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DEFINITIONS

A system has one degree of freedom if its configuration can be completely specified by
means of one variable; two degrees of freedom if it requires values of two variables;
and so on.

A force is conservative if the work done against it is fully recoverable and is
independent of the path taken. A conservative force field can be expressed as the
gradient of a potential function.

A rigid body is one in which the relative positions of the constituent particles remain
constant during any motion of the body as a whole.

When two bodies are in contact at a point they are said to be sliding if the velocities of
the two material particles at the contact point are different, and rolling if they are equal.
If there is relative rotation about the common normal, the bodies are said to be
spinning. Friction is the tangential component of force at the contact region. If the
surfaces are rough the contact force may include friction, while if the surfaces are
described as smooth the contact force is assumed to be normal to both surfaces. When

slipping occurs, the ratio of friction force to normal reaction is the coefficient of
Jriction.

A frame of reference is a coordinate system, for example a set of Cartesian axes around
a given origin position. It may or may not be fixed in a physical body. A frame of
reference within which Newton’s law of motion F =ma applies is called inertial. Any
two 1nertial frames are related to one another by uniform motion in a straight line,
without acceleration or angular velocity.

1 KINEMATICS

1.1: Velocity and acceleration in polar coordinates

ré ,
r
P
r
P
/
O Position 0 Velocity O Acceleration

1.2: Velocity and acceleration in intrinsic coordinates

Position Velocity Acceleration
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1.3: Rotating reference frames

1.3.1 Relative velocity and acceleration

A body R moves and rotates with respect to a frame of reference F. A point Q is fixed
on the body, and another point P moves relative to the body. The position
(displacement) vector of P relative to Q is r(z). The velocity of P relative to F is

dr dr
Vp= vo +|—| =vg+ || + oxr
Ofeé)ﬁlty Appa:en[ Contribution
frame F motionof P dueto
relative to rotation of
body R body R

where the angular velocity of the body is .

The acceleration of P relative to F is

dr dw dr
ap= agq + -3 | + ——Xr +20X%|— +@Xx(0Xr) .
AcesTomati de” Jp o At R oo
entripe
. fcae eration A“w——’t Euler Coriolis ac:ele?ation
pparent acceleration acceleration
acceleration
relative to
body R

This is the acceleration which must be used in Newton’s law to describe the motion of
P under given forces, provided F is an inertial frame.

1.3.2 Rate of change of a general vector

A frame of reference R rotates with angular velocity ® relative to another frame of
reference F. For any vector x:

dx dx

- =|— + WXX

ds F dr R —
S N——— . .
Rate of Rate of Contribution
changein  change in due to
frame F frame R rotation of R

relative to F

If the vector x is a field vector and the origin of the frame R is also moving at velocity
U relative to frame F then

dx dx
[~] = [—— + oxx + (U.V)x
dr F dr R N—— ——
S— T
Rate of Rate of Coniribution  Contribution
changein changein dueto due to
frame F frame R rotation of F granslation of F

relativeto R relative to R
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2 GEOMETRY

2.1: Radius of curvature

312
{ 1+(dy/ dx)z}
In Cartesian coordinates R= ) )
d y/ dx
312
{(axjan? + (aysarP}”
If x and y are functions of ¢ R=
Y dr/de{ d%y/ dr” )- dy/dt(dzx/dtz)
32
{rz +(dr/d8) 2
In polar coordinates R=
po 2+ (dr/dB) —r(d r/d6? )
In intrinsic coordinates R=ds/dy

2.2: Ellipse

2.2.1 Basic geometry

Equation in Cartesian coordinates xz/ a + y2 [b* =1
(origin at centre)

2a 1s the major axis, 2b 1s the minor axis.

Equation in polar coordinates Ifr =1+ecosf
(origin at one focus)

where l=b*la, el =1- (b/a)2

and e is called the eccentricity: The curveisacircleif e =0, an ellipse if O<e < 1,
aparabolaif e= 1 and a hyperbolaif e > 1.

