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Introduction

I wrote this text for a one semester course at the sophomore-junior level. Our ex-
perience with students taking our junior physics courses is that even if they’ve had the
mathematical prerequisites, they usually need more experience using the mathematics to
handle it efficiently and to possess usable intuition about the processes involved. If you’ve
seen infinite series in a calculus course, you may have no idea that they’re good for anything.
If you’ve taken a differential equations course, which of the scores of techniques that you’ve
seen are really used a lot? The world is (at least) three dimensional so you clearly need to
understand multiple integrals, but will everything be rectangular?

How do you learn intuition?

When you’ve finished a problem and your answer agrees with the back of the book or
with your friends or even a teacher, you’re not done. The way do get an intuitive under-
standing of the mathematics and of the physics is to analyze your solution thoroughly. Does
it make sense? There are almost always several parameters that enter the problem, so what
happens to your solution when you push these parameters to their limits? In a mechanics
problem, what if one mass is much larger than another? Does your solution do the right
thing? In electromagnetism, if you make a couple of parameters equal to each other does it
reduce everything to a simple, special case? When you’re doing a surface integral should the
answer be positive or negative and does your answer agree?

When you address these questions to every problem you ever solve, you do several
things. First, you’ll find your own mistakes before someone else does. Second, you acquire
an intuition about how the equations ought to behave and how the world that they describe
ought to behave. Third, It makes all your later efforts easier because you will then have
some clue about why the equations work the way they do. It reifies algebra.

Does it take extra time? Of course. It will however be some of the most valuable extra
time you can spend.

Is it only the students in my classes, or is it a widespread phenomenon that no one is
willing to sketch a graph? (“Pulling teeth” is the cliché that comes to mind.) Maybe you’ve
never been taught that there are a few basic methods that work, so look at section 1.8. And
keep referring to it. This is one of those basic tools that is far more important than you’ve
ever been told. It is astounding how many problems become simpler after you’ve sketched a
graph. Also, until you’ve sketched some graphs of functions you really don’t know how they
behave.

When I taught this course I didn’t do everything that I’m presenting here. The two
chapters, Numerical Analysis and Tensors, were not in my one semester course, and I didn’t
cover all of the topics along the way. Several more chapters were added after the class was
over, so this is now far beyond a one semester text. There is enough here to select from if
this is a course text, but if you are reading it on your own then you can move through it as
you please, though you will find that the first five chapters are used more in the later parts
than are chapters six and seven. Chapters 8, 9, and 13 form a sort of package.

The pdf file that I’ve created is hyperlinked, so that you can click on an equation or
section reference to go to that point in the text. To return, there’s a Previous View button at
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the top or bottom of the reader or a keyboard shortcut to do the same thing. [Command←
on Mac, Alt← on Windows, Control← on Linux-GNU] The contents and index pages are
hyperlinked, and the contents also appear in the bookmark window.

If you’re using Acrobat Reader 5.0, you should enable the preference to smooth line
art. Otherwise many of the drawings will appear jagged. If you use 6.0 nothing seems to
help. The 7.0 Reader has a good appearance, but the keyboard shortcuts just mentioned
don’t work on all operating systems. (On any?)

I chose this font for the display version of the text because it appears better on the
screen than does the more common Times font. The choice of available mathematics fonts
is more limited.

I have also provided a version of this text formatted for double-sided bound printing
of the sort you can get from commercial copiers.

I’d like to thank the students who found some, but probably not all, of the mistakes
in the text. Also Howard Gordon, who used it in his course and provided me with many
suggestions for improvements.
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Basic Stuff

1.1 Trigonometry
The common trigonometric functions are familiar to you, but do you know some of the tricks
to remember (or to derive quickly) the common identities among them? Given the sine of
an angle, what is its tangent? Given its tangent, what is its cosine? All of these simple but
occasionally useful relations can be derived in about two seconds if you understand the idea
behind one picture. Suppose for example that you know the tangent of θ, what is sin θ?
Draw a right triangle and designate the tangent of θ as x, so you can draw a triangle with
tan θ = x/1.

1

θ
x

The Pythagorean theorem says that the third side is
√

1 + x2.
You now read the sine from the triangle as x/

√
1 + x2, so

sin θ =
tan θ√

1 + tan2 θ

Any other such relation is done the same way. You know the cosine, so what’s the cotangent?
Draw a different triangle where the cosine is x/1.

Radians
When you take the sine or cosine of an angle, what units do you use? Degrees? Radians?
Cycles? And who invented radians? Why is this the unit you see so often in calculus texts?
That there are 360◦ in a circle is something that you can blame on the Sumerians, but where
did this other unit come from?

R 2R

s
θ

2θ

It results from one figure and the relation between the radius of the circle, the angle
drawn, and the length of the arc shown. If you remember the equation s = Rθ, does that
mean that for a full circle θ = 360◦ so s = 360R? No. For some reason this equation is valid
only in radians. The reasoning comes down to a couple of observations. You can see from
the drawing that s is proportional to θ — double θ and you double s. The same observation
holds about the relation between s and R, a direct proportionality. Put these together in a
single equation and you can conclude that

s = CRθ

where C is some constant of proportionality. Now what is C?
You know that the whole circumference of the circle is 2πR, so if θ = 360◦, then

2πR = CR 360◦, and C =
π

180
degree−1

1



2 1—Basic Stuff

It has to have these units so that the left side, s, comes out as a length when the degree
units cancel. This is an awkward equation to work with, and it becomes very awkward when
you try to do calculus.

d

dθ
sin θ =

π

180
cos θ

This is the reason that the radian was invented. The radian is the unit designed so that the
proportionality constant is one.

C = 1 radian−1 then s =
(
1 radian−1

)
Rθ

In practice, no one ever writes it this way. It’s the custom simply to omit the C and to say
that s = Rθ with θ restricted to radians — it saves a lot of writing. How big is a radian?
A full circle has circumference 2πR, and this is Rθ. It says that the angle for a full circle
has 2π radians. One radian is then 360/2π degrees, a bit under 60◦. Why do you always
use radians in calculus? Only in this unit do you get simple relations for derivatives and
integrals of the trigonometric functions.

Hyperbolic Functions
The circular trigonometric functions, the sines, cosines, tangents, and their reciprocals are
familiar, but their hyperbolic counterparts are probably less so. They are related to the
exponential function as

coshx =
ex + e−x

2
, sinh x =

ex − e−x

2
, tanh x =

sinh x

coshx
=
ex − e−x

ex + e−x
(1)

The other three functions are

sech x =
1

coshx
, csch x =

1

sinh x
, cothx =

1

tanh x

Drawing these is left to problem 4, with a stopover in section 1.8 of this chapter.
Just as with the circular functions there are a bunch of identities relating these func-

tions. For the analog of cos2 θ + sin2 θ = 1 you have

cosh2 θ − sinh2 θ = 1 (2)

For a proof, simply substitute the definitions of cosh and sinh in terms of exponentials and
watch the terms cancel. Similarly the other common trig identities have their counterpart
here.

1 + tan2 θ = sec2 θ has the analog 1− tanh2 θ = sech2 θ (3)

The reason for this close parallel lies in the complex plane, because cos(ix) = coshx and
sin(ix) = i sinh x. See chapter three.

The inverse hyperbolic functions are easier to evaluate than are the corresponding
circular functions. I’ll solve for the inverse hyperbolic sine as an example

y = sinhx means x = sinh−1 y, y =
ex − e−x

2



1—Basic Stuff 3

Multiply by 2ex to get the quadratic equation

2exy = e2x − 1 or
(
ex
)2 − 2y

(
ex
)
− 1 = 0

The solutions to this are ex = y±
√
y2 + 1, and because

√
y2 + 1 is always greater than |y|,

you must in this case take the positive sign to get a positive ex. Take the logarithm of ex

and

sinh

sinh−1

x = sinh−1 y = ln
(
y +

√
y2 + 1

)
(−∞ < y < +∞)

As x goes through the values −∞ to +∞, the values that sinhx takes on go over the range
−∞ to +∞. This implies that the domain of sinh−1 y is −∞ < y < +∞. The graph of an
inverse function is the mirror image of the original function in the 45◦ line y = x, so if you
have sketched the graphs of the original functions, the corresponding inverse functions are
just the reflections in this diagonal line.

The other inverse functions are found similarly; see problem 3

sinh−1 y = ln
(
y +

√
y2 + 1

)
cosh−1 y = ln

(
y ±

√
y2 − 1

)
, y ≥ 1

tanh−1 y =
1

2
ln

1 + y

1− y
, |y| < 1 (4)

coth−1 y =
1

2
ln
y + 1

y − 1
, |y| > 1

The cosh−1 function is commonly written with only the + sign before the square root. What
does the other sign do? Draw a graph and find out. Also, what happens if you add the two
versions of the cosh−1?

The calculus of these functions parallels that of the circular functions.

d

dx
sinh x =

d

dx

ex − e−x

2
=
ex + e−x

2
= cosh x

Similarly the derivative of coshx is sinhx. Note the plus sign here, not minus.
Where do hyperbolic functions occur? If you have a mass in equilibrium, the total

force on it is zero. If it’s in stable equilibrium then if you push it a little to one side and
release it, the force will push it back to the center. If it is unstable then when it’s a bit



4 1—Basic Stuff

to one side it will be pushed farther away from the equilibrium point. In the first case,
it will oscillate about the equilibrium position and the function of time will be a circular
trigonometric function — the common sines or cosines of time, A cosωt. If the point is
unstable, the motion will will be described by hyperbolic functions of time, sinhωt instead
of sinωt. An ordinary ruler held at one end will swing back and forth, but if you try to
balance it at the other end it will fall over. That’s the difference between cos and cosh. For
a deeper understanding of the relation between the circular and the hyperbolic functions,
see section 3.3

1.2 Parametric Differentiation
The integration techniques that appear in introductory calculus courses include a variety of
methods of varying usefulness. There’s one however that is for some reason not commonly
done in calculus courses: parametric differentiation. It’s best introduced by an example.∫ ∞

0
xne−x dx

You could integrate by parts n times and that will work. For example, n = 2:

= −x2e−x

∣∣∣∣∞
0

+

∫ ∞

0
2xe−x dx = 0− 2xe−x

∣∣∣∣∞
0

+

∫ ∞

0
2e−x dx = 0− 2e−x

∣∣∣∣∞
0

= 2

Instead of this method, do something completely different. Consider the integral∫ ∞

0
e−αx dx (5)

It has the parameter α in it. The reason for this will be clear in a few lines. It is easy to
evaluate, and is ∫ ∞

0
e−αx dx =

1

−α
e−αx

∣∣∣∣∞
0

=
1

α

Now differentiate this integral with respect to α,

d

dα

∫ ∞

0
e−αx dx =

d

dα

1

α
or −

∫ ∞

0
xe−αx dx =

−1

α2

And differentiate again and again:

+

∫ ∞

0
x2e−αx dx =

+2

α3
, −

∫ ∞

0
x3e−αx dx =

−2 . 3

α4

The nth derivative is

±
∫ ∞

0
xne−αx dx =

±n!

