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FINITE  ELEMENTS

The vast majority of shapes which occur in Engineering - whether they be chunks of stressed
metal or volumes of flowing gases - are complex three-dimensional continua which cannot be
represented adequately by the simple closed-form mathematical models so beloved of engineer-
ing students. These theoretical models also cannot portray the appreciable non-linear or aniso-
tropic material characteristics which are often met with in practice. For example, although com-
plex mathematical transformations enable the flow of ideal fluids around certain aerofoils to be
analysed, the very real effects of viscosity may render such analyses impracticably inaccurate. 

In such situations therefore, we must resort to numerical methods in which the prototypical
continuum of infinitesimal material particles is represented by an approximately equivalent
assembly of inter-connected discrete elements which are each so simple that they can be treated
individually as mathematical continua. There are a number of methods whereby such networks
can be analysed - numerical solution of differential equations, finite differences, finite elements,
boundary elements, relaxation techniques, and so on. We have chosen to demonstrate the
Finite Element Method (FEM) as a typical powerful approach which can handle equilibrium,
eigenvalue and propagation problems - though we shall restrict our considerations to equilib-
rium applications in linear elasticity. 

Finite Elements involve a particular type of network. A network is an arrangement of 'ele-
ments' interconnected between 'nodes', such as an electrical system in which the elements are
resistors, batteries, etc, or a fluid network where the elements may be pumps or fans, pipes,
valves or mine airway resistances, and so on. Networks abound also in non-engineering disci-
plines - in economics, in political and the social sciences, and in decision theory to name but a
few. This ubiquity is sufficient reason to first examine networks in their own right to see how
best to analyse them - this examination will lead naturally into the concept of Finite Elements.

Linear 1-Networks

The sketch illustrates portion of a net which consists of two-
noded elements, 'M' in number and labelled 1, 2 . . m . . . M,
arranged between 'N' nodes which are indexed 1, 2 . . i, j . . . N.
The typical m'th element, lying between the i'th and j'th
nodes, is also shown. The net variables are :-

'element' or 'through' variables, 'y' say, exemplified by the cur-
rent or flow, ym , through the m'th element, and 

'node' or 'across' variables, 'x' say, typified by the voltages or
heads, xi and x j, at the i'th and j'th nodes respectively.

Analysis of the net as a whole requires determination of the complete vectors :-

( 1 )           x   =   [  x1  x2  . . . . xi  xj. . .  xN  ]
'   ;            y   =   [  y1  y2  . . . . ym . . . yM  ]'  

The solution involves three major and quite discrete aspects :-

A - TOPOLOGY of the net, which in turn involves :
DEFINITION of the net - the labelling of the nodes and elements, and the statement of
which elements are connected between what nodes.
ORIENTATION of the elements - the nomination of a positive flow sense through each
element; as a result of this, one of the two nodes will be the inlet node to the element,
the other becomes the exit.
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CONSTRAINTS - the definition of the operable network laws; eg Kirchoff's Laws :

Σ ym = 0 at any node, eg flow continuity - or its dual
Σ ( xi - xj ) = 0 around any closed loop.

Some observations about these laws include the following :
- one set only is necessary; we shall use only the continuity equations here
- the laws are intrinsically linear, eg no squares of the variables appear
- the formulation of the equations depends only on the topology, eg the equations for

electric and fluid systems are identical.

B - CONSTITUTIVE  LAWS  which relate the across- and through-variables for the elements. 
These are known, application-dependent equations of the form :-

xi  -  xj   =   function ( ym )   

Eg, an electrical resistance : v i - vj = Rm im Linear 
or an hydraulic resistance : h i - hj   ≈ Rm qm

2 Non-linear

The constitutive laws may not be algebraic equations, but differential or integral equa-
tions as occur in dynamic systems or inductor/capacitor nets. Note the consequences of orien-
tation when the constitutive laws are non-linear - what happens if hi <hj ?

C - SOLUTION OF EQUATIONS which result from combination of the constitutive and net-
work laws. Although this might be thought the easiest step, especially if the network is
linear, the desired accuracy may be difficult to achieve economically if the net is large.

Network analysis will be demonstrated only for linear systems of the type shown above, in
which the elements are two-noded - that is the net can be regarded as a series of interconnected
1-dimensional lines. Such a net is known as a 1-net. 

Analysis will first be carried out for a representative net using a familiar algebraic technique.
This will give the background for a more general matrix approach which is the theoretical basis
of a computer-oriented method for assembling the net equations - the Direct Assembly method.

EXAMPLE     Determine the across-variables, x, and the through-variables, y, for the typical network illustrated at

(a) below. Constitutive laws are :-

Passives ym  = am (  xi  - xj   )           where the a-constants have the values shown in (a)

Active   y =  2 (  xi  - xj  ) + 70     a pump or battery with orientation as sketched ( xi  ≤ xj  ); also see (b).

The specified value of the across-variable is xo = 5 at the specified datum node.

Firstly the nodes, and then the elements, are numbered sequentially in any order and a positive sense nominated

for the through-variable in each passive, ie the orientation of the net elements is completed, sketch (c).

The constitutive laws for all elements are written in an ordered manner, equations (A) below. Although the speci-

fied datum value x4 = 5 is known, the value's substitution is delayed.
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The continuity equations, (B),

are written for all the nodes, pre-

serving the same order of nodes

and of elements as in the previous

step.

Any one of these equations (B) is

redundant, but its deletion is

delayed.

The constitutive equations (A)

are inserted into the continuity

equations (B), producing (C),

whose across-variable terms are

collected to yield the symmetric

set of 5 continuity equations (D)

in the 5 nodal variables. 

