Separation of FlowPressure gradient is an is one of the factors that influences a flow immensely. It is easy to see that the shear stress caused by viscosity has a retarding effect upon the flow. This effect can however be overcome if there is a negative pressure gradient offered to the flow. A negative pressure gradient is termed a Favourable pressure gradient. Such a gradient enables the flow. A positive pressure gradient has the opposite effect and is termed the Adverse Pressure Gradient. Fluid might find it difficult to negotiate an adverse pressure gradient. Sometimes, we say the the fluid has to climb the pressure hill.
One of the severe effects of an adverse pressure gradient is to separate the flow. Consider flow past a curved surface as shown in Fig.6.4. The geometry of the surface is such that we have a favourable gradient in pressure to start with and up to a point P. The negative pressure gradient will counteract the retarding effect of the shear stress (which is due to viscosity) in the boundary layer. For the geometry considered we have a an adverse pressure gradient downstream of P. Now the adverse pressure gradient begins to retard. This effect is felt more strongly in the regions close to the wall where the momentum is lower than in the regions near the free stream. As indicated in the figure, the velocity near the wall reduces and the boundary layer thickens. A continuous retardation of flow brings the wall shear stress at the point S on the wall to zero. From this point onwards the shear stress becomes negative and the flow reverses and a region of recirculating flow develops. We see that the flow no longer follows the contour of the body. We say that the flow has separated. The point S where the shear stress is zero is called the Point of Separation. Depending on the flow conditions the recirculating flow terminate and the flow may become reattached to the body. A separation bubble is formed. There are a variety of factors that could influence this reattachment. The pressure gradient may be now favourable due to body geometry and other reasons. The other factor is that the flow initially laminar may undergo transition within the bubble and may become turbulent. A turbulent flow has more energy and momentum than a laminar flow. This can kill separation and the flow may reattach. A short bubble may not be of much consequence.
On aerofoils sometimes the separation occurs near the leading edge and gives rise to a short bubble. What can be dangerous is the separation occurring more towards the trailing edge and the flow not reattaching. In this situation the separated region merges with the wake and may result in stall of the aerofoil (loss of lift). (c) Aerospace, Mechanical & Mechatronic Engg. 2005 University of Sydney |