αn+1
(6)

Set α = 1 and you see that the original integral is n!. This result is compatible with the
standard definition for 0!. From the equation n! = n .(n− 1)!, you take the case n = 1. This
requires 0! = 1 in order to make any sense. This integral gives the same answer for n = 0.
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The idea of this method is to change the original problem into another by introducing
a parameter. Then differentiate with respect to that parameter in order to recover the
problem that you really want to solve. With a little practice you’ll find this easier than
partial integration.

Notice that I did this using definite integrals. If you try to use it for an integral without
limits you can sometimes get into trouble. See for example problem 42.

1.3 Gaussian Integrals
Gaussian integrals are an important class of integrals that show up in kinetic theory, statis-
tical mechanics, quantum mechanics, and any other place with a remotely statistical aspect.∫

dxxne−αx2

The simplest and most common case is the definite integral from −∞ to +∞ or maybe from
0 to ∞.

If n is a positive odd integer, these are elementary,

n = 1

∫ ∞

−∞
dxxne−αx2

= 0 (n odd) (7)

To see why this is true, sketch graphs of the integrand for a few odd n.
For the integral over positive x and still for odd n, do the substitution t = αx2.∫ ∞

0
dxxne−αx2

=
1

2α(n+1)/2

∫ ∞

0
dt t(n−1)/2e−t =

1

2α(n+1)/2

(
(n− 1)/2

)
! (8)

Because n is odd, (n− 1)/2 is an integer and its factorial makes sense.
If n is even then doing this integral requires a special preliminary trick. Evaluate the

special case n = 0 and α = 1. Denote the integral by I, then

I =

∫ ∞

−∞
dx e−x2

, and I2 =

(∫ ∞

−∞
dx e−x2

)(∫ ∞

−∞
dy e−y2

)
In squaring the integral you must use a different label for the integration variable in the
second factor or it will get confused with the variable in the first factor. Rearrange this and
you have a conventional double integral.

I2 =

∫ ∞

−∞
dx

∫ ∞

−∞
dy e−(x2+y2)

This is something that you can recognize as an integral over the entire x-y plane. Now the
trick is to switch to polar coordinates*. The element of area dx dy now becomes r dr dθ, and
the respective limits on these coordinates are 0 to ∞ and 0 to 2π. The exponent is just
r2 = x2 + y2.

I2 =

∫ ∞

0
r dr

∫ 2π

0
dθ e−r2

* See section 1.7 in this chapter
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The θ integral simply gives 2π. For the r integral substitute r2 = z and the result is 1/2.
[Or use Eq. (8).] The two integrals together give you π.

I2 = π, so

∫ ∞

−∞
dx e−x2

=
√
π (9)

Now do the rest of these integrals by parametric differentiation, introducing a param-

eter with which to carry out the derivatives. Change e−x2
to e−αx2

, then in the resulting
integral change variables to reduce it to Eq. (9). You get∫ ∞

−∞
dx e−αx2

=

√
π

α
, so

∫ ∞

−∞
dxx2e−αx2

= − d

dα

√
π

α
=

1

2

( √
π

α3/2

)
(10)

You can now get the results for all the higher even powers of x by further differentiation
with respect to α.

1.4 erf and Gamma
What about the same integral, but with other limits? The odd-n case is easy to do in just
the same way as when the limits are zero and infinity; just do the same substitution that
led to Eq. (8). The even-n case is different because it can’t be done in terms of elementary
functions. It is used to define an entirely new function.

erf(x) =
2√
π

∫ x

0
dt e−t2 (11)

x 0. 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
erf 0. 0.276 0.520 0.711 0.843 0.923 0.967 0.987 0.995

This is called the error function. It’s well studied and tabulated and even shows up as a
button on some* pocket calculators, right along with the sine and cosine. (Is erf odd or even
or neither?) (What is erf(±∞)?)

A related integral that is worthy of its own name is the Gamma function.

Γ(x) =

∫ ∞

0
dt tx−1e−t (12)

The special case in which x is a positive integer is the one that I did as an example of
parametric differentiation to get Eq. (6). It is

Γ(n) = (n− 1)!

The factorial isn’t defined if its argument isn’t an integer, but the Gamma function is per-
fectly well defined for any argument as long as the integral converges. One special case is
notable: x = 1/2.

Γ(1/2) =

∫ ∞

0
dt t−1/2e−t =

∫ ∞

0
2u duu−1e−u2

= 2

∫ ∞

0
du e−u2

=
√
π (13)

* See for example www.rpncalculator.net

http://www.rpncalculator.net
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I used t = u2 and then the result for the Gaussian integral, Eq. (9). You can use parametric
differentiation to derive a simple and useful identity. (See problem 14).

xΓ(x) = Γ(x+ 1) (14)

From this you can get the value of Γ(11/2), Γ(21/2), etc. In fact, if you know the value of
the function in the interval between one and two, you can use this relationship to get it
anywhere else on the axis. You already know that Γ(1) = 1 = Γ(2). (You do? How?) As x
approaches zero, use the relation Γ(x) = Γ(x+ 1)/x and because the numerator for small x
is approximately 1, you immediately have that

Γ(x) ≈ 1/x for small x (15)

The integral definition, Eq. (12), for the Gamma function is defined only for the case
that x > 0. [The behavior of the integrand near t = 0 is approximately tx−1. Integrate this
from zero to something and see how it depends on x.] Even though the original definition
of the Gamma function fails for negative x, you can extend the definition by using Eq. (14)
to define Γ for negative arguments. What is Γ(−1/2) for example?

−1

2
Γ(−1/2) = Γ(−(1/2) + 1) = Γ(1/2) =

√
π, so Γ(−1/2) = −2

√
π (16)

The same procedure works for other negative x, though it can take several integer steps to
get to a positive value of x for which you can use the integral definition Eq. (12).

The reason for introducing these two functions now is not that they are so much more
important than a hundred other functions that I could use, though they are among the more
common ones. The point is that the world doesn’t end with polynomials, sines, cosines,
and exponentials. There are an infinite number of other functions out there waiting for you
and some of them are useful. These functions can’t be expressed in terms of the elementary
functions that you’ve grown to know and love. They’re different and have their distinctive
behaviors.

There are zeta functions and Fresnel integrals and Legendre functions and Exponential
integrals and Mathieu functions and Confluent Hypergeometric functions and . . . you get
the idea. When one of these shows up, you learn to look up its properties and to use them. If
you’re interested you may even try to understand how some of these properties are derived,
but probably not the first time that you confront them. That’s why there are tables. The
“Handbook of Mathematical Functions” by Abramowitz and Stegun is a premier example of
such a tabulation. It’s reprinted by Dover Publications (inexpensive and very good quality).
There’s also a copy on the internet* www.math.sfu.ca/˜cbm/aands/ as a set of scanned page
images.

Why erf?
What can you do with this function? The most likely application is probably to probability.
If you flip a coin 1000 times, you expect it to come up heads about 500 times. But just how
close to 500 will it be? If you flip it only twice, you wouldn’t be surprised to see two heads
or two tails, in fact the equally likely possibilities are

* online books at University of Pennsylvania, onlinebooks.library.upenn.edu

http://store.doverpublications.com
http://www.math.sfu.ca/~cbm/aands/
http://onlinebooks.library.upenn.edu/
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TT HT TH HH

This says that in 1 out of 22 = 4 such experiments you expect to see two heads and in 1 out
of 4 you expect two tails. For only 2 out of 4 times you do the double flip do you expect
exactly one head. All this is an average. You have to try the experiment many times to get see
your expectation verified, and then only by averaging many experiments.

It’s easier to visualize the counting if you flip N coins at once and see how they come
up. The number of coins that come up heads won’t always be N/2, but it should be close. If
you repeat the process, flipping N coins again and again, you get a distribution of numbers
of heads that will vary around N/2 in a characteristic pattern. The result is that the fraction
of the time it will come up with k heads and N − k tails is, to a good approximation√

2

πN
e−2δ2/N , where δ = k − N

2
(17)

The derivation of this can wait until section 2.6. It is an accurate result if the number of
coins that you flip in each trial is large, but try it anyway for the preceding example where
N = 2. This formula says that the fraction of times predicted for k heads is

k = 0 :
√

1/π e−1 = 0.208 k = 1 = N/2 : 0.564 k = 2 : 0.208

The exact answers are 1/4, 2/4, 1/4, but as two is not all that big a number, the fairly large
error shouldn’t be distressing.

If you flip three coins, the equally likely possibilities are

TTT TTH THT HTT THH HTH HHT HHH

There are 8 possibilities here, 23, so you expect (on average) one run out of 8 to give you 3
heads. Probability 1/8.

To see how accurate this claim is for modest values, take N = 10. The possible
outcomes are anywhere from zero heads to ten. The exact fraction of the time that you get
k heads as compared to this approximation is

k = 0 1 2 3 4 5
exact: .000977 .00977 .0439 .117 .205 .246

approximate: .0017 .0103 .0417 .113 .206 .252

For the more interesting case of big N , the exponent, e−2δ2/N , varies slowly and
smoothly as δ changes in integer steps away from zero. This is a key point; it allows you to
approximate a sum by an integral. If N = 1000 and δ = 10, the exponent is 0.819. It has
dropped only gradually from one. For the same N = 1000, the exact fraction of the time to
get exactly 500 heads is 0.025225, and this approximation is 0.025231.

Flip N coins, then do it again and again. In what fraction of the trials will the result
be between N/2 − ∆ and N/2 + ∆ heads? This is the sum of the fractions corresponding
to δ = 0, δ = ±1, . . . , δ = ±∆. Because the approximate function is smooth, I can replace
this sum with an integral. This substitution becomes more accurate the larger N is.∫ ∆

−∆
dδ

√
2

πN
e−2δ2/N
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Make the substitution 2δ2/N = x2 and you have√
2

πN

∫ ∆
√

2/N

−∆
√

2/N

√
N

2
dx e−x2

=
1√
π

∫ ∆
√

2/N

−∆
√

2/N
dx e−x2

= erf
(
∆
√

2/N
)

(18)

The error function of one is 0.84, so if ∆ =
√
N/2 then in 84% of the trials heads will come

up between N/2−
√
N/2 and N/2 +

√
N/2 times. For N = 1000, this is between 478 and

522 heads.

1.5 Differentiating
When you differentiate a function in which the independent variable shows up in several
places, how to you do the derivative? For example, what is the derivative with respect to x
of xx? The answer is that you treat each instance of x one at a time, ignoring the others;
differentiate with respect to that x and add the results. For a proof, use the definition of a
derivative and differentiate the function f(x, x). Start with the finite difference quotient:

f(x+ ∆x, x+ ∆x)− f(x, x)

∆x

=
f(x+ ∆x, x+ ∆x)− f(x, x+ ∆x) + f(x, x+ ∆x)− f(x, x)

∆x

=
f(x+ ∆x, x+ ∆x)− f(x, x+ ∆x)

∆x
+
f(x, x+ ∆x)− f(x, x)

∆x

The first quotient in the last equation is, in the limit that ∆x→ 0, the derivative of f with
respect to its first argument. The second quotient becomes the derivative with respect to
the second argument.