The known datum, x4 = 5, is sub-

stituted in (D) and the column

taken to the RHS, to give the set

(E), from which the superfluous

continuity equation corresponding to the

datum index ( the fourth here ) is elimi-

nated, leaving the symmetric set of ( N - 1 )

independent equations (F).

This is solved for the across-variables, yield-

ing :-

x1 = 11       x2 = 9       x3 = 4      ( x4 = 5)      x5 = 1

Inserting these values into the constitutive laws

(A) for the through-variables gives :-

y1 = 10               y2 = 28 y3 = 12 y4 = 42  

y5 = 50               y6 = –4 y7 = 22 y8 =   8

The initially assumed sense of the through-

variable in element #6 was wrong; this is corrected

in the sketch of the final solution below :-
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This example is now repeated using matrix notation, assuming that the first step involving
annotation and orientation has already been completed. 

The constitutive laws of the M=8 elements, involving the N=5 nodes, are as follows. Zero
matrix elements are represented by periods for legibility.

 

           or, in brief :

( A') y = a t x   +  yo

in which the unknown vectors, x and y, are as defined in (1), and the known
matrices a and t and the vector yo are defined to be :-

- a is an M*M square diagonal matrix of admittance constants; all off-diagonal matrix elements
are zero. The ordering of the constants in a is the same as that of the net elements in y.

- t is an M*N topology incidence matrix, which identifies those two elements of the across-
variable x which are relevant to each net element; so each row of t consists of a single +1 and
a single -1, all remaining columns being zero.

- yo is an M-vector of specified through-variables, with non-zero elements corresponding to the
network active elements, or sources.

The N = 5 nodal continuity equations are 

( B') t' y = 0                  or, in full :-

in which the y pre-multiplier is just the trans-
pose of the topology matrix t, due to the equa-
tions being written down in an orderly man-
ner. Combining the two sets of equations as was done algebraically above, 
by inserting (A') into (B') leads to :    t' ( a t x  + yo )  =  0       or, in short :

( 2 ) A  x = b                 where        A   =   t' a t           and          b  =  - t' yo

This matrix equation is identical to the algebraic equations (D) above. Once it is reduced by the
datum across-variable and the corresponding redundant continuity equation, it can be solved by
standard procedures, since both A and b are known.

Strict matrix algebra is seldom used in practical applications since it demands too much unnec-
essary storage, and computations take too long with the sparse matrices which usually occur.
The matrix approach is useful however in demonstrating how the transpose triple product A,
and b, may be assembled directly in the computer. Thus, consider the contribution to A and to b
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of the m'th element, for which the following are known ( being held typically in a data file ) :

- the inlet node index 'i', and outlet node index 'j',
- the admittance constant 'a', and
- the specified through-variable, yo ( zero for a passive element )

It can be seen that the overall result of these detailed matrix multiplications is equivalent to
merely adding/subtracting the element data to/from the system equations. 

The direct assembly process is therefore :
- null all elements of the N*N A-matrix and of the N-vector, b;
- for each network element in turn, read the above data from file and :

- add the a-constant to the ( i, i )th and ( j, j )th diagonal elements of A, and
- subtract it from the ( i, j )th and ( j, i )th off-diagonal elements of A;
- subtract yo from the ith element of b, and add it to the jth element.

Carrying out this process for the example above :-

Reduction to the final equations here consists of substituting for the datum value and transpos-
ing the corresponding terms to the RHS, then, rather than eliminating the relevant continuity
equation, it is more simply overwritten by the expression for the datum across-variable. This
preserves symmetry and requires storage of half the A matrix only. It is noticeable that the ele-
ment input data does not have to be stored but is used immediately it is read from file.

The output of the Pascal program 'Linet' for analysing linear networks appears below, together
with the data file for the foregoing example. The program uses the direct assembly technique,
incorporates the simultaneous equation solver 'Simeq', automatically accumulates the total



Finite Elements       6

number of elements and of
nodes, avoids internal storage
of element data but echoes it
together with the problem title
as a visual check, orients cor-
rectly the node indices on out-
put (eg element #6) and
includes as a check on numeri-
cal accuracy the theoretically-
zero nodal continuity excesses.

Network analysis usually involves a transpose triple product
akin to (2); non-linear nets can often be linearised into this form.
Direct assembly as above is a useful technique for such situations
but it is not always the most efficient, since in large systems the
bandwidth requirements may be crucial, as will be shown later.

Extension to 2- and 3-Networks

In order to generalise the foregoing to more complex networks,
we first redefine y as a nodal variable akin to x. That is, x and y
are dual or complementary sets of field variables measured at the
nodes of the network, and the concept of element orientation becomes irrelevant. If, in the flow
net above, y is reckoned as a nodal flow towards the element in question, the constitutive law
for the m'th element may be written in matrix form as below :

Direct assembly is thus seen to be the addition of the relevant sub-matrices of the element's a-
matrix to the corresponding locations in the system's A-matrix.

In the nets above, there is one degree of freedom at each node ( ie both 'x' and 'y' are scalar ) and
so the sub-matrices of the element a-matrix are also scalar.

These ideas may easily be expanded to more complex networks in which the concept of y as a
flow is unnecessarily restrictive and will now be dropped - x and y are just a pair of complemen-
tary nodal variables. Thus x may be interpreted as nodal displacement and y as nodal force, in
which case a and A correspond to element and system stiffnesses respectively, and (2) are equa-
tions of equilibrium - we shall concentrate on this interpretation in what follows; however, it is
possible to reverse the roles of x and y, in which case (2) are compatibility equations and A and a
are flexibilities. This conjugality between equilibrium and compatibility, like that already noted
between the two Kirchoff's Laws, is a consequence of the fundamental duality of networks; any
given net can be transformed into its dual net by interchanging nodes with elements.

