 154

assume_pos_pred (Option variable) 154

assumescalar (Option variable) 154

asymbol (Variable) . 373

asympa (Function) . 198

at (Function) . 65

atan (Function) . 191

atan2 (Function) . 191

atanh (Function) . 191

atensimp (Function) . 373

atom (Function) . 443

atomgrad (Property) . 214

atrig1 (Package) . 191

atvalue (Function) . 214, 215

augcoefmatrix (Function) 284

augmented_lagrangian_method (Function) . . . 525

av (Function) . 374

average_degree (Function). 668

axis_3d (Graphic option) 616

axis_bottom (Graphic option) 615

axis_left (Graphic option) 615

axis_right (Graphic option) 616

axis_top (Graphic option) 616

Appendix A: Function and Variable Index 843

B
backsubst (Option variable) 246
backtrace (Function) . 505
bars (Graphic object) . 632
barsplot (Function) . 555
bashindices (Function) . 276
batch (Function) . 127
batchload (Function) . 127
bc2 (Function) . 261
bdvac (Function) . 359
belln (Function) . 453
berlefact (Option variable) 160
bern (Function) . 387
bernpoly (Function) . 387
bessel (Function) . 198
bessel_i (Function) . 199
bessel_j (Function) . 198
bessel_k (Function) . 199
bessel_y (Function) . 198
besselexpand (Option variable) 199
beta (Function) . 200
bezout (Function) . 160
bffac (Function) . 151
bfhzeta (Function) . 387
bfloat (Function) . 151
bfloatp (Function) . 151
bfpsi (Function) . 151
bfpsi0 (Function) . 151
bftorat (Option variable) 151
bftrunc (Option variable) 151
bfzeta (Function) . 387
biconected_components (Function) 669
bimetric (Function) . 359
binomial (Function) . 387
bipartition (Function) . 669
block (Function) . 483
blockmatrixp (Function) . 723
bode_gain (Function) . 527
bode_phase (Function) . 528
border (Graphic option) . 620
bothcoef (Function) . 160
boundaries_array (Global variable) 639
box (Function) . 66
boxchar (Option variable) . 66
boxplot (Function) . 556
break (Function) . 484
breakup (Option variable) 246
bug_report (Function) . 5
build_info (Function) . 5
buildq (Function) . 478
burn (Function) . 388

C
cabs (Function) . 41
canform (Function) . 323
canten (Function) . 322
cardinality (Function) . 454

carg (Function) . 67
cartan (Function) . 215
cartesian_product (Function) 454
catch (Function) . 484
cauchysum (Option variable) 375
cbffac (Function) . 152
cdf_bernoulli (Function) 594
cdf_beta (Function) . 580
cdf_binomial (Function) . 591
cdf_cauchy (Function) . 589
cdf_chi2 (Function) . 571
cdf_continuous_uniform (Function) 582
cdf_discrete_uniform (Function) 597
cdf_exp (Function) . 575
cdf_f (Function) . 573
cdf_gamma (Function) . 579
cdf_geometric (Function) 596
cdf_gumbel (Function) . 590
cdf_hypergeometric (Function) 598
cdf_laplace (Function) . 588
cdf_logistic (Function) . 583
cdf_lognormal (Function) 578
cdf_negative_binomial (Function) 599
cdf_normal (Function) . 567
cdf_pareto (Function) . 584
cdf_poisson (Function) . 592
cdf_rank_sum (Function) . 809
cdf_rayleigh (Function) . 586
cdf_signed_rank (Function) 808
cdf_student_t (Function) 569
cdf_weibull (Function) . 584
cdisplay (Function) . 360
ceiling (Function) . 41
central_moment (Function). 544
cequal (Function) . 817
cequalignore (Function) . 817
cf (Function) . 388
cfdisrep (Function) . 389
cfexpand (Function) . 389
cflength (Option variable) 389
cframe_flag (Option variable) 365
cgeodesic (Function) . 359
cgreaterp (Function) . 817
cgreaterpignore (Function) 817
changename (Function) . 313
changevar (Function) . 223
chaosgame (Function) . 649
charat (Function) . 818
charfun (Function) . 42
charfun2 (Function) . 704
charlist (Function) . 818
charp (Function) . 817
charpoly (Function) . 284
chebyshev_t (Function) . 765
chebyshev_u (Function) . 765
check_overlaps (Function). 306
checkdiv (Function) . 359
cholesky (Function) . 724

844 Maxima Manual

christof (Function) . 348
chromatic_index (Function) 669
chromatic_number (Function) 669
cint (Function) . 817
circulant_graph (Function) 664
clear_edge_weight (Function) 670
clear_rules (Function) . 440
clear_vertex_label (Function) 670
clebsch_graph (Function) 665
clessp (Function) . 817
clesspignore (Function) . 817
close (Function) . 814
closefile (Function) . 127
cmetric (Function) . 345
cnonmet_flag (Option variable) 365
coeff (Function) . 160
coefmatrix (Function) . 285
cograd (Function) . 358
col (Function) . 285
collapse (Function) . 127
collectterms (Function) . 783
color (Graphic option) . 623
colorbox (Graphic option) 617
columnop (Function) . 723
columns (Graphic option) 628
columnspace (Function) . 723
columnswap (Function) . 723
columnvector (Function) . 285
combination (Function) . 785
combine (Function) . 160
commutative (Declaration) 42
comp2pui (Function) . 395
compare (Function) . 42
compfile (Function) . 484
compile (Function) . 484
compile_file (Function) . 502
complement_graph (Function) 665
complete_bipartite_graph (Function) 665
complete_graph (Function). 665
components (Function) . 316
concan (Function) . 322
concat (Function) . 128
conjugate (Function) . 286
conmetderiv (Function) . 326
connect_vertices (Function) 684
connected_components (Function) 670
cons (Function) . 443
constant (Special operator) 67
constantp (Function) . 67
constituent (Function) . 817
cont2part (Function) . 398
content (Function) . 160
context (Option variable) 156
contexts (Option variable) 156
continuous_freq (Function) 539
contortion (Function) . 356
contour (Graphic option) 627
contour_levels (Graphic option) 627

contour_plot (Function) . 101
contract (Function) . 316, 399
contract_edge (Function) 684
contragrad (Function) . 358
contrib_ode (Function) . 531
convert (Function) . 828
coord (Function) . 326
copy (Function) . 723
copy_graph (Function) . 664
copylist (Function) . 443
copymatrix (Function) . 286
cor (Function) . 551
cos (Function) . 191
cosh (Function) . 191
cosnpiflag (Option variable) 271
cot (Function) . 191
coth (Function) . 191
cov (Function) . 549
cov1 (Function) . 550
covdiff (Function) . 329
covect (Function) . 285
covers (Function) . 785
create_graph (Function) . 663
create_list (Function) . 444
csc (Function) . 191
csch (Function) . 192
csetup (Function) . 345
cspline (Function) . 705
ct_coords (Option variable) 367
ct_coordsys (Function) . 345
ctaylor (Function) . 350
ctaypov (Option variable) 365
ctaypt (Option variable) . 365
ctayswitch (Option variable) 365
ctayvar (Option variable) 365
ctorsion_flag (Option variable) 365
ctransform (Function) . 357
ctranspose (Function) . 724
ctrgsimp (Option variable) 364
cube_graph (Function) . 665
cunlisp (Function) . 818
current_let_rule_package (Option variable)

. 426
cv (Function) . 544
cycle_digraph (Function) 665
cycle_graph (Function) . 665
cylindrical (Graphic object) 636

D
dblint (Function) . 224
deactivate (Function) . 156
debugmode (Option variable) 17
declare (Function) . 68
declare_translated (Function) 502
declare_weights (Function) 306
decsym (Function) . 322