2.2.2 Satellite orbits

An earth satellite follows, approximately, an
elliptical orbit with the centre of the earth at one
focus. The polar equation for the orbit is as in

2.2.1, with

A
T
[ W

where G is the gravitational constant, M is the
mass of the earth, and 4 is the moment of
momentum per unit mass of the satellite.

Point P is the perigee at =0 and rp = (1 -e)a.

Point A isthe apogee at0 = mwandr, =(1+e)a.

ea
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2.3: Solids of revolution (Pappus’s theorems)

Area A

Volume = 2maA

Perimeter P

Surface area = 2nbP

3 MECHANICS OF MACHINES

3.1: Friction of a rope or belt

For T; > T, , slipping starts when

where u is the coefficient of friction.

3.2: Kinematics of cams or gears

Equivalent rolling circles are shown
as fine lines.

ﬂ__Q1N1 __Q1P

Wy O, N, P

Sliding speed at C = (wl - wz)PC.
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4 LINEAR SYSTEMS, VIBRATION AND STABILITY

4.1: Vibration of a conservative system with one degree of freedom

Potential energy = V(q)

Kinetic energy = %M (9)¢>

For equilibrium when g = g, V'(q0)=0.
For stability of this equilibrium, V”(gy)>0,
"((10)

and then natural frequency is given by o, =

4.2: Response of a stable system to a general input

If input x(¢) starts at time ¢ = 0, the output is

0= [gl-(@dr for 10
0

where g(z) is the impulse response of the system.

4.3: Routh-Hurwitz stability criteria

2
NSO

dr? e
3 2
d d d
B—+ay—g+a—+ay [y=x(1)
dt dr dt

4 3 2

d d

a4—4+a3—3—+a2—2+al—+a0 yZX(t)
dt dr de dr
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Stable if (i) all g; >0
and also (i1) qa, > aya;

Stable if (1) @; >0

and also (ii) a,a,a, > a,a3 + a.at
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4.4: Step response of a linear second-order system initally at rest

1.5

0.5

y/X=1-(1+o,t)e "

y/X =1 —e_ga’”tcos(a)dl— y)/cosy for {<1

y/X =1—e " cosm,t

The decay rate may be measured by the logarithmic decrement

1n(L
Vs

53/0)3+245’/a)n+y:x where x:{

]:

2n

1=

=21l

for { =1

for {<<1

if (<<l

0
X

fort<0
fort>0

(critical damping)

with damped natural frequency ®, = w,/1-{* and siny =

where y,, y, are the heights of two successive maxima (see also Section 4.7).
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4.5: Impulse response of a linear second-order system initially at rest

y/o +2fy/o, +y=x where x = N6(t)
(note: &(f) has units of s1)

y/(@,N)=o,te* for {=1 (critical damping)
y/(w, N)= e sin(w 1) /1~ {* for £ <1

with damped natural frequency @, = w,1-{*
y/(@,N)=e " sinw,t for { <<1

The decay rate may be measured by the logarithmic decrement

1{%):% =2ml if (<<l

where y,, y, are the heights of two successive maxima (see also Section 4.7).
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4.6: Harmonic response of a linear second-order system

ylo;+2{y/w,+y=x

4.6.1: Case (a)
Typical application: f
Response to an applied force.
_f
X = % m
X .
0 RN L
= A r 7
~ 2Vkm g

(i) Complex form: if x = Re{Xe'®} and y=Re{Ye'?)

