Mechanics Data Book

2000 Edition (revised)

Cambridge University Engineering Department

Cambridge University Engineeering Department

Mechanics Formulae and Data

December 2000

DEFINITIONS

A system has one *degree of freedom* if its configuration can be completely specified by means of one variable; two degrees of freedom if it requires values of two variables; and so on.

A force is *conservative* if the work done against it is fully recoverable and is independent of the path taken. A conservative force field can be expressed as the gradient of a *potential function*.

A *rigid body* is one in which the relative positions of the constituent particles remain constant during any motion of the body as a whole.

When two bodies are in contact at a point they are said to be *sliding* if the velocities of the two material particles at the contact point are different, and *rolling* if they are equal. If there is relative rotation about the common normal, the bodies are said to be *spinning*. *Friction* is the tangential component of force at the contact region. If the surfaces are *rough* the contact force may include friction, while if the surfaces are described as *smooth* the contact force is assumed to be normal to both surfaces. When slipping occurs, the ratio of friction force to normal reaction is the *coefficient of friction*.

A frame of reference is a coordinate system, for example a set of Cartesian axes around a given origin position. It may or may not be fixed in a physical body. A frame of reference within which Newton's law of motion $\mathbf{F} = m\mathbf{a}$ applies is called *inertial*. Any two inertial frames are related to one another by uniform motion in a straight line, without acceleration or angular velocity.

1 KINEMATICS

1.1: Velocity and acceleration in polar coordinates

1.2: Velocity and acceleration in intrinsic coordinates

1.3: Rotating reference frames

1.3.1 Relative velocity and acceleration

A body R moves and rotates with respect to a frame of reference F. A point Q is fixed on the body, and another point P moves relative to the body. The position (displacement) vector of P relative to Q is $\mathbf{r}(t)$. The velocity of P relative to F is

$$\mathbf{v}_{P} = \underbrace{\mathbf{v}_{Q}}_{\begin{subarray}{c} Velocity \\ of Q in \\ frame F \end{subarray}} + \left[\frac{d\mathbf{r}}{dt} \right]_{F} = \mathbf{v}_{Q} + \left[\frac{d\mathbf{r}}{dt} \right]_{R} \\ & \\ Apparent \\ motion of P \\ relative to \\ body R \end{subarray}} + \underbrace{\omega \times \mathbf{r}}_{\begin{subarray}{c} Contribution \\ due to \\ rotation of \\ body R \end{subarray}}$$

where the angular velocity of the body is ω .

The acceleration of P relative to F is

$$\mathbf{a}_{P} = \underbrace{\mathbf{a}_{Q}}_{\substack{\text{Acceleration} \\ \text{of } Q}} + \underbrace{\begin{bmatrix} \mathbf{d}^{2}\mathbf{r} \\ \mathbf{d}t^{2} \end{bmatrix}_{R}}_{\substack{\text{Apparent} \\ \text{acceleration} \\ \text{relative to} \\ \text{body } R}} + \underbrace{\frac{\mathbf{d}\omega}{\mathbf{d}t} \times \mathbf{r}}_{\substack{\text{Coriolis} \\ \text{acceleration}}} + \underbrace{\frac{\mathbf{d}\omega}{\mathbf{d}t} \times \mathbf{r}}_{\substack{\text{Coriolis} \\ \text{acceleration}}} + \underbrace{\frac{\mathbf{d}\omega \times \mathbf{r}}{\mathbf{d}t} \end{bmatrix}_{R}}_{\substack{\text{Centripetal} \\ \text{acceleration}}}.$$

This is the acceleration which must be used in Newton's law to describe the motion of P under given forces, provided F is an inertial frame.

1.3.2 Rate of change of a general vector

A frame of reference R rotates with angular velocity ω relative to another frame of reference F. For any vector \mathbf{x} :

If the vector **x** is a field vector and the origin of the frame R is also moving at velocity U relative to frame F then

2 GEOMETRY

2.1: Radius of curvature

In Cartesian coordinates

$$R = \frac{\left\{1 + (dy/dx)^2\right\}^{3/2}}{d^2y/dx^2}$$

If x and y are functions of t

$$R = \frac{\left\{ (\mathrm{d}x/\mathrm{d}t)^2 + (\mathrm{d}y/\mathrm{d}t)^2 \right\}^{3/2}}{\mathrm{d}x/\mathrm{d}t(\mathrm{d}^2y/\mathrm{d}t^2) - \mathrm{d}y/\mathrm{d}t(\mathrm{d}^2x/\mathrm{d}t^2)}$$

In polar coordinates

$$R = \frac{\left\{r^2 + (dr/d\theta)^2\right\}^{3/2}}{r^2 + 2(dr/d\theta)^2 - r(d^2r/d\theta^2)}$$

In intrinsic coordinates

$$R = ds/d\psi$$

2.2: Ellipse

2.2.1 Basic geometry

Equation in Cartesian coordinates (origin at centre)

$$x^2/a^2 + y^2/b^2 = 1$$

2a is the major axis, 2b is the minor axis.