For example,
d

dx

∫ x

0
dt e−xt2 = e−x3

−
∫ x

0
dt t2e−xt2

The resulting integral in this example is related to an error function, see problem 13, so it’s
not as bad as it looks.

Another example,

d

dx
xx = xxx−1 +

d

dx
kx at k = x

= xxx−1 +
d

dx
ex ln k = xxx−1 + ln k ex ln k

= xx + xx lnx

1.6 Integrals
What is an integral? You’ve been using them for some time. I’ve been using the concept in
this introductory chapter as if it’s something that everyone knows. But what is it?

If your answer is something like “the function whose derivative is the given function”
or “the area under a curve” then No. Both of these answers express an aspect of the subject
but neither is a complete answer. The first actually refers to the fundamental theorem of
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calculus, and I’ll describe that shortly. The second is a good picture that applies to some
special cases, but it won’t tell you how to compute it and it won’t allow you to generalize the
idea to the many other subjects in which it is needed. There are several different definitions
of the integral, and every one of them requires more than a few lines to explain. I’ll use the
most common definition, the Riemann Integral.

A standard way to picture the definition is to try to find the area under a curve. You
can get successively better and better approximations to the answer by dividing the area
into smaller and smaller rectangles — ideally, taking the limit as the number of rectangles
goes to infinity.

To codify this idea takes a sequence of steps:

1. Pick an integer N > 0. This is the number of subintervals into which the whole interval
between a and b is to be divided.

ba

x1 x2

ξ1 ξ2 ξN

2. Pick N − 1 points between a and b. Call them x1, x2, etc.

a = x0 < x1 < x2 < · · · < xN−1 < xN = b

where for convenience I label the endpoints as x0 and xN . For the sketch , N = 8.

3. Let ∆xk = xk − xk−1. That is,

∆x1 = x1 − x0, ∆x2 = x2 − x1, · · ·

4. In each of the N subintervals, pick one point at which the function will be evaluated.
I’ll label these points by the Greek letter ξ. (That’s the Greek version of “x.”)

xk−1 ≤ ξk ≤ xk

x0 ≤ ξ1 ≤ x1, x1 ≤ ξ2 ≤ x2, · · ·

5. Form the sum that is an approximation to the final answer.

f(ξ1)∆x1 + f(ξ2)∆x2 + f(ξ3)∆x3 + · · ·

6. Finally, take the limit as all the ∆xk → 0 and necessarily then, as N → ∞. These six
steps form the definition

lim
∆xk→0

N∑
k=1

f(ξk)∆xk =

∫ b

a
f(x) dx (19)
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1 2

x

1/x

To demonstrate this numerically, pick a function and do the first five steps explicitly.
Pick f(x) = 1/x and integrate it from 1 to 2. The exact answer is the natural log of 2:
ln 2 = 0.69315 . . .
(1) Take N = 4 for the number of intervals
(2) Choose to divide the distance from 1 to 2 evenly, at x1 = 1.25, x2 = 1.5, x3 = 1.75

a = x0 = 1. < 1.25 < 1.5 < 1.75 < 2. = x4 = b

(3) All the ∆x’s are equal to 0.25.
(4) Choose the midpoint of each subinterval. This is the best choice when you use only a
finite number of divisions.

ξ1 = 1.125 ξ2 = 1.375 ξ3 = 1.625 ξ4 = 1.875

(5) The sum approximating the integral is then

f(ξ1)∆x1 + f(ξ2)∆x2 + f(ξ3)∆x3 + f(ξ4)∆x4 =

1

1.125
× .25 +

1

1.375
× .25 +

1

1.625
× .25 +

1

1.875
× .25 = .69122

For such a small number of divisions, this is a very good approximation — about 0.3%
error. (What do you get if you take N = 1 or N = 2 or N = 10 divisions?)

Fundamental Thm. of Calculus
If the function that you’re integrating is complicated or if the function is itself not known to

perfect accuracy then the numerical approximation that I just did for
∫ 2
1 dx/x is often the

best way to go. How can a function not be known completely? If it’s experimental data.
When you have to resort to this arithmetic way to do integrals, are there more efficient ways
to do it than simply using the definition of the integral? Yes. That’s part of the subject
of numerical analysis, and there’s a short introduction to the subject in chapter 11, section
11.4.

The fundamental theorem of calculus unites the subjects of differentiation and inte-
gration. The integral is defined as the limit of a sum. The derivative is defined as the limit
of a quotient of two differences. The relation between them is

IF f has an integral from a to b, that is, if
∫ b
a f(x) dx exists,

AND IF f has an anti-derivative, that is, there is a function F such that dF/dx = f ,
THEN ∫ b

a
f(x) dx = F (b)− F (a) (20)
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Are there cases where one of these exists without the other? Yes, though I’ll admit
that you’re not likely to come across such functions without hunting through some advanced
math books. Check out www.wikipedia.org for Volterra’s function to see what it involves.

Notice an important result that follows from Eq. (20). Differentiate both sides with
respect to b

d

db

∫ b

a
f(x) dx =

d

db
F (b) = f(b) (21)

and with respect to a
d

da

∫ b

a
f(x) dx = − d

da
F (a) = −f(a) (22)

Differentiating an integral with respect to one or the other of its limits results in plus or
minus the integrand. Combine this with the chain rule and you can do such calculations as

d

dx

∫ sin x

x2
ext2 dt = ex sin2 x cosx− ex

5

2x+

∫ sin x

x2
t2ext2 dt

You may well ask why anyone would want to do such a thing, but there are more reasonable
examples that show up in real situations.

Riemann-Stieljes Integrals
Are there other useful definitions of the word integral? Yes, there are many, named after
various people who developed them, with Lebesgue being the most famous. His definition is
most useful in much more advanced mathematical contexts, and I won’t go into it here, except
to say that very roughly where Riemann divided the x-axis into intervals ∆xi, Lebesgue
divided the y-axis into intervals ∆yi. Doesn’t sound like much of a change does it? It is.
There is another definition that is worth knowing about, not because it helps you to do
integrals, but because it unites a couple of different types of computation into one. This is
the Riemann-Stieljes integral.

This material is not really needed in the rest of the text, and I put it here mostly to
show you that there are other ways to define an integral. If you take the time to understand
it, you will be able to look back at some subjects that you already know and to realize that
they can be manipulated in a more compact form (e.g. center of mass).

When you try to evaluate the moment of inertia you are doing the integral∫
r2 dm

When you evaluate the position of the center of mass even in one dimension the integral is

1

M

∫
x dm

and even though you may not yet have encountered this, the electric dipole moment is∫
~r dq

http://www.wikipedia.org
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How do you integrate x with respect to m? What exactly are you doing? A possible
answer is that you can express this integral in terms of the linear density function and then
dm = λ(x)dx. But if the masses are a mixture of continuous densities and point masses, this
starts to become awkward. Is there a better way?

Yes
On the interval a ≤ x ≤ b assume there are two functions, f and α. I don’t assume that either
of them is continuous, though they can’t be too badly behaved or nothing will converge. This
starts the same way the Riemann integral does: Partition the interval into a finite number
(N) of sub-intervals at the points

a = x0 < x1 < x2 < . . . < xN = b (23)

Form the sum

N∑
k=1

f(x′k)∆αk, where xk−1 ≤ x′k ≤ xk and ∆αk = α(xk)− α(xk−1) (24)

To improve the sum, keep adding more and more points to the partition so that in the limit
all the intervals xk − xk−1 → 0. This limit is called the Riemann-Stieljes integral,∫

f dα (25)

What’s the big deal? Can’t I just say that dα = α′dx and then I have just the ordinary
integral ∫

f(x)α′(x) dx?

Sometimes you can, but what if α isn’t differentiable? Suppose that it has a step or several
steps? The derivative isn’t defined, but this Riemann-Stieljes integral still makes perfectly
good sense.

An example. A very thin rod of length L is placed on the x-axis with one end at the
origin. It has a uniform linear mass density λ and an added point mass m0 at x = 3L/4. (a
piece of chewing gum?) Let m(x) be the function defined as

m(x) =
(
the amount of mass at coordinates ≤ x

)
=

{
λx (0 ≤ x < 3L/4)
λx+m0 (3L/4 ≤ x ≤ L)

This is of course discontinuous.

m(x)

x
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The coordinate of the center of mass is
∫
x dm

/ ∫
dm. The total mass in the denom-

inator is m0 + λL, and I’ll go through the details to evaluate the numerator, attempting
to solidify the ideas that form this integral. Suppose you divide the length L into 10 equal
pieces, then

xk = kL/10, (k = 0, 1, . . . , 10) and ∆mk =

{
λL/10 (k 6= 8)
λL/10 +m0 (k = 8)

∆m8 = m(x8)−m(x7) = (λx8 +m0)− λx7 = λL/10 +m0.
Choose the positions x′k anywhere in the interval; for no particular reason I’ll take the

right-hand endpoint, x′k = kL/10. The approximation to the integral is now

10∑
k=1

x′k∆mk =
7∑

k=1

x′kλL/10 + x′8(λL/10 +m0) +
10∑

k=9

x′kλL/10

=
10∑

k=1

x′kλL/10 + x′8m0

As you add division points (more intervals) to the whole length this sum obviously separates
into two parts. One is the ordinary integral and the other is the discrete term from the point
mass. ∫ L

0
xλ dx+m03L/4 = λL2/2 +m03L/4

The center of mass is then at

xcm =
λL2/2 +m03L/4

m0 + λL

If m0 � λL, this is approximately L/2. In the reverse case is is approximately 3L/4. Both
are just what you should expect.

The discontinuity in m(x) simply gives you a discrete added term in the overall result.
Did you need the Stieljes integral to do this? Probably not. You would likely have

simply added the two terms from the two parts of the mass and gotten the same result that
I did with this more complicated way. The point of this is not that it provides an easier way
to do computations. It doesn’t. It is however a unifying notation and language that lets you
avoid writing down a lot of special cases. (Is it discrete? Is it continuous?) You can even
write sums as integrals. Let α be a set of steps:

α(x) =


0 x < 1
1 1 ≤ x < 2
2 2 ≤ x < 3
etc.

= [x] for x ≥ 0

Where that last bracketed symbol means “greatest integer less than or equal to x”. It’s a
notation more common in mathematics than in physics. Now in this notation the sum can
be written as a Stieljes integral.∫

f dα =

∫ ∞

x=0
f d[x] =

∞∑
k=1

f(k) (26)
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At every integer, where [x] makes a jump by one, there is a contribution to the Riemann-
Stieljes sum, Eq. (24). That makes this integral just another way to write the sum over
integers. This won’t help you to sum the series, but it is another way to look at the subject.