Y 1
X —(o/o,) +20/o,+]

(i) Real form: if x = Xcoswt and y =|Y|cos( @t + ¢)

1
l__‘ -(0/o,) ] +(2Ca)/a)n)2}l/2

200/,

tan ¢ = -(a)/a)n)z

Maximum response (for {<1/+/2)

X
=———— when @/, =+1-2¢* (resonance frequency)
20y1-8°

‘max_

Half-power bandwidth (for { <<1)

1
|Y| = ﬁ\ymax‘ at Wy, @, where (wl - wz)/w” = 2€

Graphs of response opposite.
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1.5

Normalized frequency (@ /oy )

0.5

Graphs of response for case (a).
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4.6.2: Case (b) jlol +283/w, +y =i/’

Typical application:
Relative response to base displacement. m
y
k § H# A

|k

Wy = E X
(ot
2Nkm

(i) Complex form: if x = Re{Xe’”} and y = Re{Ye'®}

Y__ (wlo)
X ~(o/o,) +2ilw/w,+1

(ii) Real form: if x = Xcosr and y =|Y|cos(wt + ¢)

Y|_ (0/®,)’
X {[1-(w/wn)2]2+(2gw/w”)2}/“
_ 2w/,
tan ¢ = . (a)/a)n)z

Maximum response (for {<1/+/2)
X

=-————— when o/, = 1/ \/1—-2{? (resonance frequency)
201-8°

‘Ymax

Half-power bandwidth (for { <<1)

1
|Y|:W|Ymax] at @, where (0, —,)/o, =2

Graphs of response opposite.
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Graphs of response for case (b).
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4.6.3: Case (c) /o +28y/w, +y=2C/w, +x

Typical application:
Absolute response to base displacement.

k \:g A
_,JE
Wp = m X

(i) Complex form: if x =Re{Xe'”"} and y = Re{Ye'?}
p

Y 2ifw/ o, +1

X Ho/o,) +2ilo/o,+1

(ii) Real form: if x = Xcoswt and y =|Y|cos(wr + )

12

172

i {1+(0/0,)'}
X {[1—(a)/wn)2]2+(24a)/wn)2}

Maximum response (for { <<1)

Y,

max

~ Z_XC(l + % 4 2) when w/w, =1-{* (resonance frequency)
Half-power bandwidth (for { << 1)

1
|Y|:ﬁ[YmaX| at @,,0, where (0, —,)/w, =2

Graphs of response opposite.
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Phase ¢ (degrees)

-90

-180

Graphs of response for case (c).
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4.7: Measures of damping

Name Symbol Value for { <<1
damping ratio ¢
quality factor 0 1
20
logarithmic decrement A 2nl
half-power bandwidth A 28w,
loss factor n 28 wﬂ (see note 1)
n
loss tangent tand n

Notes:

1. For practical vibrating systems viscous damping is often found to be an unrealistic
model and the damping ratio { varies with frequency. Loss factor i is commonly

used because it is generally found to be constant over a wide frequency range. At

resonance, 1) = 2¢.

2. The proportion of energy lost per cycle of vibration is 27n.

3. If an elastic element has stiffness k and if its damping is described by a loss factor n

then the complex stiffness of the element is k* = k (1+i7).
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4.8: Modal analysis

If a discrete system has a natural frequency ®,, and corresponding mode shape g(”),
they satisfy

[K]Z(n) = a)n2 [M]Z(n)

where M is the mass matrix and K the stiffness matrix.

(i) Orthogonality and normalisation:

0, n#m
u(n)tMZ(m) —
- 1, n=m

0, n#m
U™ K™ :{ 2
w n=m

n?

(1) Free Vibration:

Free vibration of the system is described by the modal summation

T O e (no damping)
t)=<." )
2) 3 QW uteenten (with small damping)

where Q") are complex numbers defined by initial contitions.