Appendix A: Function and Variable Index 845

default_let_rule_package (Option variable)
. 426

defcon (Function) . 315
define (Function) . 485
define_variable (Function) 486
defint (Function) . 225
defmatch (Function) . 426
defrule (Function) . 428
deftaylor (Function) . 375
degree_sequence (Function) 671
del (Function) . 216
delay (Graphic option) . 614
delete (Function) . 444
deleten (Function) . 364
delta (Function) . 216
demo (Function) . 9
demoivre (Function) . 93
demoivre (Option variable) 93
denom (Function) . 161
dependencies (System variable) 216
depends (Function) . 216
derivabbrev (Option variable) 217
derivdegree (Function) . 217
derivlist (Function) . 218
derivsubst (Option variable) 218
describe (Function) . 10
desolve (Function) . 261
determinant (Function) . 286
detout (Option variable) . 286
dgauss_a (Function) . 533
dgauss_b (Function) . 533
dgeev (Function) . 709
dgesvd (Function) . 710
diag (Function) . 557
diag_matrix (Function) . 724
diagmatrix (Function) . 287
diagmatrixp (Function) . 359
diagmetric (Option variable) 364
diameter (Function) . 670
diff (Function) . 218, 323
diff (Special symbol) . 219
digitcharp (Function) . 818
dim (Option variable) . 364
dimacs_export (Function) 685
dimacs_import (Function) 685
dimension (Function) . 247
direct (Function) . 400
discrete_freq (Function) 539
disjoin (Function) . 454
disjointp (Function) . 455
disolate (Function) . 73
disp (Function) . 128
dispcon (Function) . 128
dispflag (Option variable) 247
dispform (Function) . 73
dispfun (Function) . 488
dispJordan (Function) . 558
display (Function) . 128

display_format_internal (Option variable) . . 129
display2d (Option variable) 129
disprule (Function) . 428
dispterms (Function) . 129
distrib (Function) . 73
divide (Function) . 161
divisors (Function) . 455
divsum (Function) . 390
dkummer_m (Function) . 533
dkummer_u (Function) . 533
dlange (Function) . 712
do (Special operator) . 506
doallmxops (Option variable) 287
dodecahedron_graph (Function) 665
domain (Option variable) . 93
domxexpt (Option variable) 287
domxmxops (Option variable) 288
domxnctimes (Option variable) 288
dontfactor (Option variable) 288
doscmxops (Option variable) 288
doscmxplus (Option variable) 288
dot0nscsimp (Option variable) 288
dot0simp (Option variable) 288
dot1simp (Option variable) 289
dotassoc (Option variable) 289
dotconstrules (Option variable) 289
dotdistrib (Option variable) 289
dotexptsimp (Option variable) 289
dotident (Option variable) 289
dotproduct (Function) . 724
dotscrules (Option variable) 289
dotsimp (Function) . 306
dpart (Function) . 73
draw (Function) . 642
draw_graph (Function) . 686
draw_graph_program (Option variable) 689
draw2d (Function) . 643
draw3d (Function) . 643
dscalar (Function) . 219, 358

E
echelon (Function) . 289
edge_coloring (Function) 670
edges (Function) . 671
eigens_by_jacobi (Function) 724
eigenvalues (Function) . 290
eigenvectors (Function) . 290
eighth (Function) . 444
einstein (Function) . 349
eivals (Function) . 290
eivects (Function) . 290
elapsed_real_time (Function) 415
elapsed_run_time (Function) 416
ele2comp (Function) . 395
ele2polynome (Function) . 403
ele2pui (Function) . 395
elem (Function) . 395

846 Maxima Manual

elementp (Function) . 456
eliminate (Function) . 161
ellipse (Graphic object) 633
elliptic_e (Function) . 208
elliptic_ec (Function) . 209
elliptic_eu (Function) . 208
elliptic_f (Function) . 208
elliptic_kc (Function) . 209
elliptic_pi (Function) . 209
ematrix (Function) . 291
empty_graph (Function) . 665
emptyp (Function) . 456
endcons (Function) . 444
enhanced3d (Graphic option) 617
entermatrix (Function) . 291
entertensor (Function) . 313
entier (Function) . 43
eps_height (Graphic option) 615
eps_width (Graphic option) 615
epsilon_lp (Option variable) 779
equal (Function) . 43
equalp (Function) . 270
equiv_classes (Function) 456
erf (Function) . 225
erfflag (Option variable) 225
errcatch (Function) . 508
error (Function) . 509
error (System variable) . 509
error_size (Option variable) 129
error_syms (Option variable) 130
errormsg (Function) . 509
euler (Function) . 390
ev (Function) . 17
ev_point (Global variable) 838
eval (Operator) . 46
eval_string (Function) . 819
evenp (Function) . 46
every (Function) . 456
evflag (Property) . 19
evfun (Property) . 20
evolution (Function) . 649
evolution2d (Function) . 650
evundiff (Function) . 325
example (Function) . 11
exp (Function) . 74
expand (Function) . 94
expandwrt (Function) . 94
expandwrt_denom (Option variable) 94
expandwrt_factored (Function) 95
explicit (Graphic object) 634
explose (Function) . 399
expon (Option variable) . 95
exponentialize (Function) 95
exponentialize (Option variable) 95
expop (Option variable) . 95
express (Function) . 219
expt (Function) . 130
exptdispflag (Option variable) 131

exptisolate (Option variable) 74
exptsubst (Option variable) 74
exsec (Function) . 785
extdiff (Function) . 338
extract_linear_equations (Function) 306
extremal_subset (Function) 457
ezgcd (Function) . 161

F
f90 (Function) . 659
facexpand (Option variable) 161
facsum (Function) . 782
facsum_combine (Global variable) 782
factcomb (Function) . 162
factlim (Option variable) . 95
factor (Function) . 162
factorfacsum (Function) . 783
factorflag (Option variable) 164
factorial (Function) . 390
factorout (Function) . 164
factorsum (Function) . 164
facts (Function) . 156, 157
false (Constant) . 181
fast_central_elements (Function) 306
fast_linsolve (Function) 305
fasttimes (Function) . 165
fb (Variable) . 367
feature (Declaration) . 413
featurep (Function) . 414
features (Declaration) . 157
fft (Function) . 266
fib (Function) . 390
fibtophi (Function) . 391
fifth (Function) . 444
file_name (Graphic option) 613
file_output_append (Option variable) 126
file_search (Function) . 131
file_search_demo (Option variable) 131
file_search_lisp (Option variable) 131
file_search_maxima (Option variable) 131
file_type (Function) . 132
filename_merge (Function). 131
fill_color (Graphic option) 624
fill_density (Graphic option) 624
fillarray (Function) . 276
filled_func (Graphic option) 619
find_root (Function) . 268
find_root_abs (Option variable) 268
find_root_error (Option variable) 268
find_root_rel (Option variable) 268
findde (Function) . 357
first (Function) . 445
fix (Function) . 46
flatten (Function) . 458
flength (Function) . 814
flipflag (Option variable) 315
float (Function) . 152

Appendix A: Function and Variable Index 847

float2bf (Option variable) 152
floatnump (Function) . 152
floor (Function) . 45
flower_snark (Function) . 665
flush (Function) . 325
flush1deriv (Function) . 328
flushd (Function) . 326
flushnd (Function) . 326
font (Graphic option) . 603
font_size (Graphic option) 605
for (Special operator) . 509
forget (Function) . 157
fortindent (Option variable) 266
fortran (Function) . 267
fortspaces (Option variable) 268
fourcos (Function) . 271
fourexpand (Function) . 271
fourier (Function) . 270
fourint (Function) . 271
fourintcos (Function) . 271
fourintsin (Function) . 271
foursimp (Function) . 271
foursin (Function) . 271
fourth (Function) . 445
fposition (Function) . 815
fpprec (Option variable) . 152
fpprintprec (Option variable) 152
frame_bracket (Function) 353
freeof (Function) . 74
freshline (Function) . 815
from_adjacency_matrix (Function) 665
frucht_graph (Function) . 665
full_listify (Function) . 459
fullmap (Function) . 46
fullmapl (Function) . 46
fullratsimp (Function) . 165
fullratsubst (Function) . 165
fullsetify (Function) . 459
funcsolve (Function) . 247
functions (System variable) 489
fundef (Function) . 490
funmake (Function) . 490
funp (Function) . 270

G
gamma (Function) . 200
gammalim (Option variable) 200
gauss_a (Function) . 533
gauss_b (Function) . 533
gaussprob (Function) . 785
gcd (Function) . 166
gcdex (Function) . 167
gcdivide (Function) . 784
gcfac (Function) . 788
gcfactor (Function) . 167
gd (Function) . 785
gdet (System variable) . 365

gen_laguerre (Function) . 765
genfact (Function) . 76
genindex (Option variable) 418
genmatrix (Function) . 292
gensumnum (Option variable) 418
geomap (Graphic object) . 639
geometric (Function) . 784
geometric_mean (Function). 547
geosum (Function) . 785
get (Function) . 445
get_edge_weight (Function) 671
get_lu_factors (Function). 725
get_pixel (Function) . 645
get_tex_environment (Function) 147
get_tex_environment_default (Function) . . . 148
get_vertex_label (Function) 671
gfactor (Function) . 167
gfactorsum (Function) . 167
ggf (Function) . 661
GGFCFMAX (Option variable) 661
GGFINFINITY (Option variable) 661
girth (Function) . 673
global_variances (Function) 550
globalsolve (Option variable) 248
gnuplot_close (Function) 122
gnuplot_replot (Function). 122
gnuplot_reset (Function) 122
gnuplot_restart (Function) 122
gnuplot_start (Function) 122
go (Function) . 509
Gosper (Function) . 836
gosper_in_zeilberger (Global variable) 838
GosperSum (Function) . 836
gr2d (Scene constructor) . 629
gr3d (Scene constructor) . 629
gradef (Function) . 220
gradefs (System variable) 221
gramschmidt (Function) . 293
graph_center (Function) . 672
graph_charpoly (Function). 672
graph_eigenvalues (Function) 672
graph_order (Function) . 673
graph_periphery (Function) 672
graph_product (Function) 665
graph_size (Function) . 672
graph_union (Function) . 666
graph6_decode (Function) 685
graph6_encode (Function) 685
graph6_export (Function) 685
graph6_import (Function) 685
grid (Graphic option) . 605
grid_graph (Function) . 666
grind (Function) . 132
grind (Option variable) . 132
grobner_basis (Function) 305
grotzch_graph (Function) 666

