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Preface – Why Study Electronics? 
 

Purely mechanical problems are often only a subset of larger multi-domain 
problems faced by the designer. Particularly, the solutions of many of today’s interesting 
problems require expertise in both mechanical engineering and electrical engineering. 
DVD players, digital projectors, modern cars, machine tools, and digital cameras are just 
a few examples of the results of such combined innovation. In these hybrid systems, 
design trade-offs often span the knowledge space of both mechanical and electrical 
engineering. For example, in a car engine, is it more cost-effective to design a precise 
mechanical timing mechanism to trigger the firing of each cylinder, or is it better to use 
electronic sensors to measure the positions of each piston and then use a microprocessor 
to trigger the firing? For every problem, designers with combined expertise in mechanical 
and electrical engineering will be able to devise more ideas of possible solutions and be 
able to better evaluate the feasibility of each idea. 
 

A basic understanding of electronic circuits is important even if the designer does 
not intend to become a proficient electrical engineer. In many real-life engineering 
projects, it is often necessary to communicate, and also negotiate, specifications between 
engineering teams having different areas of expertise. Therefore, a basic understanding of 
electronic circuits will allow the mechanical engineer to evaluate whether or not a given 
electrical specification is reasonable and feasible. 
 

The following text is designed to provide an efficient introduction to electronic 
circuit design. The text is divided into two parts. Part I is a barebones introduction to 
basic electronic theory while Part II is designed to be a practical manual for designing 
and building working electronic circuits. 
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1 The Basics 
 
1.1 Voltage and Current 
 

Voltage is the difference in electrical potential between two points in space.  It is 
a measure of the amount of energy gained or lost by moving a unit of positive charge 
from one point to another, as shown in Figure 1.1. Voltage is measured in units of Joules 
per Coulomb, known as a Volt (V). It is important to remember that voltage is not an 
absolute quantity; rather, it is always considered as a relative value between two points. 
In an electronic circuit, the electromagnetic problem of voltages at arbitrary points in 
space is typically simplified to voltages between nodes of circuit components such as 
resistors, capacitors, and transistors. 

 
Figure 1.1: Voltage V1 is the electrical potential gained by moving charge Q1 in an electric field. 
 

When multiple components are connected in parallel, the voltage drop is the same 
across all components. When multiple components are connected in series, the total 
voltage is the sum of the voltages across each component. These two statements can be 
generalized as Kirchoff’s Voltage Law (KVL), which states that the sum of voltages 
around any closed loop (e.g. starting at one node, and ending at the same node) is zero, as 
shown in Figure 1.2. 

R2 R4

R3

R1

R5

R6V1

V2

V3

V5

V4

V6

V1 + V2 + V3 + V4 + V5 + V6 = 0

R1V1 R2V2 R3V3 R4V4

V1 = V2 = V3 = V4

 
Figure 1.2: Kirchoff’s Voltage Law: The sum of the voltages around any loop is zero. 

 
Electric current is the rate at which electric charge flows through a given area. 

Current is measured in the unit of Coulombs per second, which is known as an ampere 
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(A). In an electronic circuit, the electromagnetic problem of currents is typically 
simplified as a current flowing through particular circuit components. 
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Figure 1.3: Current I1 is the rate of flow of electric charge 

 
When multiple components are connected in series, each component must carry 

the same current.  When multiple components are connected in parallel, the total current 
is the sum of the currents flowing through each individual component.  These statements 
are generalized as Kirchoff’s Current Law (KCL), which states that the sum of currents 
entering and exiting a node must be zero, as shown in Figure 1.4. 
 

R1I1 R2I2 R3I3 R4I4

I1 + I2 + I3 + I4 = 0

 
Figure 1.4: Kirchoff’s Current Law – the sum of the currents going into a node is zero. 

 
An intuitive way to understand the behavior of voltage and current in electronic 

circuits is to use hydrodynamic systems as an analogue. In this system, voltage is 
represented by gravitational potential or height of the fluid column, and current is 
represented by the fluid flow rate. Diagrams of these concepts are show in Figure 1.5 
through 1.7. As the following sections will explain, electrical components such as 
resistors, capacitors, inductors, and transistors can all be represented by equivalent 
mechanical devices that support this analogy. 
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Figure 1.5: Hydrodynamic analogy for voltage 

 

Current
 

Figure 1.6: Hydrodynamic analogy for current 
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Figure 1.7: A hydrodynamic example representing both voltage and current 

 
 
1.2 Resistance and Power 
 

When a voltage is applied across a conductor, a current will begin to flow. The 
ratio between voltage and current is known as resistance. For most metallic conductors, 
the relationship between voltage and current is linear. Stated mathematically, this 
property is known as Ohm’s law, where 
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VR
I

=  

 
Some electronic components such diodes and transistors do not obey Ohm’s law 

and have a non-linear current-voltage relationship. 
 

The power dissipated by a given circuit component is the product of voltage and 
current,  

P IV=  
 

The unit of power is the Joule per second (J/s), which is also known as a Watt (W). 
If a component obeys Ohm’s law, the power it dissipates can be equivalently expressed 
as, 
 

2P I R=  or 
 

2VP
R

= . 

 
1.3 Voltage and Current Sources 
 

There are two kinds of energy sources in electronic circuits: voltage sources and 
current sources. When connected to an electronic circuit, an ideal voltage source 
maintains a given voltage between its two terminals by providing any amount of current 
necessary to do so. Similarly, an ideal current source maintains a given current to a 
circuit by providing any amount of voltage across its terminals necessary to do so. 
 

Voltage and current sources can be independent or dependent. Their respective 
circuit symbols are shown in Figure 1.8. Independent sources are usually shown as a 
circle while dependent sources are usually shown as a diamond-shape. Independent 
sources can have a DC output or a functional output; some examples are a sine wave, 
square wave, impulse, and linear ramp. Dependent sources can be used to implement a 
voltage or current which is a function of some other voltage or current in the circuit. 
Dependent sources are often used to model active circuits that are used for signal 
amplification. 
 

VS IS
VS=f(V1)

or
VS=f(I1)

IS=f(V1)
or

IS=f(I1)

 
Figure 1.8: Circuit symbols for independent and dependent voltage and current sources 
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1.4 Ground 
 

An often used and sometimes confusing term in electronic circuits is the word 
ground.  The ground is a circuit node to which all voltages in a circuit are referenced. In a 
constant voltage supply circuit, one terminal from each voltage supply is typically 
connected to ground, or is grounded. For example, the negative terminal of a positive 
power supply is usually connected to ground so that any current drawn out of the positive 
terminal can be put back into the negative terminal via ground. Some circuit symbols 
used for ground are shown in Figure 1.9. 
 

 
Figure 1.9: Circuit symbols used for ground 

 
In some circuits, there are virtual grounds, which are nodes at the same voltage as 

ground, but are not connected to a power supply. When current flows into the virtual 
ground, the voltage at the virtual ground may change relative to the real ground, and the 
consequences of this situation must be analyzed carefully. 
 
 
1.5 Electronic Signals 
 

Electronic signals are represented either by voltage or current. The time-
dependent characteristics of voltage or current signals can take a number of forms 
including DC, sinusoidal (also known as AC), square wave, linear ramps, and pulse-
width modulated signals. Sinusoidal signals are perhaps the most important signal forms 
since once the circuit response to sinusoidal signals are known, the result can be 
generalized to predict how the circuit will respond to a much greater variety of signals 
using the mathematical tools of Fourier and Laplace transforms. 
 

A sinusoidal signal is specified by its amplitude (A), angular frequency (ω), and 
phase (φ) as, 
 

( )( ) sinV t A tω φ= +  
 

When working with sinusoidal signals, the mathematical manipulations often 
involves computing the effects of the circuit on the amplitude and phase of the signal, 
which can involve cumbersome trigonometric identities. Operations involving sinusoidal 
functions can be greatly simplified using the mathematical construct of the complex 
domain (see Appendix for more information). The sinusoidal signal from the above 
equation, when expressed in the complex domain, becomes the complex exponential, 
 

j( ) tV t Ae ω−= , 
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where the physical response is represented by the real part of this expression. The 
amplitude and phase of the signal are both described by the complex constant A, where  
 

j AA A e φ−= . 
 

As the following section will show, the complex representation of electronic 
signals greatly simplifies the analysis of electronic circuits. 
 
 
1.6 Electronic Circuits as Linear Systems 

 
Most electronic circuits can be represented as a system with an input and an 

output as shown in Figure 1.10. The input signal is typically a voltage that is generated by 
a sensor or by another circuit. The output signal is also often a voltage and is used to 
power an actuator or transmit signals to another circuit. 
 

CircuitSensor Actuator

Input Signal Output Signal
 

Figure 1.10: Electronic circuit represented as a linear system 
 
 In many instances, it is possible to model the circuit as a linear system, which can 
be described by the transfer function H, such that 
 

out

in

VH
V

= . 

 
For DC signals, the linearity of the system implies that H is independent of Vin. 

For dynamic signals, the transfer function cannot in general be described simply. 
However, if the input is a sinusoidal signal then the output must also be a sinusoidal 
signal with the same frequency but possibly a different amplitude and phase. In other 
words, a linear system can only modify the amplitude and phase of a sinusoidal 
input. As a result, if the input signal is described as a complex exponential,  
 

j( ) ot
inV t Ae ω−= , 

 
where A is a complex constant, 
 

j AA A e φ−= . 
  