The method of integration by parts works perfectly well here, though as with all the
rest of this material I’ll leave the proof to advanced calculus texts. If

∫
f dα exists then so

does
∫
αdf and ∫

f dα = fα−
∫
αdf (27)

This relates one Stieljes integral to another one, and because you can express summation
as an integral now, you can even do summation by parts. That’s something that you’re
not likely to think of if you restrict yourself to the more elementary notation, and it’s even
occasionally useful.

1.7 Polar Coordinates
When you compute an integral in the plane, you need the element of area appropriate to
the coordinate system that you’re using. In the most common case, that of rectangular
coordinates, you find the element of area by drawing the two lines at constant coordinates
x and x+ dx. Then you draw the two lines at constant coordinates y and y+ dy. The little
rectangle that they circumscribe has an area dA = dx dy.

x x+ dx

y

y + dy

r r + dr

θ

θ + dθ

In polar coordinates you do exactly the same thing! The coordinates are r and θ, and
the line at constant radius r and at constant r+ dr define two neighboring circles. The lines
at constant angle θ and at constant angle θ+dθ form two closely spaced rays from the origin.
These four lines circumscribe a tiny area that is, for small enough dr and dθ, a rectangle.
You then know its area is the product of its two sides*: dA = (dr)(r dθ). This is the basic
element of area for polar coordinates.

The area of a circle is the sum of all the pieces of area within it∫
dA =

∫ R

0
r dr

∫ 2π

0
dθ

I find it most useful to write double integrals in this way, so that the limits of integration
are right next to the differential. The other notation can put the differential a long distance

* If you’re tempted to say that the area is dA = dr dθ, look at the dimensions. This
expression is a length, not an area.
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from where you show the limits of integration. I get less confused my way. No surprise, you
get ∫ R

0
r dr

∫ 2π

0
dθ =

∫ R

0
r dr 2π = 2πR2/2 = πR2

For the preceding example you can do the double integral in either order with no
special care. If the area over which you’re integrating is more complicated you will have
to look more closely at the limits of integration. I’ll illustrate with an example of this in
rectangular coordinates: the area of a triangle. Take the triangle to have vertices (0, 0),
(a, 0), and (0, b). The area is

a

b
∫
dA =

∫ b

0
dx

∫ b(a−x)/a

0
dy or

∫ a

0
dy

∫ a(b−y)/b

0
dx (28)

They should both yield ab/2. See problem 25.

1.8 Sketching Graphs

How do you sketch the graph of a function? This is one of the most important tools you can
use to understand the behavior of functions, and unless you practice it you will find yourself
at a loss in anticipating the outcome of many calculations. There are a handful of rules that
you can follow to do this and you will find that it’s not as painful as you may think.

You’re confronted with a function and have to sketch its graph.

1. What is the domain? That is, what is the set of values of the independent variable
that you need to be concerned with? Is it −∞ to +∞ or is it 0 < x < L or is it −π < θ < π
or what?

2. Plot any obvious points. If you can immediately see the value of the function at
one or more points, do them right away.

3. Is the function even or odd? If the behavior of the function is the same on the left
as it is on the right (or perhaps inverted on the left) then you have half as much work to do.
Concentrate on one side and you can then make a mirror image on the left if it is even or
an upside-down mirror image if it’s odd.

4. Is the function singular anywhere? Does it go to infinity at some point where the
denominator vanishes? Note these points on the axis for future examination.

5. What is the behavior of the function near any of the obvious points that you plotted?
Does it behave like x? Like x2? If you concluded that it is even, then the slope is either zero
or there’s a kink in the curve, such as with the absolute value function, |x|.

6. At one of the singular points that you found, how does it behave as you approach
the point from the right? From the left? Does the function go toward +∞ or toward −∞
in each case?

7. How does the function behave as you approach the ends of the domain? If the
domain extends from −∞ to +∞, how does the function behave as you approach these
regions?
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8. Is the function the sum or difference of two other much simpler functions? If so, you
may find it easier to sketch the two functions and then graphically add or subtract them.
Similarly if it is a product.

9. Is the function related to another by translation? The function f(x) = (x − 2)2 is
related to x2 by translation of 2 units. Note that it is translated to the right from x2. You
can see why because (x− 2)2 vanishes at x = +2.

10. After all this, you will have a good idea of the shape of the function, so you can
interpolate the behavior between the points that you’ve found.

Example: Sketch f(x) = x/(a2 − x2).

−a a

1. The domain for independent variable wasn’t given, so take it to be −∞ < x <∞
2. The point x = 0 obviously gives the value f(0) = 0.
4. The denominator becomes zero at the two points x = ±a.
3. If you replace x by −x, the denominator is unchanged, and the numerator changes

sign. The function is odd about zero.

−a a

7. When x becomes very large (|x| � a), the denominator is mostly −x2, so f(x)
behaves like x/(−x2) = −1/x for large x. It approaches zero for large x. Moreover, when
x is positive, it approaches zero through negative values and when x is negative, it goes to
zero through positive values.

−a a

5. Near the point x = 0, the x2 in the denominator is much smaller than the constant
a2 (x2 � a2). That means that near this point, the function f behaves like x/a2

−a a
−a a

6. Go back to the places that it blows up, and ask what happens near there. If x
is a little greater than a, the x2 in the denominator is a little larger than the a2 in the
denominator. This means that the denominator is negative. When x is a little less than a,
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the reverse is true. Near x = a, The numerator is close to a. Combine these, and you see
that the function approaches −∞ as x → a from the right. It approaches +∞ on the left
side of a. I’ve already noted that the function is odd, so I don’t have to repeat the analysis
near x = −a, I have only to turn the behavior upside down.

With all of these pieces of the graph, you can now interpolate to see the whole picture.
OR, if you’re clever with partial fractions, you might realize that you can rearrange f

as
x

a2 − x2
=
−1/2

x− a
+
−1/2

x+ a
,

and then follow the ideas of techniques 8 and 9 to sketch the graph. It’s not obvious that
this is any easier; it’s just different.
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Problems

1.1 What is the tangent of an angle in terms of its sine? Draw a triangle and do this in one
line.

1.2 Derive the identities for cosh2 θ − sinh2 θ and for 1− tanh2 θ, Equation (3).

1.3 Derive the expressions for cosh−1 y, tanh−1 y, and coth−1 y. Pay particular attention
to the domains and explain why these are valid for the set of y that you claim. What is
sinh−1(y) + sinh−1(−y)?

1.4 The inverse function has a graph that is the mirror image of the original function in
the 45◦ line y = x. Draw the graphs of all six of the hyperbolic functions and all six of the
inverse hyperbolic functions, comparing the graphs you should get to the functions derived
in the preceding problem.

1.5 Evaluate the derivatives of coshx, tanhx, and cothx.

1.6 What are the derivatives, d sinh−1 y
/
dy and d cosh−1 y

/
dy?

1.7 Find formulas for cosh 2y and sinh 2y in terms of hyperbolic functions of y. The second
one of these should take at most two lines. Maybe the first one too.

1.8 Do a substitution to evaluate the integral (a) simply. Now do the same for (b)

(a)

∫
dt√
a2 − t2

(b)

∫
dt√
a2 + t2

1.9 Sketch the two integrands in the preceding problem. For the second integral, if the
limits are 0 and x with x� a, then before having done the integral, estimate approximately
what the value of this integral should be. (Say x = 106a or x = 1060a.) Compare your
estimate to the exact answer that you just found to see if they match in any way.

1.10 Fill in the steps in the derivation of the Gaussian integrals, Eqs. (7), (8), and (10). In
particular, draw graphs of the integrands to show why Eq. (7) is so.

1.11 What is the integral
∫∞
−∞ dt tne−t2 if n = −1 or n = −2? [Careful!, no conclusion-

jumping allowed.]

1.12 Sketch a graph of the error function. In particular, what is it’s behavior for small x
and for large x, both positive and negative? Note: “small” doesn’t mean zero. First draw

a sketch of the integrand e−t2 and from that you can (graphically) estimate erf(x) for small
x. Compare this to the short table in Eq. (11).
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1.13 Put a parameter α into the defining integral for the error function, so it has e−αt2 .
Differentiate (without and with a change of variables) and show that∫ x

0
dt t2e−t2 =

√
π

4
erf(x)− 1

2
xe−x2

As a check, does this agree with the previous result for x =∞, Eq. (10)?

1.14 Use parametric differentiation (without and with a change of variables) to derive the
identity xΓ(x) = Γ(x+ 1).

1.15 What is the Gamma function of x = −1/2, −3/2, −5/2? Explain why the original
definition of Γ in terms of the integral won’t work here. Demonstrate why Eq. (12) converges
for all x > 0 but does not converge for x ≤ 0.

1.16 What is the Gamma function for x near to 1? near 0? near −1? −2? −3? Now sketch
a graph of the Gamma function from −3 through positive values.

1.17 Show how to express the integral for arbitrary positive x∫ ∞

0
dt txe−t2

in terms of the Gamma function. Is positive x the best constraint here or can you do a touch
better? Ans: 1

2Γ
(
(x+ 1)/2

)
1.18 The derivative of the Gamma function at x = 1 is Γ′(1) = −0.5772 = −γ. The
number γ is called Euler’s constant, and like π or e it’s another number that simply shows
up regularly. What is Γ′(2)? What is Γ′(3)? Ans: Γ′(3) = 3− 2γ

1.19 Show that

Γ(n+ 1/2) =

√
π

2n
(2n− 1)!!

The “double factorial” symbol mean the product of every other integer up to the given one.
E.g. 5!! = 15. (b) The double factorial of an even integer can be expressed in terms of the
single factorial. Do so. What about odd integers?

1.20 Evaluate this integral. Just find the right substitution.

∫ ∞

0
dt e−ta (a > 0)

1.21 A triangle has sides a, b, c, and the angle opposite c is γ. Express the area of the
triangle in terms of a, b, and γ. Write the law of cosines for this triangle and then use
sin2 γ + cos2 γ = 1 to express the area of a triangle solely in terms of the lengths of its
three sides. The resulting formula is not especially pretty or even clearly symmetrical in
the sides, but if you introduce the semiperimeter, s = (a + b + c)/2, you can rearrange
the answer into a neat, symmetrical form. Check its validity in a couple of special cases.
Ans:

√
s(s− a)(s− b)(s− c) (Hero’s formula)
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1.22 An arbitrary linear combination of the sine and cosine, A sin θ + B cos θ, is a phase-
shifted cosine: C cos(θ + δ). Solve for C and δ in terms of A and B, deriving an identity in
θ.

1.23 Solve the two simultaneous linear equations

ax+ by = e, cx+ dy = f

and do it solely by elementary manipulation (+, −, ×, ÷), not by any special formulas.
Analyze all the qualitatively different cases and draw graphs to describe each. In every case,
how many if any solutions are there? Because of its special importance later, look at the
case e = f = 0 and analyze it as if it’s a separate problem. You should be able to discern
and to classify the circumstances under which there is one solution, no solution, or many
solutions.

1.24 Use parametric differentiation to evaluate the integral
∫
x2 sin x dx. Find a table of

integrals if you want to verify your work.

