Problem Set 12: Kinetic Theory, Temperature and Internal Energy and Work Done by Ideal as, Second Law of Thermodynamics, Mechanical Equivalent of Heat

Design Engineering Challenge: "The Big Dig" 2.007 Contest
Pneumatic Energy Storage Strategies

PROBLEM 1:

Assuming the Ideal Gas Law where n, R, and T are constant and the volume is reduced by a factor of four:

$$
\begin{aligned}
& P_{1} V_{1}=P_{2} V_{2} \\
& V_{2}=\frac{V_{1}}{4} \\
& \Rightarrow P_{2}=4 P_{1}
\end{aligned}
$$

PROBLEM 2:

The amount of Energy comes from the amount of work done by the system:
Work $=$ Force \square Displacement
Work $=\Delta P A x$
Work $=\left(P_{2}-P_{1}\right) A\left(\frac{V_{1}-V_{2}}{A}\right)$
Work $=\left(4 P_{1}-P_{1}\right)\left(\frac{3}{4} V_{1}\right)$
Work $=\frac{9}{4} P_{1} V_{1}$

PROBLEM 3:

$P V=n R \Delta T$
$\Delta T=\frac{9}{4} \frac{P_{1} V_{1}}{n R}$

PROBLEM 4:

Assuming the change in pressure is negligible:
$\frac{V_{2}}{T_{2}}=\frac{{ }_{3} V_{3}}{T_{3}}$
$\Rightarrow V_{3}=\frac{V_{2} T_{3}}{T_{2}}$

PROBLEM 5:

At steady state the temperature and volume are known. The Ideal Gas Law becomes:

$$
P_{3}=\frac{n R T_{3}}{V_{3}}
$$

The amount of energy is
Work $=\frac{9}{4} P_{1} V_{1}$