The transfer function H can be entirely described by a complex constant,  
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j HH H e φ−= , 

 
and the output signal is simply  
 

j( ) ot
outV t HAe ω−= , 

 
or in expanded form, 
 

( )A oj j( ) H t
outV t H A e eφ φ ω− + −= . 

 
In general, the sinusoidal response of linear systems is not constant over 

frequency and H is also a complex function of ω. 
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2 Fundamental Components: Resistors, Capacitors, and Inductors 
 

Resistors, capacitors, and inductors are the fundamental components of electronic 
circuits. In fact, all electronic circuits can be equivalently represented by circuits of these 
three components together with voltage and current sources. 
 
2.1 Resistors 
 

Resistors are the most simple and most commonly used electronic component. 
Resistors have a linear current-voltage relationship as stated by Ohm’s law. The unit of 
resistance is an ohm, which is represented by the letter omega (Ω). Common resistor 
values range from 1 Ω to 22 MΩ. 
 

In the hydrodynamic analogy of electronic circuits, resistors are equivalent to a 
pipe. As fluid flows through a pipe, frictional drag forces at the walls dissipate energy 
from the flow and thus reducing the pressure, or equivalently, the potential energy of the 
fluid in the pipe. A small resistor is equivalent to a large diameter pipe that will allow for 
a high flow rate, whereas a large resistor is equivalent to a small diameter pipe that 
greatly constricts the flow rate, as shown in Figure 2.1. 
 

 
Figure 2.1: The hydrodynamic model of a resistor is a pipe 

 
When several resistors are connected in series, the equivalent resistance is the 

sum of all the resistances. For example, as shown in Figure 2.2,  
 

1 2eqR R R= +  
 

When several resistors are connected in parallel, the equivalent resistance is the 
inverse of the sum of their inverses. For example,  
 

3 4

3 4

3 4

1
1 1eq

R RR
R R

R R

= =
++

 

 
In order to simplify this calculation when analyzing more complex networks, 

electrical engineers use the || symbol to indicate that two resistances are in parallel such 
that  
 

3 4
3 4

3 4

3 4

1|| 1 1
R RR R

R R
R R

= =
++
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R3 R4

R1

R2

 
Figure 2.2: Resistors in series and in parallel 

 
A common resistor circuit is the voltage divider used to divide a voltage by a 

fixed value. As shown in Figure 2.3, for a voltage Vin applied at the input, the resulting 
output voltage is 

1

1 2
out in

RV V
R R

=
+

 

 

R1

R2

Vin

Vout

 
Figure 2.3: Voltage divider circuit 

 
2.2 Capacitors 
 

A capacitor is a device that stores energy in the form of voltage. The most 
common form of capacitors is made of two parallel plates separated by a dielectric 
material. Charges of opposite polarity can be deposited on the plates, resulting in a 
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voltage V across the capacitor plates. Capacitance is a measure of the amount of electrical 
charge required to build up one unit of voltage across the plates. Stated mathematically,  
 

C

QC
V

= , 

 
where Q is the number of opposing charge pairs on the capacitor.  The unit of capacitance 
is the Farad (F) and capacitors are commonly found ranging from a few picofarads (pF) 
to hundreds of microfarads (μF). 
 

In the hydrodynamic analogy to electronic circuits, a capacitor is equivalent to a 
bottle, as shown in Figure 2.4. The voltage across the capacitor is represented by the 
height of fluid in the bottle. As fluid is added to the bottle, the fluid level rises just as 
charges flowing onto the capacitor plate build up the voltage. A small capacitor is a thin 
bottle, where adding a small volume of fluid quickly raise the fluid level. 
Correspondingly, a large capacitor is a wide bottle, where a larger volume of fluid is 
required to raise the fluid level by the same distance. 
 

he
ig

ht
 =

 V

C1 C2

 
Figure 2.4: The hydrodynamic model of a capacitor is a bottle 

 
The current-voltage relationship of the capacitor is obtained by differentiating 

Q CV=  to get 
 

CdVdQI C
dt dt

= = . 
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Unlike a resistor, current in a capacitor is proportional to the derivative of voltage 
rather than voltage itself. Alternatively, it can be said that the voltage on a capacitor is 
proportional to the time integral of the influx current. 

CV Idt= ∫  

 
A typical example of a capacitor circuit is shown in Figure 2.5, where the 

capacitor is connected in series with a resistor, a switch, and an ideal voltage source. 
Initially, for 0t < , the switch is open and the voltage on the capacitor is zero. The switch 
closes at 0t = , the voltage drop across the resistor is in CV V− , and charges flows onto the 
capacitor at the rate of ( ) /in CV V R− . As voltage builds on the capacitor, the 
corresponding voltage on the resistor is therefore decreased. The reduction in voltage 
leads to a reduction of the current through the circuit loop and slows the charging process. 
The exact behavior of voltage across the capacitor can be found by solving the first order 
differential equation,  

C S CdV V VC
dt R

−
= . 

 
The voltage across the capacitor behaves as an exponential function of time, 

which is shown in Figure ###. The term RC, is known as the time constant of the 
exponential function, and is often simply denoted as τ. 
 

R

C

Vin Vout

at t=0

 
Figure 2.5: Simple RC circuit 

 
(### insert plot of RC response here ###) 

Figure ###: Voltage output for the RC circuit as a function of time 
 
2.3 Inductor 
 

An inductor is a device that stores energy in the form of current. The most 
common form of inductors is a wire wound into a coil. The magnetic field generated by 
the wire creates a counter-acting electric field which impedes changes to the current. This 
effect is known as Lenz’s law and is stated mathematically as  
 

L
dIV L
dt

= − . 
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The unit of inductance is a Henry (H) and common inductors range from 

nanohenries (nH) to microhenries (μH). 
 

In the hydrodynamic analogy of electronic circuits, an inductor can be thought of 
as a fluid channel pushing a flywheel as shown in Figure 2.6. When the fluid velocity 
(current) in the channel changes, the inertia of the flywheel tends to resist that change and 
maintain its original angular momentum. A large inductor corresponds to a flywheel with 
a large inertia, which will have a larger influence on the flow in the channel. 
Correspondingly a small inductor corresponds to a flywheel with a small inertia, which 
will have a lesser effect on the current. 
 

 
Figure 2.6: Hydrodynamic analogy of an inductor is a flywheel 

 
An example of the time domain analysis of an inductor circuit is shown in Figure 

2.7 where the inductor is connected in series with a resistor, a switch, and an ideal voltage 
source. Initially, the current through the inductor is zero and the switch goes from closed 
to open at 0t = . Similar to the capacitor-resistor circuit, the time-domain behavior of this 
circuit can be determined by solving the first order differential equation ###. The 
resulting voltage across the inductor is an exponential function of time as shown in 
Figure ###. 
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R

C

Vin Vout

at t=0

 
Figure 2.7: Simple RL circuit 

 
###insert V(t) plot### 

Figure ###: Voltage output for the RL circuit as a function of time 
 

Switching circuits involving inductors have a rather destructive failure mode. 
Suppose that in the circuit shown in Figure ###, the switch is opened again after the 
current flowing through the inductor has reached steady-state. Since the current is 
terminated abruptly, the derivative term of Eq. ### can be very high. High voltages can 
result in electrical breakdown which can permanently damage the inductor as well as 
other components in the circuit. This problem and appropriate remedies are discussed in 
more detail in section 18.2. 
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3 Impedance and s-Domain Circuits 
 

3.1 The Notion of Impedance 
 
Impedance is one of the most important concepts in electronic circuits. The 

purpose of impedance is to generalize the idea of resistance to create a component, shown 
in Figure 3.1, to capture the behavior of resistors, capacitors, and inductors, for steady-
state sinusoidal signals. This generalization is motivated by the fact that as long as the 
circuit is linear, its behavior can be analyzed using KVL and KCL. 

 

ZLOAD

IIN

VIN

 
Figure 3.1: Impedance – a generalized component 

 
Impedance essentially can be viewed as frequency-dependent resistance. While 

resistance of a circuit is the instantaneous ratio between voltage and current, impedance 
of a circuit is the ratio between voltage and current for steady-state sinusoidal signals, 
which can vary with of frequency. As the later parts of this section will show, the voltage 
and current caused by applying a steady-state sinusoidal signal to any combination of 
resistors, capacitors, and inductors, are related by a constant factor and a phase shift. 
Therefore, impedance can be expressed by a complex constant using an extended version 
Ohm’s law,  

 
( )( )
( )

VZ
I

ωω
ω

= , 

 
Where V(ω) and I(ω) are both the complex exponential representations of 

sinusoidal functions as disused in the next section. 
 
The real part and imaginary part of impedance are interpreted as a resistive part 

that dissipates energy and a reactive part that stores energy. Resistors can only dissipate 
energy and therefore their impedances have only a real part. Capacitors and inductors can 
only store energy and therefore their impedances have only an imaginary part. When 
resistors, capacitors, and inductors are combined, the overall impedance may have both 
real and imaginary parts. It is important to note that the definition of impedance preserves 
the definition of resistance. Therefore, for a circuit with only resistors, ZEQ = REQ. 