848 Maxima Manual

H
halfangles (Option variable) 192
hamilton_cycle (Function). 673
hamilton_path (Function) 673
hankel (Function) . 725
harmonic (Function) . 784
harmonic_mean (Function) 547
hav (Function) . 785
head_angle (Graphic option) 621
head_both (Graphic option) 621
head_length (Graphic option) 621
head_type (Graphic option) 622
heawood_graph (Function) 666
hermite (Function) . 765
hessian (Function) . 726
hgfred (Function) . 203
hilbert_matrix (Function). 726
hipow (Function) . 168
histogram (Function) . 553
hodge (Function) . 339
horner (Function) . 268

I
ibase (Option variable) . 134
ic_convert (Function) . 340
ic1 (Function) . 262
ic2 (Function) . 262
icc1 (Variable) . 332
icc2 (Variable) . 333
ichr1 (Function) . 328
ichr2 (Function) . 329
icosahedron_graph (Function) 666
icounter (Option variable) 319
icurvature (Function) . 329
ident (Function) . 294
identfor (Function) . 726
identity (Function) . 459
idiff (Function) . 324
idim (Function) . 328
idummy (Function) . 319
idummyx (Option variable) 319
ieqn (Function) . 249
ieqnprint (Option variable) 249
if (Special operator) . 509
ifactors (Function) . 391
ifb (Variable) . 332
ifc1 (Variable) . 333
ifc2 (Variable) . 333
ifg (Variable) . 334
ifgi (Variable) . 334
ifr (Variable) . 333
iframe_bracket_form (Option variable) 334
iframes (Function) . 332
ifri (Variable) . 334
ifs (Function) . 650
ift (Function) . 265, 266
igeodesic_coords (Function) 330

igeowedge_flag (Option variable) 339
ikt1 (Variable) . 335
ikt2 (Variable) . 335
ilt (Function) . 225
image (Graphic object) . 637
imagpart (Function) . 76
imetric (Function) . 328
imetric (System variable) 328
implicit (Graphic object) 635
implicit_derivative (Function) 699
implicit_plot (Function) 701
in_neighbors (Function) . 674
in_netmath (Option variable) 101
inchar (Option variable) . 134
ind (Constant) . 181
indexed_tensor (Function). 316
indices (Function) . 314
induced_subgraph (Function) 666
inf (Constant) . 181
inference_result (Function) 795
inferencep (Function) . 796
infeval (Option variable) . 22
infinity (Constant) . 181
infix (Function) . 76
inflag (Option variable) . 78
infolists (System variable) 418
init_atensor (Function) . 372
init_ctensor (Function) . 347
inm (Variable) . 334
inmc1 (Variable) . 334
inmc2 (Variable) . 334
innerproduct (Function) . 294
inpart (Function) . 78
inprod (Function) . 294
inrt (Function) . 391
integer_partitions (Function) 459
integerp (Function) . 419
integrate (Function) . 226
integrate_use_rootsof (Option variable) 230
integration_constant (System variable) 229
integration_constant_counter (System variable)

. 229
intersect (Function) . 460
intersection (Function) . 460
intervalp (Function) . 765
intfaclim (Option variable) 168
intopois (Function) . 200
intosum (Function) . 95
inv_mod (Function) . 391
invariant1 (Function) . 359
invariant2 (Function) . 359
inverse_jacobi_cd (Function) 208
inverse_jacobi_cn (Function) 207
inverse_jacobi_cs (Function) 208
inverse_jacobi_dc (Function) 208
inverse_jacobi_dn (Function) 207
inverse_jacobi_ds (Function) 208
inverse_jacobi_nc (Function) 208

Appendix A: Function and Variable Index 849

inverse_jacobi_nd (Function) 208
inverse_jacobi_ns (Function) 207
inverse_jacobi_sc (Function) 207
inverse_jacobi_sd (Function) 207
inverse_jacobi_sn (Function) 207
invert (Function) . 294
invert_by_lu (Function) . 726
ip_grid (Graphic option) 629
ip_grid_in (Graphic option) 629
is (Function) . 47
is_biconnected (Function). 674
is_bipartite (Function) . 674
is_connected (Function) . 674
is_digraph (Function) . 674
is_edge_in_graph (Function) 675
is_graph (Function) . 675
is_graph_or_digraph (Function) 675
is_isomorphic (Function) 675
is_planar (Function) . 675
is_sconnected (Function) 676
is_tree (Function) . 676
is_vertex_in_graph (Function) 676
ishow (Function) . 313
isolate (Function) . 78
isolate_wrt_times (Option variable) 79
isomorphism (Function) . 673
isqrt (Function) . 48
items_inference (Function) 796
itr (Variable) . 335

J
jacobi (Function) . 392
jacobi_cd (Function) . 207
jacobi_cn (Function) . 206
jacobi_cs (Function) . 207
jacobi_dc (Function) . 207
jacobi_dn (Function) . 206
jacobi_ds (Function) . 207
jacobi_nc (Function) . 207
jacobi_nd (Function) . 207
jacobi_ns (Function) . 207
jacobi_p (Function) . 765
jacobi_sc (Function) . 207
jacobi_sd (Function) . 207
jacobi_sn (Function) . 206
jacobian (Function) . 726
JF (Function) . 557
join (Function) . 445
jordan (Function) . 558
julia (Function) . 650

K
kdels (Function) . 319
kdelta (Function) . 319
keepfloat (Option variable) 168
key (Graphic option) . 626

kill (Function) . 22
killcontext (Function) . 157
kinvariant (Variable) . 367
kostka (Function) . 403
kron_delta (Function) . 461
kronecker_product (Function) 727
kt (Variable) . 367
kummer_m (Function) . 533
kummer_u (Function) . 533
kurtosis (Function) . 548
kurtosis_bernoulli (Function) 595
kurtosis_beta (Function) 581
kurtosis_binomial (Function) 592
kurtosis_chi2 (Function) 572
kurtosis_continuous_uniform (Function) . . . 582
kurtosis_discrete_uniform (Function) 597
kurtosis_exp (Function) . 577
kurtosis_f (Function) . 574
kurtosis_gamma (Function). 580
kurtosis_geometric (Function) 596
kurtosis_gumbel (Function) 590
kurtosis_hypergeometric (Function) 598
kurtosis_laplace (Function) 589
kurtosis_logistic (Function) 583
kurtosis_lognormal (Function) 579
kurtosis_negative_binomial (Function) 600
kurtosis_normal (Function) 568
kurtosis_pareto (Function) 584
kurtosis_poisson (Function) 593
kurtosis_rayleigh (Function) 588
kurtosis_student_t (Function) 570
kurtosis_weibull (Function) 585

L
label (Graphic object) . 633
label_alignment (Graphic option) 623
label_orientation (Graphic option) 623
labels (Function) . 23
labels (System variable) . 23
lagrange (Function) . 703
laguerre (Function) . 765
lambda (Function) . 492
laplace (Function) . 221
laplacian_matrix (Function) 676
lassociative (Declaration) 95
last (Function) . 446
lbfgs (Function) . 713
lbfgs_ncorrections (Variable) 717
lbfgs_nfeval_max (Variable) 717
lc_l (Function) . 321
lc_u (Function) . 321
lc2kdt (Function) . 320
lcharp (Function) . 818
lcm (Function) . 392
ldefint (Function) . 230
ldisp (Function) . 135
ldisplay (Function) . 135