Equation in polar coordinates (origin at one focus)

$$l/r = 1 + e\cos\theta$$

where

$$l = b^2/a$$
, $e^2 = 1 - (b/a)^2$

and e is called the *eccentricity*: The curve is a circle if e = 0, an ellipse if 0 < e < 1, a parabola if e = 1 and a hyperbola if e > 1.

2.2.2 Satellite orbits

An earth satellite follows, approximately, an elliptical orbit with the centre of the earth at one focus. The polar equation for the orbit is as in 2.2.1, with

$$\frac{1}{l} = \frac{GM}{h^2}$$

where G is the gravitational constant, M is the mass of the earth, and h is the moment of momentum per unit mass of the satellite. Point P is the *perigee* at $\theta = 0$ and $r_P = (1 - e)a$. Point A is the *apogee* at $\theta = \pi$ and $r_A = (1 + e)a$.

2.3: Solids of revolution (Pappus's theorems)

Surface area = $2\pi bP$

3 MECHANICS OF MACHINES

3.1: Friction of a rope or belt

For $T_1 > T_2$, slipping starts when

$$\frac{T_1}{T_2} = e^{\mu\theta}$$

where μ is the coefficient of friction.

3.2: Kinematics of cams or gears

Equivalent rolling circles are shown as fine lines.

$$\frac{\omega_2}{\omega_1} = -\frac{Q_1 N_1}{Q_2 N_2} = -\frac{Q_1 P}{Q_2 P} \ .$$

Sliding speed at $C = (\omega_1 - \omega_2)PC$.

4 LINEAR SYSTEMS, VIBRATION AND STABILITY

4.1: Vibration of a conservative system with one degree of freedom

Potential energy = V(q)

Kinetic energy = $\frac{1}{2}M(q)\dot{q}^2$

For equilibrium when $q = q_0$,

 $V'(q_0) = 0.$

For stability of this equilibrium,

 $V''(q_0) > 0,$

and then natural frequency is given by $\omega_n^2 = \frac{V''(q_0)}{M(q_0)}$

4.2: Response of a stable system to a general input

If input x(t) starts at time t = 0, the output is

$$y(t) = \int_{0}^{t} g(t - \tau)x(\tau)d\tau \qquad \text{for } t > 0$$

where g(t) is the impulse response of the system.

4.3: Routh-Hurwitz stability criteria

$$\left(a_2 \frac{\mathrm{d}^2}{\mathrm{d}t^2} + a_1 \frac{\mathrm{d}}{\mathrm{d}t} + a_0\right) y = x(t)$$

Stable if all $a_i > 0$

$$\left(a_3 \frac{d^3}{dt^3} + a_2 \frac{d^2}{dt^2} + a_1 \frac{d}{dt} + a_0\right) y = x(t)$$

Stable if (i) all $a_i > 0$

and also (ii) $a_1 a_2 > a_0 a_3$

$$\left(a_4 \frac{d^4}{dt^4} + a_3 \frac{d^3}{dt^3} + a_2 \frac{d^2}{dt^2} + a_1 \frac{d}{dt} + a_0\right) y = x(t)$$