 
###An intuitive mechanical analog of impedance is stiffness. Stiffness is defined 

as the ratio between stress and strain, which in a practical mechanical structure can be 
measured as force and deflection. ### 
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3.2 The Impedance of a Capacitor 
 
The impedance of a capacitor is determined by assuming that a sinusoidal voltage 

is applied across the capacitor, such that 
 

j t
CV Ae ω= . 

Since  
C

C
dVI C
dt

= , 

the resulting current is 
j t

CI j CAe ωω= . 
 

Therefore, the impedance, or the ratio between voltage and current, is 
 

1C
C

C

VZ
I j Cω

= = . 

 
From the above equation, it is possible to see that the impedance of a capacitor is 

a frequency-dependent resistance that is inversely proportional to frequency; ZC is small 
at high frequency and large at low frequency. At DC, the impedance of a capacitor is 
infinite. The impedance expression also indicates that for a sinusoidal input, the current 
in a capacitor lags its voltage by a phase of 90o. 

 
3.3 Simple RC Filters 

 
A simple low-pass filter circuit, which allows low frequency signals to pass 

through the circuit while attenuating high-frequency signals, can be made using a resistor 
and capacitor in series as shown in Figure 3.2. The transfer function of this filter can be 
determined by analyzing the circuit as a voltage divider, 

 
1

1
1 1

out

in

V j C
V j RCR

j C

ω
ω

ω

= =
++

. 

 
The magnitude and phase of the frequency response of the low-pass filter are 

shown in Figure ###. The magnitude response is shown on a log-log scale, whereas the 
phase response is shown on a linear-log scale. For RCω >> , the denominator of the 
transfer function is much greater than one and the input is significantly attenuated. On the 
other hand, for, out inV V≅ . The transition point between the high and low frequency 

regions is defined when 1RCω = , where / 1/ 2out inV V = . This is known as the cut-off 
frequency for the filter,  
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1
C RC

ω = . 

 

R

C

Vin Vout

 
Figure 3.2: Simple RC low-pass filter 

 
 

###(Insert Figure Here) 
Figure ###: The frequency response of a simple RC low-pass filter 

 
A simple high-pass filter can be made by switching the positions of the capacitor 

and resistor in the low-pass filter. The transfer function is now 
 

1 1
out

in

V R j RC
V j RCR

j C

ω
ω

ω

= =
++

. 

 
The frequency response of the high-pass filter is shown in Figure 3.3. Similar to 

the low-pass filter, the high-pass filter has a cut-off frequency at 1/C RCω = . 
 

R
C

Vin Vout

 
Figure 3.3: Simple RC high-pass filter 

 
###(Insert Figure Here) 

Figure ###: The frequency response of a simple RC high-pass filter 
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3.4 The Impedance of an Inductor 
 
The ratio between voltage and current for an inductor can be found in a similar 

way as for a capacitor. For a sinusoidal voltage, 
 

j t
LV Ae ω= .  

Since 
L

L
dVI L
dt

= , 
j t

LI j LAe ωω= . 
 
Thus, the impedance of an inductor is  
 

L
L

L

VZ j L
I

ω= = . 

 
Therefore, an inductor is a frequency-dependent resistance that is directly 

proportional to frequency; ZL is small at low frequency and large at high frequency. At 
DC, the impedance of an inductor is zero. Just as for a capacitor, this expression shows 
that the voltage across an inductor lags the current by a phase of 90o. 

 
3.5 Simple RL Filters 

 
A low-pass filter can also be made using a resistor and an inductor in series, as 

shown in Figure 3.4. Once again, the transfer function of this filter can be determined like 
a voltage divider, 

1

1
out

in

V R
j LV R j L
R
ωω

= =
+ +

. 

 

R

L
VoutVin

 
Figure 3.4: Simple RL low-pass filter 

 
###(Insert Figure Here) 

Figure ###: The frequency response of a simple RL low-pass filter 
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The magnitude and phase of the frequency response are shown in Figure ###. For 
/R Lω >> , Vout is attenuated, whereas for /R Lω << , out inV V≅ . At the cut-off frequency,  
 

2 2c
c Rf

L
ω
π π

= = , 

1L
R

ω
= , and 

1
2

out

in

V
V

= . 

 
A high-pass RL filter can be made from the low-pass RL filter by switching the 

position of the inductor and resistor as shown in Figure 3.5. The transfer function is 
 

1
out

in

j L
V j L R

j LV R j L
R

ω
ω

ωω
= =

+ +
. 

 

R

L

VoutVin

 
Figure 3.5: Simple RL high-pass filter 

 
###(Insert Figure Here) 

Figure ###: The frequency response of a simple RL high-pass filter 
 

The frequency response of the filter is shown in Figure ###. The cut-off frequency 
of the high-pass filter is the same as the low-pass filter (Eq. ###)   

 
3.6 s-Domain Analysis 

 
The concept of complex impedance introduces a unified representation for 

resistors, capacitors, and inductors, whereby a circuit’s frequency response from input to 
output can be determined using KVL and KCL, where each element is assigned the 
appropriate impedance. The key assumption to this point is that the input to the circuit 
must consist solely of DC and/or sinusoidal signals. Now, this analysis is be extended to 
include arbitrary input signals by using the mathematical techniques of Laplace 
transforms. 
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The “brute force” method for determining the response of a circuit to an arbitrary 
signal is to write a system of linear differential equations using the voltage and current 
variables in the circuit and then to solve for the output signal, using the input signals as 
the forcing functions. The Laplace transform simplifies this process by converting linear 
differential equations in the time domain to algebraic equations in the complex frequency 
domain. The independent variable in the complex frequency domain is s, where  

 
s jσ ω= + . 

 
The process for solving differential equations using Laplace transforms involves 

the following general procedure: 
 
1. Write a set of differential equations to describe the circuit; 
2. Laplace transform the differential equations to algebraic equations in s-
domain; 
3. Solve for the transfer function in the s-domain; 
4. Laplace transform the input signal and multiply this by the transfer function to 
give the output signal in the s-domain; 
5. Inverse Laplace transform the output signal to give circuit response as a 
function in the time domain. 

 
 The determination of the transfer function in steps 2 and 3 of this procedure can 
be greatly simplified by Laplace transforming of the impedances of individual circuit 
elements instead of generalized differential equations that govern circuit behavior. The 
transfer function can then be found by applying KVL and KCL simplifications to the 
resulting “Laplace circuit”. 
 

 For example, the current-voltage relationship of a capacitor is C
C

dVI C
dt

= and the 

Laplace transformed result is C CI sCV= . Therefore, the impedance of a capacitor in s-

domain is 1/ sC . Similarly for an inductor, L
L

dIV L
dt

=  and the Laplace transform of this 

is L LV sLI= . Therefore, the s-domain impedance for an inductor is sL . For a resistor, the 
s-domain impedance is still R. A summary of the s-domain representation of electronic 
circuits is shown in Table 3.1. Interestingly, the s-domain impedance very closely 
resembles the complex impedances discussed previously. In fact, the s-domain 
impedance is an extended version of the complex impedance that generalizes to arbitrary 
signals. 
 

Time Domain Parameter s-Domain Impedance 
R R 
C 1/sC 
L sL 

Table 3.1: Summary of s-domain impedances 
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 The impedance representation once again unifies resistors, capacitors, and 
inductors as equivalent circuit components with specific impedances and the s-domain 
transfer function can be found by using KVL and KCL. The transfer function is generally 
expressed as a ratio of polynomials such that  
 

( )
( )

out

in

V Z s
V P s

= , 

where 
1

1 2 1( ), ( ) ...n n
n nZ s P s a s a s a s a−

−= + + + . 
 
 The polynomial can be factored into a number of roots. The roots of the 
denominator polynomial are known as poles, while the roots of the numerator polynomial 
are known as zeros. 
 
 The frequency response of the circuit is obtained by substituting jω for s in the 
transfer function. The time-domain response is found by implementing steps 4 and 5 of 
the general procedure: take the Laplace transform of the input signal and then take the 
inverse Laplace transform of the output signal. In practice, step 4 can be simplified since 
the time-domain behavior of a circuit is almost always evaluated in response to a step or 
ramp voltage input, for which the inverse Laplace transforms can be easily computed or 
obtained from existing tables. Step 5 is also usually simplified since most transfer 
functions can be approximated by one of a few transfer functions which have known 
time-domain responses to step and ramp input signals. 
 
 
3.7 s-Domain Analysis Example 
 
 
 
3.8 Simplification Techniques for Determining the Transfer Function 
 

3.8.1 Superposition 
3.8.2 Dominant Impedance Approximation 
3.8.3 Redrawing Circuits in Different Frequency Ranges 
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4 Source and Load 
 

The ideas of electrical source and load are extremely useful constructs in circuit 
analysis since all electronic circuits can be modeled as a source circuit, a load circuit, or 
some combination of the two. Source circuits are circuits that supply energy while load 
circuits are circuits that dissipate energy. Load circuits can be simply modeled by a single 
equivalent impedance, while source circuits can be modeled as a voltage or current 
source plus an equivalent impedance. This section describes the properties of practical 
voltage and current sources; how to represent the output of arbitrary circuits as source 
circuits; and how the source and load model of electronic circuits can be used to model 
circuit behavior.  
 