850 Maxima Manual

legendre_p (Function) . 765
legendre_q (Function) . 765
leinstein (Function) . 349
length (Function) . 446
let (Function) . 428, 429
let_rule_packages (Option variable) 431
letrat (Option variable) . 430
letrules (Function) . 430
letsimp (Function) . 430
levi_civita (Function) . 320
lfg (Variable) . 366
lfreeof (Function) . 80
lg (Variable) . 366
lgtreillis (Function) . 403
lhospitallim (Option variable) 211
lhs (Function) . 250
li (Function) . 185
liediff (Function) . 324
limit (Function) . 211
limsubst (Option variable) 211
Lindstedt (Function) . 719
line_graph (Function) . 666
line_type (Graphic option) 625
line_width (Graphic option) 624
linear (Declaration) . 96
linear (Function) . 784
linear_program (Function). 779
linear_solver (Global variable) 837
linearinterpol (Function). 704
linechar (Option variable) 136
linel (Option variable) . 136
linenum (System variable) . 23
linsolve (Function) . 250
linsolve_params (Option variable) 252
linsolvewarn (Option variable) 252
lispdisp (Option variable) 136
list_correlations (Function) 552
list_nc_monomials (Function) 307
listarith (Option variable) 446
listarray (Function) . 277
listconstvars (Option variable) 79
listdummyvars (Option variable) 79
listify (Function) . 462
listoftens (Function) . 313
listofvars (Function) . 80
listp (Function) . 446, 727
lmax (Function) . 48
lmin (Function) . 48
lmxchar (Option variable) 294
load (Function) . 136
loadfile (Function) . 137
loadprint (Option variable) 137
local (Function) . 494
locate_matrix_entry (Function) 727
log (Function) . 186
logabs (Option variable) . 186
logand (Function) . 784
logarc (Function) . 187

logarc (Option variable) . 186
logconcoeffp (Option variable) 187
logcontract (Function) . 187
logexpand (Option variable) 187
lognegint (Option variable) 187
lognumer (Option variable) 187
logor (Function) . 784
logsimp (Option variable) 188
logx (Graphic option) . 602
logxor (Function) . 784
logy (Graphic option) . 602
logz (Graphic option) . 602
lopow (Function) . 80
lorentz_gauge (Function) 330
lowercasep (Function) . 818
lpart (Function) . 80
lratsubst (Function) . 168
lreduce (Function) . 463
lriem (Variable) . 366
lriemann (Function) . 349
lsquares_estimates (Function) 735
lsquares_estimates_approximate (Function)

. 737
lsquares_estimates_exact (Function) 736
lsquares_mse (Function) . 738
lsquares_residual_mse (Function) 740
lsquares_residuals (Function) 740
lsum (Function) . 91
ltreillis (Function) . 403
lu_backsub (Function) . 727
lu_factor (Function) . 727

M
m1pbranch (Option variable) 419
macroexpand (Function) . 480
macroexpand1 (Function) . 480
macroexpansion (Option variable) 494
macros (Global variable) . 481
mainvar (Declaration) . 96
make_array (Function) . 279
make_graph (Function) . 666
make_level_picture (Function) 643
make_poly_continent (Function) 647
make_poly_country (Function) 646
make_polygon (Function) . 645
make_random_state (Function) 49
make_rgb_picture (Function) 644
make_transform (Function). 120
makebox (Function) . 326
makefact (Function) . 200
makegamma (Function) . 200
makelist (Function) . 446
makeOrders (Function) . 745
makeset (Function) . 463
mandelbrot (Function) . 650
map (Function) . 510
mapatom (Function) . 511

Appendix A: Function and Variable Index 851

maperror (Option variable) 511
maplist (Function) . 511
mapprint (Option variable) 511
mat_cond (Function) . 729
mat_fullunblocker (Function) 730
mat_function (Function) . 560
mat_norm (Function) . 729
mat_trace (Function) . 730
mat_unblocker (Function) 730
matchdeclare (Function) . 431
matchfix (Function) . 433
matrix (Function) . 294
matrix_element_add (Option variable) 297
matrix_element_mult (Option variable) 298
matrix_element_transpose (Option variable)

. 298
matrix_size (Function) . 730
matrixmap (Function) . 297
matrixp (Function) 297, 729, 730
mattrace (Function) . 299
max (Function) . 48
max_clique (Function) . 677
max_degree (Function) . 677
max_flow (Function) . 677
max_independent_set (Function) 678
max_matching (Function) . 678
MAX_ORD (Global variable) 837
maxapplydepth (Option variable) 96
maxapplyheight (Option variable) 96
maxi (Function) . 544
maxima_tempdir (System variable) 414
maxima_userdir (System variable) 414
maximize_lp (Function) . 779
maxnegex (Option variable) 96
maxposex (Option variable) 96
maxpsifracdenom (Option variable) 202
maxpsifracnum (Option variable) 202
maxpsinegint (Option variable) 202
maxpsiposint (Option variable) 202
maxtayorder (Option variable) 376
maybe (Function) . 47
mean (Function) . 542
mean_bernoulli (Function). 594
mean_beta (Function) . 581
mean_binomial (Function) 591
mean_chi2 (Function) . 571
mean_continuous_uniform (Function) 582
mean_deviation (Function). 546
mean_discrete_uniform (Function) 597
mean_exp (Function) . 576
mean_f (Function) . 574
mean_gamma (Function) . 579
mean_geometric (Function). 596
mean_gumbel (Function) . 590
mean_hypergeometric (Function) 598
mean_laplace (Function) . 589
mean_logistic (Function) 583
mean_lognormal (Function). 578

mean_negative_binomial (Function) 600

mean_normal (Function) . 568

mean_pareto (Function) . 584

mean_poisson (Function) . 593

mean_rayleigh (Function) 586

mean_student_t (Function). 569

mean_weibull (Function) . 585

median (Function) . 545

median_deviation (Function) 546, 547

member (Function) . 446

method (System variable) . 532

metricexpandall (Function) 833

min (Function) . 48

min_degree (Function) . 678

min_vertex_cover (Function) 678

minf (Constant) . 181

minfactorial (Function) . 392

mini (Function) . 544

minimalPoly (Function) . 559

minimize_lp (Function) . 780

minimum_spanning_tree (Function) 678

minor (Function) . 299

mnewton (Function) . 747

mod (Function) . 49

mod_big_prime (Global variable) 838

mod_test (Global variable) 838

mod_threshold (Global variable) 838

mode_check_errorp (Option variable) 497

mode_check_warnp (Option variable) 497

mode_checkp (Option variable) 497

mode_declare (Function) . 497

mode_identity (Function) 498

ModeMatrix (Function) . 559

modular_linear_solver (Global variable) 838

modulus (Option variable) 169

moebius (Function) . 464

mon2schur (Function) . 396

mono (Function) . 306

monomial_dimensions (Function) 306

multi_elem (Function) . 396

multi_orbit (Function) . 401

multi_pui (Function) . 396

multinomial (Function) . 410

multinomial_coeff (Function) 464

multiplicative (Declaration) 96

multiplicities (System variable) 252

multsym (Function) . 401

multthru (Function) . 80

mycielski_graph (Function) 667

myoptions (System variable). 23

852 Maxima Manual

N
nc_degree (Function) . 306
ncexpt (Function) . 299
ncharpoly (Function) . 299
negative_picture (Function) 644
negdistrib (Option variable) 97
negsumdispflag (Option variable) 97
neighbors (Function) . 679
new_graph (Function) . 667
newcontext (Function) . 157
newdet (Function) . 300
newline (Function) . 815
newline (Variable) . 818
newton (Function) . 269
newtonepsilon (Option variable) 747
newtonmaxiter (Option variable) 747
next_prime (Function) . 392
nextlayerfactor (Global variable). 782
niceindices (Function) . 376
niceindicespref (Option variable) 377
ninth (Function) . 447
nm (Variable) . 367
nmc (Variable) . 367
noeval (Special symbol) . 97
nolabels (Option variable) 23
noncentral_moment (Function) 543
nonegative_lp (Option variable) 780
nonmetricity (Function) . 356
nonnegintegerp (Function). 731
nonscalar (Declaration) . 300
nonscalarp (Function) . 300
nonzeroandfreeof (Function) 784
not (Operator) . 40
notequal (Function) . 45
noun (Declaration) . 97
noundisp (Option variable) 97
nounify (Function) . 81
nouns (Special symbol) . 97
np (Variable) . 367
npi (Variable) . 367
nptetrad (Function) . 353
nroots (Function) . 252
nterms (Function) . 81
ntermst (Function) . 360
nthroot (Function) . 252
nticks (Graphic option) . 625
ntrig (Package) . 192
nullity (Function) . 731
nullspace (Function) . 731
num (Function) . 169
num_distinct_partitions (Function) 465
num_partitions (Function). 465
numbered_boundaries (Function) 645
numberp (Function) . 420
numer (Special symbol) . 97
numerval (Function) . 97
numfactor (Function) . 200
nusum (Function) . 377

O
obase (Option variable) . 137
odd_girth (Function) . 679
oddp (Function) . 49
ode_check (Function) . 532
ode2 (Function) . 262
odelin (Function) . 531
op (Function) . 81
opena (Function) . 815
opena_binary (Function) . 752
openr (Function) . 815
openr_binary (Function) . 752
openw (Function) . 815
openw_binary (Function) . 752
operatorp (Function) . 82
opproperties (System variable) 98
opsubst (Function) . 755
opsubst (Option variable) . 98
optimize (Function) . 82
optimprefix (Option variable) 82
optionset (Option variable) 24
or (Operator) . 40
orbit (Function) . 402
orbits (Function) . 651
ordergreat (Function) . 82
ordergreatp (Function) . 83
orderless (Function) . 82
orderlessp (Function) . 83
orthogonal_complement (Function) 731
orthopoly_recur (Function) 766
orthopoly_returns_intervals (Variable) 766
orthopoly_weight (Function) 766
out_neighbors (Function) 679
outative (Declaration). 98
outchar (Option variable) 137
outermap (Function) . 512
outofpois (Function) . 201

