
MAS (MDP ARM Simulator) Rolecks

Nicholas Caldwell, Paul Fidler, Peter Long, Geoff Martin
Cambridge University Engineering Department

Trumpington St.,
Cambridge CB2 1PZ

29th August 2007

The MDP ARM Simulator (MAS Rolecks) has been developed by the MDP team
at Cambridge University as an educational tool to support an introductory course
in microprocessors. The package is written in Java and offers a simple IDE that
allows the editing of ARM assembler and monitoring of the assembled code under
emulation. A simulated hardware interface (inc. LEDs, switches, analogue ip) is
also available that allows the user to interact directly with the code. When required,
the developed code can be simply loaded onto the MDP Microcontroller which
allows the user to work at full speed and with real hardware and interfaces.

The software is based on the Rolecks program developed by Trek Palmer and Tim
Richards at the University of Massachusetts

(http://www.cs.umass.edu/t̃rekp/cs201/rolecks.jar)

1

Contents

1 Introduction 6

2 Getting Started 6

2.1 Linux/ (MDP EDaL system) . 6

2.2 Web . 6

2.3 MACX . 6

2.4 Windows 98/XP/Vista . 6

3 User Interface 6

3.1 Main Window . 7

3.1.1 Title bar & Top Menu . 7

3.1.2 Editor/Source Pane . 10

3.1.3 Binary Pane . 11

3.1.4 Register Pane . 13

3.1.5 Text Entry Pane . 14

3.2 Memory Map . 14

3.3 Hardware Simulation . 15

4 Simple Programs 16

4.1 ‘Anatomy’ of a Program . 16

4.2 Simple Arithmetic . 17

4.3 Assembling and Running Code . 18

4.3.1 Writing New Source Files . 18

4.3.2 Loading Existing Source Files . 18

4.3.3 Saving Source Files . 18

4.3.4 One-Click Assembly . 18

4.3.5 Two-Click Assembly . 19

4.3.6 Running the Program . 19

4.4 Interaction Simulated Hardware . 21

4.4.1 Switches . 21

4.4.2 Sliders . 22

4.4.3 LEDs . 23

2 MDP ARM Simulator

4.5 Textual I/O . 24

4.5.1 Text Input . 24

4.5.2 Text Output . 24

4.6 Use of Memory Map . 24

4.7 Modification of Registers . 24

5 Simplified ARM Assembler 25

5.1 Instruction Syntax . 25

5.2 Instruction Types . 26

6 MAS Rolecks Assembler Functions 27

6.1 System operations . 27

6.1.1 SYS Exit . 27

6.1.2 SYS ReadC . 27

6.1.3 SYS WriteC . 27

6.2 Hardware i/o Routines . 28

6.2.1 MAS LED OnOff . 28

6.2.2 MAS Slider Read . 28

6.2.3 MAS Switch Read . 28

A ARM Assembler Opcodes 29

A.1 Data Operations - Arithmetic . 29

A.1.1 ADD ADD . 29

A.1.2 ADC ADD with Carry 29

A.1.3 CMP Compare 30

A.1.4 CMN Compare Negative 30

A.1.5 SUB Subtract 31

A.1.6 SBC Subtract with Carry 32

A.1.7 RSB Reverse Subtract 32

A.1.8 RSC Reverse Subtract with Carry 33

A.2 Data Operations - Logical . 33

A.2.1 AND Logical AND 33

A.2.2 BIC Bitwise Clear 34

MDP ARM Simulator 3

A.2.3 EOR Logical Exclusive OR 35

A.2.4 MOV Move Value 35

A.2.5 MVN Move Negative 36

A.2.6 ORR Logical OR 36

A.2.7 TEQ Test Equivalence 37

A.2.8 TST Test Bits 37

A.3 Load and Store . 37

A.3.1 LDR Load Register 37

A.3.2 LDRB Load Register Byte 38

A.3.3 STR Store Register 39

A.3.4 STRB Store Register Byte 40

A.4 Branch . 40

A.4.1 B Branch 40

A.5 Multiple Load and Store . 41

A.6 Software Interrupts . 41

A.7 Condition Codes . 42

B MAS Rolecks Assembler Subroutines 43

B.1 System Subroutines . 43

B.1.1 SYS Exit . 43

B.1.2 SYS Clock . 43

B.1.3 SYS Close . 43

B.1.4 SYS Open . 44

B.1.5 SYS Read . 44

B.1.6 SYS ReadC . 44

B.1.7 SYS WriteC . 44

B.1.8 SYS Write0 . 44

B.1.9 SYS Write . 45

B.1.10 SYS SysCall . 45

B.2 High-level Hardware Routines . 45

B.2.1 MAS LED OnOff . 45

B.2.2 MAS LED Flash . 46

4 MDP ARM Simulator

B.2.3 MAS Motor . 46

B.2.4 MAS IR Read . 46

B.2.5 MAS Slider Read . 47

B.2.6 MAS Switch Read . 47

B.3 Mid Level Routines . 47

B.3.1 PCF8574 Read . 47

B.3.2 PCF8574 Write . 47

B.3.3 PCF8591 Configure . 48

B.3.4 PCF8591 ReadADC . 48

B.3.5 PCF8591 WriteDAC . 48

B.3.6 PIC ReadADC . 48

B.3.7 PIC WriteMotor . 48

B.4 ASCII Character Codes . 49

MDP ARM Simulator 5

1 Introduction

What is being simulated, image of micro/memory map?

Which processors are being covered (26 or 32 bit ARM
Proce3ssors)

limitations

Information about hardware (MDP Microcontroller)

2 Getting Started

Where and how to obtain a copy of the java code, web ad-
dresses etc.

2.1 Linux/ (MDP EDaL system)

from menu items, from command line

java -jar mas-rolecks.jar

2.2 Web

Need to look at java start, ...

2.3 MACX

?

2.4 Windows 98/XP/Vista

java -jar mas-rolecks.jar

3 User Interface

When the application is first started, it defaults to a two win-
dow display. The larger primary window has ”The Rolecks
ARM Simulator” in its titlebar; the smaller window has
”Rolecks Hardware Interface” as its title. Both windows may
be resized, minimised, or maximised. The Hardware Inter-
face window cannot be closed independently of the main
Simulator window; closing the Simulator window closes all
Rolecks windows and exits the program.

6 MDP ARM Simulator

3.1 Main Window

Figure 1: MAS-Rolecks main desktop window

The main window is split into five main areas shown in fig-
ure 1. The functionality associated with each area is de-
scribed in sections 3.1.1 - 3.1.5.

3.1.1 Title bar & Top Menu

The title bar has the name
of the programe and the file-
names of the source and bi-
nary files currently loaded in
the editor and binary panes.

The top menu bar has six pull-down menus: File, Edit,
Search, View, Build and Help.

The File menu has the following items:

• New Source - clears the current editor window. Warn-
ing: This does not prompt the user to save the current
file, so selecting this option will delete any unsaved
work.

• Load Source - opens a standard file browser window
and prompts the user to open a source file, which will
be displayed in the editor pane. N.B. source files have
a suffix .s, e.g. example1.s. Warning: This does not
prompt the user to save the current file (if any), so se-
lecting this option will delete any unsaved work.

• Save Source - opens a standard file browser window
and prompts the user for a filename to save the text
currently in the editor pane.

• Load Binary - opens a standard file browser window
and prompts the user to open a binary (assembled)
file, which will be displayed in the Binary pane. N.B.
binary files have a suffix .bin, e.g. example1.bin.

MDP ARM Simulator 7

• Print Source - not currently available. Future develop-
ment.

• Print Binary - not currently available. Future develop-
ment.

• Quit - this exits the entire simulator. Warning: This
does not prompt the user to save the current file, so
selecting this option will delete any unsaved work.

The Edit menu has the following items:

• Undo - this is a standard Undo facility which can be
used to reverse changes to text in the Editor/Source
pane (see below) one keystroke at a time.

• Redo - this is a standard Redo facility which can re-
store changes that have been reversed by the Undo
command, again one keystroke at a time.

• Cut - not currently available from menu.

• Copy - not currently available from menu.

• Paste - not currently available from menu.

• Select All - not currently available from menu.

• Preferences - not currently available. Future develop-
ment.

The Search menu has the following items - all currently un-
available:

• Find

• Find Next

• Find Previous

• Replace

• Goto Line

8 MDP ARM Simulator

The View menu has the following items:

• Source Code - not currently necessary as source
code visible in Editor/Source Pane.

• Assembled Code - not currently necessary as assem-
bled code appears in Binary Pane.

• Register Log - not currently available. Future devel-
opment.

• Memory - this makes the Memory Map window (see
below) visible.

• LEDs - intended to allow configuration of virtual LED
hardware. Not currently available. Future develop-
ment.

• Switches - intended to allow configuration of virtual
switch hardware. Not currently available. Future de-
velopment.

• Sliders - intended to allow configuration of virtual
slider hardware. Not currently available. Future devel-
opment.

• Motors - - intended to allow configuration of virtual mo-
tors. Not currently available. Future development.

The Build menu has the following items:

• Assemble for Rolecks - opens a standard file browser
window, enabling the user to select a source file and
assemble it into a binary format compatible with this
simulator. See below for further details.