1.25 Derive all the limits on the integrals in Eq. (28) and then do the integrals.

1.26 Compute the area of a circle using rectangular coordinates, dA = dx dy.

1.27 Compute the area of a triangle using polar coordinates. Make it a right triangle with
vertices at (0, 0), (a, 0), and (a, b).

1.28 Start from the definition of a derivative and derive the chain rule.

f(x) = g
(
h(x)

)
=⇒ df

dx
=
dg

dh

dh

dx

Now pick special, fairly simple cases for g and h to test whether your result really works.
That is, choose functions so that you can do the differentiation explicitly and compare the
results.

1.29 Starting from the definitions, derive how to do the derivative,

d

dx

∫ f(x)

0
g(t) dt

Now pick special, fairly simple cases for f and g to test whether your result really works.
That is, choose functions so that you can do the integration and differentiation explicitly,
but ones such the result isn’t trivial.
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1.30 Sketch these graphs, working by hand only, no computers:

x

a2 + x2
,

x2

a2 − x2
,

x

a3 + x3
,

x− a
a2 − (x− a)2

,
x

L2 − x2
+
x

L

1.31 Sketch by hand only, graphs of

sin x (−3π < x < +4π),
1

sin x
(−3π < x < +4π), sin(x− π/2) (−3π < x < +4π)

1.32 Sketch by hand only, graphs of

f(θ) = 1 +
1

2
sin2 θ (0 ≤ θ ≤ 2π), f(θ) =

{
θ (0 < θ < π)
θ − 2π (π < θ < 2π)

f(x) =

{
x2 (0 ≤ x < a)
(x− 2a)2 (a ≤ x ≤ 2a)

, f(r) =

{
Kr/R3 (0 ≤ r ≤ R)
K/r2 (R < r <∞)

1.33 From the definition of the Riemann integral make a numerical calculation of the integral∫ 1

0
dx

4

1 + x2

Use 1 interval, then 2 intervals, then 4 intervals. If you choose to write your own computer
program for an arbitrary number of intervals, by all means do so. As with the example in the
text, choose the midpoints of the intervals to evaluate the function. To check your answer,
do a trig substitution and evaluate the integral exactly.

1.34 Evaluate erf(1) numerically. Use 4 intervals. Ans: 0.842700792949715 (more or less)

1.35 Evaluate
∫ π
0 dx sin x/x numerically. Ans: 1.85193705198247 or so.

1.36 x and y are related by the equation x3 − 4xy + 3y3 = 0. You can easily check that
(x, y) = (1, 1) satisfies it, now what is dy/dx at that point? Unless you choose to look up
and plug in to the cubic formula, I suggest that you differentiate the whole equation with
respect to x and solve for dy/dx.
Generalize this to finding dy/dx if f(x, y) = 0. Ans: 1/5

1.37 When flipping a coin N times, what fraction of the time will the number of heads in
the run lie between −

(
N/2 + 2

√
N/2

)
and +

(
N/2 + 2

√
N/2

)
? What are these numbers for

N = 1000? Ans: 99.5%

1.38 For N = 4 flips of a coin, count the number of times you get 0, 1, 2, etc. heads out
of 24 = 16 cases. Compare these results to the exponential approximation of Eq. (17).
Ans: 0.375 and 0.399

1.39 Is the integral of Eq. (17) over all δ equal to one?
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1.40 If there are only 100 molecules of a gas bouncing around in a room, about how long
will you have to wait to find that all of them are in the left half of the room? Assume that
you make a new observation every microsecond and that the observations are independent
of each other. Ans: A million times the age of the universe. [Care to try 1023 molecules?]

1.41 If you flip 1000 coins 1000 times, about how many times will you get exactly 500 heads
and 500 tails? What if it’s 100 coins and 100 trials, getting 50 heads? Ans: 25, 8

1.42 (a) Use parametric differentiation to evaluate
∫
x dx. Start with

∫
eαxdx. Differentiate

and then let α→ 0.
(b) Now that the problem has blown up in your face, change the integral from an indefinite

to a definite integral such as
∫ b
a and do it again. There are easier ways to do this integral,

but the point is that this method is really designed for definite integrals. It may not work
on indefinite ones.

1.43 The Gamma function satisfies the identity

Γ(x)Γ(1− x) = π/ sin πx

What does this tell you about the Gamma function of 1/2? What does it tell you about its
behavior near the negative integers? Compare this result to that of problem 16.

1.44 Start from the definition of a derivative, manipulate some terms, and derive the rule for
differentiating the function h, where h(x) = f(x)g(x) is the product of two other functions.
(b) Integrate the resulting equation with respect to x and derive the formula for integration
by parts.

1.45 Show that in polar coordinates the equation r = 2a cos θ is a circle. Now compute its
area in this coordinate system.

1.46 The cycloid* has the parametric equations x = aθ − a sin θ, and y = a − a cos θ.
Compute the area,

∫
y dx between one arc of this curve and the x-axis. Ans: 3πa2

* www-groups.dcs.st-and.ac.uk/˜history/Curves/Cycloid.html

http://www-groups.dcs.st-and.ac.uk/~history/Curves/Cycloid.html


Infinite Series

Infinite series are among the most powerful and useful tools that you’ve been introduced to
in an introductory calculus course. It’s easy to get the impression that they are simply a
clever exercise in manipulating limits and in studying convergence, but they are among the
majors tools used in analyzing differential equations, in developing methods of numerical
analysis, in defining new functions, in estimating the behavior of functions, and more.

2.1 The Basics
There are a handful of infinite series that you should have memorized and should know just
as well as you do the multiplication table. The first of these is the geometric series,

1 + x+ x2 + x3 + x4 + · · · =
∞∑
0

xn =
1

1− x
for |x| < 1. (1)

It’s very easy derive because in this case it’s easy to sum the finite form of the series and
then to take a limit. Write the series out to the term xN and multiply it by (1− x).

(1 + x+ x2 + x3 + · · ·+ xN )(1− x) =

(1 + x+ x2 + x3 + · · ·+ xN )−(x+ x2 + x3 + x4 + · · ·+ xN+1) = 1− xN+1 (2)

If |x| < 1 then as N → ∞ this last term, xN+1, goes to zero and you have the answer. If
x is outside this domain the terms of the infinite series don’t even go to zero, so there’s no
chance for the series to converge to anything.

The finite sum up to xN is useful on its own. For example it’s what you use to compute
the payments on a loan that’s been made at some specified interest rate. You use it to find
the pattern of light from a diffraction grating.

N∑
0

xn =
1− xN+1

1− x
(3)

Some other common series that you need to know are power series for elementary
functions:

ex = 1 + x+
x2

2!
+ · · · =

∞∑
0

xk

k!

sin x = x− x3

3!
+ · · · =

∞∑
0

(−1)k
x2k+1

(2k + 1)!

cosx = 1− x2

2!
+ · · · =

∞∑
0

(−1)k
x2k

(2k)!

ln(1 + x) = x− x2

2
+
x3

3
− · · · =

∞∑
1

(−1)k+1x
k

k
(4)

(1 + x)α = 1 + αx+
α(α− 1)x2

2!
+ · · · =

∞∑
k=0

α(α− 1) · · · (α− k + 1)

k!
xk

24
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Of course, even better than memorizing them is to understand their derivations so well
that you can derive them as fast as you can write them down. For example, the cosine is the
derivative of the sine, so if you know the latter series all you have to do is to differentiate it
term by term to get the cosine series. The logarithm of (1 + x) is an integral of 1/(1 + x) so
you can get it’s series from that of the geometric series. The geometric series is a special case
of the binomial series for α = −1, but it’s easier to remember the simple case separately.
You can express all of them as special cases of the general Taylor series.

What is the sine of 0.1 radians? Just use the series for the sine and you have the
answer, 0.1, or to more accuracy, 0.1− 0.001/6 = 0.099833

What is the square root of 1.1?
√

1.1 = (1 + .1)1/2 = 1 + 1
2
. 0.1 = 1.05

What is 1/1.9? 1/(2 − .1) = 1/[2(1 − .05)] = 1
2(1 + .05) = .5 + .025 = .525 from the

first terms of the geometric series.
What is 3

√
1024? 3

√
1024 = 3

√
1000 + 24 = 3

√
1000(1 + 24/1000) =

10(1 + 24/1000)1/3 = 10(1 + 8/1000) = 10.08
As you see from the last two examples you have to cast the problem into a form fitting

the expansion that you know. When you want to use the binomial series, rearrange and
factor your expression so that you have(

1 + something small
)α

2.2 Deriving Taylor Series
How do you derive these series? The simplest way to get any of them is to assume that such
a series exists and then to deduce its coefficients in sequence. Take the sine for example,
assume that you can write

sin x = A+Bx+ Cx2 +Dx3 + Ex4 + · · ·

Evaluate this at x = 0 to get

sin 0 = 0 = A+B0 + C02 +D03 + E04 + · · · = A

so the first term, A = 0. Now differentiate the series, getting

cosx = B + 2Cx+ 3Dx2 + 4Ex3 + · · ·

Again set x = 0 and all the terms on the right except the first one vanish.

cos 0 = 1 = B + 2C0 + 3D02 + 4E03 + · · · = B

Keep repeating this process, evaluating in turn all the coefficients of the assumed series.

sin x = A+Bx+ Cx2 +Dx3 + Ex4 + · · ·
cosx = B + 2Cx+ 3Dx2 + 4Ex3 + · · ·
− sin x = 2C + 6Dx+ 12Ex2 + · · ·
− cosx = 6D + 24Ex+ 60Fx2 + · · ·

sin x = 24E + 120Fx+ · · ·
cosx = 120F + · · ·

sin 0 = 0 = A

cos 0 = 1 = B

− sin 0 = 0 = 2C

− cos 0 = −1 = 6D

sin 0 = 0 = 24E

cos 0 = 1 = 120F
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This shows the terms of the series for the sine as in Eq. (4).
Does this show that the series converges? If it converges does it show that it converges

to the sine? No to both. Each statement requires more work, and I’ll leave the second
one to advanced calculus books. Even better, when you understand the subject of complex
variables, these questions about series become much easier to understand.

The generalization to any function is obvious. You match the coefficients in the as-
sumed expansion, and get

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) +

x3

3!
f ′′′(0) +

x4

4!
f ′′′′(0) + · · ·

You don’t have to do the expansion about the point x = 0. Do it about x0 instead.

f(x) = f(x0) + (x− x0)f
′(x0) +

(x− x0)
2

2!
f ′′(x0) + · · · (5)

What good are infinite series?
This is sometimes the way that a new function is introduced and developed, typically by
determining a series solution to a new differential equation.
This is a tool for the numerical evaluation of functions.
This is an essential tool to understand and invent numerical algorithms for integration,
differentiation, interpolation, and many other common numerical methods.
To understand the behavior of complex-valued functions of a complex variable you will need
to understand these series for the case that the variable is a complex number.

All the series that I’ve written above are power series (Taylor series), but there are
many other possibilities.