P
packagefile (Option variable) 138
pade (Function) . 378
palette (Graphic option) 616
parametric (Graphic object) 637
parametric_surface (Graphic object). 641
parGosper (Function) . 837
parse_string (Function) . 819
part (Function) . 84
part2cont (Function) . 399
partfrac (Function) . 392
partition (Function) . 84
partition_set (Function) 466
partpol (Function) . 399
partswitch (Option variable) 85
path_digraph (Function) . 667
path_graph (Function) . 667
pdf_bernoulli (Function) 594
pdf_beta (Function) . 580

Appendix A: Function and Variable Index 853

pdf_binomial (Function) . 591
pdf_cauchy (Function) . 589
pdf_chi2 (Function) . 570
pdf_continuous_uniform (Function) 582
pdf_discrete_uniform (Function) 597
pdf_exp (Function) . 575
pdf_f (Function) . 573
pdf_gamma (Function) . 579
pdf_geometric (Function) 595
pdf_gumbel (Function) . 590
pdf_hypergeometric (Function) 598
pdf_laplace (Function) . 588
pdf_logistic (Function) . 583
pdf_lognormal (Function) 578
pdf_negative_binomial (Function) 599
pdf_normal (Function) . 567
pdf_pareto (Function) . 584
pdf_poisson (Function) . 592
pdf_rank_sum (Function) . 809
pdf_rayleigh (Function) . 585
pdf_signed_rank (Function) 808
pdf_student_t (Function) 569
pdf_weibull (Function) . 584
pearson_skewness (Function) 549
permanent (Function) . 300
permut (Function) . 410
permutation (Function) . 785
permutations (Function) . 466
petersen_graph (Function). 667
petrov (Function) . 354
pfeformat (Option variable) 138
pic_height (Graphic option) 614
pic_width (Graphic option) 614
pickapart (Function) . 85
picture_equalp (Function). 644
picturep (Function) . 644
piece (System variable) . 86
piechart (Function) . 555
planar_embedding (Function) 679
playback (Function) . 24
plog (Function) . 188
plot_options (System variable) 109
plot2d (Function) . 101
plot3d (Function) . 117
plotdf (Function) . 769
plsquares (Function) . 741
pochhammer (Function) . 766
pochhammer_max_index (Variable). 767
point_size (Graphic option) 618
point_type (Graphic option) 618
points (Graphic object) . 630
points_joined (Graphic option) 619
poisdiff (Function) . 201
poisexpt (Function) . 201
poisint (Function) . 201
poislim (Option variable) 201
poismap (Function) . 201
poisplus (Function) . 201

poissimp (Function) . 201
poisson (Special symbol) 201
poissubst (Function) . 201
poistimes (Function) . 202
poistrim (Function) . 202
polar (Graphic object) . 636
polarform (Function) . 86
polartorect (Function) 265, 266
poly_add (Function) . 693
poly_buchberger (Function) 695
poly_buchberger_criterion (Function) 695
poly_coefficient_ring (Option variable) 692
poly_colon_ideal (Function) 696
poly_content (Function) . 694
poly_depends_p (Function). 696
poly_elimination_ideal (Function) 696
poly_elimination_order (Option variable) . . . 692
poly_exact_divide (Function) 695
poly_expand (Function) . 694
poly_expt (Function) . 694
poly_gcd (Function) . 696
poly_grobner (Function) . 696
poly_grobner_algorithm (Option variable) . . . 693
poly_grobner_debug (Option variable) 692
poly_grobner_equal (Function) 696
poly_grobner_member (Function) 697
poly_grobner_subsetp (Function) 697
poly_ideal_intersection (Function) 696
poly_ideal_polysaturation (Function) 697
poly_ideal_polysaturation1 (Function) 697
poly_ideal_saturation (Function) 697
poly_ideal_saturation1 (Function) 697
poly_lcm (Function) . 696
poly_minimization (Function) 695
poly_monomial_order (Option variable) 692
poly_multiply (Function) 693
poly_normal_form (Function) 695
poly_normalize (Function). 694
poly_normalize_list (Function) 696
poly_polysaturation_extension (Function)

. 697
poly_primary_elimination_order (Option

variable) . 692
poly_primitive_part (Function) 693
poly_pseudo_divide (Function) 695
poly_reduced_grobner (Function) 696
poly_reduction (Function). 695
poly_return_term_list (Option variable) 692
poly_s_polynomial (Function) 693
poly_saturation_extension (Function) 697
poly_secondary_elimination_order (Option

variable) . 692
poly_subtract (Function) 693
poly_top_reduction_only (Option variable) . . 693
polydecomp (Function) . 169
polygon (Graphic object) 631
polymod (Function) . 48
polynome2ele (Function) . 404

854 Maxima Manual

polynomialp (Function) . 731
polytocompanion (Function) 732
posfun (Declaration) . 98
potential (Function) . 231
power_mod (Function) . 393
powerdisp (Option variable) 379
powers (Function) . 86
powerseries (Function) . 379
powerset (Function) . 466
pred (Operator) . 49
prederror (Option variable) 511
prev_prime (Function) . 393
primep (Function) . 393
primep_number_of_tests (Option variable) . . . 393
print (Function) . 138
print_graph (Function) . 679
printf (Function) . 815
printfile (Function) . 139
printpois (Function) . 202
printprops (Function) . 25
prodrac (Function) . 404
product (Function) . 87
product_use_gamma (Option variable) 794
programmode (Option variable) 252
prompt (Option variable) . 25
properties (Function) . 420
props (Special symbol) . 420
propvars (Function) . 420
psexpand (Option variable) 380
psi (Function) . 202, 354
ptriangularize (Function). 732
pui (Function) . 397
pui_direct (Function) . 402
pui2comp (Function) . 397
pui2ele (Function) . 398
pui2polynome (Function) . 404
puireduc (Function) . 398
put (Function) . 420

Q
qput (Function) . 421
qrange (Function) . 546
quad_qag (Function) . 233
quad_qagi (Function) . 235
quad_qags (Function) . 234
quad_qawc (Function) . 236
quad_qawf (Function) . 238
quad_qawo (Function) . 239
quad_qaws (Function) . 240
quantile (Function) . 545
quantile_bernoulli (Function) 594
quantile_beta (Function) 581
quantile_binomial (Function) 591
quantile_cauchy (Function) 589
quantile_chi2 (Function) 571
quantile_continuous_uniform (Function) . . . 582
quantile_discrete_uniform (Function) 597

quantile_exp (Function) . 575
quantile_f (Function) . 574
quantile_gamma (Function). 579
quantile_geometric (Function) 596
quantile_gumbel (Function) 590
quantile_hypergeometric (Function) 598
quantile_laplace (Function) 588
quantile_logistic (Function) 583
quantile_lognormal (Function) 578
quantile_negative_binomial (Function) 599
quantile_normal (Function) 568
quantile_pareto (Function) 584
quantile_poisson (Function) 593
quantile_rayleigh (Function) 586
quantile_student_t (Function) 569
quantile_weibull (Function) 585
quartile_skewness (Function) 549
quit (Function) . 25
qunit (Function) . 393
quotient (Function) . 170

R
radcan (Function) . 98
radexpand (Option variable) 98
radius (Function) . 680
radsubstflag (Option variable) 99
random (Function) . 50
random_bernoulli (Function) 595
random_beta (Function) . 582
random_beta_algorithm (Option variable) 581
random_binomial (Function) 592
random_binomial_algorithm (Option variable)

. 592
random_bipartite_graph (Function) 667
random_cauchy (Function) 589
random_chi2 (Function) . 573
random_chi2_algorithm (Option variable) 573
random_continuous_uniform (Function) 583
random_digraph (Function). 667
random_discrete_uniform (Function) 597
random_exp (Function) . 578
random_exp_algorithm (Option variable) 577
random_f (Function) . 575
random_f_algorithm (Option variable) 574
random_gamma (Function) . 580
random_gamma_algorithm (Option variable) . . . 580
random_geometric (Function) 596
random_geometric_algorithm (Option variable)

. 596
random_graph (Function) . 667
random_graph1 (Function) 667
random_gumbel (Function) 591
random_hypergeometric (Function) 599
random_hypergeometric_algorithm (Option

variable) . 599
random_laplace (Function). 589
random_logistic (Function) 583

Appendix A: Function and Variable Index 855

random_lognormal (Function) 579
random_negative_binomial (Function) 600
random_negative_binomial_algorithm (Option

variable) . 600
random_network (Function). 668
random_normal (Function) 569
random_normal_algorithm (Option variable) . . 568
random_pareto (Function) 584
random_permutation (Function) 467
random_poisson (Function). 593
random_poisson_algorithm (Option variable)