• Assemble for Balloon - will allow assembly of a
Rolecks source file into a binary format capable of
being executed on a Balloon board. Not currently
available. Future development.

• Run in Rolecks - this will execute the current loaded
binary file within the Rolecks simulator.

• Run on Balloon - this will execute a suitably assem-
bled binary file on a connected balloon board. Not cur-
rently available. Future development.

MDP ARM Simulator 9

The Help menu has the following items:

• Online Help - not currently available. Future develop-
ment.

• Code Structure - not currently available. Future de-
velopment.

• Op-codes - not currently available. Future develop-
ment.

• About Rolecks - displays a simple information box
giving version and copyright information for the MDP
ARM Simulator.

3.1.2 Editor/Source Pane

The Editor/Source Pane is the left hand pane on the Simula-
tor window. Its size is adjustable in width with a drag handle
on the dividing bar. The pane is a simple editor designed
to allow the user to enter and modify programs. Above it is
a small menu bar that gives the user access via graphical
icons to key load, save and assemble functionality.

Editor Pane Icons

New Source Clears the current editor window. Warning:
This does not prompt the user to save the current file, so
selecting this option will delete any unsaved work.

Open File opens a standard file browser window and
prompts the user to open a source file, N.B. source files
have a suffix .s, e.g. example1.s

Save Source opens a standard file browser window and
prompts the user for a filename to save the text currently in
the editor pane.

Assemble attempts to assemble a source file. By default, it
offers the user the currently saved version of the file in the
editor window.

Magic (SAL-B) attempts to save the text in the editor pane,
under the currently selected filename, assemble the result-
ing source file and, if successful, load the resultant binary
into the binary pane.

10 MDP ARM Simulator

Editor Functionality
The editor has basic editing functionality, accessible from
control keys and the pulldown Edit menu, in particular:

CTRL-A Select All
CTRL-C Copy
CTRL-H Delete backwards
CTRL-V Paste
CTRL-X Delete
DELETE Delete
↑↓←→ Move cursor

3.1.3 Binary Pane

The Binary Pane displays the assembled binary file and sup-
plemental information according to the following format of a
notional memory address location (as a hexadecimal num-
ber), followed by the actual instruction in its hexadecimal
assembled representation, followed by the original source
instruction (minus any comments.) Any labels used in the
program appear on a separate line preceding their associ-
ated instruction for clarity. Neither assembler directives nor
any data areas appear in the Binary pane.

Binary Pane Icons

Open Binary File opens a standard file browser window
and prompts the user to open a binary file. N.B. Binary files
have the suffix .bin, e.g. example1.bin

Reset terminates the execution of a currently running binary
program. It restores the Program Counter to the first line of
the program, resets the values of registers R0 to R12 and
R14 to zero, and clears the condition code bits.

Run executes the program from start to finish. Execution will
only pause if there is input required from the user. During
execution, the Run icon will be replaced with a Pause icon
so that the program can be temporarily halted.

Pause freezes an executing program. It does not corrupt
registers or condition code bits. Once a program is paused,
the Pause icon is replaced with the Run icon, and the pro-
gram may be restarted in single step mode or the system
reset.

Single Step allows the user to step through the program
one instruction at a time each time the button is pressed.
The light blue highlight bar indicates the instruction that is
just about to be run.

Breakpoint opens the Manage Breakpoints dialog win-

MDP ARM Simulator 11

dow that allows the user to set and clear breakpoints.
Single-stepping through every line of a program can quickly
become tedious; breakpoints allow individual lines to be
marked as being of interest. When a program has one or
more active breakpoints, the user can click on the Run but-
ton (see above) and the program will execute until it reaches
the first breakpoint. Instead of immediately executing the
breakpoint instruction, it will pause at that instruction allow-
ing the user to single-step at that point and beyond (to ob-
serve register value and condition code changes) or to revert
to continuous execution until the next breakpoint is encoun-
tered. Active breakpoints are highlighted in the Binary Pane
with yellow backgrounds. Whenever the instruction that is
just about to be run coincides with an active breakpoint, the
highlight bar will change to red for that instruction.

• New - this button allows for the setting of a new break-
point. It raises the Add Breakpoint dialog, which re-
quires the user to enter the hexadecimal address of
the instruction where the breakpoint is to be placed.
This address can be found by looking at the first col-
umn of numbers in the Binary Pane. Click OK to add
the breakpoint, Cancel to refrain. Once a breakpoint is
added, the Manage Breakpoints dialog will change to
list the address of the breakpoint instruction, provide a
checkbox (initially ticked) to show if the breakpoint is
active, and a Delete button to remove the breakpoint.

• Clear All - triggers a Yes/No confirmation dialog that, if
the response is “Yes”, deletes all current breakpoints.

• Activate All - this makes all existing breakpoints active
- as indicated by ticks appearing in the corresponding
Active checkboxes for each breakpoint. To make a sin-
gle breakpoint active simply check the appropriate Ac-
tive checkbox.

• Deactivate All - - this makes all existing breakpoints
inactive - as indicated by the absence of any tickmarks
appearing in the corresponding Active checkboxes for
each breakpoint. To make a single breakpoint inactive,
simply uncheck the appropriate Active checkbox.

• OK - this confirms all changes made and closes the
Manage Breakpoints dialog window.

• Cancel - this discards all changes made and closes
the Manage Breakpoints dialog window.

12 MDP ARM Simulator

3.1.4 Register Pane

The Register pane on the right of the main window is split
into two main areas:

The upper region contains the current value of each of
the standard 16 ARM registers. Values can be manually
changed by clicking on the register or its value, which raises
a dialog window enabling a new value in hexadecimal to be
entered.

The lower region displays the condition code bits:

• The N bit is the “negative flag” and indicates that a
value is negative.

• The Z bit is the “zero flag” and is set when an appro-
priate instruction produces a zero result.

• The C bit is the “carry flag” but it can also be used
to indicate “borrows” (from subtraction operations) and
“extends” (from shift instructions).

• The V bit is the “overflow flag” which is set if an instruc-
tion produces a result that overflows and hence may go
beyond the range of numbers that can be represented
in 2’s complement signed format.

The values can only currently be set or cleared during pro-
gram execution, and reset to 0 using the Reset button.

MDP ARM Simulator 13

3.1.5 Text Entry Pane

(N.B. This section may be skipped on first reading)

The Text Entry Pane is divided into three sections.

• The upper section, Standard Output , is where text di-
rected by assembler system calls is displayed. This
text may be output as individual characters or as null-
terminated strings. Users cannot change values dis-
played in this area and it is only cleared when the sim-
ulator is closed.

• The middle section, Standard Input , allows for key-
board data entry to be entered independent of program
execution. Simply type in the characters and press the
Enter/Return key to terminate the string, and the char-
acters will appear in the Standard Input Buffer (see be-
low).

• The lower section, Standard Input Buffer , stores
characters entered via Standard Input for use in pro-
viding input to assembler system calls intended to read
input. The red X button will flush the contents of the
Standard Input Buffer.

When a binary file executing in the MDP ARM Simulator
makes an assembler system call to obtain character or string
input, the simulator first checks the Standard Input Buffer. If
the buffer is non-empty, the input will be taken directly from
there. If the buffer is empty, then the Simulator will raise a
Standard Input dialog window to obtain character input from
the user at run-time.

3.2 Memory Map

(N.B. This section may be skipped on first reading)

This window, accessible via the view →Memory Map menu
item, provides a simulated view of part of an ARM processor
memory map. The main portion of the map is taken up by
a two-column list. The leftmost column of numbers are the
memory address locations (in hexadecimal). The rightmost
column of numbers are the contents held in the associated
memory address locations - these values may be instruc-
tions, data or values held in the stack.

• Hex / Dec / Bin These radio buttons allow the con-
tents of the memory address locations to be displayed
in Hexadecimal, Decimal, or Bin ary representations.
The memory address locations remain listed as hex-
adecimal numbers.

14 MDP ARM Simulator

• Show Zero values Ticking this checkbox will show all
memory locations up to 0x3FC regardless of whether
they contain zero or non-zero values. Clearing the
checkbox will hide all memory locations that have a
value of zero.

• Show Stack Ticking this checkbox will show all mem-
ory locations that form the temporary memory storage
area known as the stack. Clearing the checkbox will
hide these.

• Refresh Memory Map Pressing this button will refresh
the contents of the Memory Map – will require new
code to be loaded in to the Binary Pane and (partially)
executed before the contents will update.

3.3 Hardware Simulation

(N.B. This section may be skipped on first reading)

Selecting the display hardware panel icon above the
register pane or View → Registers , opens (or raises in
the windows stack) the simulated analogue and digital in-
put/output display. The default setting is for two banks of
LED’s, Switches and a slider.

