|
|
| CANDIDATE SOLUTIONS
|
|
|
| Candidate (dimensions mm, forces N) | A | B | C | D | E
|
| | trial wire diameter, d | 4.5 | 5 | 5.6 | 6.3 | 7.1
|
| Compute corresponding spring index to satisfy chosen fatigue safety factor of 1.1, from ( a)
|
| | Fut from Table 3 | 22000 | 26600 | 32800 | 40600 | 50600
|
| | initial trial C | 7.5 | 7.5 | 7.5 | 7.5 | 7.5
|
| | updating C from (a) : | 4.69 | 5.67 | 6.99 | 8.65 | 10.8
|
| | C = Fut /1.1 ( 1430 Ks + 2310 Kh ) | 4.33 | 5.43 | 6.92 | 8.81 | 11.2
|
| | where K's based on last C-update | 4.25 | 5.39 | 6.91 | 8.83 | 11.3
|
| | final converged maximum C | 4.22 | 5.38 | 6.91 | 8.83 | 11.3
|
| | D = Cd | 19.0 | 26.9 | 38.7 | 55.6 | 80.0
|
| | Di = D - d = ( C - 1)d > 15 ? | too small | 21.9 | 33.1 | 49.3 | 73.1
|
| | Do = D + d = ( C + 1)d < 0.96 * 65 = 62.4 ? | - | 31.9 | 44.3 | 61.9 | too big
|
| Calculate corresponding number of turns to give required stiffness of 12 N/mm, from ( 2)
|
| | na = Gd/8kC3 = 79E3*d/8*12*C3 | - | 26.4 | 14.0 | 7.5 | -
|
| Finalise solid and free lengths, and verify close-coiled assumption
|
| | total turns nt = na + 2 (Table 1) | - | 28.4 | 16.0 | 9.5 | -
|
| | solid length Ls = ntd (Table 1) | - | 142 | 90 | 60 | -
|
| | free length Lo = Ls + δs | - | 198 | 146 | 116 | -
|
| | pitch p = ( Lo - 2d )/na (Table 1) | - | 7.1 | 9.6 | 13.8 | -
|
| | helix angle α = arctan( p/π D) | - | 4.8o | 4.5o | 4.5o | -
|
| Check buckling at maximum deflexion of 50 mm, assuming guided ends ( λ = 0.5 )
|
| | λLo / c2 D (absolutely stable if ≤ 1 ) | - | 1.40 | 0.72 | 0.40 | -
|
| | δcrit from ( 3a) (conditionally stable if > 50 mm) | - | 48 | - | - | -
|
| | conclusion re stability | - | unstable | OK | OK | -
|
| Check for probability of resonance, from ( 6)
|
| | fund'l natural frequency, fn = 358E3/naCD Hz | - | - | 96 | 97 | -
|
| | ratio natural/running frequencies = fn*60/400 | - | - | 14.4 | 14.6 | -
|
| Check for yielding when solidified
|
| | tensile ultimate, Sut (Table 2) MPa | - | - | 1330 | 1305 | -
|
| | shear yield, Sys = 0.48 Sut (Table 2) MPa | - | - | 640 | 625 | -
|
| | solid stress, τs = Ks 8 Fs C / π d2 MPa | - | - | 403 | 404 | -
|
|
|