ζ(z) =
∞∑
1

1

nz
(6)

x2 =
L2

3
+

2L2

π2

∞∑
1

(−1)n
1

n2
cos
(nπx
L

)
(−L ≤ x ≤ L) (7)

The first is a Dirichlet series defining the Riemann zeta function, a function that appears in
statistical mechanics among other places.
The second is an example of a Fourier series.
Still another is the Frobenius series, useful in solving differential equations:

∑
k akx

k+s. The
number s need not be either positive or an integer.

There are a few technical details about infinite series that you have to go through. In
introductory calculus courses there can be a tendency to let these few details overwhelm the
subject so that you are left with the impression that that’s all there is, not realizing that
this stuff is useful. Still, you do need to understand it.

2.3 Convergence
Does an infinite series converge? Does the limit as N →∞ of the sum,

∑N
1 uk have a limit?

There are a few common and useful ways to answer this. The first and really the foundation
for the others is the comparison test.
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Let uk and vk be sequences of real numbers, positive at least after some value of k.
Also assume that for all k greater than some finite value, uk ≤ vk. Also assume that the
sum,

∑
k vk does converge.

The other sum,
∑

k uk then converges too. This is almost obvious, but it’s worth the little
effort that a proof takes.

The required observation is that an increasing sequence of real numbers, bounded
above, has a limit.

After some point, k = M , all the uk and vk are positive and uk ≤ vk. The sum
an =

∑n
M vk then forms an increasing sequence of real numbers. By assumption this has a

limit (the series converges). The sum bn =
∑n

M uk is an increasing sequence of real numbers
also. Because uk ≤ vk you immediately have bn ≤ an for all n.

bn ≤ an ≤ lim
n→∞

an

this simply says that the increasing sequence bn has an upper bound, so it has a limit and
the theorem is proved.

Ratio Test
To apply this comparison test you need a stable of known convergent series. One that you
do have is the geometric series,

∑
k x

k for |x| < 1. Let this xk be the vk of the comparison
test. Assume at least after some point k = K that all the uk > 0.
Also that uk+1 ≤ xuk.

Then uK+2 ≤ xuK+1 and uK+1 ≤ xuK gives uK+2 ≤ x2uK

You see the immediate extension is

uK+n ≤ xnuK

As long as x < 1 this is precisely set up for the comparison test using
∑

n uKx
n as the series

that dominates the
∑

n un. This test, the ratio test is more commonly stated for positive uk

as
If
uk+1

uk
≤ x < 1 then the series

∑
uk converges (8)

This is one of the more commonly used convergence tests, not because it’s the best, but
because it’s simple and it works a lot of the time.

Integral Test
The integral test is another way to check for convergence or divergence. If f is a decreasing
positive function and you want to determine the convergence of

∑
n f(n), you can look at

the integral
∫∞

dx f(x) and check it for convergence. The series and the integral converge
or diverge together.

1 2 3 4 5

f(1)

f(2)
f(3)
f(4)

f(x)
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From the graph you see that the function f lies between the tops of the upper and
the lower rectangles. The area under the curve of f between n and n + 1 lies between the
areas of the two rectangles. That’s the reason for the assumption that f is decreasing and
positive.

f(n) . 1 >

∫ n+1

n
dx f(x) > f(n+ 1) . 1

Add these inequalities from n = k to n =∞ and you get

f(k) + f(k + 1) + · · · >
∫ k+1

k
+

∫ k+2

k+1
+ · · · =

∫ ∞

k
dx f(x)

> f(k + 1) + f(k + 2) + · · · >
∫ ∞

k+1
dx f(x) > f · · · (9)

The only difference between the infinite series on the left and on the right is one term, so
either everything converges or everything diverges.

You can do better than this and use these inequalities to get a quick estimate of the
sum of a series that would be too tedious to sum by itself. For example

∞∑
1

1

n2
= 1 +

1

22
+

1

32
+

∞∑
4

1

n2

This last sum lies between two integrals.∫ ∞

3
dx

1

x2
>

∞∑
4

1

n2
>

∫ ∞

4
dx

1

x2
(10)

that is, between 1/3 and 1/4. Now I’ll estimate the whole sum by adding the first three
terms explicitly and taking the arithmetic average of these two bounds.

∞∑
1

1

n2
≈ 1 +

1

22
+

1

32
+

1

2

(
1

3
+

1

4

)
= 1.653

The exact sum is more nearly 1.644934066848226, but if you use brute-force addition of the
original series to achieve accuracy equivalent to this 1.653 estimation you will need to take
about 120 terms. This series converges, but not very fast.

Quicker Comparison Test
There is another way to handle the comparison test that works very easily and quickly (if
it’s applicable). Look at the terms of the series for large n and see what the approximate
behavior of the nth term is. That provides a comparison series. This is better shown by an
example:

∞∑
1

n3 − 2n+ 1/n

5n5 + sinn
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For large n, the numerator is essentially n3 and the denominator is essentially 5n5, so for
large n this series is approximately like

∞∑ 1

5n2

More precisely, the ratio of the nth term of this approximate series to that of the first series
goes to one as n→∞. This comparison series converges, so the first one does too. If one of
the two series diverges, then the other does too.

Apply the ratio test to the series for ex.

ex =
∞∑
0

xk/k! so
uk+1

uk
=
xk+1/(k + 1)!

xk/k!
=

x

k + 1

As k → ∞ this quotient approaches zero no matter the value of x. This means that the
series converges for all x.

Absolute Convergence
If a series has terms of varying signs, that should help the convergence. A series is absolutely
convergent if it converges when you replace each term by its absolute value. If it’s absolutely
convergent then it will certainly be convergent when you reinstate the signs. An example of
a series that is convergent but not absolutely convergent is

∞∑
k=1

(−1)k+1 1

k
= 1− 1

2
+

1

3
− . . . = ln(1 + 1) = ln 2 (11)

Change all the minus signs to plus and the series is divergent. (Use the integral test.)
Can you rearrange the terms of an infinite series? Sometimes yes and sometimes no. If

a series is convergent but not absolutely convergent, then each of the two series, the positive
terms and the negative terms, is separately divergent. In this case you can rearrange the
terms of the series to converge to anything you want! Take the series above that converges
to ln 2. I want to rearrange the terms so that it converges to

√
2. Easy. Just start adding

the positive terms until you’ve passed
√

2. Stop and now start adding negative ones until
you’re below that point. Stop and start adding positive terms again. Keep going and you
can get to any number you want.

1 +
1

3
+

1

5
− 1

2
+

1

7
+

1

9
+

1

11
+

1

13
− 1

3
etc.

2.4 Series of Series
When you have a function whose power series you need, there are sometimes easier ways to
the result than a straight-forward attack. Not always, but you should look first. If you need

the expansion of eax2+bx about the origin you can do a lot of derivatives, using the general
form of the Taylor expansion. Or you can say

eax2+bx = 1 + (ax2 + bx) +
1

2
(ax2 + bx)2 +

1

6
(ax2 + bx)3 + · · ·
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and if you need the individual terms, expand the powers of the binomials and collect like
powers of x:

1 + bx+ (a+ b2/2)x2 + (ab+ b3/6)x3 + · · ·

If you’re willing to settle for an expansion about another point, complete the square in the
exponent

eax2+bx = ea(x2+bx/a) = ea(x2+bx/a+b2/4a2)−b2/4a = ea(x+b/2a)2−b2/4a = ea(x+b/2a)2e−b2/4a

= e−b2/4a
[
1 + a(x+ b/2a)2 + a2(x+ b/2a)4/2 + · · ·

]
and this is a power series expansion about the point x0 = −b/2a.

What is the power series expansion of the secant? You can go back to the general
formulation and differentiate a lot or you can use a combination of two known series, the
cosine and the geometric series.

sec x =
1

cosx
=

1

1− 1
2!x

2 + 1
4!x

4 + · · ·
=

1

1−
[

1
2!x

2 − 1
4!x

4 + · · ·
]

= 1 +
[ ]

+
[ ]2

+
[ ]3

+ · · ·

= 1 +
[

1
2!x

2 − 1
4!x

4 + · · ·
]
+
[

1
2!x

2 − 1
4!x

4 + . . .
]2

+ · · ·
= 1 + 1

2!x
2 +

(
− 1

4! + ( 1
2!)

2
)
x4 + · · ·

= 1 + 1
2!x

2 + 5
24x

4 + · · ·

(12)

This is a geometric series, each of whose terms is itself an infinite series. It still beats plugging
into the general formula for the Taylor series Eq. (5).

2.5 Power series, two variables
The idea of a power series can be extended to more than one variable. One way to develop
it is to use exactly the same sort of brute-force approach that I used for the one-variable
case. Assume that there is some sort of infinite series and successively evaluate its terms.

f(x, y) = A+Bx+ Cy +Dx2 + Exy + Fy2 +Gx3 +Hx2y + Ixy2 + Jy3 · · ·

Include all the possible linear, quadratic, cubic, and higher order combinations. Just as with
the single variable, evaluate it at the origin, the point (0, 0).

f(0, 0) = A+ 0 + 0 + · · ·

Now differentiate, but this time you have to do it twice, once with respect to x while y is
held constant and once with respect to y while x is held constant.

∂f

∂x
(x, y) = B + 2Dx+ Ey + · · · then

∂f

∂x
(0, 0) = B

∂f

∂y
(x, y) = C + Ex+ 2Fy + · · · then

∂f

∂y
(0, 0) = C
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Three more partial derivatives of these two equations gives the next terms.

∂2f

∂x2
(x, y) = 2D + 6Gx+ 2Hy · · ·

∂2f

∂x∂y
(x, y) = E + 2Hx+ 2Iy · · ·

∂2f

∂y2
(x, y) = 2F + 2Ix+ 6Jy · · ·

Evaluate these at the origin and you have the values of D, E, and F . Keep going and you
have all the coefficients.

This is awfully cumbersome, but mostly because the crude notation that I’ve used.
You can make it look less messy simply by choosing a more compact notation. If you do it
neatly it’s no harder to write the series as an expansion about any point, not just the origin.

f(x, y) =
∞∑

m,n=0

Amn(x− a)m(y − b)n (13)

Differentiate this m times with respect to x and n times with respect to y, then set x = a
and y = b. Only one term survives and that is

∂m+nf

∂xm∂yn
(a, b) = m!n!Amn

I can use subscripts to denote differentiation so that ∂f
∂x is fx and ∂3f

∂x2∂y
is fxxy. Then

the two-variable Taylor expansion is

f(x, y) = f(0)+fx(0)x+ fy(0)y+

1

2

[
fxx(0)x2 + 2fxy(0)xy + fyy(0)y

2
]
+

1

3!

[
fxxx(0)x3 + 3fxxy(0)x

2y + 3fxyy(0)xy
2 + fyyy(0)y

3
]
+ · · · (14)

Again put more order into the notation and rewrite the general form using Amn as

Amn =
1

(m+ n)!

(
(m+ n)!

m!n!