 
4.1 Practical Voltage and Current Sources 
 

As discussed in section 1.3, an ideal voltage source will maintain a given voltage 
across a circuit by providing any amount of current necessary to do so; and an ideal 
current source will supply a given amount of current to a circuit by providing any amount 
of voltage output necessary to do so. Of course, ideal voltage sources and ideal current 
sources are both impossible in practice. When a very small resistive load is connected 
across an ideal voltage source, a practically infinite amount of current is required. 
Correspondingly, when a large resistive load is connected across an ideal current source, 
an exceedingly large voltage is required. 
 

A practical voltage source is modeled as an ideal voltage source in series with a 
small source resistance, as shown in Figure 4.1. The output voltage across the load 
resistance is attenuated due to the source resistance and the resulting voltage is 
determined by the resistive divider,  
 

LOAD
out S

LOAD SOURCE

RV V
R R

=
+

. 

 
A practical voltage source can approach an ideal voltage source by lowering its 

source resistance. Therefore, ideal voltage sources are said to have zero source resistance. 
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Figure 4.1: Practical voltage and current sources 

 
A practical current source is modeled as an ideal current source in parallel with a 

large source resistance. The output current is reduced due to the source resistance by the 
current divider such that,  

SOURCE
out S

LOAD SOURCE

RI I
R R

=
+

. 

 
A practical current source can approach an ideal current source by increasing its 

source resistance. Therefore, ideal current sources are said to have infinite source 
resistance. 
 
4.2 Thevenin and Norton Equivalent Circuits 
 

The practical voltage and current source model can be used to model arbitrary 
linear source circuits using a technique known as Thevenin and Norton equivalent 
circuits. 
 

Thevenin’s theorem states that the output of any circuit consisting of linear 
components and linear sources can be equivalently represented as a single voltage source, 
VTH, and a series source impedance, ZTH, as shown in Figure 4.2. 
 

Norton’s theorem states that the output of any circuit consisting of linear 
components and linear sources can be equivalently represented as a single current source, 
IN, and a parallel source impedance, ZN, also shown in Figure 4.2. 
 

INVTH

ZTH

ZN

 
Figure 4.2: Thevenin and Norton Equivalent Circuits 
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There are simple procedures to determine VTH, IN, ZN, and ZTH for a given circuit. 
To determine VTH, set the load as an open circuit. The voltage across the output is VTH. To 
determine IN, set the load as a short circuit, and then the current through the short circuit 
is IN. An important link between Thevenin and Norton equivalent circuits is that ZTH and 
ZN are exactly the same value. To determine ZTH or ZN, short-circuit the voltage sources 
and open-circuit the current sources in the circuit. ZTH or ZN is then the resulting 
equivalent impedance of the circuit. 
 
### Need Example circuit here with procedure for determining Thevenin and Norton 
equivalent circuits.### 
 
 
4.3 Source and Load Model of Electronic Circuits 
 

The simple model of source and load, shown in Figure 4.3, is an extremely useful 
way to predict how two circuits will interact when connected together. The source part 
can be used to represent the output of a circuit, while the load can be used to represent the 
input of another circuit. The value of ZLOAD can be determined from the equivalent circuit 
model of the load circuit using KVL and KCL. The value of ZSOURCE can be determined 
by Thevenin and Norton equivalent circuits. The voltage across the load can simply be 
calculated from, 
 

LOAD
LOAD SOURCE

LOAD SOURCE

ZV V
Z Z

=
+

 

 

 
Figure 4.3: Source and load model 

 
The source and load model is particularly useful when the design of either the 

source or load circuit is fixed and a circuit is required to be the corresponding source or 
load circuit. For example, if the output of a voltage amplifier behaves as a voltage source 
with a source resistance of 500Ω, the input resistance of the next circuit, being the load 
impedance, should be significantly greater than 500Ω in order to prevent the source 
voltage from being attenuated. 
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5 Critical Terminology 
 

As with any engineering discipline, electrical engineering is full of its own special 
words and lingo that can make electrical engineering speak sound like a foreign tongue. 
Buffer, bias, and couple are three such words that can often trip-up new comers. 
 
5.1 Buffer 
 

Buffer is one of those words that seem to have a different meaning in every 
discipline of science and engineering. Buffer has two meanings in electrical engineering 
depending if the context is analog or digital electronics. 
 

In analog electronics, to buffer means to preserve the content of a low power 
signal and convert it to a higher power signal via a buffer amplifier. This is a frequent 
operation in analog electronics since low power signals can be more easily interfered 
with than high power signals, but often only low power signals are available from 
electronic sensors. 
 

If signals are represented by voltage in a circuit, the power of the signal is 
proportional to the amount of current drawn by the circuit. Since current draw is 
dependent on the impedance of the circuit, a high impedance circuit has less power, while 
a low impedance circuit has more power. The function of a buffer amplifier in this case is 
to convert a high impedance circuit to a low impedance circuit. This buffering scenario is 
represented by an equivalent circuit shown in Figure 5.1 where a voltage output electronic 
sensor has relatively high output impedance ZOUT1. If the sensor output is used to drive a 
load impedance, ZLOAD, directly, much of the voltage signal may be lost to attenuation. In 
order to remedy this problem, a buffer amplifier is inserted between the sensor output and 
ZLOAD. The input of the buffer amplifier measures this voltage signal with a high input 
impedance ZIN, and replicates the signal VIN with an output impedance ZOUT2. Since 
ZOUT2 is smaller than ZOUT1, the sensor signal can be used to drive ZLOAD without 
suffering significant attenuation. 
 

 
Figure 5.1: A Functional Equivalent of a Buffer in Analog Electronics 
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In digital electronics, buffer refers to a mechanism in the communications link 
between two devices. When there are time-lags between the transmitting device and the 
receiving device, some temporary storage is necessary to store the extra data that can 
accumulate. This temporary storage mechanism is known as a buffer. For example, there 
is a buffer between the keyboard and the computer so that the CPU can finish one task 
before accepting more input to initiate another task. Digital video cameras have a much 
larger buffer to accumulate raw data from the camera before the data can be compressed 
and stored in a permanent location. 
 
5.2 Bias 
 

Bias refers to the DC voltage and current values in a circuit in absence of any 
time-varying signals. In circuits that contain nonlinear components such as transistors and 
diodes, it is usually necessary to provide a power supply with static values of voltage and 
current. These static operating parameters are known as the bias voltage and bias current 
of each device. When analyzing circuit response to signals, the circuit components are 
typically linearized about their DC bias voltage and current and the input signals are 
considered as linear perturbations. Frequently, the AC behavior of a circuit component is 
dependent on its bias voltage and bias current. 
 
 
5.3 Couple 
 

The word couple means to connect or to link a signal between two circuits. There 
are generally two types of coupling: DC and AC. As shown in Figure 5.2, DC coupling 
refers a direct wire connection between two circuits; while AC coupling refers to two 
circuits connected via a capacitor. Between AC coupled circuits, signals at frequencies 
below some cut-off frequency will be progressively attenuated at lower frequencies. The 
cut-off frequency is determined by the coupling capacitance along with the output 
impedance of the transmitting circuit and the input impedance of the receiving circuit. 
Oscilloscope inputs also have both AC and DC coupling options, which allow the user 
the select between viewing the total signal or just the time-varying component. In 
addition to describing intentional circuit connections, AC coupling also refers to the path 
of interference signals through stray capacitances in the physical circuit. There are also a 
number of other coupling mechanisms not included in this discussion, such as magnetic, 
optical, and radio-frequency coupling. 
 

 
Figure 5.2: DC and AC coupled circuits 
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6 Diodes 
 
6.1 Diode Basics  
 

A Diode is an electronic equivalent of a one-way valve; it allows current to flow 
in only one direction. There are two terminals on a diode, which are known as the anode 
and cathode. Current is only allowed to flow from anode to cathode. The symbol and 
drawing for the diode are shown in Figure 6.1 and Figure 6.2. The dark band of the diode 
drawing indicates the cathode mark on the diode symbol. The direction of current flow is 
indicated by the direction of the triangle. An easy trick for remembering the direction of 
current flow is to remember that of the current flowing alphabetically, from the anode to 
the cathode. 
 

Anode Cathode
 

Figure 6.1: Circuit symbol for a diode 
 

 
Figure 6.2: 3D model of a diode, the dark band indicate cathode (Courtesy of Vishay 

Semiconductors) 
 

The unidirectional conduction through a diode is explained by semiconductor 
physics.  A diode is a junction between N-type and P-type semiconductors, typically 
fabricated in thin layers as shown in Figure 6.3. Both N-type and P-type materials are 
electrically neutral, but have different mechanisms of conduction. In N-type material, 
negatively charged electrons are mobile and are the majority current carriers. In P-type 
material, positively charged holes are mobile are the majority current carriers. Holes are 
actually temporary positive charges created by the lack of an electron; the details of this 
interpretation can be found in textbooks on semiconductor physics [Ref: Sedra and 
Smith]. 
 

Near the junction interface, electrons from the N-type region diffuse into the P-
type region while holes from the P-type region diffuse into the N-type region. The 
diffused electrons and holes remain in a thin boundary layer around the junction known 
as the depletion layer shown in Figure 6.3. The excess of positive and negative charges 
create a strong electric field at the junction which acts as a potential barrier that prevent 
electrons from entering the P-type region and holes from entering the N-type region. 
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When a negative electric field is applied from anode to cathode, the depletion region 
enlarges and it becomes even more difficult to conduct current across the junction. This is 
the reverse-conducting state. When a positive electric field is applied from anode to 
cathode, the depletion region narrows and allows current to conduct from the anode to the 
cathode. This is the forward-conducting state. 
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Figure 6.3: PN Junction in a diode showing the depletion region 

 
The current-voltage relationship for a diode is shown in Figure 6.4. The current is 

an exponential function of voltage such that  
 

( ) 1t

V
V

oI V I e
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

, and 

t
kTV
Q

= . 