The MDP ARM Simulator incorporates a series of assem-
bler system calls to use the virtual hardware for input and
output. System calls can read values from the slider and the
switch banks, and write values out to the LED bank. For in-
put purposes, a switch has the value 0 if it is pointing up and
the value 1 if it is pointing down - simply click on the switch
to change its alteration. Each bank of switches can repre-
sent an 8-bit binary number - with the most significant bit as
the leftmost switch. Each slider can also represent an 8-bit
number according to the position of the slider bar - the cur-
rent value is shown in the box to the left of the slider. To flip
between the left-hand and right-hand end of the slider being
the most significant, simply click on the corresponding Invert
button for that slider. For output purposes, each LED bank
also represents an 8-bit binary number. A “lit” (bright green)
LED has the value 1, an “unlit” (dark green) LED has the
value zero. The leftmost LED is always the most significant
bit of the number.

MDP ARM Simulator 15

4 Simple Programs

4.1 ‘Anatomy’ of a Program

1 ; Example code to load two registers

2 ; and then add them

3
4 AREA example1, CODE, READONLY

5
6 ENTRY

7
8 start

9 mov R0, #0x10 ; r0 = 10

10 mov R1, #10 ; r1 = a

11 add R2, R0, R1 ; r2 = 1a

12
13 BL sysExit ; end of program

14
15 END

The line numbers (in italics) have been added to this pro-
gram purely for ease of explanation. There are no line num-
bers in an ARM assembly language program; including line
numbers in the source code of an assembly language pro-
gram will cause it to fail to assemble.

1 ; Example code to load two registers

2 ; and then add them

3

The first lines are comments, all text following a ; on
a line is considered to be a comment. Although com-
ments are optional, it is good programming practice to

include information about the code wherever possible. This
is especially important in assembler programming where the
format and mnemonics are more difficult to understand and
use, especially when the author is trying to maximise speed
or minimise memory space at execution time. Note that line
3 is blank; the assembler ignores blank lines when assem-
bling the source code, so they can be safely used to aid the
readability of the code.

4 AREA example1, CODE, READONLY

5

The AREA command is a directive . This is an instruc-
tion to the assembler, which is not passed on to the

actual microprocessor. The AREA directive can be used to
specify and name sections of program code or data. Here
the AREA directive names this section as “example1” and in-
dicates that it is a code segment using the CODE identifier.
It is also declared as READONLY in that the code cannot
be altered during its execution. A working ARM assembly
program must have at least one CODE area.

16 MDP ARM Simulator

6 ENTRY

7
The ENTRY directive indicates the first instruction that
should be executed within an application. The com-

plete application can only have one entry point and so only
one ENTRY directive should appear in a program.

8 start

The start label is optional but provides a useful
marker to indicate the the beginning of the code that

represents the actual program.

9 mov R0, #0x10 ; r0 = 10

10 mov R1, #10 ; r1 = a

11 add R2, R0, R1 ; r2 = 1a

This is an example of sample assembly language
code. Assembly language programs may be a few
lines (as here) to hundreds of lines of code in length.
Note that all the instructions, e.g. mov, add are in-

dented by 1 white-space character. It is often useful to add
a comment at the end of the line to aid readability, see sec-
tions 3.1.2 for more information on the functionality available
and the precise formats required.

13 BL sysExit ; end of program

14

The BL sysExit command should be included in all
programs. The command Branch Links to a system
subroutine sysExit that ensures that all the system

registers and Program Counter are returned to a suitable
state before exiting the program.

15 END

The END directive indicates the end of the source file.
Every ARM assembly program must have an END di-

rective.

4.2 Simple Arithmetic

The program “example1” given in section 4.1 is a simple
arithmetic program that loads two registers with immediate
values and then adds them together, placing the sum in a
third register.

If you are working from a pre-installed version of MAS-
Rolecks or have access to the source files, (see www.eng-
mdp.cam.ac.uk/microprocessor) use the File → Load menu
entries to load the program into the edit pane. Alternatively
use the functionality of the Editor, see section 3.1.2, to type
in the code as shown in example 1.

..

8 start

9 mov R0, #0x10 ; r0 = 10

10 mov R1, #10 ; r1 = a

11 add R2, R0, R1 ; r2 = 1a

..

MDP ARM Simulator 17

9 mov R0, #0x10 ; r0 = 10 The instruction mov moves a value (in this case, the
hexadecimal number 10, decimal value 16) into a reg-

ister (in this case, register r0). r0 and #10 are operands . r2
is the destination register, #10 is a source operand.

10 mov R1, #10 ; r1 = a

In this line, the instruction mov moves the value (deci-
mal 10) into a register, namely register 1.

11 add R2, R0, R1 ; r2 = 1a

The ADD instruction takes two source operands, in
this case register R0 and register R3, adds the values in the
registers, i.e. 10 in r0 and 16 in r1, and puts the total back
into the destination register of r2. Hence the value in R2 af-
ter this instruction has been executed should be 26, or 1A in
hexadecimal.

4.3 Assembling and Running Code

4.3.1 Writing New Source Files

To create a new source file from scratch in MAS-Rolecks,
save any existing work in the Source/Editor pane using the
File → Save Source command, supplying an existing or
new file name as appropriate. Then use the File → New
Source command or the New Source icon to clear the
Source/Editor Pane and start typing the program into the
Source/Editor Pane. Remember to press Enter/Return after
each line of code.

4.3.2 Loading Existing Source Files

To load an existing source file into MAS-Rolecks, simply use
the File → Load Source command or the Open File icon.
(NB: Both methods will flush any existing source code.) Lo-
cate the desired source file (which should have a .s suf-
fix) using the file system browser dialog and click OK. The
source file will appear in the Editor/Source pane.

4.3.3 Saving Source Files

To save a source file, use the File → Save Source com-
mand or the Save Source icon. This will raise a file system
browser dialog, allowing the file to be saved with its existing
name (if any) or with a new name. In either case, the source
file should have a .s extension.

4.3.4 One-Click Assembly

To assemble a source file with a single mouse-click, use the
Magic Wand icon. This will first save the text in the editor
pane, under the currently selected filename if it exists (and

18 MDP ARM Simulator

will raise a file system dialog if not). It will then assemble
the resulting source file, raising a message window to signal
successful or unsuccessful assembly and information on the
first error. In the latter case, rectify the errors in the source
code, save the file, and try again. If successful, it will finally
load the newly created binary file into the binary pane – the
new binary file will have the same name as the source but
have a .bin extension.

4.3.5 Two-Click Assembly

Use either the Assemble icon or the Build → Assemble
for Rolecks command to assemble a source file. This will
raise a file system browser dialog, which will default to the
currently saved version of the file in the Source/Editor pane.
Choose the appropriate filename and click OK. A message
window will appear, either stating ”Source file assembled
correctly” if there were no assembly errors or giving details
of the first error encountered. In the latter case, rectify the
errors in the source code, save the file, and try again.

Once the source file has been successfully assembled, use
the File → Load Binary command or the Open Binary File
icon (in the Binary Pane). This will raise a file system dialog
window, which will default to the .bin file generated by the
most recent assembly process. Click OK to load the binary
file into the Binary Pane.

4.3.6 Running the Program

There are two methods of executing programs in MAS-
Rolecks - “run-through” and “single-step”.

“Run-through” executes the entire program from start (or
currently highlighted code) to finish. The execution will nor-
mally only pause if an assembler system call is made for
keyboard input and no stored input in the Standard Input
Buffer. To perform a “run-through” execution, use either the
Build → Run in Rolecks command or the Run icon above
the Binary Pane. To forcibly suspend a program executing
in “run-through” mode, click on the Pause icon (which re-
places the Run icon). Execution can then be restarted from
the pause point in either “run-through” or “single-step” mode
or the system reset.

“Single-step” mode allows the user to step through the ex-
ecution of the program one instruction at a time each time
the “Single step” icon is pressed. The light blue highlight bar
will indicate the instruction that is just about to be executed.
In “Single step” mode, it is possible to observe the values of

MDP ARM Simulator 19

the registers and condition code bits change in response to
each succeeding instruction.

The Reset button terminates the execution of a currently run-
ning binary program. It restores the Program Counter to the
first instruction of the program, resets the values of registers
R0 to R12 and R14 to zero, and clears the condition code
bits.

20 MDP ARM Simulator

4.4 Interaction Simulated Hardware

4.4.1 Switches

1 ; Example code to read in switch value and store to register

2 ; repeats until input is 255

3
4 AREA example2, CODE, READONLY

5
6 ENTRY

7
8 start

9 BL MAS Switch Read ; read switch into R0

10 CMP R0, #255 ; test R0 against 255

11 BNE start ; if Z bit clear,

12 ; back to start

13 BL sysExit ; end of program

14
15 END

The program above reads the value of a switch bank (in this
case Hardware Panel 1) into a register (RO), and compares
that value with 255. If the input value does not equal 255,
the program loops back to the start and tries again. If the
input value does equal 255, the program terminates. Create,
save, assemble and run this program in “single-step” mode
to see that this is the case.

8 start

9 BL MAS Switch Read ; read switch into R0

Line 9 is an assembler system call that reads the
value of the switches in Hardware Panel 1, and
places that value into register R0. Remember that

the switches have value 0 if in the “up” position and value 1
in the “down” position.