. 593
random_rayleigh (Function) 588
random_regular_graph (Function) 667
random_student_t (Function) 570
random_student_t_algorithm (Option variable)

. 570
random_tournament (Function) 668
random_tree (Function) . 668
random_weibull (Function). 585
range (Function) . 545
rank (Function) . 300, 732
rassociative (Declaration) 99
rat (Function) . 170
ratalgdenom (Option variable) 171
ratchristof (Option variable) 365
ratcoef (Function) . 171
ratdenom (Function) . 172
ratdenomdivide (Option variable) 172
ratdiff (Function) . 173
ratdisrep (Function) . 173
rateinstein (Option variable) 365
ratepsilon (Option variable) 174
ratexpand (Function) . 174
ratexpand (Option variable) 174
ratfac (Option variable) . 174
rational (Function) . 783
rationalize (Function) . 50
ratmx (Option variable) . 300
ratnumer (Function) . 175
ratnump (Function) . 175
ratp (Function) . 175
ratprint (Option variable) 175
ratriemann (Option variable) 366
ratsimp (Function) . 175
ratsimpexpons (Option variable) 176
ratsubst (Function) . 176
ratvars (Function) . 177
ratvars (System variable) 177
ratweight (Function) . 177
ratweights (System variable) 178
ratweyl (Option variable) 366
ratwtlvl (Option variable) 178
read (Function) . 140
read_array (Function) . 750
read_binary_array (Function) 752
read_binary_list (Function) 752
read_binary_matrix (Function) 752

read_hashed_array (Function) 750
read_list (Function) . 751
read_matrix (Function) . 750
read_nested_list (Function) 751
read_xpm (Function) . 645
readline (Function) . 816
readonly (Function) . 140
realonly (Option variable) 252
realpart (Function) . 88
realroots (Function) . 253
rearray (Function) . 280
rectangle (Graphic object) 632
rectform (Function) . 88
recttopolar (Function) 265, 266
rediff (Function) . 324
reduce_consts (Function) 787
reduce_order (Function) . 791
refcheck (Option variable) 519
region_boundaries (Function) 645
rem (Function) . 421
remainder (Function) . 178
remarray (Function) . 280
rembox (Function) . 88
remcomps (Function) . 318
remcon (Function) . 315, 316
remcoord (Function) . 326
remfun (Function) . 270
remfunction (Function) . 25
remlet (Function) . 435
remove (Function) . 421
remove_edge (Function) . 684
remove_vertex (Function) 685
rempart (Function) . 783
remrule (Function) . 435
remsym (Function) . 323
remvalue (Function) . 422
rename (Function) . 314
reset (Function) . 25
residue (Function) . 231
resolvante (Function) . 405
resolvante_alternee1 (Function) 408
resolvante_bipartite (Function) 408
resolvante_diedrale (Function) 409
resolvante_klein (Function) 409
resolvante_klein3 (Function) 409
resolvante_produit_sym (Function) 409
resolvante_unitaire (Function) 410
resolvante_vierer (Function) 410
rest (Function) . 447
resultant (Function) . 178
resultant (Variable) . 178
return (Function) . 512
reveal (Function) . 140
reverse (Function) . 447
revert (Function) . 380
revert2 (Function) . 380
rgb2level (Function) . 645
rhs (Function) . 253

856 Maxima Manual

ric (Variable) . 366
ricci (Function) . 348
riem (Variable) . 366
riemann (Function) . 349
rinvariant (Function) . 350
risch (Function) . 231
rk (Function) . 651
rmxchar (Option variable) 141
rncombine (Function) . 422
romberg (Function) . 775
rombergabs (Option variable) 776
rombergit (Option variable) 777
rombergmin (Option variable) 777
rombergtol (Option variable) 777
room (Function) . 414
rootsconmode (Option variable) 254
rootscontract (Function) 254
rootsepsilon (Option variable) 255
rot_horizontal (Graphic option) 612
rot_vertical (Graphic option) 612
round (Function) . 52
row (Function) . 300
rowop (Function) . 732
rowswap (Function) . 732
rreduce (Function) . 467
run_testsuite (Function) . 5

S
save (Function) . 141, 142
savedef (Option variable) 142
savefactors (Option variable) 178
scalarmatrixp (Option variable) 301
scalarp (Function) . 422
scaled_bessel_i (Function) 199
scaled_bessel_i0 (Function) 200
scaled_bessel_i1 (Function) 200
scalefactors (Function) . 301
scanmap (Function) . 512
scatterplot (Function) . 554
schur2comp (Function) . 398
sconcat (Function) . 128
scopy (Function) . 819
scsimp (Function) . 99
scurvature (Function) . 349
sdowncase (Function) . 819
sec (Function) . 192
sech (Function) . 192
second (Function) . 447
sequal (Function) . 819
sequalignore (Function) . 819
set_edge_weight (Function) 680
set_partitions (Function). 469
set_plot_option (Function) 121
set_random_state (Function) 49
set_tex_environment (Function) 147
set_tex_environment_default (Function) . . . 148
set_up_dot_simplifications (Function) 305

set_vertex_label (Function) 680
setcheck (Option variable) 520
setcheckbreak (Option variable) 520
setdifference (Function) 468
setelmx (Function) . 301
setequalp (Function) . 468
setify (Function) . 468
setp (Function) . 469
setunits (Function) . 826
setup_autoload (Function). 422
setval (System variable) . 520
seventh (Function) . 448
sexplode (Function) . 819
sf (Function) . 373
shortest_path (Function) 681
show (Function) . 143
showcomps (Function) . 318
showratvars (Function) . 143
showtime (Option variable) 26
sign (Function) . 52
signum (Function) . 52
similaritytransform (Function) 301
simple_linear_regression (Function) 807
simplified_output (Global variable) 837
simplify_products (Option variable) 792
simplify_sum (Function) . 792
simplode (Function) . 820
simpmetderiv (Function) . 327
simpsum (Option variable) . 99
simtran (Function) . 301
sin (Function) . 192
sinh (Function) . 192
sinnpiflag (Option variable) 271
sinsert (Function) . 820
sinvertcase (Function) . 820
sixth (Function) . 448
skewness (Function) . 548
skewness_bernoulli (Function) 595
skewness_beta (Function) 581
skewness_binomial (Function) 592
skewness_chi2 (Function) 572
skewness_continuous_uniform (Function) . . . 582
skewness_discrete_uniform (Function) 597
skewness_exp (Function) . 577
skewness_f (Function) . 574
skewness_gamma (Function). 580
skewness_geometric (Function) 596
skewness_gumbel (Function) 590
skewness_hypergeometric (Function) 598
skewness_laplace (Function) 589
skewness_logistic (Function) 583
skewness_lognormal (Function) 578
skewness_negative_binomial (Function) 600
skewness_normal (Function) 568
skewness_pareto (Function) 584
skewness_poisson (Function) 593
skewness_rayleigh (Function) 587
skewness_student_t (Function) 570

Appendix A: Function and Variable Index 857

skewness_weibull (Function) 585
slength (Function) . 820
smake (Function) . 820
smismatch (Function) . 820
solve (Function) . 255
solve_inconsistent_error (Option variable)

. 259
solve_rec (Function) . 792
solve_rec_rat (Function) 793
solvedecomposes (Option variable) 258
solveexplicit (Option variable) 258
solvefactors (Option variable) 258
solvenullwarn (Option variable) 258
solveradcan (Option variable) 259
solvetrigwarn (Option variable) 259
some (Function) . 470
somrac (Function) . 404
sort (Function) . 52
space (Variable) . 818
sparse (Option variable) . 301
sparse6_decode (Function). 686
sparse6_encode (Function). 686
sparse6_export (Function). 686
sparse6_import (Function). 686
specint (Function) . 203
spherical (Graphic object) 636
spherical_bessel_j (Function) 767
spherical_bessel_y (Function) 767
spherical_hankel1 (Function) 767
spherical_hankel2 (Function) 767
spherical_harmonic (Function) 768
splice (Function) . 481
split (Function) . 821
sposition (Function) . 821
sprint (Function) . 816
sqfr (Function) . 179
sqrt (Function) . 53
sqrtdenest (Function) . 788
sqrtdispflag (Option variable) 53
sremove (Function) . 821
sremovefirst (Function) . 821
sreverse (Function) . 821
ssearch (Function) . 821
ssort (Function) . 822
sstatus (Function) . 26
ssubst (Function) . 822
ssubstfirst (Function) . 822
staircase (Function) . 652
stardisp (Option variable) 143
stats_numer (Option variable) 797
status (Function) . 414
std (Function) . 543
std_bernoulli (Function) 594
std_beta (Function) . 581
std_binomial (Function) . 591
std_chi2 (Function) . 572
std_continuous_uniform (Function) 582
std_discrete_uniform (Function) 597