(1ii) Transfer functions:

For force F at frequency @, applied at point (or generalised coordinate) j, and response
g measured at point (or generalised coordinate) k£ the transfer function is

zu (no damping)
G(jkw)=—=< "

4
F 2 u;"u,
2 . 2
~ 0, +2i00,f -

(with small damping)

where the damping factor {, is as in sections 4.4-4.6 for one-degree-of-freedom
systems. The mode vectors must be mass-normalised according to the result above.
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5 AREAS, VOLUMES, CENTRES OF GRAVITY
AND MOMENTS OF INERTIA

5.1: Moments of inertia for a lamina

I = J yzdm = mkf .k, is the radius of gyration about the x axis
L, = szdm = mky2 © ky is the radius of gyration about the y axis

I, = j(xz + yz)dm = mkz2 : the polar moment of inertia, sometimes called J

Ly = Jx ydm : the product of inertia

[Second moments of area are closely related to moments of inertia, and are confusingly

also denoted 1,, Iyy. They are defined by

I, =Ak}, I,=Ak} ]

5.1.1: Parallel axis theorem

_ 2
I...=1,+mg
_ 2
Ly =1, +mp
L. =1, +mr
yay4 2z

5.1.2: Perpendicular axis theorem (FOR A LAMINA ONLY)

If/:III+I/;

'z x'x Yy
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5.2: Moments of inertia for a three-dimensional body

Moments of inertia:

I, = I(yz +zz)dm = mk?
= j(xz +zz)dm = mky2

o= J.()c:2 + yz)dm = mkz2

I
I

Yy

Products of inertia:

Ixy:J.xydm; Ixzzszdm; IyZ:Jyzdm

5.2.1: Parallel axis theorem

The inertia matrix:

I, -1,
I=\-1, I,
-1, -1

Given a set of axes Gxyz at the centre of mass and a parallel set Ox’y’z" at a point O
whose coordinates are (X,Y,Z) in the first axes:

1

X

Iy =1I,+ m(X2 + Zz)
Ly =1l +m(X*+Y?)
Iy =1L, +mXY
lezl = IXZ + mXZ
Iylzl = Iyz + mYZ

5.3: Rods

v = Lo +m{Y? + 27)

5.3.1 Straight rod

Y i

G

1 ™x

C =
F—lz——><—%z-—>l
2

5.3.2 Curved rod

I

/ »x
%aw,t
[01
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5.4: Laminae ky
5.4.1 Rectangular lamina

y
A

>
™

|
A
|
S

1
G ab

Ry
8

|

o

a2 " a2

5.4.2 Sectorial lamina
y 4

f & . ad® %(I_Sinza)
Ve

sina
a

2
5a

5.4.3 Elliptic lamina
by

e Ny T
S~

a

5.4.4 Triangular lamina
g4

It i bl— b2
| 3 h h?
h 2 -
s 7 +a) 18
A G "%
JAIA :
W Iy =m. by ~1s)
S
5.4.5 Regular polygonal lamina with N sides (N > 2)
. 27
) sin—- ﬁi 2_
ma In D 2+ cos
N
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5.5: Solids of revolution vV

5.5.1 Cylinder 7 )

LY
RadiusT xal
a ) G N
X
T T
5.5.2 Spheroid
by
=
b
/G Y. 4 swab®
KJ X 3
<————>1
a
5.5.3 Cone
Ay O>
Radiuszlz
X math
3
= h/A
h
5.5.4 Hemisphere
_ \AY (D
4
Radiusciz \
Y G > 27ra3-
* 3
>”/<
3a/g
5.5.5 Toroids
Ay
Radius /I%dmbgm
-
G
X 2xtab?
. Ay g
Radius £ (<2a)
a * ,K
e [,
x 2matl
7'
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5.6: Shells of revolution vV k2 k2 = k2

*
~

(The following all assume f << a.)
5.6.1 Circular cylindrical shell
Ay y!
2

_ 2
RadiusT ) 2 malt a® 4, =

o G 2 12

et |t -

2 2
5.6.2 Spherical shell

N

y

2

'<‘G -x 2Jra21(1-cos a) cll—z(l—cosa)(5+ cosa)
t
\ 2

(1+cosar) ?(l—cosa)(Z +cos @)

5.6.4 Conical shell
by

Radius a

N}

2 2 2
2 2\4 a h

mat h — = =

- (a + ) 1 +
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