10 CMP R0, #255 ; test R0 against 255

Line 10 uses the CMP (CoMPare) instruction to
compare the value of one operand against the
value of another. In this case, the comparison is

between the value of register R0 and 255. The CMP in-
struction does not have a destination operand specifying a
register where the result of the comparison is to be stored.
Instead, the CMP instruction changes the values of the con-
dition code bits as follows assuming two values r1 and r2:

• N = 1 if the most significant bit of (r1 - r2) is 1, i.e. r2 ¿
r1

• Z = 1 if (r1 - r2) = 0, i.e. r1 = r2

• C = 1 if r1 and r2 are both unsigned integers AND (r1 ¡

MDP ARM Simulator 21

r2)

• V = 1 if r1 and r2 are both signed integers AND (r1 ¡
r2)

For our example, Z will be set to 1 if R0 has the value 255
and be clear otherwise. Observe the change in the condition
code bits after this instruction is executed in “single-step”
mode.

11 BNE start ; if Z bit clear,

12 ; back to start

13 BL sysExit ; end of program

The BNE (Branch Not Equal) instruction at Line 11
inspects the current value of the Z condition code
bit. If Z 6= 1, then the branch will be taken and
the execution of the program will return to the label

“start”. If Z = 1, then the branch will not be taken, and the
program will carry on to line 13 and the termination of the
program.

4.4.2 Sliders

1 ; Example code to read in slider value and store to register

2 ; repeats until input is 128 or higher

3
4 AREA example3, CODE, READONLY

5
6 ENTRY

7
8 start

9 BL MAS Slider Read ; read slider into R0

10 CMP R0, #128 ; test R0 against 128

11 BLO start ; if C bit clear,

12 ; back to start

13 BL sysExit ; end of program

14
15 END

The program above reads the value of a slider (in this case
from Hardware Panel 1) into a register (RO), and compares
that value with 128. If the input value is less than 128, the
program loops back to the start and tries again. If the in-
put value is equal to or greater than 128, the program ter-
minates. Create, save, assemble and run this program in
“single-step” mode to see that this is the case.

8 start

9 BL MAS Slider Read ; read slider into R0

Line 9 is an assembler system call that reads the
value of the slider in Hardware Panel 1, and places
that value into register R0.

22 MDP ARM Simulator

10 CMP R0, #128 ; test R0 against 128 Line 10 uses the CMP (CoMPare) instruction to
compare the value of one operand against the

value of another. In this case, the comparison is between
the value of register R0 and 128. The CMP instruction will
alter the condition code bits as described above. In this ex-
ample, we are interested in the value of the C bit, which will
be cleared (set at 0) if the input (in R0) is less than 128,
and set to 1 if the value of R0 is 128 or more. Note that the
other condition code bits may also be changed by the CMP
instruction.

11 BLO start ; if C bit clear,

12 ; back to start

13 BL sysExit ; end of program

The BLO (Branch if LOwer) instruction at Line 11
inspects the current value of the C condition code
bit. If C = 0, then the branch will be taken and
the execution of the program will return to the label

“start”. If C = 1, then the branch will not be taken, and the
program will carry on to line 13 and the termination of the
program.

4.4.3 LEDs

1 ; Example code that counts from 255 to 1, displaying each

2 ; value in LEDs program stops when register = 0

3
4 AREA example4, CODE, READONLY

5
6 ENTRY

7
8 start

9 MOV r0, #0xff ; set R0 = 255

10 loop BL MAS LED ONOFF ; write R0 to LED bank

11 SUB r0, r0, #0x1 ; set R0 = R0 - 1

12 CMP R0, #0x0 ; test R0 against 0

13 BHI loop ; if C = 1 and Z = 0,

14 ; back to loop at line 10

15 BL sysExit ; end of program

16
17 END

This program counts down from 255 to 1 (inclusive), display-
ing each integer value as a bit pattern on one of the LED
banks.

8 start

9 MOV r0, #0xff ; set R0 = 255

Line 9 initialises the value of R0 to 255 using a MOVe
instruction.

10 loop BL MAS LED ONOFF ; write R0 to LED bank

Line 10 is an assembler system call that takes
the current value in register R0 and writes it out

MDP ARM Simulator 23

to one of the LED banks in the Virtual Hardware Interface, in
this case Hardware Panel 1. Note that Line 10 has its own
label, “loop”.

11 SUB r0, r0, #0x1 ; set R0 = R0 - 1

Line 11 uses the SUB instruction to decrement
the value of R0 by 1. The SUB instruction sub-

tracts 1 (the second source operand) from the value in the
first source operand (here R0), and places the new value
back into R0

12 CMP R0, #0x0 ; test R0 against 0

13 BHI loop ; if C = 1 and Z = 0,

13 ; back to loop at line 10

Line 12 uses the CMP instruction to compare
the values of R0 and 0. In this example, we will
be interested in the value of the Z and the C bits.
Line 13 is a BHI (Branch if HIgher) instruction.

If the value of C is 1 and Z is 0 (which occurs if R0 > 0) then
the program branches back to the “loop” label at line 10. If
not, then the branch is not taken and the program proceeds
to line 15 and termination.

4.5 Textual I/O

4.5.1 Text Input

4.5.2 Text Output

4.6 Use of Memory Map

- memory map and what can be seen

4.7 Modification of Registers

- update of registers - watch as happens or inject different
values in single-step

24 MDP ARM Simulator

5 Simplified ARM Assembler

Internally the ARM uses 32 bit instructions which are gen-
erally called from an assembler using a relatively standard
Opcode format. The syntax used in MAS Rolecks is simi-
lar to those found in other ARM assemblers, e.g. ADS, Kile.
Details of individual formats/syntax can be found in Appen-
dicies ?? , however the general construction is shown in the
following sections.

5.1 Instruction Syntax

Opcode Flags Operand 1
⇓ ⇓ ⇓

ADD EQ S R0, R1, R2, LSL#2
⇑ ⇑ ⇑

Condition Destination Operand 2
Code Register

Where

Opcode Typically a 3 letter mnemomic, common codes used
below, see Appendix ?? for full details

Mnemonic Description Example Mnemonic Description Example
ADC Add with Carry ADC R0, R1, #1 MOV Move MOV R0, #0x07
ADD Add ADD R0, R1, R2 ORR Logical OR ORR R0, R1
AND Logical And AND R0, R0, #0xFF STR Store Register STR R0, [R1]

B Branch B loop SUB Subtract SUB R0, R1, R2
BL Branch Link BL mas leds onoff TEQ Test equivalence TEQ R1, R2

CMP Compare CMP R0, R1
LDR Load Register LDR R0, [R1]

Condition Code indicates what conditions are inspected prior to action-
ing the instructions, see Appendix ?? for more details.

Mnemonic Meaning Status Flags Mnemonic Meaning Status Flags
EQ EQual Z=1 VC oVerflow Clear V=1
NE Not Equal Z=0 HI unsigned HIgher C=1,Z=0
CS Carry Set C=1 LS unsigned Lower or Same C=0, Z=1
CC Carry Clear C=0 GE signed Greater than or Equal N=V
HS Higher or Same C=1 LT signed Less Than N!=V
LO unsigned LOwer C=0 GT signed Greater Than Z=0, N=V
MI MInus/negative N=1 LE signed Less than or Equal Z=1,N!=V
Pl PLus/positive N=0 AL ALways -
VS oVerflow Set V=1 NE NEver -

Status Flag Adding S to the opcode ensures that the status flags
are updated when the instruction is actioned.

Destination Register Typically R0→ R12

Operand 1 Normally a register (R0→ R12)

Operand 2 Normally an optional parameter, but typically one of
the following formats.

MDP ARM Simulator 25

– Immediate e.g. #0x23 (35)

– Register e.g. R2

– Resister + barrel Shifter e.g. R2, LSL#2 (4*R2)

5.2 Instruction Types

There are five general types of instructions/opcodes:-

Data operations (For further information see Appendix ??)

This group does most of the work. There are sixteen
instructions, and they have very similar formats. Ex-
amples of instructions from this group are ADD and
CMP, which add and compare two numbers respec-
tively. The operands of these instructions are always
in registers (or an immediate number stored in the in-
struction itself), never in memory.

Load and Store (For further information see Appendix ??)

Group of two instructions: load a register and save
a register, with a number of variations which include
whether bytes or words are transferred, and how the
memory location to be used is obtained.

Multiple Load and Store Group of instructions that allows between one and
16 registers to be moved between the processor and
memory. Only word transfers are performed by this
group.

Branching Although the PC may be altered using the data oper-
ations to cause a change in the program counter, the
branch instruction provides a convenient way of reach-
ing any part of the 64M byte address space in a single
instruction. It causes a displacement to be added to
the current value of the PC. The displacement is stored
in the instruction itself.

SWI This one-instruction group is very important. The ab-
breviation stands for ’SoftWare Interrupt’. It provides
the way for user’s programs to access the facilities pro-
vided by the operating system. All ARM -based com-
puters provide a certain amount of pre-written software
to perform such tasks as printing characters on to the
screen, performing disc I/O etc. By issuing SWI in-
structions, the user’s program may utilise this operat-
ing system software, obviating the need to write the
routines for each application.