Stable if (i) $a_i > 0$

and also (ii) $a_1 a_2 a_3 > a_0 a_3^2 + a_4 a_1^2$

4.4: Step response of a linear second-order system initally at rest

$$\ddot{y}/\omega_n^2 + 2\zeta \dot{y}/\omega_n + y = x \qquad \text{where} \quad x = \begin{cases} 0 & \text{for } t < 0 \\ X & \text{for } t \ge 0 \end{cases}$$

$$y/X = 1 - (1 + \omega_n t)e^{-\omega_n t}$$
 for $\zeta = 1$ (critical damping)

$$y/X = 1 - e^{-\zeta \omega_n t} \cos(\omega_d t - \psi)/\cos \psi$$
 for $\zeta < 1$

with damped natural frequency $\omega_d = \omega_n \sqrt{1 - \zeta^2}$ and $\sin \psi = \zeta$

$$y/X \approx 1 - e^{-\zeta \omega_n t} \cos \omega_n t$$
 for $\zeta << 1$

The decay rate may be measured by the logarithmic decrement

$$\ln\left(\frac{y_1}{y_2}\right) = \frac{2\pi\zeta}{\sqrt{1-\zeta^2}} \approx 2\pi\zeta \quad \text{if } \zeta << 1$$

where y_1 , y_2 are the heights of two successive maxima (see also Section 4.7).

 $\frac{y}{X}$

4.5: Impulse response of a linear second-order system initially at rest

$$\ddot{y}/\omega_n^2 + 2\zeta \dot{y}/\omega_n + y = x \qquad \text{where} \quad x = N\delta(t)$$

$$(\text{note:} \quad \delta(t) \text{ has units of s}^{-1})$$

$$y/(\omega_n N) = \omega_n t e^{-\omega_n t} \qquad \text{for } \zeta = 1 \qquad \text{(critical damping)}$$

$$y/(\omega_n N) = e^{-\zeta \omega_n t} \sin(\omega_n t) / \sqrt{1 - \zeta^2} \qquad \text{for } \zeta < 1$$

$$\text{with } damped \text{ natural frequency} \quad \omega_d = \omega_n \sqrt{1 - \zeta^2}$$

while define the state of the state of
$$\omega_d$$
 and ω_n $\sqrt{1-2}$

$$y/(\omega_n N) \approx e^{-\zeta \omega_n t} \sin \omega_n t$$
 for $\zeta << 1$

The decay rate may be measured by the logarithmic decrement

$$\ln\left(\frac{y_1}{y_2}\right) = \frac{2\pi\zeta}{\sqrt{1-\zeta^2}} \approx 2\pi\zeta \quad \text{if } \zeta << 1$$

where y_1 , y_2 are the heights of two successive maxima (see also Section 4.7).

4.6: Harmonic response of a linear second-order system

4.6.1: Case (a)
$$\ddot{y}/\omega_n^2 + 2\zeta \dot{y}/\omega_n + y = x$$

Typical application: Response to an applied force. $x = \frac{f}{k}$ $\omega_{\rm n} = \sqrt{\frac{k}{m}}$ $\zeta = \frac{\lambda}{2\sqrt{km}}$

(i) Complex form: if $x = \text{Re}\{Xe^{i\omega t}\}$ and $y = \text{Re}\{Ye^{i\omega t}\}$

$$\frac{Y}{X} = \frac{1}{-(\omega / \omega_n)^2 + 2i\zeta\omega / \omega_n + 1}$$

(ii) Real form: if $x = X \cos \omega t$ and $y = |Y| \cos(\omega t + \phi)$

$$\left|\frac{Y}{X}\right| = \frac{1}{\left\{\left[1 - \left(\omega/\omega_n\right)^2\right]^2 + \left(2\zeta\omega/\omega_n\right)^2\right\}^{1/2}}$$

$$\tan \phi = \frac{-2\zeta \omega/\omega_n}{1 - (\omega/\omega_n)^2}$$

Maximum response (for $\zeta < 1/\sqrt{2}$)

$$|Y_{\text{max}}| = \frac{X}{2\zeta\sqrt{1-\zeta^2}}$$
 when $\omega/\omega_n = \sqrt{1-2\zeta^2}$ (resonance frequency)

Half-power bandwidth (for $\zeta \ll 1$)

$$|Y| = \frac{1}{\sqrt{2}} |Y_{\text{max}}|$$
 at ω_1, ω_2 where $(\omega_1 - \omega_2)/\omega_n \approx 2\zeta$

Graphs of response opposite.