std_exp (Function) . 576
std_f (Function) . 574
std_gamma (Function) . 579
std_geometric (Function) 596
std_gumbel (Function) . 590
std_hypergeometric (Function) 598
std_laplace (Function) . 589
std_logistic (Function) . 583
std_lognormal (Function) 578
std_negative_binomial (Function) 600
std_normal (Function) . 568
std_pareto (Function) . 584
std_poisson (Function) . 593
std_rayleigh (Function) . 587
std_student_t (Function) 569
std_weibull (Function) . 585
std1 (Function) . 543
stirling (Function) . 811
stirling1 (Function) . 471
stirling2 (Function) . 472
strim (Function) . 822
striml (Function) . 822
strimr (Function) . 823
string (Function) . 143
stringdisp (Option variable) 143
stringout (Function) . 143
stringp (Function) . 818
strong_components (Function) 681
sublis (Function) . 53
sublis_apply_lambda (Option variable) 53
sublist (Function) . 53
sublist_indices (Function) 448
submatrix (Function) . 302
subsample (Function) . 539
subset (Function) . 473
subsetp (Function) . 473
subst (Function) . 54
substinpart (Function) . 54
substpart (Function) . 55
substring (Function) . 823
subvar (Function) . 280
subvarp (Function) . 56
sum (Function) . 89
sumcontract (Function) . 99
sumexpand (Option variable) 100
summand_to_rec (Function). 794
sumsplitfact (Option variable) 100
supcase (Function) . 823
supcontext (Function) . 158
surface_hide (Graphic option) 627
symbolp (Function) . 56
symmdifference (Function). 473
symmetric (Declaration) . 100
symmetricp (Function) . 359
system (Function) . 148

858 Maxima Manual

T
tab (Variable) . 818
take_channel (Function) . 644
take_inference (Function). 796
tan (Function) . 192
tanh (Function) . 192
taylor (Function) . 381
taylor_logexpand (Option variable) 384
taylor_order_coefficients (Option variable)

. 385
taylor_simplifier (Function) 385
taylor_truncate_polynomials (Option variable)

. 385
taylordepth (Option variable) 384
taylorinfo (Function) . 384
taylorp (Function) . 384
taytorat (Function) . 385
tcl_output (Function) . 139
tcontract (Function) . 399
tellrat (Function) . 179
tellsimp (Function) . 436
tellsimpafter (Function) 437
tensorkill (System variable) 367
tentex (Function) . 340
tenth (Function) . 448
terminal (Graphic option) 603
test_mean (Function) . 797
test_means_difference (Function) 799
test_normality (Function). 806
test_rank_sum (Function) 805
test_sign (Function) . 803
test_signed_rank (Function) 804
test_variance (Function) 801
test_variance_ratio (Function) 802
testsuite_files (Option variable) 5
tex (Function) . 144
texput (Function) . 145
third (Function) . 448
throw (Function) . 512
time (Function) . 415
timedate (Function) . 415
timer (Function) . 520
timer_devalue (Option variable) 521
timer_info (Function) . 521
title (Graphic option) . 605
tldefint (Function) . 232
tlimit (Function) . 211
tlimswitch (Option variable) 212
to_lisp (Function) . 26
todd_coxeter (Function) . 411
toeplitz (Function) . 732
tokens (Function) . 823
topological_sort (Function) 681
totaldisrep (Function) . 180
totalfourier (Function) . 271
totient (Function) . 393
tpartpol (Function) . 399
tr (Variable) . 367

tr_array_as_ref (Option variable) 500
tr_bound_function_applyp (Option variable)

. 500
tr_file_tty_messagesp (Option variable) 500
tr_float_can_branch_complex (Option variable)

. 500
tr_function_call_default (Option variable)

. 500
tr_numer (Option variable) 501
tr_optimize_max_loop (Option variable) 501
tr_semicompile (Option variable) 501
tr_state_vars (System variable) 501
tr_warn_bad_function_calls (Option variable)

. 501
tr_warn_fexpr (Option variable) 501
tr_warn_meval (Option variable) 502
tr_warn_mode (Option variable) 502
tr_warn_undeclared (Option variable) 502
tr_warn_undefined_variable (Option variable)

. 502
tr_warnings_get (Function) 501
tr_windy (Option variable) 502
trace (Function) . 521
trace_options (Function) 522
tracematrix (Function) . 783
transcompile (Option variable) 498
translate (Function) . 498
translate_file (Function). 499
transparent (Graphic option) 620
transpose (Function) . 302
transrun (Option variable) 500
tree_reduce (Function) . 474
treillis (Function) . 403
treinat (Function) . 403
triangularize (Function) 302
trigexpand (Function) . 193
trigexpandplus (Option variable) 193
trigexpandtimes (Option variable) 193
triginverses (Option variable) 193
trigrat (Function) . 194
trigreduce (Function) . 194
trigsign (Option variable) 194
trigsimp (Function) . 194
trivial_solutions (Global variable) 838
true (Constant) . 182
trunc (Function) . 385
ttyoff (Option variable) . 148
tutte_graph (Function) . 668

U
ueivects (Function) . 302
ufg (Variable) . 366
uforget (Function) . 828
ug (Variable) . 366
ultraspherical (Function). 768
und (Constant) . 182
underlying_graph (Function) 668

Appendix A: Function and Variable Index 859

undiff (Function) . 324
union (Function) . 474
unique (Function) . 447
unit_step (Function) . 768
unit_vectors (Graphic option) 622
uniteigenvectors (Function) 302
unitvector (Function) . 303
unknown (Function) . 100
unless (Special operator) 512
unorder (Function) . 56
unsum (Function) . 385
untellrat (Function) . 180
untimer (Function) . 521
untrace (Function) . 523
uppercasep (Function) . 818
uric (Variable) . 366
uricci (Function) . 349
uriem (Variable) . 366
uriemann (Function) . 350
use_fast_arrays (Option variable) 280
user_preamble (Graphic option) 613
usersetunits (Optional variable) 830
uvect (Function) . 303

V
values (System variable) . 26
vandermonde_matrix (Function) 733
var (Function) . 542
var_bernoulli (Function) 594
var_beta (Function) . 581
var_binomial (Function) . 591
var_chi2 (Function) . 572
var_continuous_uniform (Function) 582
var_discrete_uniform (Function) 597
var_exp (Function) . 576
var_f (Function) . 574
var_gamma (Function) . 579
var_geometric (Function) 596
var_gumbel (Function) . 590
var_hypergeometric (Function) 598
var_laplace (Function) . 589
var_logistic (Function) . 583
var_lognormal (Function) 578
var_negative_binomial (Function) 600
var_normal (Function) . 568
var_pareto (Function) . 584
var_poisson (Function) . 593
var_rayleigh (Function) . 587
var_student_t (Function) 569
var_weibull (Function) . 585
var1 (Function) . 542
vect_cross (Option variable) 303
vector (Graphic object) . 634
vectorpotential (Function) 56
vectorsimp (Function) . 303
verbify (Function) . 91
verbose (Option variable) 386

vers (Function) . 785
vertex_coloring (Function) 685
vertex_degree (Function) 681
vertex_distance (Function) 681
vertex_eccentricity (Function) 682
vertex_in_degree (Function) 682
vertex_out_degree (Function) 682
vertices (Function) . 682
vertices_to_cycle (Function) 689
vertices_to_path (Function) 689

W
warnings (Global variable) 837
weyl (Function) . 350
weyl (Variable) . 366
wheel_graph (Function) . 668
while (Special operator) . 512
with_stdout (Function) . 149
write_binary_data (Function) 753
write_data (Function) . 751
writefile (Function) . 149
wronskian (Function) . 783

X
x_voxel (Graphic option) 629
xaxis (Graphic option) . 608
xaxis_color (Graphic option) 609
xaxis_type (Graphic option) 609
xaxis_width (Graphic option) 609
xgraph_curves (Function) 108
xlabel (Graphic option) . 605
xrange (Graphic option) . 601
xreduce (Function) . 475
xthru (Function) . 56
xtics (Graphic option) . 606
xtics_axis (Graphic option) 608
xtics_rotate (Graphic option) 608
xu_grid (Graphic option) 626
xy_file (Graphic option) 613
xyplane (Graphic option) 612

Y
y_voxel (Graphic option) 629
yaxis (Graphic option) . 610
yaxis_color (Graphic option) 610
yaxis_type (Graphic option) 610
yaxis_width (Graphic option) 610
ylabel (Graphic option) . 606
yrange (Graphic option) . 601
ytics (Graphic option) . 607
ytics_axis (Graphic option) 608
ytics_rotate (Graphic option) 608
yv_grid (Graphic option) 626