26 MDP ARM Simulator

6 MAS Rolecks Assembler Functions

ADD NOTES ABOUT SWI/BL

The documentation that follows tries to copy the ARM style
documentation for SWIs as much as possible. Notable ex-
ceptions are the lack of a SWI number. These are function-
like calls that are invokes using a BL (branch-link) instruc-
tion, possibly with a conditional suffix. Note that these rou-
tines differ from C functions in that they may return values in
anLine 8: ; and store the total back into register

2

6.1 System operations

MAS-Rolecks implements a number of system level calls
similar to other ARM asssemblers, the operation of those
commonly used are given below and a the full list is given in
appendix ?? .

6.1.1 SYS Exit

Terminates the current program

On Entry R1 contains the return code for the program

On Exit This routine does not return

6.1.2 SYS ReadC

Reads a byte from the standard input.

On Entry Register R1 must contain zero. There are no other
parameters or values possible.

On Exit R0 contains the byte read from the console.

6.1.3 SYS WriteC

Writes a character byte, contained in R1, to the standard
outputl.

On Entry R1 contains the character.

On Exit None. Register R0 is corrupted.

Comment This differs from ADS SYS WriteC, where R1 is a
pointer to the byte.

MDP ARM Simulator 27

6.2 Hardware i/o Routines

In addition to the standard ARM consistan i/o functions MAS
also has a number of routines that can be called as subrou-
tines that access simulated or real hardware (if connected or
running on a MDP Balloon system) A full list of the available
functions is given in appendix ?? . The calls allow access
to hardware at various depth levels, but the normal user is
likely to use the high level varieties that are listed below and
work directly with the simulated hardware describe din sec-
tion ??

6.2.1 MAS LED OnOff

Sets LED states to either on or of in a banks of 8 LEDs at a
time.

On Entry – R0 contains in bits 0 to 7 the new state of the 8
LEDs in the bank indicated by R1

– R1 contains the LED bank number

On Exit – R0 contains 0 if the operation was successful and
-1 otherwise

– R1 is preserved

6.2.2 MAS Slider Read

Reads the current state of the analogue slide control

On Entry R1 contains the slider number (usually 0)

On Exit R0 contains the slider value in bits 15..0

Comments On exit R0 will contain a 16-bit number, but it should
not be assumed that the ADC that took the reading is
16-bit. The lower bits could be 0.

6.2.3 MAS Switch Read

Reads the current state of a bank of up to 8 switches

On Entry R1 contains the switch bank number

On Exit R0 contains the switch settings in bits 7..0

28 MDP ARM Simulator

Appendices

A ARM Assembler Opcodes

A.1 Data Operations - Arithmetic

A.1.1 ADD ADD

Syntax ADD <cc> <S> Rd, Rn, <Op1>

Description <Rd> = <Rn> + <Op1>

Add the value of <Op1> to register Rn and store the
result in Rd.

Example
ADD R0, R0,#1 ;Increment RO

ADD R1, R1, R1, LSL#2 ;R1*5

ADDS R0, R1, R2 ;R0=R1+R2, check for overflow

Condition Codes The N and Z flags are set on the result of the addition.
The C and V flags are set dependent on whether the
the addition generated a carry (unsigned overflow) or
a signed overflow.

Instruction Format

Opcode 31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

ADD<cond><S> Rd, Rn, # cond 0 0 1 0 1 0 0 S Rn Rd rotate #

ADD<cond><S> Rd, Rn, Rm OP # cond 0 0 0 0 1 0 0 S Rn Rd shift# shift 0 Rm

ADD<cond><S> Rd, Rn, Rm OP Rs cond 0 0 0 0 1 0 0 S Rn Rd Rs 0 shift 1 Rm

A.1.2 ADC ADD with Carry

Syntax ADC <cc> <S> Rd, Rn, <Op1>

Description <Rd> = <Rn> + <Op1>+ <Carry>

Used in a similar fashion to ADD but with the carry
added into the result as well dependant on <op1>

Example ;add the 64-bit number in R2, R3

;to that in R0, R1

ADDS R0, R0, R2 ;Add the lower words

ADC R1, R1, R3 ;Add upper words using carry

N.B setting the final line to

ADCS R1, R1, R3 ;Add upper words using carry

;Set Flags

MDP ARM Simulator 29

results in the flags being set if:-
N The 64-bit result was negative
C Unsigned overflow occurred
V signed overflow occurred
Z The top 32 bits are zero

Condition Codes The N and Z flags are set on the result of the addition.
The C and V flags are set dependent on whether the
the addition generated a carry (unsigned overflow) or
a signed overflow.

Instruction Format

Opcode 31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

ADC<cond><S> Rd, Rn, # cond 0 0 1 0 1 0 1 S Rn Rd rotate #

ADC<cond><S> Rd, Rn, Rm OP # cond 0 0 0 0 1 0 1 S Rn Rd shift# shift 0 Rm

ADC<cond><S> Rd, Rn, Rm OP Rs cond 0 0 0 0 1 0 1 S Rn Rd Rs 0 shift 1 Rm

A.1.3 CMP Compare

Syntax CMP <cc> <S> Rn, <Op1>

Description Sets the status based on the subtraction <Rn> -
<Op1>. N.B. the <S> option is assumed.

Examples ; Put lower of R0 and R1 in R0

MOV RO, #0x10

MOV R1, #0x8

CMP R0, R1

MOVGT R0, R1

Condition Codes The N and Z flags are set on the result of the substrac-
tion. The C and V flags are set dependent on whether
the substraction generated a carry (unsigned overflow)
or a signed overflow.

Note The carry flag [C] is inverted as it is cleared by a sub-
traction that needs a borrow and set by a calculation
that does not need a borrow.

Instruction Format

Opcode 31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

CMP<cond><S> Rn, # cond 0 0 1 1 0 1 0 S Rn SBZ rotate #

CMP<cond><S> Rn, Rm OP # cond 0 0 0 1 0 1 0 S Rn SBZ shift# shift 0 Rm

CMP<cond><S> Rn, Rm OP Rs cond 0 0 0 1 0 1 0 S Rn SBZ Rs 0 shift 1 Rm

A.1.4 CMN Compare Negative

Syntax CMN <cc> <S> Rn, <Op1>

30 MDP ARM Simulator

Description Sets the status based on the subtraction Rn - - <Op1>

= Rn + <Op1>. N.B. the <S> option is assumed.

Examples CMP R0, #0x5 ; Compare R0 with -5

Condition Codes The N and Z flags are set on the result of the substrac-
tion. The C and V flags are set dependent on whether
the substraction generated a carry (unsigned overflow)
or a signed overflow.

Note The carry flag [C] is inverted as it is cleared by a sub-
traction that needs a borrow and set by a calculation
that does not need a borrow.

Instruction Format

Opcode 31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

CMN<cond><S> Rn, # cond 0 0 1 1 0 1 1 S Rn SBZ rotate #

CMN<cond><S> Rn, Rm OP # cond 0 0 0 1 0 1 1 S Rn SBZ shift# shift 0 Rm

CMN<cond><S> Rn, Rm OP Rs cond 0 0 0 1 0 1 1 S Rn SBZ Rs 0 shift 1 Rm

A.1.5 SUB Subtract

Syntax SUB <cc> <S> Rd, Rn, <Op1>

Description <Rd> = <Rn> - <Op1>+ <Carry>

Subtract the value of <Op1> from register Rn and
store the result in Rd.

Examples
SUBS R0, R0,#1 ;Decrement RO, setting flags

;NB can be used to set the

;end of a loop without CMP

SUBS R1, R1, R1, ASR#2 ;R1=R1*(3/4) = R1-(R1/4)

Condition Codes The N and Z flags are set on the result of the substrac-
tion. The C and V flags are set dependent on whether
the substraction generated a carry (unsigned overflow)
or a signed overflow.

Note The carry flag [C] is inverted as it is cleared by a sub-
traction that needs a borrow and set by a calculation
that does not need a borrow. If multiword subtractions
are being used the effect is reset if high word subtrac-
tions use the SBCS (Subtract with Carry) commands,
e.g.

;((R1*2^32)+R0) - ((R3*2^32)+R2)

SUBS R0, R0, R2 ;SUB lower words

SBC R1, R1, R3 ;SUB upper words using borrow

Instruction Format

MDP ARM Simulator 31

Opcode 31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

SUB<cond><S> Rd, Rn, # cond 0 0 1 0 0 1 0 S Rn Rd rotate #

SUB<cond><S> Rd, Rn, Rm OP # cond 0 0 0 0 0 1 0 S Rn Rd shift# shift 0 Rm

SUB<cond><S> Rd, Rn, Rm OP Rs cond 0 0 0 0 0 1 0 S Rn Rd Rs 0 shift 1 Rm

A.1.6 SBC Subtract with Carry

Syntax SBC <cc> <S> Rd, Rn, <Op1>

Description <Rd> = <Rn> - <Op1> - NOT(<Carry>)
Used in multiword subtractionsa similar fashion to ADD

but with the carry added into the result as well depen-
dant on <op1>

Example ;((R1*2^32)+R0) - ((R3*2^32)+R2)

SUBS R0, R0, R2 ;SUB lower words

SBC R1, R1, R3 ;SUB upper words using borrow

Condition Codes The N and Z flags are set on the result of the substrac-
tion. The C and V flags are set dependent on whether
the substraction generated a carry (unsigned overflow)
or a signed overflow.