4.6.2: Case (b) $\ddot{y}/\omega_n^2 + 2\zeta \dot{y}/\omega_n + y = -\ddot{x}/\omega_n^2$

Typical application:

Relative response to base displacement.

$$\omega_{\rm n} = \sqrt{\frac{k}{m}}$$

$$\zeta = \frac{\lambda}{2\sqrt{km}}$$

(i) Complex form: if $x = \text{Re}\{Xe^{i\omega t}\}$ and $y = \text{Re}\{Ye^{i\omega t}\}$

$$\frac{Y}{X} = \frac{\left(\omega / \omega_n\right)^2}{-\left(\omega / \omega_n\right)^2 + 2i\zeta\omega / \omega_n + 1}$$

(ii) Real form: if $x = X \cos \omega t$ and $y = |Y| \cos(\omega t + \phi)$

$$\left|\frac{Y}{X}\right| = \frac{\left(\omega/\omega_n\right)^2}{\left[\left[1 - \left(\omega/\omega_n\right)^2\right]^2 + \left(2\zeta\omega/\omega_n\right)^2\right]^{1/2}}$$

$$\tan \phi = \frac{-2\zeta \omega/\omega_n}{1 - (\omega/\omega_n)^2}$$

Maximum response (for $\zeta < 1/\sqrt{2}$)

$$|Y_{\text{max}}| = \frac{X}{2\zeta\sqrt{1-\zeta^2}}$$
 when $\omega/\omega_n = 1/\sqrt{1-2\zeta^2}$ (resonance frequency)

Half-power bandwidth (for $\zeta \ll 1$)

$$|Y| = \frac{1}{\sqrt{2}} |Y_{\text{max}}|$$
 at ω_1, ω_2 where $(\omega_1 - \omega_2)/\omega_n \approx 2\zeta$

Graphs of response opposite.

Graphs of response for case (b).

4.6.3: Case (c) $\ddot{y}/\omega_n^2 + 2\zeta \dot{y}/\omega_n + y = 2\zeta \dot{x}/\omega_n + x$

Typical application:

Absolute response to base displacement.

$$\omega_{\rm n} = \sqrt{\frac{k}{m}}$$
$$\zeta = \frac{\lambda}{2\sqrt{km}}$$

(i) Complex form: if $x = \text{Re}\{Xe^{i\omega t}\}$ and $y = \text{Re}\{Ye^{i\omega t}\}$

$$\frac{Y}{X} = \frac{2i\zeta\omega/\omega_n + 1}{-(\omega/\omega_n)^2 + 2i\zeta\omega/\omega_n + 1}$$

(ii) Real form: if $x = X \cos \omega t$ and $y = |Y| \cos(\omega t + \phi)$

$$\left| \frac{Y}{X} \right| = \frac{\left\{ 1 + \left(2\zeta\omega/\omega_n \right)^2 \right\}^{1/2}}{\left\{ \left[1 - \left(\omega/\omega_n \right)^2 \right]^2 + \left(2\zeta\omega/\omega_n \right)^2 \right\}^{1/2}}$$

$$\tan \phi = \frac{-2\zeta(\omega/\omega_n)^3}{1 - (1 - 4\zeta^2) \cdot (\omega/\omega_n)^2}$$

Maximum response (for $\zeta \ll 1$)

$$|Y_{\text{max}}| \approx \frac{X}{2\zeta} \left(1 + \frac{5}{2}\zeta^2\right)$$
 when $\omega/\omega_n \approx 1 - \zeta^2$ (resonance frequency)

Half-power bandwidth (for $\zeta \ll 1$)

$$|Y| = \frac{1}{\sqrt{2}} |Y_{\text{max}}|$$
 at ω_1, ω_2 where $(\omega_1 - \omega_2)/\omega_n \approx 2\zeta$

Graphs of response opposite.

4.7: Measures of damping

Name	Symbol	Value for $\zeta \ll 1$
damping ratio	ζ	
quality factor	Q	$\frac{1}{2\zeta}$
logarithmic decrement	Δ	2πζ
half-power bandwidth	$\Delta \omega$	$2\zeta\omega_{\mathrm{n}}$
loss factor	η	$2\zeta \frac{\omega}{\omega_{\rm n}}$ (see note 1)
loss tangent	$ an oldsymbol{\delta}$	η

Notes:

- 1. For practical vibrating systems viscous damping is often found to be an unrealistic model and the damping ratio ζ varies with frequency. Loss factor η is commonly used because it is generally found to be constant over a wide frequency range. At resonance, $\eta = 2\zeta$.
- 2. The proportion of energy lost per cycle of vibration is $2\pi\eta$.
- 3. If an elastic element has stiffness k and if its damping is described by a loss factor η then the *complex stiffness* of the element is $k^* = k (1+i\eta)$.