Consider the triangular element in two dimensions ( z1, z2 ) illustrated below, the nodes being
labelled 'i', 'j', 'k'. There are two components of both 'x' and 'y' at each node, so the constitutive
law for the m'th element may be written variously as shown - in the full 6*6 scalar form ( i), or
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in shorthand vector notation (iii)
where the a-matrix consists of 3*3
sub-matrices corresponding to the
three nodes, each of the nine sub-
matrices being itself 2*2 (ii) corre-
sponding to the two degrees of freedom. Evaluation of the various a-scalars is an application-
dependent detail, however no matter what the application ( provided it involves the transpose
triple product ) the A-assembly process is identical to that outlined above.

b on the RHS of (2) is just a vector of specified y-values - that is, since we are interpreting y as
force, of defined concentrated nodal loads. Assembly of b is now simpler than it was in the case
of flow nets; in that case, sources were added to one element of b and subtracted from another -
a specified-y affected two nodes. In the present case however, (2) are equations of nodal equilib-
rium, the specified-y's are known external forces at single nodes of the system, and orientation
as considered previously is irrelevant. So the external loads are merely inserted individually
into b. Thus¡ :

EXAMPLE       The triangular lamina is located at

the corner of the assemblage illustrated, and its

stiffness matrix is quoted in MN/mm units.

Investigate its contribution to the equilibrium

equations of the assemblage. 

The element's stiffness sub-matrices are assem-

bled directly into the system A-matrix in the

sketch below, remembering that all terms are additive to existing coefficients and do not overwrite them. 

The specified force components at node 11 are simply substituted into the b-vector.

When all elements have been similarly assembled into the system equations, any specified displacements, x, are

evaluated and extracted to the RHS, and the

corresponding equilibrium equation overwrit-

ten by the expressions for the specified values -

exactly as was done for the 1-networks above. 

Support reactions would thus be defined as

points having no displacement. Substitution of
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x10,1 = 0.01 mm is shown in the matrix here,

neglecting for demonstration simplicity the

contributions to A of elements other than the

present one of interest.

Once the equilibrium equations have been

solved, the nodal displacements are substituted

back into the elements' constitutive laws -

again, just like the simple 1-nets above - to

determine nodal forces. We shall see later how

stresses also can be derived.

Extension to three-dimensions evi-
dently requires 3*3 sub-matrices of a
and A - their assembly is readily visual-
ised - but how do we determine an ele-
ment stiffness matrix to assemble in this manner ? Before we demonstrate this, we shall intro-
duce the Rayleigh-Ritz method - a powerful general technique for structural analysis, not
restricted to Finite Elements.

The Rayleigh-Ritz Method

The edge-supported buckled rectangular plate is a typical practi-
cal component of simple unloaded shape where it is impossible
to deduce the true, closed-form stresses. To obtain some idea of the stress levels therefore, an
approximation to the deformations is first postulated. This mathematical function, the 'dis-
placement model', reflects the form or general shape of the deformations, and it is usually a
series incorporating a number of undetermined coefficients. Although the inter-relation
between these is initially chosen so that the model satisfies compatibility ( eg the geometric
boundary conditions ), this necessity is insufficient for the complete evaluation of the coeffi-
cients - they must be quantified later to complete the model. 

The out-of-plane model displacement of the above plate, u ( scalar ), might here be taken as a
truncation of the Fourier series :-

u { x,y }  =  Σm =1  am sin mπ x/Lx. sin π y/Ly   where the constant am 's are as yet unknown.

This displacement model automatically satisfies the boundary condition around the edges, no
matter what values are assumed by the a-coefficients, or at what harmonic the model is trun-
cated. Truncated power series - again with undetermined constant coefficients - are superior to
Fourier series for certain other components. Obviously, the greater the number of terms, the bet-
ter the model's accuracy ( provided the exact solution is not contained in the series. )

Having laid down the form of the model, the undetermined coefficients are evaluated after-
wards by considering equilibrium. We have employed this technique in the past for stresses in
shafts, in beams, both straight and curved, and in fillet welds - however in these cases the
assumed deformations were the correct ones and so the equilibrium equations also were exact. If
deformations are approximate however, the equilibrium equations which are obtained from
them ( by differentiation ) are also approximate - in fact since differentiation is an error-
magnifying process, derived reactions and stresses are less accurate than the displacements. In
view of the approximate nature of the equilibrium equations, they are usually gotten from the
Principle of Minimum Potential Energy rather than from elementary Statics.

The method may be demonstrated by the simple beam shown overleaf, whose exact solution
may be used as a yardstick. A candidate model for the deflection might be either :
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u = a1 sin πx/L   + a2 sin 2πx/L   + a3 sin 3πx/L   +  . . . . .      or
u = b0  + b1 x  + b2 x2  + b3 x3  + b4 x4  +  . . . . .  

           where the a's and b's are constants, as yet unknown.

A single Fourier term will be chosen here for example; it is evident that a1 is the maximum dis-
placement and that the model meets the geometric boundary conditions automatically :-

u = umax  sin πx/L             ( satisfying :-  u = 0  @  x = 0, L  and   u = umax  @  x = L/2 )

It may be shown that the strain energy of a linear elastic beam may be expressed variously as :-

Πbeam   = 1/2EI ∫L M2 dx     or =   EI/2 ∫L ( u")2 dx the second formulation is relevant here
so the potential of the system becomes

Π = Πbeam +  Πload =   π4 EI u2
max / 4 L3    -  P.umax

ie, a function of the undetermined coefficients, of which there is only one here, umax.