Note The carry flag [C] is inverted as it is cleared by a sub-
traction that needs a borrow and set by a calculation
that does not need a borrow. If multiword subtractions
are being used the effect is reset if high word subtrac-
tions use the SBCS (Subtract with Carry) commands.

Instruction Format

Opcode 31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

SBC<cond><S> Rd, Rn, # cond 0 0 1 0 1 1 0 S Rn Rd rotate #

SBC<cond><S> Rd, Rn, Rm OP # cond 0 0 0 0 1 1 0 S Rn Rd shift# shift 0 Rm

SBC<cond><S> Rd, Rn, Rm OP Rs cond 0 0 0 0 1 1 0 S Rn Rd Rs 0 shift 1 Rm

A.1.7 RSB Reverse Subtract

Syntax RSB <cc> <S> Rd, Rn, <Op1>

Description <Rd> = <Op1> - <Rn>

Subtract the value of register Rn from <Op1> and
store the result in Rd, which allows the operands in
Op1 to be used in subtractions.

Examples
RSB R0, R0, #1 ;RO = 1 - RO

RSB R0, R0, R0, ASL#4 ;R0= 15*R0 = (16*R0)-R0

32 MDP ARM Simulator

Condition Codes The N and Z flags are set on the result of the substrac-
tion. The C and V flags are set dependent on whether
the substraction generated a carry (unsigned overflow)
or a signed overflow.

Note The carry flag [C] is inverted as it is cleared by a sub-
traction that needs a borrow and set by a calculation
that does not need a borrow. If multiword subtractions
are being used the effect is reset if high word sub-
tractions use the RSCS (Reverse Subtract with Carry)
commands.

Instruction Format

Opcode 31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

RSB<cond><S> Rd, Rn, # cond 0 0 1 0 0 1 1 S Rn Rd rotate #

RSB<cond><S> Rd, Rn, Rm OP # cond 0 0 0 0 0 1 1 S Rn Rd shift# shift 0 Rm

RSB<cond><S> Rd, Rn, Rm OP Rs cond 0 0 0 0 0 1 1 S Rn Rd Rs 0 shift 1 Rm

A.1.8 RSC Reverse Subtract with Carry

Syntax RSC <cc> <S> Rd, Rn, <Op1>

Description <Rd> = <Op1> - <Rn> - NOT(<Carry>)
Used in multiword subtractionsa similar fashion to RSB

but with the carry added into the result as well depen-
dant on <op1>

Example ;((R2*2^32)+16) - ((R1*2^32)+R0)

RSBS R0, R0, #0x10 ;SUB lower words

RSC R1, R1, R2 ;SUB upper words

Condition Codes The N and Z flags are set on the result of the substrac-
tion. The C and V flags are set dependent on whether
the substraction generated a carry (unsigned overflow)
or a signed overflow.

Instruction Format

Opcode 31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

RSC<cond><S> Rd, Rn, # cond 0 0 1 0 1 1 1 S Rn Rd rotate #

RSC<cond><S> Rd, Rn, Rm OP # cond 0 0 0 0 1 1 1 S Rn Rd shift# shift 0 Rm

RSC<cond><S> Rd, Rn, Rm OP Rs cond 0 0 0 0 1 1 1 S Rn Rd Rs 0 shift 1 Rm

A.2 Data Operations - Logical

A.2.1 AND Logical AND

Syntax AND <cc> <S> Rd, Rn, <Op1>

MDP ARM Simulator 33

Description Performs a full 32 bitwise AND on Rn with the value of
<Op1>, storing the result in Rn.

Rn <Op1> Rd
0 0 0
0 1 0
1 0 0
1 1 1

Example
ANDS R0, R0, R1 ;Mask R0 with R1

AND R0, R0, #0xDF ;Set ASCII code to upper case

Condition Codes The N and Z flags are set on the result of the AND
operation. The C flag is set but the V flag is untouched.

Instruction Format

Opcode 31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

AND<cond><S> Rd, # cond 0 0 1 0 0 0 0 S Rn Rd rotate #

AND<cond><S> Rd, Rm OP # cond 0 0 0 0 0 0 0 S Rn Rd shift# shift 0 Rm

AND<cond><S> Rd, Rm OP Rs cond 0 0 0 0 0 0 0 S Rn Rd Rs 0 shift 1 Rm

A.2.2 BIC Bitwise Clear

Syntax BIC <cc> <S> Rd, Rn, <Op1>

Description Performs a full 32 bitwise AND on Rn with the value of
NOT<Op1>, storing the result in Rn.

Rn <Op1> NOT<Op1> Rd

0 0 1 0
0 1 0 0
1 0 1 1
1 1 0 0

Example
BICS R0, R0, #0xF ;Clear bits 0-4

Condition Codes The N and Z flags are set on the result of the AND
operation. The C flag is set but the V flag is untouched.

Instruction Format

Opcode 31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

BIC<cond><S> Rd, # cond 0 0 1 1 1 1 0 S Rn Rd rotate #

BIC<cond><S> Rd, Rm OP # cond 0 0 0 1 1 1 0 S Rn Rd shift# shift 0 Rm

BIC<cond><S> Rd, Rm OP Rs cond 0 0 0 1 1 1 0 S Rn Rd Rs 0 shift 1 Rm

34 MDP ARM Simulator

A.2.3 EOR Logical Exclusive OR

Syntax EOR <cc> <S> Rd, Rn, <Op1>

Description Performs a full 32 bitwise EOR on Rn with the value of
<Op1>, storing the result in Rn.

Rn <Op1> Rd
0 0 0
0 1 1
1 0 1
1 1 0

Example
EOR R0, R0, #0x55 ;invert bits 0,2,4,6

Condition Codes The N and Z flags are set on the result of the EOR
operation. The C flag is set but the V flag is untouched.

Instruction Format

Opcode 31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

EOR<cond><S> Rd, # cond 0 0 1 0 0 0 1 S Rn Rd rotate #

EOR<cond><S> Rd, Rm OP # cond 0 0 0 0 0 0 1 S Rn Rd shift# shift 0 Rm

EOR<cond><S> Rd, Rm OP Rs cond 0 0 0 0 0 0 1 S Rn Rd Rs 0 shift 1 Rm

A.2.4 MOV Move Value

Syntax MOV <cc> <S> Rd, <Op1>

Description Transfers the value of <Op1> to register Rd.

Example
MOV R0, R0, LSL #2 ;R0=R0*4

MOVS R0, R1 ;R0=R1 with flags set

MOV R1, #0x40 ;R1=64 (40_{16})

Condition Codes The N and Z flags are set on the result of the addition.
The C and V flags are set dependent on whether the
the addition generated a carry (unsigned overflow) or
a signed overflow.

Instruction Format

Opcode 31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

MOV<cond><S> Rd, # cond 0 0 1 1 1 0 1 S SBZ Rd rotate #

MOV<cond><S> Rd, Rm OP # cond 0 0 0 1 1 0 1 S SBZ Rd shift# shift 0 Rm

MOV<cond><S> Rd, Rm OP Rs cond 0 0 0 1 1 0 1 S SBZ Rd Rs 0 shift 1 Rm

MDP ARM Simulator 35

A.2.5 MVN Move Negative

Syntax MVN <cc> <S> Rd, <Op1>

Description Transfers the logical NOT of Op1 to the desitination
register Rd. N.B. -n= NOT (n-1) thus to load a negative
number, subtract 1 from the positive number and use
MVN.

Examples MVNS R0, R0 ;Invert bits in R0, e.g. form mask

;and set flags

MVN R1, #0 ;Set R1 to -1, e.g. 0xFFFFFFFF

Condition Codes The N and Z flags are set on the result of the operation.
The C flag is set to the carry output generated by the
shifter. V flag is not set.

Instruction Format

Opcode 31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

MVN<cond><S> Rd, # cond 0 0 1 1 1 1 1 S SBZ Rd rotate #

MOV<cond><S> Rd, Rm OP # cond 0 0 0 1 1 1 1 S SBZ Rd shift# shift 0 Rm

MOV<cond><S> Rd, Rm OP Rs cond 0 0 0 1 1 1 1 S SBZ Rd Rs 0 shift 1 Rm

A.2.6 ORR Logical OR

Syntax ORR <cc> <S> Rd, Rn, <Op1>

Description Performs a full 32 bitwise OR on Rn with the value of
<Op1>, storing the result in Rn. Effectively the oppo-
site of BIC.

Rn <Op1> Rd

0 0 0
0 1 1
1 0 1
1 1 1

Example
ORR R0, R0, #0x55 ;Set bits 0,2,4,6

Condition Codes The N and Z flags are set on the result of the EOR
operation. The C flag is set but the V flag is untouched.