 
At 300 K room temperature, Vt = 26 mV. This means that for every increase of Vt 

in voltage, the current drawn by the diode scales by a factor of e. For most design 
purposes, the detailed exponential behavior of a diode can be approximated as a perfect 
conductor above a certain voltage and a perfect insulator below this voltage (Figure 6.4). 
This transition voltage is known as the “knee” or “turn-on” voltage. For silicon (Si) 
diodes, the knee voltage is 0.7 V; for Schottky barrier and germanium (Ge) diodes, the 
knee voltage is 0.3 V; and for gallium-arsenide (GaAs), gallium-nitride (GaN), and other 
hetero-junction light-emitting diodes, the knee voltage can range from 2 to 4 V. 
 
 When a reverse voltage is applied to a diode, the resistance of the diode is very 
large. The exponential current-voltage behavior predicts a constant reverse current that is 
approximately equal to Io. In reality, the mechanisms responsible for reverse conduction 
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are leakage effects which are proportional to the area of the PN-junction. Silicon diodes 
typically have maximum reverse leakage currents on the order of 100 nA at a reverse 
voltage of 20 V, while the leakage currents for germanium and Schottky barrier diodes 
can be much higher. 
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Figure 6.4: Diode current-voltage relationship (not to scale) 

 
When a sufficiently high reverse voltage is applied across a diode, electrical 

breakdown can occur across the PN-junction, resulting in massive conduction. In some 
cases, this effect is reversible and if used properly, will not damage the diode. This is 
known as the Zener effect and such diodes can be specifically engineered to create a 
similar current-voltage non-linearity in the reverse direction as in the forward direction. 
In fact, the knee in the current-voltage relationship for Zener diode can be significantly 
sharper and can range from 1.8V to greater than 100V. The symbol for a Zener diode is 
shown in Figure 6.5.  In practical electronic circuits, Zener diodes are often used to make 
voltage references as well transient voltage suppressors. 
 

 
Figure 6.5: Symbol for a Zener diode 
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6.2 Diode Circuits 
 
6.2.1 Peak detector 
 

A classic diode circuit is a peak detector shown in circuit a, Figure 6.6, having a 
diode and a capacitor in series.  On the upswing of the signal, when the source voltage 
(VS) is 0.7 V greater than the capacitor voltage (VC), the diode has a small resistance and 

0.7C SV V= − . On the downswing of the signal, the diode has a large resistance and the 
previous peak voltage is held on by the capacitor. If the signal is kept consistently lower 
than the capacitor voltage, then the capacitor voltage decays with a time constant that is 
equal to the reverse diode resistance multiplied by the capacitance. Since the reverse 
diode resistance can be as large as 109 ohms, the decay time constant may be undesirably 
long. If this is the case, a large resistor can be added in parallel with the capacitor, as 
shown in circuit b, Figure 6.6, to set the decay time constant as RCτ = . 
 

Vin

Vout

Vin

Vout

RC C

a b  
Figure 6.6: Diode peak detectors 

 
6.2.2 LED Circuit 
  

One of the most useful types of diodes is the light-emitting diode (LED). When 
current flows in the forward direction, an LED emits light proportional to the amount of 
forward current. Recent advances in semiconductor materials have drastically increased 
the power, efficiency, and range of colors of LED’s. It will not be long before many 
traditional lighting devices, such as fluorescent lights, are replaced by bright LED’s. 
 

LED’s cannot be powered directly from a voltage source as shown in Figure 6.7, 
circuit a, due of the sensitivity of their current-voltage relationship. Since mV differences 
in the applied voltage can drastically alter their operating current, manufacturing 
variations would make it impossible to control their current flow this way. When an LED 
is powered using a voltage source, a current-limiting resistor should be used, as shown 
Figure 6.7, circuit b. For example, suppose that the turn-on voltage of the LED is 2.1V 
and the voltage source is the output of a 3.3V microprocessor. The resistor is chosen to 
operate the LED at the specified maximum operating current of 10mA, according to the 
following simple analysis.  Given the 2.1V turn-on voltage drop, 3.3 - 2.1 = 1.2 V will be 
dropped across the resistor. The desired operating current is 10mA, and therefore the 
necessary resistance is 1.2 V / 10 mA = 120 Ω. 
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VS= 2.1V VS= 3.3V

R=120

a b

VON = 2.1V VON = 2.1V

 
Figure 6.7: Circuit for powering LED’s 

 
While this method for powering a LED is simple and ubiquitous, it is inefficient 

since the power applied to the resistor is dissipated as heat. In the above example, more 
than one-third of the applied power is lost. Efficiency can be increased by using 
specialized integrated circuits that drive LED’s using a constant current source. 
 
 
6.2.3 Voltage Reference 
 

The highly non-linear current-voltage relationship of diodes also make them ideal 
for making voltage references. As shown in Figure 6.8, silicon diodes biased in the on-
state can be used to generate a 0.7V reference. For references from 1.8V and above, 
Zener diodes biased in the reverse direction can be used in a similar circuit. The output 
current sourcing capacity is limited by the bias current through the diode. In order to 
maintain the correct bias in the diode, the bias current through diode should be at least a 
few mA greater than the maximum current that the reference will be required to source. 
The resistor value can be selected using the same procedure for the LED circuit. 
 

VS

R

VON = 0.7V

Vout=0.7V

VS

R

VZ = 1.8V

Vout=1.8V

 
Figure 6.8: Voltage reference circuits using a diode or Zener diode 
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7 Transistors 
 

Transistors are active non-linear devices that facilitate signal amplification. In the 
hydrodynamic model of electrical current, transistors are equivalent to a dam with a 
variable gate that controls the amount of water flow shown in Figure 7.1. Just as in a real 
dam, a small amount of energy is required to operate the gate. Amplification is achieved 
in the sense that a small amount of energy can be used to control the flow of a large 
amount of current. 
 

 h
ei

gh
t =
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su
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ly
 

 
Figure 7.1: The hydrodynamic analogy of a transistor 

 
There are two main classes of transistors: bipolar-junction transistors and field-

effect transistors. 
 
7.1 Bipolar-Junction Transistors (BJT) 
 

A BJT has three terminals: emitter, base, and collector. In the hydrodynamic 
analogy, the emitter and collector correspond to the river above and below the dam. The 
base terminal corresponds to the control input that varies the flow through the dam. 
 

There are two varieties of BJT’s: NPN devices that use electrons as the primary 
charge carrier and PNP devices that use holes as the primary charge carrier. The circuit 
symbols for NPN and PNP BJT’s are shown in Figure 7.2. From this point on, the 
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discussions of BJT behavior will use NPN devices as examples. The discussion for PNP 
devices is exactly complementary to that of NPN devices except electrons and holes are 
interchanged and as a result, all the characteristic device voltages are reversed. 
  

Base

Collector

Emitter

Emitter

Collector

Base

NPN PNP  
Figure 7.2: Circuit symbols for the NPN and PNP transistor 

 
The structure of an NPN BJT, shown in Figure ###, consists of three layers of 

materials: an N-type layer, a thin P-type layer, and another N-type layer, which 
corresponds to the emitter, base, and collector. The emitter-base and collector-base PN-
junction form diodes with opposing directions of conduction as shown in Figure 7.3. 
Typically, the collector is connected to a higher voltage than the emitter, while the base is 
connected to a voltage between the two. The collector-to-emitter voltage is equivalent to 
the height of the water in the dam model. The base voltage is equivalent to the position of 
the control gate. When the voltage at the base is not enough to turn-on the base-emitter 
diode, there is no conduction from collector to emitter. When the voltage at the base is 
high enough to turn-on the base-emitter diode, a conduction path from collector to emitter 
is opened. 
 

 
Figure 7.3: A crude model of a NPN BJT 
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Figure 7.4: Conceptual structure of an NPN transistor 

 
The mechanism responsible for controlling the conductivity from collector to 

emitter lies in the depletion layers formed at base-emitter and base-collector PN-junctions 
shown in Figure 7.4. When the base-emitter PN-junctions is reverse biased, electrons from 
the emitter are unable to get across the potential barrier of the PN-junction. When the 
base-emitter diode is forward biased, electrons from the emitter are injected into the base. 
Since the base is very thin, the electrons can easily diffuse across and be “swept up” by 
the electric field in the reverse-biased depletion layer of the base-collector junction. This 
electron diffusion current from the emitter to the collector is the large output current of a 
BJT. 
 

A simple way to visualize the conduction mechanism of BJT is to consider the 
electrons introduced into the thin base region as effectively changing base material from 
P-type to N-type. Therefore, the transistor structure changes from the non-conductive N-
P-N layers to the conductive N-N-N layers. 
 

The amount of diffusion current is approximately proportional to the amount of 
base-emitter current. The proportionality constant, typically denoted as β, is the current 
gain of the transistor. The value of β depends on geometry of the device and the doping 
concentrations of the collector, base, and emitter. For most commercial transistors, β is 
between 100 and 1000. A much more detailed explanation of the physics and design of 
transistors can be found in texts such as [Ref]. 
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As a circuit element, a BJT can be modeled as a combination of a diode (from 

base to emitter) and a voltage-dependent current source (from collector to emitter) as 
shown in Figure 7.5. The diode has an exponential current-voltage relationship and draws 
current equal to the base current, 
 

1
b

t

o

V
V

b bI I e
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

. 