The Principle of Minimum Potential Energy stipulates that, for equilibrium :- 

∂Π/∂umax    =   0           ie, here          ( π4 EI/2L3 ) umax 
    -  P  =  0

This last equation is clearly an equilibrium equation, of the form K.umax = P, where K is the
(approximate) stiffness of the beam as seen by the load, P. The equation predicts that umax = 2PL3

/π4 EI = PL3 /48.7 EI, which compares favourably with the exact expression (48 in the denomina-

tor). Evaluation of the unknown displacement coefficient(s) by the above technique enables
completion of the displacement model, u. The stress resultant follows, from beam theory

M  =  - EI u"  =  EI umax  (π/L)2 sin πx/L  =  (2/π2) PL  sin πx/L   =   0.203 PL  sin πx/L

As pointed out above, this approximation is not as satisfactory as that of the displacements - the
exact variation is linear with a central moment of 0.25 PL. 

Application of the Rayleigh-Ritz method to complex unloaded geometries is
often impractical - the displacement model for a holed plate for example
has to account for the discontinuity at the hole's circumference and
also has to include a large number of terms to adequately describe
the gross non-linearities. This is not impossible, since geometric
transformations are available to map the plate into a rectangle - but
the resulting model is far too cumbersome for routine work. This is where the concept of Finite
Elements comes into its own. The body is divided into a number of contiguous elements which
are laid out to describe its approximate geometry, as in the frontispiece; body integrals become

Ubody  =   ∫over the whole body   =     Σover all elements in the body ( ∫over one element )                 

The displacement model now only needs to be applied to the individual elements - whose
shapes are simple - and the model itself can be relatively crude since parameters which vary
steeply over the body do not vary so markedly over each individual element. Accuracy may
apparently be enhanced by elements which are either more numerous or more complex, but
generally all elements in an assemblage should be based on the same displacement model.

The following example shows some further features of the FEM. It is required to estimate the
value of π by approximating the area of a circle of radius 'r', by triangles. The area is subdivided
rationally into 'M' sectors as shown at (a) below for M=8. Refining the net by doubling the num-
ber of elements is straightforward, unlike the haphazard net of (b) which contains also four- and
five-sided elements - nets should be set up with ease of possible subdivision in mind.

The sectors of (a) are approximated by triangles, either internal as shown at (c), or external as at
(d), and the total area of the triangles evaluated in each case. The graph of these results (e) shows
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some trends which are generally true of FEM analyses :-
- As the network is refined, ie as the number of elements increases, the results become more
accurate - converge to the true value - until swamped by computational inaccuracies when the
equation set becomes large.
- When the net is reducible, and the other techniques which are used are correct, then we may
be fairly certain that results are bounds to the true value. A reducible net is one which is con-
tained completely by the previous coarser net as refinement proceeds. Bounding is important
theoretically, although not routinely used for practical problems since confidence in the FEM
has been established. It can be achieved by using the dual ( again ! ) energy theorems, for exam-
ple; or the dual stiffness and flexibility methods of analysis.

As noted, accuracy may be improved by using elements which are more complex individually,
rather than more numerous. Thus if we had attempted the estimation above based upon circum-
ference rather than on area, then, for a given result with a certain number of straight line ele-
ments, we might have achieved the same accuracy using fewer second order curved line ele-
ments ( if we had them ). If a circular element were available, then of course only one would be
required for the 'correct' solution. Analysis economics in practice thus requires a trade-off
between many simple elements on the one hand, where computation time is devoted mainly to
assembling and solving a large number of simple equations, or relatively few elements having
complex constitutive laws on the other, in which case the constitutive laws of the individual
elements form the bulk of computation costs. The cost of setting up a model for a given proto-
type will increase with the number of elements.

Finite Element Theory - Equilibrium of the Discretised Body

In presenting an outline of the finite element method in this
section, no attempt is made to be rigorous or to explain every
detail; the purpose is solely to give a general broad-brush appre-
ciation of the method.

An elastic body of known geometry is defined in three-dimensional z-space and subjected to the
body force X throughout its volume, V. Prescribed tractions T ( ie loads ) are applied over part of
the surface S of the body's boundary, and a further portion of the boundary is subjected to pre-
scribed displacements ( eg supported ). 

The body is discretised into a system of 'M' contig-
uous elements, interconnected at their nodes. The
displacement of the body is described by the vector
of discrete nodal displacments,   q = [ . . q i  q j . . . ]'.

The continuous displacement field, u { z } = [ u1 u2
u3 ]', over any particular element must be compati-
ble with the corresponding nodal displacements of
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that element - ie with a sub-vector of q. The displacement model for the element in question
can thus be expressed as :-

(3) u = N q          where the 'shape function' N { z }, is a continuous function of location.

We shall examine the implications of this in more detail in the next section, but in order to

fix our ideas for the time being, consider a one-dimensional element, located between

nodes 'i' and 'j' of the assemblage. Displacement is scalar, and we may postulate the second

order model :   u = a0 +a1z +a2z2  involving three undetermined coefficients. But compati-
bility requires that  u = q i at z i  and u = q j  at z j , so that the model must be along the lines :

        u = q i  ( z j  - z )/( z j  - z i )  + q j  ( z  - z i )/( z j   - z i  ) + a ( z  - z i  )/( z j   - z )                       in which 'a' is the sole

coefficient open to arbitrary choice. It is evident that the number of coefficients must not be less than the total

degrees of freedom of 'external' nodal displacements, two in this case, otherwise compatibility cannot possibly be

achieved. External nodes connect an element to the rest of the assemblage; it is quite in order to define 'internal'

nodes which are intrinsic to the element and are not connected to anything else.