)
∂m+nf

∂xm∂yn
(a, b) (15)

That factor in parentheses is variously called the binomial coefficient or a combinatorial
factor. Standard notations for it are

m!

n!(m− n)!
= mCn =

(
m

n

)
(16)

The binomial series, Eq. (4), for the case of a positive integer exponent is

(1 + x)m =
m∑

n=0

(
m

n

)
xn, or more symmetrically

(a+ b)m =
m∑

n=0

(
m

n

)
anbm−n (17)
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(a+ b)2 = a2 + 2ab+ b2, (a+ b)3 = a3 + 3a2b+ 3ab2 + b3,

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4, etc.

Its relation to combinatorial analysis is that if you ask how many different ways can you
choose n objects from a collection of m of them, mCn is the answer.

2.6 Stirling’s Approximation
The Gamma function for positive integers is a factorial. A clever use of infinite series and
Gaussian integrals provides a useful approximate value for the factorial of large n.

n! ∼
√

2πnnne−n for large n (18)

Start from the Gamma function of n+ 1.

n! = Γ(n+ 1) =

∫ ∞

0
dt tne−t =

∫ ∞

0
dt e−t+n ln t

The integrand starts at zero, increases, and drops back down to zero as t→∞. The graph
roughly resembles a Gaussian, and I can make this more precise by expanding the exponent
around the point where it is a maximum. The largest contribution to the whole integral
comes from the region near this point. Differentiate the exponent to find the maximum:

t

t = n = 5

t5e−t

21.06

d

dt

(
− t+ n ln t

)
= −1 +

n

t
= 0 gives t = n

Expand about this point

f(t) = −t+ n ln t = f(n) + (t−n)f ′(n) + (t− n)2f ′′(n)/2 + · · ·
= −n+n lnn+ 0 + (t− n)2(−n/n2)/2 + · · ·

Keep terms only to the second order and the integral is approximately

n! ∼
∫ ∞

0
dt e−n+n ln n−(t−n)2/2n = nne−n

∫ ∞

0
dt e−(t−n)2/2n (19)

At the lower limit of the integral, t = 0, this integrand is e−n/2, so if n is even moderately
large then extending the range of the integral to the whole line −∞ to +∞ won’t change
the final answer much.

nne−n

∫ ∞

−∞
dt e−(t−n)2/2n = nne−n

√
2πn
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where the final integral is just the simplest of the Gaussian integrals in Eq. (1.10).
To see how good this is, try a few numbers

n n! Stirling ratio difference
1 1 0.922 0.922 0.078
2 2 1.919 0.960 0.081
5 120 118.019 0.983 1.981

10 3628800 3598695.619 0.992 30104.381

You can see that the ratio of the exact to the approximate result is approaching one even
though the difference is getting very large. This is not a handicap, as there are many
circumstances for which this is all you need. I derived this assuming that n is large, but
notice that the result is not too bad even for modest values. The error is less than 2% for
n = 5. There are even some applications, especially in statistical mechanics, in which you
can make a still cruder approximation and drop the factor

√
2πn.

Asymptotic
You may have noticed the symbol that I used in Eqs. (18) and (19). “∼” doesn’t mean
“approximately equal to” or “about,” because as you see here the difference between n! and
the Stirling approximation grows with n. That the ratio goes to one is the important point
here and it gets this special symbol, “asymptotic to.”

Probability Distribution
In section 1.4 the equation (1.17) describes the distribution of the results when you toss a
coin. It’s straight-forward to derive this from Stirling’s formula. In fact it is just as easy to
do a version of it for which the coin is biased, or more generally, for any case that one of the
choices is more likely than the other.

Suppose that the two choices will come up at random with fractions a and b, where
a + b = 1. You can still picture it as a coin toss, but using a very unfair coin. Perhaps
a = 1/3 of the time it comes up tails and b = 2/3 of the time it comes up heads. If you toss
two coins, the possibilities are

TT HT TH HH

and the fractions of the time that you get each pair are respectively

a2 ba ab b2

This says that the fraction of the time that you get no heads, one head, or two heads are

a2 = 1/9, 2ab = 4/9, b2 = 4/9 with total (a+ b)2 = a2 + 2ab+ b2 = 1

Generalize this to the case where you throw N coins at a time and determine how
often you expect to see 0, 1, . . . , N heads. Equation (17) says

(a+ b)N =
N∑

k=0

(
N

k

)
akbN−k where

(
N

k

)
=

N !

k!(N − k)!

When you make a trial in which you toss N coins, you expect that the “a” choice will come
up N times only the fraction aN of the trials. All tails and no heads. Compare problem 27.
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The problem is now to use Stirling’s formula to find an approximate result for the
terms of this series. This is the fraction of the trials in which you turn up k tails and N − k
heads.

akbN−k N !

k!(N − k)!
∼ akbN−k

√
2πN NNe−N

√
2πk kke−k

√
2π(N − k) (N − k)N−ke−(N−k)

= akbN−k 1√
2π

√
N

k(N − k)
NN

kk(N − k)N−k
(20)

The complicated parts to manipulate are the factors with all the exponentials of k in them.
Pull them out from the denominator for separate handling, leaving the square roots behind.

kk(N − k)N−ka−kb−(N−k)

The next trick is to take a logarithm and to do all the manipulations on it.

ln→ k ln k + (N − k) ln(N − k)− k ln a− (N − k) ln b = f(k) (21)

The original function is a maximum when this denominator is a minimum. When the
numbers N and k are big, you can treat k as a continuous variable and differentiate with
respect to it. Then set this derivative to zero and finally, expand in a power series about
that point.

d

dk
f(k) = ln k + 1− ln(N − k)− 1− ln a+ ln b = 0

ln
k

N − k
= ln

a

b
,

k

N − k
=
a

b
, k = aN

At this point, what is the second derivative?

d2

dk2
f(k) =

1

k
+

1

N − k

when k = aN, f ′′(k) =
1

k
+

1

N − k
=

1

aN
+

1

N − aN
=

1

aN
+

1

bN
=

1

abN

The power series for f(k) is

f(k) = f(aN) + (k − aN)f ′(aN) +
1

2
(k − aN)2f ′′(aN) + · · ·

= N lnN +
1

2abN
(k − aN)2 + · · ·

To substitute this back into Eq. (20), take its exponential. Then because this will be a fairly
sharp maximum, only the values of k near to aN will be significant. That allows me to use
this central value of k in the slowly varying square root coefficient and also I can neglect
higher order terms in the power series expansion. Let δ = k−aN . The result is the Gaussian
distribution.

1√
2π

√
N

aN(N − aN)

NN

NNeδ
2/2abN

=
1√

2abNπ
e−δ2/2abN (22)



2—Infinite Series 35

When a = b = 1/2, this reduces to Eq. (1.17).
When you accumulate N trials at a time (large N) and then look for the distribution

in these cumulative results, you will always get a Gaussian. This is the central limit theorem,
which says that whatever set of probabilities that you start with, not just a coin toss, you
will always get a Gaussian by averaging the data. If you listen to the clicks of a counter that
records radioactive decays, they sound (and are) random, and the time interval between the
clicks varies greatly. If you set the electronics to click at only every tenth count, the result
will sound regular, and the time inteval between clicks will vary only slightly.

2.7 Useful Tricks
There are a variety of ways to manipulate series, and while some of them are simple they are
probably not the sort of thing you’d think of until you’ve seen them once. Example: What
is the sum of

1− 1

3
+

1

5
− 1

7
+

1

9
− · · ·?

Introduce a parameter that you can manipulate, like the parameter you sometimes introduce
to do integrals as in Eq. (1.5). Consider the series with the parameter x in it.

f(x) = x− x3

3
+
x5

5
− x7

7
+
x9

9
− · · · (23)

If I differentiate this with respect to x I get

f ′(x) = 1− x2 + x4 − x6 + x8 − · · ·

That looks a bit like the geometric series except that it has only even powers and the signs
alternate. Is that too great an obstacle? If 1/(1 − x) has only the plus signs, then change
x to −x, and 1/(1 + x) alternates in sign. Instead of x as a variable, use x2, then you get
exactly what you’re looking for.

f ′(x) = 1− x2 + x4 − x6 + x8 − · · · = 1

1 + x2

Now to get back to the original series, which is f(1) recall, all that I need to do is integrate
this expression for f ′(x). The lower limit is zero, because f(0) = 0.

f(1) =

∫ 1

0
dx

1

1 + x2
= tan−1 x

∣∣∣∣1
0

=
π

4

This series converges so slowly however that you would never dream of computing π this
way. If you take 100 terms, the next term is 1/201 and you can get a better approximation
to π by using 22/7.

The geometric series is 1+x+x2 +x3 + · · ·, but what if there’s an extra factor in front
of each term?

f(x) = 2 + 3x+ 4x2 + 5x3 + · · ·
If I multiply this by x I get 2x+3x2 +4x3 +5x4 + · · · and that starts to look like a derivative.

xf(x) = 2x+ 3x2 + 4x3 + 5x4 + · · · = d

dx

(
x2 + x3 + x4 + · · ·

)
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Again, the geometric series pops up, though missing a couple of terms.

xf(x) =
d

dx

(
1 + x+ x2 + x3 + · · · − 1− x

)
=

d

dx

[
1

1− x
− 1− x

]
=

1

(1− x)2
− 1

The final result is then

f(x) =
1

x

[
1− (1− x)2

(1− x)2

]
=

2− x
(1− x)2

2.8 Diffraction
When light passes through a very small opening it will be diffracted so that it will spread
out in a characteristic pattern of higher and lower intensity. The analysis of the result uses
many of the tools that you’ve looked at in the first two chapters, so it’s worth showing the
derivation first.

The light that is coming from the left side of the figure has a wavelength λ and wave
number k = 2π/λ. The light passes through a narrow slit of width = a. The Huygens
construction for the light that comes through the slit says that you can effectively treat each
little part of the slit as if it is a source of part of the wave that comes through to the right.
(As a historical note, the mathematical justification for this procedure didn’t come until
about 150 years after Huygens proposed it, so if you think it isn’t obvious why it works,
you’re right.)

y

dy

y sin θ

θ

r

r0

Call the coordinate along the width of the slit y, where 0 < y < a. I want to find
the total light wave that passes through the slit and that heads at the angle θ away from
straight ahead. The light that passes through between coordinates y and y + dy is a wave

Ady cos(kr − ωt)

Its amplitude is proportional to the amplitude of the incoming wave, A, and to the width dy
that I am considering. The coordinate along the direction of the wave is r. The total wave
that will head in this direction is the sum (integral) over all these little pieces of the slit.