860 Maxima Manual

Z
z_voxel (Graphic option) 629
zaxis (Graphic option) . 611
zaxis_color (Graphic option) 612
zaxis_type (Graphic option) 611
zaxis_width (Graphic option) 611
Zeilberger (Function) . 837
zerobern (Option variable) 394
zeroequiv (Function) . 57
zerofor (Function) . 733

zeromatrix (Function) . 303
zeromatrixp (Function) . 733
zeta (Function) . 394
zeta%pi (Option variable) 394
zlabel (Graphic option) . 606
zlange (Function) . 712
zrange (Graphic option) . 602
ztics (Graphic option) . 607
ztics_axis (Graphic option) 608
ztics_rotate (Graphic option) 608

	Introduction to Maxima
	Bug Detection and Reporting
	Functions and Variables for Bug Detection and Reporting

	Help
	Lisp and Maxima
	Garbage Collection
	Documentation
	Functions and Variables for Help

	Command Line
	Introduction to Command Line
	Functions and Variables for Command Line

	Operators
	nary
	nofix
	postfix
	prefix
	Arithmetic operators
	Relational operators
	General operators

	Expressions
	Introduction to Expressions
	Complex
	Nouns and Verbs
	Identifiers
	Strings
	Inequality
	Syntax
	Functions and Variables for Expressions

	Simplification
	Functions and Variables for Simplification

	Plotting
	Functions and Variables for Plotting
	Functions for working with the gnuplot_pipes format

	Input and Output
	Comments
	Files
	Functions and Variables for Input and Output

	Floating Point
	Functions and Variables for Floating Point

	Contexts
	Functions and Variables for Contexts

	Polynomials
	Introduction to Polynomials
	Functions and Variables for Polynomials

	Constants
	Functions and Variables for Constants

	Logarithms
	Functions and Variables for Logarithms

	Trigonometric
	Introduction to Trigonometric
	Functions and Variables for Trigonometric

	Special Functions
	Introduction to Special Functions
	Functions and Variables for Special Functions

	Elliptic Functions
	Introduction to Elliptic Functions and Integrals
	Functions and Variables for Elliptic Functions
	Functions and Variables for Elliptic Integrals

	Limits
	Functions and Variables for Limits

	Differentiation
	Functions and Variables for Differentiation

	Integration
	Introduction to Integration
	Functions and Variables for Integration
	Introduction to QUADPACK
	Overview

	Functions and Variables for QUADPACK

	Equations
	Functions and Variables for Equations

	Differential Equations
	Introduction to Differential Equations
	Functions and Variables for Differential Equations

	Numerical
	Introduction to fast Fourier transform
	Functions and Variables for fast Fourier transform
	Introduction to Fourier series
	Functions and Variables for Fourier series

	Arrays
	Functions and Variables for Arrays

	Matrices and Linear Algebra
	Introduction to Matrices and Linear Algebra
	Dot
	Vectors
	eigen

	Functions and Variables for Matrices and Linear Algebra

	Affine
	Introduction to Affine
	Functions and Variables for Affine

	itensor
	Introduction to itensor
	New tensor notation
	Indicial tensor manipulation

	Functions and Variables for itensor
	Managing indexed objects
	Tensor symmetries
	Indicial tensor calculus
	Tensors in curved spaces
	Moving frames
	Torsion and nonmetricity
	Exterior algebra
	Exporting TeX expressions
	Interfacing with ctensor
	Reserved words

	ctensor
	Introduction to ctensor
	Functions and Variables for ctensor
	Initialization and setup
	The tensors of curved space
	Taylor series expansion
	Frame fields
	Algebraic classification
	Torsion and nonmetricity
	Miscellaneous features
	Utility functions
	Variables used by ctensor
	Reserved names
	Changes

	atensor
	Introduction to atensor
	Functions and Variables for atensor

	Series
	Introduction to Series
	Functions and Variables for Series

	Number Theory
	Functions and Variables for Number Theory

	Symmetries
	Introduction to Symmetries
	Functions and Variables for Symmetries
	Changing bases
	Changing representations
	Groups and orbits
	Partitions
	Polynomials and their roots
	Resolvents
	Miscellaneous

	Groups
	Functions and Variables for Groups

	Runtime Environment
	Introduction for Runtime Environment
	Interrupts
	Functions and Variables for Runtime Environment

	Miscellaneous Options
	Introduction to Miscellaneous Options
	Share
	Functions and Variables for Miscellaneous Options

	Rules and Patterns
	Introduction to Rules and Patterns
	Functions and Variables for Rules and Patterns

	Lists
	Introduction to Lists
	Functions and Variables for Lists

	Sets
	Introduction to Sets
	Usage
	Set Member Iteration
	Bugs
	Authors

	Functions and Variables for Sets

	Function Definition
	Introduction to Function Definition
	Function
	Ordinary functions
	Array functions

	Macros
	Functions and Variables for Function Definition

	Program Flow
	Introduction to Program Flow
	Functions and Variables for Program Flow

	Debugging
	Source Level Debugging
	Keyword Commands
	Functions and Variables for Debugging

	augmented_lagrangian
	Functions and Variables for augmented_lagrangian

	bode
	Functions and Variables for bode

	contrib_ode
	Introduction to contrib_ode
	Functions and Variables for contrib_ode
	Possible improvements to contrib_ode
	Test cases for contrib_ode
	References for contrib_ode

	descriptive
	Introduction to descriptive
	Functions and Variables for data manipulation
	Functions and Variables for descriptive statistics
	Functions and Variables for specific multivariate descriptive statistics
	Functions and Variables for statistical graphs

	diag
	Functions and Variables for diag

	distrib
	Introduction to distrib
	Functions and Variables for continuous distributions
	Functions and Variables for discrete distributions

	draw
	Introduction to draw
	Functions and Variables for draw
	Functions and Variables for pictures
	Functions and Variables for worldmap

	dynamics
	Introduction to dynamics
	Functions and Variables for dynamics

	f90
	Functions and Variables for f90

	ggf
	Functions and Variables for ggf

	graphs
	Introduction to graphs
	Functions and Variables for graphs
	Building graphs
	Graph properties
	Modifying graphs
	Reading and writing to files
	Visualization

	grobner
	Introduction to grobner
	Notes on the grobner package
	Implementations of admissible monomial orders in grobner

	Functions and Variables for grobner
	Global switches for grobner
	Simple operators in grobner
	Other functions in grobner
	Standard postprocessing of Groebner Bases

	impdiff
	Functions and Variables for impdiff

	implicit_plot
	Functions and Variables for implicit_plot

	interpol
	Introduction to interpol
	Functions and Variables for interpol

	lapack
	Introduction to lapack
	Functions and Variables for lapack

	lbfgs
	Introduction to lbfgs
	Functions and Variables for lbfgs

	lindstedt
	Functions and Variables for lindstedt

	linearalgebra
	Introduction to linearalgebra
	Functions and Variables for linearalgebra

	lsquares
	Introduction to lsquares
	Functions and Variables for lsquares

	makeOrders
	Functions and Variables for makeOrders

	mnewton
	Introduction to mnewton
	Functions and Variables for mnewton

	numericalio
	Introduction to numericalio
	Plain-text input and output
	Separator flag values for input
	Separator flag values for output
	Binary floating-point input and output

	Functions and Variables for plain-text input and output
	Functions and Variables for binary input and output

	opsubst
	Functions and Variables for opsubst

	orthopoly
	Introduction to orthogonal polynomials
	Getting Started with orthopoly
	Limitations
	Floating point Evaluation
	Graphics and orthopoly
	Miscellaneous Functions
	Algorithms

	Functions and Variables for orthogonal polynomials

	plotdf
	Introduction to plotdf
	Functions and Variables for plotdf

	romberg
	Functions and Variables for romberg

	simplex
	Introduction to simplex
	Functions and Variables for simplex

	simplification
	Introduction to simplification
	Package absimp
	Package facexp
	Package functs
	Package ineq
	Package rducon
	Package scifac
	Package sqdnst

	solve_rec
	Introduction to solve_rec
	Functions and Variables for solve_rec

	stats
	Introduction to stats
	Functions and Variables for inference_result
	Functions and Variables for stats
	Functions and Variables for special distributions

	stirling
	Functions and Variables for stirling

	stringproc
	Introduction to string processing
	Functions and Variables for input and output
	Functions and Variables for characters
	Functions and Variables for strings

	unit
	Introduction to Units
	Functions and Variables for Units

	zeilberger
	Introduction to zeilberger
	The indefinite summation problem

	The definite summation problem
	Verbosity levels
	Functions and Variables for zeilberger

	General global variables
	Variables related to the modular test
	Indices
	Function and Variable Index