If 'a' is chosen to be zero for the element in question, then the linear model is :

           u = q i ( z j  - z )/( z j  - z i )  + q j ( z  - z i  )/( z j   - z i  )  =  ( 1/( z j  - z i ) )  [  ( z j  - z )    ( z  - z1 ) ]  [  q i  q j  ] '

which is of the form (3) with the continuous shape function :  N =  ( 1/( z j  - z i ) )  [  ( z j  - z )    ( z  - z1 ) ] 

Stress and strain will be characterised simply here by principals, thus   = [  σ1 σ2 σ3 ]' and   = [ ε1
ε2 ε3 ]'; a more rigourous treatment incorporates shear in a similar manner. From elementary
elasticity, the continuous geometric entities strain and displacement are inter-related via :

ε1 = ∂u1/ ∂z1 and similarly for other components. Or, in brief :
=  u where   is a matrix of partial differential operators.

From the above it follows that the strain also must depend upon the nodal displacement vector:

=  N q   =  B q where the continuous strain-nodal displacement matrix, B =  N.

Furthermore, since the body is elastic, stresses are linearly related to strains since :

ε1 = (  σ1 - νσ2 - νσ3 )/E      etc, and so, solving for the principal stresses :
σ1 = ( ( 1- ν )ε1 + νε2 + νε3 ) E / ( 1 + ν ) ( 1 -2ν )       etc;  or, briefly :

= C =  C B q in which C is a matrix of material elastic constants.

Once an element's displacement model has been defined, N and B may be computed; then,
when q is evaluated, these constitutive laws above may be recalled to ascertain stress and strain.

The work/energy terms relevant to the system consisting of an element and its associated loads
are as follows :

- The gain in strain energy of the element, ∆Πε, over the element's volume.
Characterising stress and strain in the volume δV of the element by their prin-
cipals, then  ∆Πε =   ∫V 

1/2  ( ε1σ1 + ε2σ2 + ε3σ3 ) dV  =  ∫V 
1/2 '  dV.

- The work done by body forces such as weight, ∆ΠX, over the element's volume. If the dis-
placement and ( constant ) body force at the volume δV of the element are u = [  u1 u2 u3 ]'
and  X =  [  X1 X2 X3 ]'  respectively, then  ∆ΠX = ∫V u' X dV.

- The work done by tractions, ∆ΠT, over the element's surface area. In a manner analogous
to body force work, ∆ΠT  =  ∫S u' T dS.  If the element's surface is not part of the assembly's
surface which is subject to traction, then this work term will vanish.

- The work done by other elements' contacts at the element's nodes, ∆ΠN.

The gain in potential of the element and its loads is therefore :
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∆Π =  ∆Πε   -  ∆ΠX  -  ∆ΠT  -  ∆ΠN

=   ∫V 
1/2 '  dV   -  ∫V u' X dV  -  ∫S u' T dS  -  ∆ΠN

or, substituting from above for u,  and  :

= ∫V 1/2 q' B' C B q dV  - ∫V q' N' X dV - ∫S q' N' T dS  -  ∆ΠN

Summing this over all elements in the assemblage, the potential gain of the body and its asso-
ciated loading is :

Π = ΣM  {  ∫V 1/2 q' B' C B q dV  - ∫V q' N' X dV - ∫S q' N' T dS }

Note that the overall effect of  ΣM ∆ΠN must be zero, due to equal-and-opposite action/reaction
contributions at the inter-element nodes. Since q is a vector of discrete nodal displacements,
common to all elements and not subject to integration, it is  extracted from the integrals to give :

Π  =  q' ΣM  {  ( ∫V 1/2 B' C B dV ) q  - ∫V N' X dV - ∫S N' T dS  }

Applying the Principle of Minimum Potential Energy, equilibrium of the body requires that
∂Π/∂q  = 0,  or :

{  ΣM  ( ∫V B' C B dV )  }  q     =    ΣM  (  ∫V N' X dV + ∫S N' T dS )      ie

(4a) ( ΣM k ) q = ΣM p 
where k = ∫V B' C B dV is the stiffness of an element, and 

p = ∫V N' X dV+∫S N' T dS is the external force on an element.

Simplifying this still further, the equilibrium equations for the discretised body are :

(4b)                      Kq = P       
where K = ΣM k is the stiffness of the discretised body system, and

P = ΣM p is the external force vector acting on it.

The equilibrium equations (4b) are analagous to the network equations (2), and may be assem-
bled identically since (4a) demonstrates that elemental stiffness involves the transpose triple
product B' C B. The equations only have to be reduced by the prescribed displacements before
being solved for q in the same way as (2) were solved previously for x. Having found q, the
solution is completed by calculating stresses and strains from the constitutive laws above.

Finite Element Theory - Element Stiffness

We have seen that knowledge of the strain-displacement matrix, B, is a
fundamental necessity for evaluating element stiffnesses from (4a). We
shall now illustrate typical approaches to finding B, and particularise on a
simple element - the constant strain triangle used in the package, 'FEM1'.

The first step is the choice of a suitable shape function, N - that is, an equation which approxi-
mates the displacement, u, at any point in the element under consideration, in terms of :

- the co-ordinates of the point in question, and
- the displacement of the element's nodes, q, eg in the case of the 3-node, 2-dof element

shown, either   q   =  [ u1 v1 u2 v2 u3 v3 ]'   or   q   =  [ u1 u2 u3 v1 v2 v3 ]'

There are two distinct methods of establishing this function - using either 'generalised coordi-
nates' or 'natural coordinates'.