 
The current source represents the collector to emitter current, 

oc bI Iβ= . When the 
transistor is turned on, the base-emitter voltage is constrained by the diode, while the 
collector-emitter voltage can vary because the current source will produce the necessary 
voltage to draw the desired amount of current. In practice, however, the collector-emitter 
voltage must be greater than a few hundred milli-volts to avoid forward-biasing of the 
base-collector diode. 
 

Ic=ßIb

Base Collector

Emitter  
Figure 7.5: Circuit representation of a BJT 

 
In circuits involving discrete transistors, BJTs are often used as a switch to turn 

on and off currents to components such as LED’s. Figure ### shows four such 
configurations where NPN and PNP transistors are used to switch on and off loads 
connected to a 5V power supply. In each configuration, the input signal is connected to 
the base via the current-limiting resistor (Rb). Since the base-emitter junction behaves as a 
diode, the voltage across the base-emitter junction is effectively held at 0.7V. The 
function of Rb is to limit the amount of current between base and emitter to prevent 
burning out the transistor. Typically, values ranging from 500 Ω to 50kΩ are acceptable. 
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7.2 Field-Effect Transistors (FET) 
 

Field-effect transistors are far more ubiquitous than BJTs in today’s integrated 
electronic circuits. The most common FET is the metal-oxide semiconductor field-effect 
transistor (MOSFET), millions of which are found in each computer CPU.  Similar to 
NPN and PNP type BJTs, there are also N-channel and P-channel MOSFETs. A circuit 
containing both N- and P-type MOSFETs is called a complementary-MOS circuit, giving 
the widely-used acronym CMOS. 
 

The MOSFET device has four-terminals including gate, source, drain, and body 
as shown in Figure 7.6. The gate is a metal electrode that is insulated from the other three 
terminals via a thin oxide layer. In an N-channel MOSFET, the source and drain are N-
type and the body is P-type. Conversely, for a P-channel MOSFET, the source and drain 
are P-type and the body is N-type. The N-channel device will be used as an example to 
explain the basic principles of the MOSFET. 

N-type N-type

P-type substrate

GateSource Drain

Body

N-channel

Insulation layer

 
Figure 7.6: Structure of an N-channel MOSFET 

 
The conduction path in a MOSFET runs from drain to source. Similar to a BJT, 

when a MOSFET is in the off-state, the body-drain and body-source junctions form 
opposing diodes and the conduction path is blocked. In a BJT, the conduction path is 
created by introducing electrons to the middle P-type region to temporarily turn it into an 
N-type region. In a MOSFET, charges which are deposited at the gate electrode create an 
electric field in the body.  This field draws electrons into a thin layer in the body adjacent 
to the oxide layer. The excess of electrons effectively creates an N-type channel in the P-
type body, which gives a high drain-to-source conductivity. 
 

The gate-body voltage required to create a conductive channel, known as the 
threshold voltage, Vth, depends on the thickness of the oxide layer and on the doping level 
in the body. For N-channel MOSFET’s, Vth typically ranges from 2 V to 10 V and for P-
channel MOSFET’s, Vth ranges from -2 V to -10 V. During operation, once a channel is 
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created, the drain-source current varies proportionally with the square of the difference 
between the gate voltage and Vth,  
 

( )2

d gs thI K V V= − , 
 
where K is a device-dependent conductivity parameter. 
 

While a MOSFET is essentially a symmetric device between source and drain, the 
body must be connected to the lowest voltage in order to prevent forward-biasing the PN 
junction between the body to either drain or source. By convention, the body is connected 
to the source. 
 

The circuit symbols for the N-channel and P-channel MOSFET’s are shown in 
Figure 7.7. Since the body is connected to the source in most instances, the body contact 
is sometimes omitted as shown. 
 

Gate

Source

Drain

Body Gate

Source

Drain

Gate

Source

Drain

Body Gate

Source

Drain

N-channel MOSFET P-channel MOSFET

 
Figure 7.7: N-channel and P-channel MOSFET circuit symbols with and without body contact 
 

The equivalent circuit model for a MOSFET is shown in Figure ###. In DC 
operation, the gate is an infinite impedance sense while the drain-source current is 
determined by a voltage-dependent current source. This model reveals an important 
difference between MOSFET’s and BJT’s. Unlike BJT’s, a MOSFET does not require a 
DC current to be turned on. However, a MOSFET does have a significant gate to body 
capacitance and requires a transient current to deposit enough charges at the gate to create 
a conductive channel from drain to source. 
 

 
Figure ###: Equivalent circuit model for a MOSFET 

 
### Need examples of MOSFET circuits 
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8 Operational Amplifiers 
 
8.1 Op amp Basics 
 

Operational amplifiers (op amps) are pre-packaged transistor amplifier building 
blocks designed for analog signal processing. Its name is a legacy of its original purpose 
to perform arithmetic operations in analog computing. First sold as a monolithic 
component in the 1960’s, op amps have proven to be the most versatile building block in 
analog circuit design. Today, the availability of low-cost and high performance of op 
amps makes them ubiquitous in almost all analog circuits. 
 

Op amp circuits are used to amplify, offset, filter, sum, and buffer analog signals, 
among many other functions. The non-linear nature of transistors makes these operations 
difficult to perform without distortion. Op amps are able to avoid this problem by using 
the mechanisms of negative feedback. 
  

An op amp has five terminals, shown in Figure 8.1: the non-inverting input, 
inverting input, output, positive supply, and negative supply. In this text, the non-
inverting input is referred to as the plus terminal, and the inverting input as the minus 
terminal. 
 

Non-inverting input
(plus terminal)

Output
Inverting input
(minus terminal)

Vs +

Vs -  
Figure 8.1: Circuit symbol for an op amp 

 
The op amp’s power supply terminals are typically omitted from conceptual 

circuit sketches; although, the power supply is often a source of circuit problems and 
requires special attention from the designer. Typically, op amps are powered by bipolar 
supplies such as ±12 V or ±5 V. The op amp’s maximum output cannot exceed the 
supply voltage range, and is usually at least 1V less than either supply limit. When the op 
amp’s output has reached its positive or negative maximum, the output has “railed”.  This 
condition should be avoided in most instances. 
 

The internal circuitry in an op amp is designed to give two basic characteristics: 
(1) very high impedance at the input terminals, and (2) very high differential gain from 
the input to the output. In fact, an ideal op amp has infinite input impedance and infinite 
differential gain. For practical op amps, the differential gain exceeds 105 and input 
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impedance is a few GΩ. At first, it may be difficult to understand how a very high gain 
amplifier can be useful since a very small differential voltage will send the output to rail 
to its maximum or minimum value. However, op amps are designed to operate in 
feedback, which regulates the output voltage according to the input as a result of 
amplifier’s configuration. 
 

An intuitive grasp of op amps in feedback can be found by examining the voltage 
follower circuit shown in Figure 8.2. The input voltage is applied at the plus terminal 
while the output voltage is fed back into the minus terminal. The voltage follower will 
replicate the input voltage at its output while isolating disturbances at the output from 
affecting the input. 
 

Vin

Vout

 
Figure 8.2: Op amp voltage follower circuit 

 
The voltage follower circuit functions in the follow way: if the negative terminal 

(also the output) is lower than the positive terminal, the gain of the amplifier will make 
the output more positive and thereby bringing the negative terminal closer to the positive 
terminal. If the negative terminal is above the positive terminal, the gain of the amplifier 
will make the output more negative and thereby bringing the negative terminal closer to 
the positive terminal. From this crude analysis, it is possible to see that regardless of the 
output starts higher or lower than the input, the feedback mechanism will make the output 
approach the input voltage. The exact nature of the errors between output and input and 
the dynamic properties of the voltage signals will be discussed in detail in Section 10 - 
Feedback. 
 
8.2 Op amp Circuits 
 

The first order analysis of op amp circuits can be made following two simple rules: 
(1) the plus and minus terminals draw no current; and (2) the output will produce 
whatever voltage is necessary to equalize the voltages at the plus and minus terminals. 
The prerequisites for using these rules are that the op amp must be in negative feedback 
and the required output must be within the valid output range of the op amp. 
 
8.2.1 Non-inverting Amplifier 
 

The non-inverting amplifier circuit is shown in Figure 8.3. The input is applied to 
the op amp’s positive input. The output is fed back to the op amp’s negative input via the 
resistive divider formed by R1 and R2. Note that for all practical purposes, the amplifier’s 
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input impedance is infinite. Since the feedback mechanism ensures that the positive and 
negative terminals of the op amp are equivalent, the voltages at the inputs are 
 

1

1 2
out

RV V V
R R

+ − ⎛ ⎞
= = ⎜ ⎟+⎝ ⎠

 

 
Therefore, the transfer function from input to output is  
 

1 2

1

out

in

V R R
V R

⎛ ⎞+
= ⎜ ⎟

⎝ ⎠
 

 

R2

Vin

Vout

R1

 
Figure 8.3: Non-inverting amplifier circuit 

 
A special case of the non-inverting amplifier is when R1 is infinite and R2 is 0. 