Instruction Format

Opcode 31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

ORR<cond><S> Rd, # cond 0 0 1 1 1 0 0 S Rn Rd rotate #

ORR<cond><S> Rd, Rm OP # cond 0 0 0 1 1 0 0 S Rn Rd shift# shift 0 Rm

ORR<cond><S> Rd, Rm OP Rs cond 0 0 0 1 1 0 0 S Rn Rd Rs 0 shift 1 Rm

36 MDP ARM Simulator

A.2.7 TEQ Test Equivalence

Syntax TEQ <cc> <S> Rn, <Op1>

Description Performs a full 32 bitwise EOR on Rn and <Op1> but
only only sets the result flags. N.B. the option <S> is
assumed.

Example
TEQ R1, #0x15 ;Check if R1=21

Condition Codes The Z flag is set if the two operands are equal.

Instruction Format

Opcode 31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

TEQ<cond><S> Rn, # cond 0 0 1 1 0 0 1 S Rn SBZ rotate #

TEQ<cond><S> Rn, Rm OP # cond 0 0 0 1 0 0 1 S Rn SBZ shift# shift 0 Rm

TEQ<cond><S> Rn, Rm OP Rs cond 0 0 0 1 0 0 1 S Rn SBZ Rs 0 shift 1 Rm

A.2.8 TST Test Bits

Syntax TST <cc> <S> Rn, <Op1>

Description Performs a full 32 bitwise AND on Rn and <Op1> but
only only sets the result flags. N.B. the option <S> is
assumed.

Example
TEQ R1, #0x1 ;Check if R1 bit 8 is set

Condition Codes The Z flag is set if the two operands are equal.

Instruction Format

Opcode 31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

TST<cond><S> Rn, # cond 0 0 1 1 0 0 0 S Rn SBZ rotate #

TST<cond><S> Rn, Rm OP # cond 0 0 0 1 0 0 0 S Rn SBZ shift# shift 0 Rm

TST<cond><S> Rn, Rm OP Rs cond 0 0 0 1 0 0 0 S Rn SBZ Rs 0 shift 1 Rm

A.3 Load and Store

A.3.1 LDR Load Register

Syntax LDR <cc> Rd, <Op2> <!>

Description load the register Rd with a word from the memory lo-
cation calculated by <Op2>. If PC (R15) is used as
the Rd the program branches to the address specified
in <Op2>.

Examples Pre-indexing

MDP ARM Simulator 37

LDR R0, [R1, #1] ;Load R0 with memory location R1+1

LDR R0, [R1, #4]! ;Load R0 with memory location R1+1

;Put R1+4 into R1

LDR R0, [R1, #-4, LSR#3];Load R0 with memory location

;R1+(-4*8)

Post-indexing

LDR R0, [R1], #4 ;Load R0 with memory location R1

;R1 is subsequently set to R1+4

LDR R0, [R1], #-4 ;Load R0 with memory location R1

;Then set R1=R1-4

Condition Codes Not changed

Note the result is unpredicatable if:-

– <Op2> is not word aligned

– Rd=<Op2> and the writeback option <!> is se-
lected

Instruction Format

Opcode 31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

LDR<cond> Rd, Rn, # cond 0 1 0 P U 0 W 0 Rn Rd #

LDR<cond> Rd, Rn, # cond 0 1 1 P U 0 W 0 Rn Rd shift# shift 0 Rm

A.3.2 LDRB Load Register Byte

Syntax LDR<cc>B Rd, <Op2> <!>

Description load the register Rd with a byte, extended to 32bits
with zeros, from the memory location calculated by
<Op2>. If PC (R15) is used as the base register PC
relative addressing is possible.

Examples Pre-indexing

LDRB R0, [R1, #4]! ;Load R0 with a byte from

;memory location R1+1

;Put R1+4 into R1

Post-indexing

LDRB R0, [R1], #4 ;Load R0 with a byte from

;memory location R1

;R1 is subsequently set to R1+4

Condition Codes Not changed

38 MDP ARM Simulator

Note the result is unpredicatable if:-

– Rd=15 (PC)

– Rd=<Op2> and the writeback option <!> is se-
lected

Instruction Format

Opcode 31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

LDR<cond>B Rd, Rn, # cond 0 1 0 P U 1 W 0 Rn Rd #

LDR<cond>B Rd, Rn, # cond 0 1 1 P U 1 W 0 Rn Rd shift# shift 0 Rm

A.3.3 STR Store Register

Syntax STR <cc> Rd, <Op2> <!>

Description Store the register Rd in the memory location calculated
by <Op2>. If PC (R15) is used as the base register al-
lows position independant code using PC-relative ad-
dressing.

Examples Pre-indexing

STR R0, [R1, #4]! ;Store R0 in memory location

;R1+4, Put R1+4 into R1

STR R0, [R1, #-4, LSR#3] ;Store R0 in memory

;location R1+(-4*8)

Post-indexing

STR R0, [R1], #4 ;Store R0 in memory location R1

;R1 is subsequently set to R1+4

STR R0, [R1], #-8 ;Store R0 in memory location R1

;Then set R1=R1-8

Condition Codes Not changed

Note the result is unpredicatable if:-

– <Op2> is not word aligned

– Rd=<Op2> and the writeback option <!> is se-
lected

Instruction Format

Opcode 31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

STR<cond> Rd, Rn, # cond 0 1 0 P U 0 W 0 Rn Rd #

STR<cond> Rd, Rn, # cond 0 1 1 P U 0 W 0 Rn Rd shift# shift 0 Rm

MDP ARM Simulator 39

A.3.4 STRB Store Register Byte

Syntax STR<cc>B Rd, <Op2> <!>

Description Store the least significant byte in register Rd in the
memory location calculated by <Op2>. If PC (R15)
is used as the base register PC relative addressing is
possible.

Examples Pre-indexing

STRB R0, [R1, #1]! ;Store R0 in the

;memory location R1+1

;Put R1+1 into R1

Post-indexing

STRB R0, [R1], #4 ;Store R0 in the

;memory location R1

;R1 is subsequently set to R1+4

Condition Codes Not changed

Note the result is unpredicatable if:-

– Rd=15 (PC)

– Rd=<Op2> and the writeback option <!> is se-
lected

Instruction Format

Opcode 31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

STR<cond>B Rd, Rn, # cond 1 0 0 P U 1 W 0 Rn Rd #

STR<cond>B Rd, Rn, # cond 0 1 1 P U 1 W 0 Rn Rd shift# shift 0 Rm

A.4 Branch

A.4.1 B Branch

Syntax B<cc> <Offset>

Description Simple Store the least significant byte in register Rd
in the memory location calculated by <Op2>. If PC
(R15) is used as the base register PC relative address-
ing is possible.

Example Pre-indexing

;Print Chapital characters

MOV R0, #65 ;Load R0 with ASC ’A’

loop

40 MDP ARM Simulator

BL syswrite ;Write character R0 to stdio

ADD R0, R0, #1 ;Increment R0

CMP R0, #90 ;Compare R0 with ASCII ’Z’

BNE loop ;Return to loop if R0<91

Post-indexing

STRB R0, [R1], #4 ;Store R0 in the

;memory location R1

;R1 is subsequently set to R1+4

Condition Codes Not changed

Note the result is unpredicatable if:-

– Rd=15 (PC)

– Rd=<Op2> and the writeback option <!> is se-
lected

Instruction Format

Opcode 31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

STR<cond>B Rd, Rn, # cond 1 0 0 P U 1 W 0 Rn Rd #

STR<cond>B Rd, Rn, # cond 0 1 1 P U 1 W 0 Rn Rd shift# shift 0 Rm

A.5 Multiple Load and Store

A.6 Software Interrupts

MDP ARM Simulator 41

A.7 Condition Codes

Mnemonic Condition Test Meaning Uses

EQ Z=1 EQual Comparison equal or zero re-
sult

NE Z=0 Not Equal Comparison not equal or non-
zero result

CS C=1 Carry Set Arithmetic operation gave
carry out

CC C=0 Carry Clear Arithmetic operation did not
produce a carry

HS C=1 Higher or Same Unsigned comparison gave
higher or same result

LO C=0 unsigned LOwer Unsigned comparison gave
lower result

MI N=1 MInus Result is minus or negative
PL N=0 PLus Result is positive (plus) or

zero
VS V=1 oVerflow Set Signed integer operation:

overflow occurred
VC V=0 oVerflow Clear Signed integer operation: no

overflow occurred
HI ((NOT C) OR z)=0 Unsigned Higher Unsigned comparison gave

{C set and Z clear}
LS ((NOT C) OR Z) =1 unsigned Lower unsigned comparison gave

{C set or Z clear} or Same lower or same
GE (N EOR V) signed Greater than Signed integer comparison

{(N and V) set or or Equal gave greater than or equal
(N and V) clear}

LT (N EOR V) =1 signed Less Than Signed integer comparison
{(N set and V clear) or gave less than

(N clear and V set)}
GT (Z OR (N EOR V))=0 signed Greater Than Signed integer comparison

{((N and V) set or clear) gave greater than
and Z clear}

LE (Z OR (N EOR V)) =1 Less or Equal Signed integer comparison
{(N set and V clear) or gave less than or equal

(N clear and V set) or Z set}
AL No test Always Always take the branch

42 MDP ARM Simulator

B MAS Rolecks Assembler Subroutines

B.1 System Subroutines

The MAS Rolecks system simulates a number of standard
system related subroutine calls, similar to those imple-
mented in other assemblers. Within MAS Rolecks they
can be called either as SWI’s or as subroutines called with
a BL call. It should be noted that to be run on the MDP Mi-
crocontroller hardware only the BL method of calling system
subroutines is supported.