Generalised Co-ordinates
Consider a one-dimensional element of length 'b', with two
external nodes, '1' & '2', and a central internal node '3'. There is
one degree of freedom in (transverse) displacement, u. We take the displacement model in
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power series form with constant coefficients, αi  :-

u = α1   + α2 z   + α3 z2          or, in brief 
(a) u = '      

where = [  1   z   z2  ]' is a vector of powers of the coordinate(s) of the point, and
= [  α1 α2 α3 ]' is a vector of constant coefficients, the 'generalised coordinates'.

In this way, the displacement 'u', which is a scalar here, may be approximated over the region of
the element. The generalised coordinates cannot be chosen at random however, since compati-
bility necessitates that (a) must apply also to the nodes, whose displacements are given as :-

u1 = α1 + α2 z1 + α3 z1
2 u1 1   z1   z1

2

u2 = α1 + α2 z2 + α3 z2
2   or  q   = u2    =   where     = 1   z2   z2

2

u3 = α1 + α2 z3 + α3 z3
2 u3 1   z3   z3

2

It follows that, for compatibility, the generalised coordinates must satisfy :-

= -1 q      so, from (a)      u =  ' =  ' -1 q   =  N q        that is      N =  ' -1

Inserting some values, to show the form of these variables, 1    4    16
suppose an element to extend from z1 = 4 to z2 = 6. Therefore       = 1    6    36

1    5    25

From the above :-   15   10 -24

-11/2 -9/2   10

N =  ' -1  =   [  1   z   z2  ]  1/2  1/2   -1 =  1/2 [ (30-11z+z2)  (20-9z+z2)  (-48+20z-2z 2) ]

N having thus been found for the element, the continuous variations of displacement, for two
possible sets of nodal displacements are as follows :-

q = [  2  4  0  ]' q = [  2  -1  3  ]'
u = N q  =  70 - 29z +3z2    ( 4 ≤ z ≤ 6 ) u = N q  =  1/2 ( - 104 + 47z - 5z2 )

The form of N should be noted particularly; the reason for its name is apparent - it shapes a
'curve' of the chosen order ( 2nd here ) between the nodal displacements, whatever these might
happen to be. Note that the number of generalised displacements ( three here ) must tally with
the total nodal degrees of freedom, so that their solution is possible. Thus, in two dimensions
(x,y) with two degrees of freedom ( u = [ u  v ]' ) and say complete second order, we might have :

u = α1   + α2 x   + α3 y   + α4 x2   + α5 x y   + α6 y2

v = α7   + α8 x   + α9 y   + α10x2  + α11x y  + α12y2           eg. six nodes are necessary.

If the plane element for which this model is chosen has less than six external nodes, then the
internal nodes may be condensed out using the principle of minimum potential energy ( see
below for the meaning of condensation ). Alternatively, terms may be dropped whilst preserv-
ing symmetry of the co-ordinate powers, to tally with the number of external nodes, thus :-

5 nodes : u = α1   + α2 x   + α3 y   + α4 x2   + α5 y2 or, if there are not 5 nodes,
4 nodes : u = α1   + α2 x   + α3 y   + α4 x y and similarly for 'v'.
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Natural Coordinates
In the one-dimensional element above, the location of a point was defined by global coordinates
(z). Natural coordinates on the other hand, specify a point within an element by a set of dimen-
sionless numbers which assume unit value, for example, when the point coincides with an
external node. Thus the point is located with respect to the element's nodes, independently of

how the element is sized or positioned in the global system. Natural
co-ordinates are intrinsic to the element. Thus, in the example above,
suppose a natural co-ordinate 'L' is chosen so that L= –1 at node '1' and
L= +1 at node '2' as shown, so the linear mapping of 'x' into 'L' is : 

 L  =  ( 2z - ( z1 + z2 )) / b      or conversely :    z  =   ( b L + ( z1 + z2 )) / 2

It follows that L= 0 at the central internal node '3'. Using this mapping, differentiation and inte-
gration may be expressed as :-

∂/∂z  =  ( 2/b ) ∂/∂L        and, for integer index 'p', the integral over the length 'b'  

∫b  Lp dl =    ∫z1
z2  Lp  dz    =    b/2 ∫-1

+1  Lp  dL    =     b/2 Lp+1/(p+1)  -1
+1  

=    0  if p is odd, or   =    b/(p+1)   if p is even - a very simple result.

We now set up, corresponding to each node, an 'interpolation function, f', which assumes a
value of unity at the node, and zero at other nodes. Thus, by inspection :-

'1' : f1 = 1/2 L ( L - 1 ) ie f1 = 1  @ '1' when L = -1 and f1 = 0  @ '2' & '3'
'2' : f2 = 1/2 L ( L + 1 ) ie f2 = 1  @ '2' when L = +1 and f2 = 0  @ '3' & '1'
'3' : f3 = ( 1 - L2 ) ie f3 = 1  @ '3' when L =  0 and f3 = 0  @ '1' & '2'

These three interpolation functions are plotted below :

We thus have, in general for this element :

z = [  f1  f2    f3  ]  [  z1  z2   z3  ]'    =   f1z1 + f2z2 + f3 z3
= [ 1/2 L( L-1)  1/2 L( L+1)  ( 1 -L2) ]  [  z1  z2   z3  ]'     

We can then use the same shape factor and say immediately that :

u = [ 1/2 L( L-1)  1/2 L( L+1)  ( 1 -L2) ]  [  u1   u2   u3 ]' eg   u = u1 when L = -1 &c

This is just the equation :   u   =  N q   again, however N is now
expressed in terms of the natural coordinate, L, rather than as
previously through the global Cartesian z. By way of illustra-
tion, suppose that the vector of nodal displacements here hap-
pens to be  q = [  2  -1  3 ]'. Inserting this into the above yields  u
= ( 6 -3L -5L2 )/2, which plots out exactly as before :-

Elements which employ the identical shape function to define the location and displacement of
the general point are termed 'isoparametric' elements.