This forms the op amp voltage follower as shown previously in Figure 8.2 which has a net 
gain of 1. 

 
Non-inverting amplifiers have extremely high input impedance which makes 

them an excellent buffer for high impedance signals. This is because the input is fed 
directly to the plus-terminal of the opamp which typically has an input impedance on the 
order of 109Ω. 
 
8.2.2 Inverting Amplifier 
 

The inverting amplifier circuit is shown in Figure 8.4. The input is applied to the 
resistor R1 which is connected to the op amp’s minus terminal. The plus terminal is tied 
to ground while the output is fed back to the negative terminal through resistor RF. Since 
no current flows into the minus terminal, all current sourced from the source through R1 
must be drained through RF. The feedback mechanism ensures that voltages at the plus 
and minus terminals are equal, which means that  
 



 

© 2005 Hongshen Ma 
 

46

1

out in

F

V V
R R

= − , 

 
and the transfer function is  
 

1out

in F

V R
V R

= − . 

 
The input impedance of the inverting amplifier is set by resistor R3 and is 

significantly lower than the input impedance of the non-inverting amplifier. 
 

RF

Vin

VoutR1

 
Figure 8.4: Inverting amplifier configuration 

 
This amplifier is sometimes called current-summing amplifier because all current 

sourced into the negative input will be drain via the feedback resistor. This property can 
be used to amplify current based signal sources such as photodiodes as shown in Figure 
###. In this case the output voltage is simply out F inV R I= . A much more extensive 
discussion on photodiode amplifiers can be found in section 17.3.2 
 

###Insert simple photodiode amplifier circuit here### 
Figure ###: Simple photodiode amplifier 

 
It is also possible to sum signals from multiple sources as shown in Figure 8.5, 

where the output voltage is  
 

31 2

1 2 3
out F

VV VV R
R R R

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
. 
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RF
V1

Vout

R1
V2

R2
V3

R3

 
Figure 8.5: Inverting op amp summer 

 
 
8.2.3 Signal Offset 
 

In analog signal processing, it is often desirable to offset the signal by a known 
amount. For example, if the signal ranges from -5 V to +5 V and the analog-to-digital 
converter is designed to accept signals ranging from 0 V to +10 V, a +5 V shift is 
required. Such signal offsets can be accomplished using an inverting or non-inverting 
amplifier gain stage and be integrated with modest gain functions. 
 

Figure 8.6 shows how the voltage offset can be accomplished using an inverting 
amplifier. The positive input is now connected to a reference voltage instead of ground. 
The transfer function will now need to be re-evaluated with the non-zero reference 
voltage factored in. The output is 
 

( )
1

F
out REF in REF

RV V V V
R

⎛ ⎞
= − − ⎜ ⎟

⎝ ⎠
. 

 
The incremental gain of AC signals between Vout and Vin is still  
 

1

out F
in

in

V RV
V R

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
. 

 
Since the input of the amplifier draws nearly zero current, the reference voltage can be 
generated using a simple voltage divider where  
 

3

2 3
REF S

RV V
R R

=
+

. 

 
A capacitor is necessary to reduce noise at the reference voltage since any variation of the 
reference voltage will directly couple onto the output. 
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RF

Vin
VoutR1

R2

CR3

VS
VREF

 
Figure 8.6: Inverting amplifier with voltage offset 

 
Figure 8.7 shows how the voltage offset can be accomplished using a non-

inverting amplifier. Resistor R1 is connected to the reference voltage instead of ground 
and therefore the output is 
 

( ) 2 1

1
out in REF

R RV V V
R
+

= − . 

 
A more complicated reference voltage is required since the reference is now 

required to sink or source current through R1 while maintaining a constant voltage. In 
other words, the reference must act like a voltage source with a small output resistance. 
This voltage reference can be generated using a voltage divider circuit buffered by an op 
amp voltage follower. 
 

R2

Vin

Vout

R1

R3

CR4

VS
VREF

 
Figure 8.7: Non-inverting amplifier with voltage offset 



 

© 2005 Hongshen Ma 
 

49

9 Filters (Very incomplete) 
 

Electronic filters are designed to attenuate signals in one part of the frequency 
spectrum while emphasizing signals in another part of the spectrum. There are four basic 
types of filter responses as shown in Figure ###: low-pass, high-pass, bandpass, and 
band-reject. Low-pass filters are designed to pass signals from DC (ω = 0) to ω = ωc, 
where ωc is known as the cutoff frequency. High-pass filters are designed to pass signals 
from ωc to infinite frequency. Bandpass filters are a combination of low-pass and high-
pass filters where the width of the pass band is known as the bandwidth of the filter. 
Band-reject or notch filters are the inverse of bandpass filters, and are designed to remove 
interference from a certain frequency range. 
 
 

Figure ###: Basic filter responses 
 

Electronic filters are created by building circuits that has transfer functions that 
attenuate signals at certain frequencies. These filter circuits can be either passive or active. 
Passive filters generally involve resistors, capacitors, and inductors while active filters 
use resistors, capacitors, and op amps to eliminate the need for inductors. Passive filters 
are simpler and easy to design for low performance applications whereas active filters 
have better performance for more demanding applications. 
 
9.1 Decibel Scale 
 

The frequency response of filters often deals with gain and frequency values that 
vary over many orders of magnitude. Therefore, it is often more convenient to describe 
these quantities using a logarithmic scale. The conventional scale used to describe gain is 
the decibel (dB) scale. For a linear gain A, the gain in dB is, 
 

( )dB 10A 20log A=  
 
Therefore, a gain of 1 is equivalent to 0 dB, a gain of 10 is equivalent to 20 dB, a gain of 
100 is equivalent to 40 dB, and so on. Other commonly used dB values include -3 dB 
which is a gain of approximately 1/ 2 = 0.707 and -6 dB which is approximately 0.5. A 
list of commonly encountered dB values and their linear equivalents is shown in Table 9.1. 
It is important to remember that just as linear gain is a relative measurement of the input 
and output of a circuit, gain on the dB scale is also a relative measure and is not tied to a 
specific voltage.  
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Gain (dB) Gain (linear) 
-60 dB 0.001 
-40 dB 0.01 
-20 dB 0.1 
-6 dB 0.5 (approximate) 
-3 dB 0.707 (approximate) 
0 dB 1 
20 dB 10 
40 dB 100 
60 dB 1000 

Table 9.1: Commonly encountered gain values in dB, with their linear equivalents. 
 
 
9.2 Single-pole Passive Filters 
 

The simplest filter is a RC low-pass filter shown in Figure 9.1 The transfer 
function of this filter is  
 

1( )
1

T s
sRC

=
+

, 

 
and the frequency response is shown in Figure ###. This is called a single-pole filter 
since the denominator of the transfer function has only one root. The pass band gain of 
the filter is 0 dB or unity, while the stop band attenuation increases by 20 dB per decade.  
A decade is a 10X increase in frequency. The cutoff frequency is defined as the 
frequency where the input signal has been attenuated by a factor of 0.707, which is 
equivalent to a gain of -3 dB. The cutoff frequency of the single-pole filter is  
 

1
c RC

ω = . 

 

R

C

Vin Vout

 
Figure 9.1: Single-pole RC low-pass filter 

 
###Insert frequency response of single-pole RC filter here 
Figure ###: Frequency response of a single-pole RC filter 
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A single-pole high-pass filter can be made by simply switching the position of the 
resistor and capacitor as shown in Figure ###. The frequency response is shown in Figure 
9.2. 
 

R
C

Vin Vout

 
Figure 9.2: Single-pole RC high-pass filter 

 
9.3 Metrics for Filter Design 
 

The frequency response of a filter is specified by its stop-band attenuation above 
the cutoff frequency. For example, a single-pole filter will attenuate signals in the stop-
band by an additional factor of 10 (20dB) for every decade above the cutoff frequency. 
Therefore, for the low-pass filter in the previous example, at ω = 0.1 ωc, the transfer 
function is approximately equal to 0.1; at ω = 0.01 ωc, the transfer function is 
approximately equal to 0.01. If more stop-band attenuation is desired, then a filter with 
more poles in the transfer function is needed. As shown in Figure ###, a 2-pole filter will 
attenuate stop-band signals by a factor of 100 (40dB) for every decade above the cutoff 
frequency; a 3-pole filter will attenuate stop-band signals by a factor of 1000 (60dB) for 
every decade above the cutoff frequency. 
 

###Insert figure here### 
Figure ###: Comparing 1-pole, 2-pole, and 3-pole filter responses. 

 
9.4 Two-pole Passive Filter 
 

The stop-band attenuation of a filter can be using a 2-pole passive filter as shown 
in Figure 9.3.  
 

R1

C1

R2

C2

Vin Vout

 
Figure 9.3: Cascaded low-pass filter 

 
### From this point on will be a discussion on why passive filter is not cascadable, and 
motivate the need for active filters. 
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9.5 Active filters 
 

A major advantage of active filters is that they can be designed to have high input 
impedance and low output impedance. This means that the signal load can be isolated 
from the signal source and therefore filter sections can be chained together like 
LEGO’sTM in order to obtain a filter with a higher-order response. As a pleasant 
consequence, each filter section can provide gain to the desired signal as required to suit 
the needs of the system. 
 