4.8: Modal analysis

If a discrete system has a natural frequency ω_n and corresponding mode shape $\underline{u}^{(n)}$, they satisfy

$$[K]\underline{u}^{(n)} = \omega_n^2 [M]\underline{u}^{(n)}$$

where M is the mass matrix and K the stiffness matrix.

(i) Orthogonality and normalisation:

$$\underline{\underline{u}}^{(n)^t} \underline{M} \underline{\underline{u}}^{(m)} = \begin{cases} 0, & n \neq m \\ 1, & n = m \end{cases}$$

$$\underline{u}^{(n)^{t}} K \underline{u}^{(m)} = \begin{cases} 0, & n \neq m \\ \omega_{n}^{2}, & n = m \end{cases}$$

(ii) Free Vibration:

Free vibration of the system is described by the modal summation

$$\underline{y}(t) = \begin{cases} \sum_{n} Q^{(n)} \underline{u}^{(n)} e^{i\omega_n t} & \text{(no damping)} \\ \sum_{n} Q^{(n)} \underline{u}^{(n)} e^{(i\omega_n - \zeta_n \omega_n)t} & \text{(with small damping)} \end{cases}$$

where $Q^{(n)}$ are complex numbers defined by initial contitions.

(iii) Transfer functions:

For force F at frequency ω , applied at point (or generalised coordinate) j, and response q measured at point (or generalised coordinate) k the transfer function is

$$G(j,k,\omega) = \frac{q}{F} = \begin{cases} \sum_{n} \frac{u_{j}^{(n)} u_{k}^{(n)}}{\omega_{n}^{2} - \omega^{2}} & \text{(no damping)} \\ \sum_{n} \frac{u_{j}^{(n)} u_{k}^{(n)}}{\omega_{n}^{2} + 2i\omega\omega_{n}\zeta_{n} - \omega^{2}} & \text{(with small damping)} \end{cases}$$

where the damping factor ζ_n is as in sections 4.4–4.6 for one-degree-of-freedom systems. The mode vectors must be mass-normalised according to the result above.

5 AREAS, VOLUMES, CENTRES OF GRAVITY AND MOMENTS OF INERTIA

5.1: Moments of inertia for a lamina

$$\begin{split} I_{xx} &= \int y^2 \mathrm{d}m = mk_x^2 \; : \; k_x \text{ is the } radius \text{ of } gyration \text{ about the } x \text{ axis} \\ I_{yy} &= \int x^2 \mathrm{d}m = mk_y^2 \; : \; k_y \text{ is the } radius \text{ of } gyration \text{ about the } y \text{ axis} \\ I_{zz} &= \int \left(x^2 + y^2\right) \mathrm{d}m = mk_z^2 \; : \text{ the } polar \text{ } moment \text{ of } inertia, \text{ sometimes called } J \\ I_{xy} &= \int x \, y \, \mathrm{d}m \; : \text{ the } product \text{ of } inertia \end{split}$$

[Second moments of area are closely related to moments of inertia, and are confusingly also denoted I_{xx} , I_{yy} . They are defined by

$$I_{xx} = Ak_x^2, \quad I_{yy} = Ak_y^2 \quad]$$

5.1.1: Parallel axis theorem

5.1.2: Perpendicular axis theorem (FOR A LAMINA ONLY)

$$I_{z'z'} = I_{x'x'} + I_{y'y'}$$

Moments of inertia for a three-dimensional body

Moments of inertia:

The inertia matrix:

$$I_{xx} = \int (y^2 + z^2) dm = mk_x^2$$

$$I_{yy} = \int (x^2 + z^2) dm = mk_y^2$$

$$I_{zz} = \int (x^2 + y^2) dm = mk_z^2$$

 $\left. \begin{array}{cccc} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{xy} & I_{yy} & -I_{yz} \\ -I_{xz} & -I_{yz} & I_{zz} \end{array} \right]$

Products of inertia:

$$I_{xy} = \int x y \, dm$$
; $I_{xz} = \int x z \, dm$; $I_{yz} = \int y z \, dm$

5.2.1: Parallel axis theorem

Given a set of axes Gxyz at the centre of mass and a parallel set Ox'y'z' at a point O whose coordinates are (X,Y,Z) in the first axes:

$$\begin{split} I_{x'x'} &= I_{xx} + m \Big(Y^2 + Z^2 \Big) \\ I_{y'y'} &= I_{yy} + m \Big(X^2 + Z^2 \Big) \\ I_{z'z'} &= I_{zz} + m \Big(X^2 + Y^2 \Big) \\ I_{x'y'} &= I_{xy} + m XY \\ I_{x'z'} &= I_{xz} + m XZ \\ I_{y'z'} &= I_{yz} + m YZ \end{split}$$