When dealing with triangular elements, the most straightforward natural coordinates with
which to define the general point 'P', are the area ratios 'Li' sketched below; only two of these
are independent :-

L = [  L1   L2   L3  ]'       where   Li  = Ai /A   ( 0 ≤ Li ≤ 1 ) ;    A = Σ Ai  ;    i = 1 ,2, 3
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The mapping of the global and natural coordinates may be written :-

  1     1     1     1   L1
  x =    x1    x2    x3   L2      eg L1  + L 2  + L3  =   1        and
  y    y1    y2    y3   L3 x   =  x1L1 + x2L2 + x3L3 or, conversely :-

 L1    2A23    b1    a1   1 where   ai  = - xj  + xk  ;    bi  =  yj  - yk
 L2 =   ( 1 / 2A )    2A31    b2    a2   x and       2 A i j =  xi yj - xj yi 
 L3    2A12    b3    a3   y with cyclic permutation.

Differentiation and integration, analagous to the one-dimensional equations, are 

∂/∂x  =  Σi=1
3  ( ∂Li/∂x ) ∂/∂Li  =  ( 1/2A) Σi=1

3 bi  ∂/∂Li  ;    ∂/∂y = ( 1/2A) Σi=1
3 ai  ∂/∂Li 

∫A  L1
p   L2

q   L3
r  dA  =   2A p! q! r! / ( p +q +r +2 )!        again, a simple result.

The Strain-Displacement Matrix for the Constant Strain Triangle

Using triangular natural coordinates, the B matrix for the constant strain triangle is as follows.

In two dimensions, the kinematic relationship between strain  [  εx εy  γxy ]' at a point [  x  y ]', and
the displacement  [  u v ]' at the point is :-

 εx    ∂/∂x     0   [  u  v  ]'   
 εy =       0      ∂/∂y
 γxy    ∂/∂y   ∂/∂x that is the equation :       =   u    above, in complete detail.

For constant strain, a linear displacement model is appropriate - ie a point's displacement com-
ponents are directly proportional to its coordinates. Using the isoparametric concept in conjunc-
tion with the triangular natural coordinates above, we have immediately that :-

  u =   L1   L2   L3  0     0     0  [  u1   u2   u3   v1   v2   v3  ]'      ie     u  = N q 
  v   0     0     0    L1   L2   L3

From the above :-

   εx =   ∂u/∂x  =   ∂/∂x (  L1 u1 + L 2 u2 + L 3 u3  )        and so, using the chain rule
=   ( b1 u1 + b2 u2 + b3 u3 ) / 2A

Carrying out similar steps for the other strain components leads to :-

 εx  b1   b2   b3    0     0    0 
(b)  εy =  1/2A   0     0     0     a1   a2   a3 q          that is,     =  B q

γxy   a1   a2    a3    b1   b2   b3

The strain-nodal displacement matrix, B, can thus be evaluated in terms of the element's nodal
coordinates which are embodied in the 'ai' and 'bi' terms. B, and the strains are constant over
this element ( of thickness 'h' ) so integration for the element's stiffness is trivial :  

k = ∫ B' C B dV  = hA B' C B.
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Finite Elements - Implementation

We have seen that, overall, application of the FEM requires the following steps :
- Discretise the continuum (define the topology) into a network of membrane elements, or axi-

symmetric thick shell elements - or whatever element is appropriate to the body's shape
- Select the displacement model (the order of the virtual displacement-coordinate equation)

and hence the complexity of the elements' constitutive laws
- Derive the element stiffness matrices, as exemplified above
- Assemble the equations, using direct assembly for example, and substitute values for the spec-

ified displacements and loads
- Solve the equations for the vector of nodal displacements, q
- Compute element stresses and strains from the constitutive laws.

We shall refer to the elementary demonstration package 'FEM1' which is typical in that the user
is required to carry out the first step only. The package is restricted to two-dimensional linear
elastic problems; its basic elements are quadrilateral and triangular laminae with a node at each
corner. These are subdivided by the program into constant strain triangles whose B-matrix has
been derived in (b) above.

The user communicates with the package via a data file. The appended 'FEM1 User's Guide'
should be consulted for full details of file preparation, but essentially the prototype is first subdi-
vided into quadrilaterals ( and/or triangles ) by the user, who then enters the coordinates of the
resulting nodes into the data file, together with the node indices which define each element.
Element thickness, material properties and prescribed loads and displacements are also entered
into the file.

The program reads the data file element by element, reading each element's geometry, then
evaluating its stiffness matrix from this data, and finally assembling the submatrices directly
into the system equations  before moving on to the next element. Which is all very similar to
the linear 1-net procedure above.

Before the discretisation process itself is examined, it is necessary to consider a couple of topics
which are relevant to it.

Condensation and Bandwidth

Condensation is an elimination process applied during the solution of a set of simultaneous equa-
tions, in which a selected variable is eliminated between one particular equation and the others,
the coefficients of that equation being stored temporarily out of core, on disc for example. This is
exemplified for x4 :-

The reduced set of equations is then further processed, and eventually solved in core for the
variables not so selected. The equation coefficients may later be retrieved and the selected vari-
able evaluated.