9.5.1 First order low pass 
9.5.2 First order high pass 
9.5.3 Second order low pass 
9.5.4 Second order high pass 
9.5.5 Bandpass 
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10 Feedback 
 
10.1 Basics of Feedback 
 

Feedback is a fundamental engineering principle used to regulate the response of 
systems by using the output of a system to affect its input. The interaction between output 
and input ensures that a stable relationship is maintained even in the presence of 
disturbances and variations of system characteristics. The application of feedback is 
ubiquitous in both natural and engineered systems. For example, in physiological systems, 
feedback is used to regulate breathing and maintain a constant body temperature; in 
robotics, feedback is used to regulate the position and angle of robotic arms; and in 
electronic amplifiers, feedback is used to make ideal linear amplifiers with stable gain.  
 

Feedback loops can be either negative or positive. If the feedback loop serves to 
decrease the effect of the input, then the feedback is said to be negative. Conversely, if 
the feedback loop serves to increase the effect of the input, then the feedback is said to be 
positive. In most instances, negative feedback results in a stable output response whereas 
positive feedback results an unstable or oscillatory response. 
 

The basic feedback loop is shown in Figure 10.1 where the output of a system, 
described by the transfer function A(ω), is multiplied by a transfer function f(ω) and 
subtracted from the input before being re-inputed into the system. The transfer function 
A(ω) is known as the open-loop response while the overall response of the feedback loop 
is known as the closed-loop response. The negative sign on the feedback loop is placed 
there by convention since a majority of engineering feedback systems use negative 
feedback. Since both A and f are functions of frequency, ω, the overall response will also 
be a function of ω. 

 
Figure 10.1: Basic configuration of a feedback system 

 
When the feedback loop shown in Figure 10.1 is applied to an op amp, a number 

of performance enhancements can be obtained including precise control of the amplifier’s 
gain, improved linearity, increased bandwidth, reduced sensitivity to external 
disturbances, reduced sensitivity to component variation, and active control of circuit 
impedances. As with any feedback system, these performance enhancements come at a 
price: if improperly designed, the system may become unstable and spontaneous 
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oscillations can occur. In fact, the design of feedback systems is often a trade-off between 
stability and performance, which requires careful analysis by the designer. 
 
10.2 Analysis of Feedback Systems 
 

Feedback systems are analyzed in the frequency domain and provide electronic 
circuit designers with two important results: the system response and stability. The 
system response is the closed-loop transfer function of the system which in frequency 
domain analysis is expressed as a ratio of output to input. The stability of the system 
measures how likely spontaneous oscillations will occur, which is most commonly 
expressed by the metrics of phase margin and gain margin. 
 

Feedback analysis uses a block diagram representation of the system based 
around the path of signal flow. In this representation, the signal can be voltage, current, 
or any other physical quantity. All physical mechanisms and circuit networks are 
abstracted as linear operations on the signal, which consists of either multiplying the 
signal by a constant factor or summing two or more signals together. It is important to 
remember that these linear operations are complex and that means both the amplitude and 
phase of the signal may be modified. 
 
 
10.3 Non-inverting Amplifier 

R2

Vin

Vout
Vin A

R1

R1/(R1+R2)

Vout+

-

 
Figure 10.2: Circuit and block diagram representation of an op amp non-inverting amplifier 

 
The block diagram representation of the op amp non-inverting amplifier is shown 

in Figure 10.2. The summation point has both a non-inverting and an inverting input 
corresponding to the plus and minus terminals of the op amp. The open-loop response of 
the op amp is modeled as a real multiplicative factor A. For ideal op amps, A is infinite, 
while for real op amps, A is very large, but finite. The output voltage is attenuated by the 
voltage divider R1/(R1+R2) and fed back to the minus input of the op amp. The transfer 
function is calculated as, 
 

1

1 2

Aout in out
RV V V

R R
⎛ ⎞⎛ ⎞

= −⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
, which means 
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1

1 2

A

1 A

out

in

V
V R

R R

=
⎛ ⎞

+ ⎜ ⎟+⎝ ⎠

. 

 
As A becomes very large,  
 

2

1

1out

in

V R
V R

= + . 

 
This example illustrates a fundamental design principle of op amp circuits: If A is 

very large, then the closed-loop gain is dependent only on the feedback resistors R1 and 
R2. Therefore, the closed-loop gain can be made very accurate and stable since very 
accurate and stable resistors can be purchased. Effectively, op amps use feedback to 
exchange high open-loop gain for stable closed-loop gain. Additionally, the only 
requirement in making this amplifier work as an ideal amplifier is that A must be large. A 
does not need to a particular value, nor does it need to be linear with input (although, A 
should maintain the same sign for all possible inputs). 
 
10.4 Inverting Amplifier 
 
The block diagram representation of an inverting amplifier is shown in Figure 10.3. Both 
the input and output can be modeled as independent sources and superposition can be 
applied to determine the signal applied to the minus terminal of the op amp. Both the 
input and feedback signals should be negative before the summation point; however, in 
keeping with the convention, the input side of the summation is positive and the feedback 
side is negative. 

R2

Vin

VoutR1

-R2/(R1+R2)
Vin + A

-

R1/(R1+R2)

Vout

 
Figure 10.3: Circuit and block diagram representation of an inverting amplifier 

 
The closed-loop transfer function is 
 

2

1 2 1

1 2

A

1 A

out

in

V R
V R R R

R R

⎛ ⎞
⎜ ⎟
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. 

 
As A becomes very large,  
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2

1

out

in

V R
V R

= − . 

 
 
10.5 Precision Peak Detector 
 

The circuit for a simple peak detector, shown in Figure 6.6 in section 6.2.1, uses a 
diode, capacitor, and resistor. This circuit has a problem that the output signal is always 
one diode drop, 0.7V, below the input signal. Using an op amp and feedback it is possible 
to make a precise version of this peak detector that automatically compensates for the 
voltage drop of the diode. The circuit for this peak detector is shown in Figure 10.4 with a 
diode connected to a resistor and capacitor, as before. The difference is that now the 
circuit input goes to the input of an op amp and the output signal from the diode is fed 
back into the inverting input of the op amp. 
 

Vin

Vout

R
C

 
Figure 10.4: Precision peak detector circuit 

 
###The precision peak detector circuit can be analyzed by considering two 

configurations of this circuit separately: (1) when the diode is forward biased, and (2) 
when the diode is reversed biased. This technique enables the application of linear 
analysis while avoiding the inherent nonlinearity of the diode. 
 

The equivalent circuit of the peak detector for the case of a forward biased diode 
is shown in Figure 10.5. The diode is assumed to have zero resistance in the forward 
direction and has a constant voltage drop of VD. In the feedback block diagram, the 
voltage drop can be represented as an additive signal to the output of the op amp. The 
output voltage of this equivalent circuit is 
 

A
A 1 A 1

D
out in

VV V ⎛ ⎞= +⎜ ⎟+ +⎝ ⎠
. 

  
Since the open-loop gain A for an op amp is typically 105-106, the output follows 

the input almost exactly while the diode voltage drop is attenuated by A+1, which is 
negligibly small compared to the signal amplitude. Therefore, Vout = Vin when the diode is 
forward biased. 
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Vin A Vout+

-

Vdiode
Vin

Vout

R
C

VD

 
Figure 10.5: Equivalent circuit for the precision peak detector when the diode is forward-

biased 
 

The equivalent circuit of the peak detector for the case of reverse-biased diode is 
shown in Figure 10.6. The diode in reverse bias is assumed to behave as a very large 
resistor with resistance RD. The open-loop gain of this feedback circuit is A·D, where A is 
the open-loop gain of the op amp and D is the signal attenuation resulting from RD with C 
and R. Specifically,  
 

1||

1||D

R
sCD

R R
sC

⎛ ⎞
⎜ ⎟
⎝ ⎠=

⎛ ⎞+⎜ ⎟
⎝ ⎠

, 

 
Since 910DR ≈ Ω  for reverse biased diodes and 610R ≈ Ω , 3D 10−< . This means 

that the signal transfer from the output of the op amp to Vout is attenuated by a factor of 
103 when the diode is reverse biased. Therefore, Vout essentially maintains the voltage on 
the capacitor C and is not affected by the output of the op amp when the diode is reverse 
biased (Vin < Vout). 
 

Vin A Vout+

-

Vin

Vout

R
C

RD

D

 
Figure 10.6: Equivalent circuit for the precision peak detector when the diode is reversed 

biased 
 
10.6 Op amp Frequency Response  
 

Up to this point, it has been assumed that the open-loop gain of the op amp is not 
only large, but is also constant with frequency. However, the open-loop gain of an op 
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amp begins to decreases at a relatively low frequency, with a single pole roll-off 
characteristic of  
 

A
1+ sOLA

τ
= . 

 
An example of an op amp open-loop gain versus frequency plot is shown in Figure ###, 
taken from the OPA340 datasheet. The maximum gain is shown to be 120 dB (106), with 
and the roll-off frequency is 5 Hz. 

 
Figure 10.7: An example open-loop gain and phase response of an op amp, taken from the 

OPA340 datasheet. 
 
The non-inverting amplifier is shown again in Figure ###, having a frequency dependent 
open-loop gain. The transfer function is 
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Therefore, 
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The closed-loop system has a gain of 1
f

and a bandwidth of Af
τ
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Figure 10.8: Non-inverting amplifier with op amp frequency dependence 

 
 
10.7 Stability of Feedback Circuits 
 