 $k_{\rm r}^2$

5.3.1 Straight rod

0

5.3.2 Curved rod

$$\frac{1}{2}a^2\left(1-\frac{\sin 2\alpha}{2\alpha}\right)$$

$$\frac{1}{2}a^2\left(1 - \frac{\sin 2\alpha}{2\alpha}\right) \qquad \qquad \frac{1}{2}a^2\left\{1 - 2\left(\frac{\sin \alpha}{\alpha}\right)^2 + \frac{\sin 2\alpha}{2\alpha}\right\}$$

5.4: Laminae

 \boldsymbol{A}

$$k_x^2$$

5.4.1 Rectangular lamina

ab

$$\frac{1}{12}b^2$$

5.4.2 Sectorial lamina

$$\frac{a^2}{4} \left(1 - \frac{\sin 2\alpha}{2\alpha} \right)$$

$$\alpha a^2$$

$$\frac{a^2}{4} \left(1 - \frac{\sin 2\alpha}{2\alpha} \right) \qquad \frac{a^2}{4} \left\{ 1 - \left(\frac{4\sin \alpha}{3\alpha} \right)^2 + \frac{\sin 2\alpha}{2\alpha} \right\}$$

5.4.3 Elliptic lamina

 πab

$$\frac{b^2}{4}$$

5.4.4 Triangular lamina

 $\frac{h}{2}(b_1+b_2)$

$$\frac{h^2}{18}$$

$$\frac{\left(b_1^2 + b_1 b_2 + b_2^2\right)}{18}$$

$$I_{xy} = m. \frac{h}{36} (b_1 - b_2)$$

 $\pi a^{2} \left(\frac{\sin \frac{2\pi}{N}}{\frac{2\pi}{N}} \right) \qquad \frac{a^{2}}{12} \left(2 + \cos \frac{2\pi}{N} \right) \qquad \frac{a^{2}}{12} \left(2 + \cos \frac{2\pi}{N} \right)$

$$\frac{a^2}{12} \left(2 + \cos \frac{2\pi}{N} \right)$$

$$\frac{a^2}{12} \left(2 + \cos \frac{2\pi}{N} \right)$$

5.5: Solids of revolution

V

$$k_x^2$$

$$k_y^2 = k_z^2$$

5.5.1 Cylinder

$$\frac{a^2}{2}$$

$$\frac{a^2}{4} + \frac{l^2}{12}$$

5.5.2 Spheroid

$$\frac{4\pi ab^2}{3}$$

$$\frac{2b^2}{5}$$

$$\frac{\left(a^2+b^2\right)}{5}$$

5.5.3 Cone

$$\frac{\pi a^2 h}{3}$$

$$\frac{3a^2}{10}$$

$$\frac{3(4a^2+h^2)}{80}$$

5.5.4 Hemisphere

$$\frac{2\pi a^3}{3}$$

$$\frac{2a^2}{5}$$

$$\frac{83a^2}{320}$$

5.5.5 Toroids

$$2\pi^2ab^2$$

$$a^2 + \frac{3b^2}{4}$$

$$\frac{a^2}{2} + \frac{5b^2}{8}$$

$$2\pi atl$$

$$a^2 + \frac{t^2}{4}$$

$$\frac{a^2}{2} + \frac{t^2}{8} + \frac{l^2}{12}$$

5.6: Shells of revolution V

 k_x^2

$$k_y^2 = k_z^2$$

(The following all assume t << a.)

5.6.1 Circular cylindrical shell

 $2\pi alt$

 $\frac{a^2}{2} + \frac{l^2}{12}$

5.6.2 Spherical shell

 $4\pi a^2 t$

$$\frac{2a^2}{a^2}$$

 $\frac{2a^2}{3}$

5.6.3 Spherical cap shell

 $2\pi a^2 t (1-\cos\alpha)$

$$\frac{a^2}{12}(1-\cos\alpha)(5+\cos\alpha)$$

 $\frac{a^2}{3}(1-\cos\alpha)(2+\cos\alpha)$

5.6.4 Conical shell

 $\pi at \left(a^2 + h^2\right)^{1/2}$

 $\frac{a^2}{2}$

 $\frac{a^2}{4} + \frac{h^2}{18}$