A number of variables may be eliminated in this way, thus increasing the size of system which
can be handled in a restricted core; for example the daughter sub-system of (A) below is con-



Finite Elements      17

nected to the larger mother only via the five nodes 77-102-265-319-341. The daughter's matrices can
be assembled initially as separate entities, then all the displacement variables except  q77, q102 etc
condensed out. These five remaining equations are then assembled as part of the mother's
matrices, which are then solved.

This avoids having to assemble in core the much larger mother-plus-daughter system. The
mother might represent the skin of a ship's hull, the various bulkheads being treated as off-
spring, and so on.

Another application for condensation concerns the basic elements used in FEM1 - the quadrilat-
eral consists of four constant strain triangles. The 2*2 stiffness sub-matrices for a single constant
strain triangle are contained algebraically in the source code and can be evaluated once the mate-
rial and geometric data are supplied - the B matrix from equation (b) above, and the C matrix
corresponding to the element's material. 

The triangles' stiffness sub-matrices are assembled after evaluation by the following process, typ-
ified by the element defined globally by 31-25-34-66 at (B) above. The program assigns local node
indices 1-2-3-4, computes the centroid and defines it as the central node 5 - which is isolated from
the rest of the net - thus splitting the element into four triangles (C). The stiffness sub-matrices
of each triangle are computed in turn and assembled into the quadrilateral's 5*5 local matrix, as
shown at (D) for triangle II. Once this local matrix is complete, the displacement of the central
node is condensed out (E), and the resulting 4*4 matrix assembled into the system matrix; eg the
shaded sub-matrix is added to the ( 25, 34) locations of the system matrix. All this is transparent to
the user and is aimed at increasing the network's verisimilitude ( degrees of freedom ), with
simple elements and without excessive core demand. The triangular element is similar, being
subdivided into three constant strain triangles.

The sub-matrices of the element appear in the system stiffness matrix as shown at (F) below, in
which the shaded area has been set aside in core for the problem. Due to symmetry, the upper
half only needs be stored, as indicated at (G) in which the dominant diagonal sub-matrices are
relocated in the first column of the skewed band.

The number of sub-matrix columns required by any element is ( D +1 ) where D is the difference
between the maximum and minimum node indices for the element.

As the size of the sub-matrices equals the number of dimensions, two here, the system as a
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whole requires a semi-bandwidth, or number of columns of scalars :

B = ( Dmax +1 ) *  number of degrees of freedom  ;        

where Dmax is the maximum difference of elements' nodal indices encountered in the net - and
obviously depends upon how the nodes are numbered by the user, as indicated by the nets (H)
and (I).

It is necessary to construct and index meshes so that the number of nodes and the semi-
bandwidth are not excessive, for although the user of FEM1 can pre-declare the maximum num-
ber of rows and columns to cover the demands of any reasonably sized problem, large arrays will
lead to inefficient and inaccurate solution. This construction of the mesh requires ingenuity, for
at the same time it is usually desirable to incorporate as many elements as possible to obtain an
accurate representation of stress variations in way of high stress gradients. 

The frontal method and diakoptics are solution schemes which are not subject to such restrictions,
but are rather too complex for our present purposes.

Discretisation 

Some further points which should be borne in mind whilst preparing a net will now be exem-
plified via the prototype cantilever illustrated at (J) below. This consists of an inclined plate of
known material and geometry, and two different thicknesses. A concentrated force is applied at
one corner, one point on the edge is subjected to a specified displacement, and there are two lin-
early distributed loads which the program replaces by equivalent concentrated nodal forces.

Nodes must be placed (K) :-
at  b, d, f, h - the discontinuities of the boundary
on line  c-g - line of discontinuity of material property ( thickness )
on line f-h - line of discontinuity between body and supports
at  a, b - points of application of specified loads or displacements
at  c, d, e - end points of distributed loads

Based upon this reasoning the mesh of (L) is drawn up and the nodes indexed. A Cartesian sys-
tem is set up for the definition of the node coordinates and the senses of the force/displacement
components. One support node (#1) is fixed to prevent rigid body motion; other support nodes
are arranged on the assumption that, in this particular example, the physical support is stiff only
in the vertical direction. The elements are annotated in (M) - there are five quadrilaterals and a
single triangle. Element 3 for example, is defined by nodes 8-4-3-7. 

This completes the discretisation; there are 6 elements, 11 nodes and the semibandwidth, B, is
12. A data file is then prepared to the format explained in the 'User's Guide', for reading by
FEM1. The stresses output by the program will be rather meaningless here because the demon-
stration mesh is far too coarse.
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As a general guide, a mesh should be based upon orthogonality, with elements as well-
conditioned as possible to avoid mathematical ill-conditioning and a consequent tendency
towards inaccuracy - thus ideally quadrilaterals should be square and triangles equiangular. The
mesh should be refined in way of expected stress gradients and concentrations. Some techniques
for local refinement are shown here to illustrate the use of triangles to minimise ill-

conditioning. The degree of refinement, and hence the number of nodes and bandwidth, will of
course depend upon the problem - the stress gradients which occur, the accuracy sought and the
capacity of the implementation. Some of the consequences of refining are dealt with in the
Appendix. Full advantage should be taken of any symmetry implicit in the prototype.

Consider half a beam in pure bending, supported at its left end as shown opposite. Instead of this
support, another linear traction, equal and opposite to the load on the right, might be applied to
the left end. Equilibrium is thus theoreticaly assured - BUT this may give rise to numerical prob-
lems with FEM1, because round-off errors lead to loss of equilibrium, and although net forces
might be small, rigid body motion results. So loads and reactions must not be over-specified
when defining the model.
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