B.1.1 SYS Exit

Terminates the current program

On Entry R1 contains the return code for the program

On Exit This routine does not return

B.1.2 SYS Clock

Returns the number of centiseconds since the execution
started.

On Entry Register R1 must contain zero. There are no other
parameters.

On Exit R0 contains:

– the number of centiseconds if successful

– -1 if the call is unsuccessful (for example, be-
cause of a communications error).

B.1.3 SYS Close

Closes a file on the host system. The handle must reference
a file that was opened with SYS Open.

On Entry On entry, r1 contains a pointer to a one-word argument
block:

word 1 This is a file handle referring to an open file.

On Exit r0 contains:

– 0 if the call is successful

– -1 if the call is not successful.

MDP ARM Simulator 43

B.1.4 SYS Open

Opens a file on the host system.

On Entry R1 contains a pointer to the first byte of the string, con-
taining the file name.

On Exit r0 contains:

– 0 if the call is successful

– -1 if the call is not successful.

r1 contains

B.1.5 SYS Read

ToDo: As ADS?

B.1.6 SYS ReadC

Reads a byte from the standard input.

On Entry Register R1 must contain zero. There are no other
parameters or values possible.

On Exit R0 contains the byte read from the console.

B.1.7 SYS WriteC

Writes a character byte, contained in R1, to the standard
outputl.

On Entry R1 contains the character.

On Exit None. Register R0 is corrupted.

Comment This differs from ADS SYS WriteC, where R1 is a
pointer to the byte.

B.1.8 SYS Write0

Writes a null-terminated string to the standard output.

On Entry R1 contains a pointer to the first byte of the string.

On Exit Register R0 is corrupted.

44 MDP ARM Simulator

B.1.9 SYS Write

Writes the contents of a buffer to a specified file at the cur-
rent file position. The file position is specified either:

• explicitly, by a SYS Seek

• implicitly as one byte beyond the previous SYS Read
or SYS Write request.

The file position is at the start of the file when the file
is opened, and is lost when the file is closed.

Perform the file operation as a single action whenever
possible. For example, do not split a write of 16KB into
four 4KB chunks unless there is no alternative.

On Entry R1 contains a pointer to a three-word data block:

– word 1 This contains a handle for a file previously
opened with SYS Open.

– word 2 This points to the memory containing the
data to be written

– word 3 This contains the number of bytes to be
written from the buffer to the file.

On Exit R0 contains: 0 if the call is successful the number of
bytes that are not written, if there is an error.

B.1.10 SYS SysCall

Executes a syscall on the host system

On Entry R0 contains the syscall number R1-R7 contain the pa-
rameters required by the syscall

On Exit Syscall specific

B.2 High-level Hardware Routines

These routines provide convenient access to the hardware,
without exposing implementation details like IC bus ad-
dresses. On Rolecks the ’hardware’ implementation is sim-
ply graphics in a window.

B.2.1 MAS LED OnOff

Sets LED states to either on or of in a banks of 8 LEDs at a
time.

On Entry – R0 contains in bits 0 to 7 the new state of the 8
LEDs in the bank indicated by R1

MDP ARM Simulator 45

– R1 contains the LED bank number

On Exit – R0 contains 0 if the operation was successful and
-1 otherwise

– R1 is preserved

B.2.2 MAS LED Flash

(optional) Sets LEDs to on, off or flashing states in banks of
8 LEDs at a time.

On Entry – R0 contains the LED bank number

– R1 contains in bits 0 to 7 the new state of the 8
LEDs in the bank indicated by R0

On Exit – R0 contains 0 if the operation was successful and
-1 otherwise

– R1 is preserved

Remarks This routine is intended for use with LEDs connected
to PCA9532 LED dimmers. On implementations with
no such devices this routine exits with R0 containing
-1.

B.2.3 MAS Motor

(N.B. Note yet implemented) Sets direction and speed of
motors, 1-4.

On Entry – R0 contains the motor number 0-4

– R1 contains the ’speed’ of the motor. -127 (full
speed anti-clockwise, 0 stopped, +127 full speed
colckwise)

On Exit – R0 contains 0 if the operation was successful and
-1 otherwise

– R1 is preserved

Remarks

B.2.4 MAS IR Read

Reads the current state of the infra-red sensors

On Entry R1 contains the IR bank number (usually 0)

On Exit R0 contains the state of the IR sensors in bits 0..3

46 MDP ARM Simulator

B.2.5 MAS Slider Read

Reads the current state of the analogue slide control

On Entry R1 contains the slider number (usually 0)

On Exit R0 contains the slider value in bits 15..0

Comments On exit R0 will contain a 16-bit number, but it should
not be assumed that the ADC that took the reading is
16-bit. The lower bits could be 0.

B.2.6 MAS Switch Read

Reads the current state of a bank of up to 8 switches

On Entry R1 contains the switch bank number

On Exit R0 contains the switch settings in bits 7..0

B.3 Mid Level Routines

These routines are convenience wrappers around the the
I2C Control or SMBus Control routines, and access hard-
ware attached to the MDP Micro-controller.

B.3.1 PCF8574 Read

Reads from a PCF8574 (or PCF8574A) device on the de-
fault IC bus.

On Entry R0 contains the 7-bit address of the PCF8574 in bits 0
to 6.

On Exit R0 contains:

– the value read from the device in bits 0 to 7;

– -1 if an error occurred.

B.3.2 PCF8574 Write

Writes to a PCF8574 (or PCF8574A) device on the default
IC bus.

On Entry – R0 contains the 7-bit address of the PCF8574 in
bits 0 to 6.

– R1 contains 8 bits of data in bits 0 to 7.

On Exit R0 contains: 0 if the call was sucessful; or -1 if an error
occurred.

MDP ARM Simulator 47

B.3.3 PCF8591 Configure

This routine configures a PCF8591 4 channel 8-bit ADC
(plus 1 channel 8-bit DAC) device on the default IC Bus. The
device can be configured with either differential of ? inputs
on between 2 and 4 channels.

On Entry – R0 contains a reason code

– R1 contains a parameter block

On Exit

B.3.4 PCF8591 ReadADC

B.3.5 PCF8591 WriteDAC

B.3.6 PIC ReadADC

B.3.7 PIC WriteMotor

48 MDP ARM Simulator

B.4 ASCII Character Codes

Char Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex

ˆ@ 0 0 SP 32 20 @ 64 40 ’ 96 60
ˆA 1 1 ! 33 21 A 65 4 1 a 97 61
ˆB 2 2 34 22 B 66 42 b 98 62
ˆC 3 3 # 35 23 C 6 7 4 3 c 99 63
ˆD 4 4 $ 36 24 D 6 8 4 4 d 100 64
ˆE 5 5 % 37 25 E 6 9 4 5 e 101 65
ˆF 6 6 & 38 26 F 7 0 4 6 f 102 66
ˆG 7 7 ‘ 39 27 G 7 1 4 7 g 103 67
ˆH 8 8 (40 28 H 7 2 4 8 h 104 68
ˆI 9 9) 41 29 I 7 3 4 9 i 105 69
ˆJ 10 a * 42 2a J 74 4a j 106 6a
ˆK 11 b + 43 2b K 75 4b k 107 6b
ˆL 12 c , 44 2c L 76 4c l 108 6c
ˆM 13 d - 45 2d M 77 4d m 109 6d
ˆN 14 e . 46 2e N 78 4e n 110 6e
ˆO 15 f / 47 2f O 79 4f o 111 6f
ˆP 16 10 0 4 8 3 0 P 80 5 0 p 112 70
ˆQ 17 11 1 4 9 3 1 Q 81 5 1 q 113 71
ˆR 18 12 2 5 0 3 2 R 82 5 2 r 114 72
ˆS 19 13 3 5 1 3 3 S 83 5 3 s 115 73
ˆT 20 14 4 5 2 3 4 T 84 5 4 t 116 74
ˆU 21 15 5 5 3 3 5 U 85 5 5 u 117 75
ˆV 22 16 6 5 4 3 6 V 86 5 6 v 118 76
ˆW 23 17 7 5 5 3 7 W 87 5 7 w 119 77
ˆX 24 17 8 5 6 3 8 X 88 5 8 x 120 78
ˆY 25 19 9 5 7 3 9 Y 89 5 9 y 121 79
ˆZ 26 1a : 5 8 3 a Z 90 5 a z 122 7a
ˆ[27 1b ; 5 9 3 b [9 1 5 b } 1 23 7b
ˆ 28 1c < 6 0 3 c / 9 2 5 c — 1 24 7c
ˆ] 29 1d = 6 1 3 d] 9 3 5 d { 1 25 7d
ˆ ˆ 30 1e > 62 3e ˆ 94 5 e ∼ 126 7e
ˆ 31 1f ? 6 3 3 f 9 5 5 f Del 127 7f

MDP ARM Simulator 49