Let r0 be the distance measured from the bottom of the slit to where the light is
received far away. I can find the value of r by doing a little trigonometry to get

r = r0 − y sin θ

The total wave to be received is now the integral∫ a

0
Ady cos

(
k(r0 − y sin θ)− ωt

)
= A

sin
(
k(r0 − y sin θ)− ωt

)
−k sin θ

∣∣∣∣∣
a

0
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Put in the limits to get

A

−k sin θ

[
sin
(
k(r0 − a sin θ)− ωt

)
− sin

(
kr0 − ωt

)]
I need a trigonometric identity here, one that you can easily derive with the techniques of
complex algebra in chapter 3.

sin x− sin y = 2 sin

(
x− y

2

)
cos

(
x+ y

2

)
(24)

Use this and the light amplitude is

2A

−k sin θ
sin

(
−ka

2
sin θ

)
cos
(
k(r0 −

a

2
sin θ)− ωt

)
(25)

The wave is the cosine factor. It is a cosine of (k . distance − ωt), and the distance
in question is the distance to the center of the slit. This is then a wave that appears to be
coming from the middle of the slit, but with an amplitude that varies strongly with angle.
That variation comes from the other factors in Eq. (25).

It’s the variation with angle that I want to look at. The intensity of the wave, the
power per area, is proportional to the square of the wave’s amplitude. I’m going to ignore all
the constant factors, so I won’t worry about the constant of proportionality. The intensity
is then (up to a factor)

I =
sin2

(
(ka/2) sin θ

)
sin2 θ

(26)

For light, the wavelength is about 400 to 700 nm, and the slit may be a millimeter or a tenth
of a millimeter. The size of ka/2 is then about

ka/2 = πa/λ ≈ 3 . 0.1mm/500 nm ≈ 1000

When you plot this intensity versus angle, the numerator vanishes when the argument of
sin2() is nπ, with n an integer, +, −, or 0. This says that the intensity vanishes in these
directions except for θ = 0. In that case the denominator vanishes too, so you have to look
closer. For the simpler case that θ 6= 0, these angles are

nπ =
ka

2
sin θ ≈ ka

2
θ n = ±1, ±2, . . .

Because ka is big, you have many values of n before the approximation that sin θ = θ
becomes invalid. You can rewrite this in terms of the wavelength because k = 2π/λ.

nπ =
2πa

2λ
θ, or θ = nλ/a

What happens at zero? Use power series expansions to evaluate this indeterminate
form. The first term in the series expansion of the sine is θ itself, so

I =
sin2

(
(ka/2) sin θ

)
sin2 θ

−→
(
(ka/2)θ

)2
θ2

=

(
ka

2

)2

(27)
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What is the behavior of the intensity near θ = 0? Again, use power series expansions,
but keep another term

sin θ = θ − 1

6
θ3 + · · · , and (1 + x)α = 1 + αx+ · · ·

Remember, ka/2 is big! This means that it makes sense to keep only one term of the
sine expansion for sin θ itself, but you’d better keep an extra term in the expansion of the
sin2(ka . . .).

I ≈
sin2

(
(ka/2)θ

)
θ2

=
1

θ2

[(
ka

2
θ

)
− 1

6

(
ka

2
θ

)3

+ · · ·

]2

=
1

θ2

(
ka

2
θ

)2
[
1− 1

6

(
ka

2
θ

)2

+ · · ·

]2

=

(
ka

2

)2
[
1− 1

3

(
ka

2
θ

)2

+ · · ·

]
When you use the binomial expansion, put the binomial in the standard form, (1 + x) as I
did in the second line of these equations. What is the shape of this function? Forget all the
constants, and it looks like 1− θ2. That’s a parabola.

The dots are the points where the intensity goes to zero, nλ/a. Between these directions
it reaches a maximum. How big is it there ? These maxima are about halfway between the
points where (ka sin θ)/2 = nπ. This is

ka

2
sin θ = (n+ 1/2)π, n = ±1, ±2, . . .

At these angles the value of I is, from Eq. (26),

I =

(
ka

2

)2(
1

(2n+ 1)π/2

)2

The intensity at θ = 0 is by Eq. (27), (ka/2)2, so the maxima off to the side have intensities
that are smaller than this by factors of

1

9π2/4
= 0.045,

1

25π2/4
= 0.016, . . .
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2.9 Checking Results
When you solve any problem, or at least think that you’ve solved it, you’re not done. You
still have to check to see whether your result makes any sense. If you’re dealing with a
problem whose solution is in the back of the book then do you think that the author is
infallible? If there is no back of the book and you’re working on something that you would
like to publish, do you think that you’re infallible? Either way you can’t simply assume that
you’ve made no mistakes and you have to look at your answer skeptically.

There’s a second reason, at least as important, to examine your results: that’s where
you can learn some physics and gain some intuition. Solving a complex problem and getting a
complicated answer may involve a lot of mathematics but you don’t usually gain any physical
insight from doing it. When you analyze your results you can gain an understanding of how
the mathematical symbols are related to physical reality. Often an approximate answer
to a complicated problem can give you more insight than an exact one, especially if the
approximate answer is easier to analyze.

The first tool that you have to use at every opportunity is dimensional analysis. If you
are computing a length and your result is a velocity then you’re wrong. If you have something
in your result that involves adding a time to an acceleration or an angle to a distance, then
you’ve made a mistake; go back and find it. You can do this sort of analysis everywhere,
and it is the one technique that I know that provides an automatic error finding mechanism.
If an equation is dimensionally inconsistent, backtrack a few lines and see whether the units
are wrong there too. If they are correct then you know that your error occurred between
those two lines; then further narrow the region where the mistake happened by looking for
the place at which the dimensions changed from consistent to inconsistent and that’s where
the mistake happened.

The second tool in your analysis is to examine all the parameters that occur in the
result and to see what happens when you vary them. Especially see what happens when you
push them to an extreme value. This is best explained by some examples. Start with some
simple mechanics to see the procedure.

m1
ax

M

m2

Two masses are attached by a string of negligible mass and that is wrapped around
a pulley of mass M so that it can’t slip on the pulley. Analyze them to determine what is
wrong with each. Assume that there is no friction between m1 and the table and that the
string does not slip on the pulley.

(a) ax =
m2 −m1

m2 +m1
g (b) ax =

m2

m2 +m1 −M/2
g (c) ax =

m2 −M/2

m2 +m1 +M/2
g

(a) If m1 � m2, this is negative, meaning that the motion of m1 is being slowed down.
But there’s no friction or other such force to do this.
OR If m1 = m2, this is zero, but there are still unbalanced forces causing these masses to
accelerate.
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(b) If the combination of masses is just right, for example m1 = 1kg, m2 = 1kg,
and M = 2kg, the denominator is zero. The expression for ax blows up — a very serious
problem.
OR If M is very large compared to the other masses, the denominator is negative, meaning
that ax is negative and the acceleration is a braking. Without friction, this is impossible.

(c) If M � m1 and m2, the numerator is mostly −M/2 and the denominator is
mostly +M/2. This makes the whole expression negative, meaning that m1 and m2 are
slowing down. There is no friction to do this, and all the forces are the direction to cause
acceleration toward positive x.
OR If m2 = M/2, this equals zero, saying that there is no acceleration, but in this system,
ax will always be positive.

The same picture, but with friction µk between m1 and the table.

(a) ax =
m2

m2 + µkm1 +M/2
g (b) ax =

m2 − µkm1

m2 −M/2
g (c) ax =

m2

m2 + µkm1 −M/2
g

(a) If µk is very large, this approaches zero. Large friction should cause m1 to brake
to a halt quickly with very large negative ax.
OR If there is no friction, µk = 0, then m1 plays no role in this result but if it is big then
you know that it will decrease the downward acceleration of m2.

(b) The denominator can vanish. If m2 = M/2 this is nonsense.
(c) This suffers from both of the difficulties of (a) and (b).

a
b

c

Electrostatics Example
Still another example, but from electrostatics this time: Two thin circular rings have radii
a and b and carry charges Q1 and Q2 distributed uniformly around them. The rings are
positioned in two parallel planes a distance c apart and with axes coinciding. The problem
is to compute the force of one ring on the other, and for the single non-zero component the
answer is (perhaps)

Fz =
Q1Q2c

2π2ε0

∫ π/2

0

dθ[
c2 + (b− a)2 + 4ab sin2 θ

]3/2
. (28)

Is this plausible? First check the dimensions! The integrand is (dimensionally) 1/(c2)3/2 =
1/c3, where c is one of the lengths. Combine this with the factors in front of the integral
and one of the lengths (c’s) cancels, leaving Q1Q2/ε0c

2. This is (again dimensionally) the
same as Coulomb’s law, q1q2/4πε0r

2, so it passes this test.
When you’ve done the dimensional check, start to consider the parameters that control

the result. The numbers a, b, and c can be anything: small, large, or equal in any combina-
tion. For some cases you should be able to say what the answer will be, either approximately
or exactly, and then check whether this complicated expression agrees with your expectation.
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If the rings shrink to zero radius this has a = b = 0, so Fz reduces to

Fz →
Q1Q2c

2π2ε0

∫ π/2

0
dθ

1

c3
=
Q1Q2c

2π2ε0

π

2c3
=

Q1Q2

4πε0c2

and this is the correct expression for two point charges a distance c apart.
If c� a or b then this is really not very different from the preceding case, where a and

b are zero.
If a = 0 this is

Fz →
Q1Q2c

2π2ε0

∫ π/2

0

dθ[
c2 + b2

]3/2
=
Q1Q2c

2π2ε0

π/2[
c2 + b2

]3/2
=

Q1Q2c

4πε0
[
c2 + b2

]3/2
(29)

The electric field on the axis of a ring is something that you can compute easily. The only
component of the electric field at a point on the axis is itself along the axis. You can prove
this by assuming that it’s false. Suppose that there’s a lateral component of ~E and say that
it’s to the right. Rotate everything by 180◦ about the axis and this component of ~E will
now be pointing in the opposite direction. The ring of charge has not changed however, so
~E must be pointing in the original direction. This supposed sideways component is equal to
minus itself, and the only thing that’s equal to minus itself is zero.

All the contributions to ~E except those parallel the axis add to zero. Along the axis
each piece of charge dq contributes the component

b

c
dq

4πε0[c2 + b2]
. c√

c2 + b2

The first factor is the magnitude of the field of the point charge at a distance r =
√
c2 + b2

and the last factor is the cosine of the angle between the axis and r. Add all the dq together
and you get Q1. Multiply that by Q2 and you have the force on Q2 and it agrees with the
expressions Eq. (29)

If c→ 0 then Fz → 0 in Eq. (28). The rings are concentric and the outer ring doesn’t
push the inner ring either up or down.

But wait. In this case, where c → 0, what if a = b? Then the force should approach
infinity instead of zero because the two rings are being pushed into each other. If a = b then

Fz =
Q1Q2c

2π2ε0

∫ π/2

0

dθ[
c2 + 4a2 sin2 θ

]3/2
(30)

If you simply set c = 0 in this equation you get

Fz =
Q1Q20

2π2ε0

∫ π/2

0

dθ[
4a2 sin2 θ

]3/2
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The numerator is zero, but look at the integral. The variable θ goes from 0 to π/2, and at
the end near zero the integrand looks like

1[
4a2 sin2 θ

]3/2
≈ 1[

4a2θ2
]3/2

=
1

8a3θ3

Here I used the first term in the power series expansion of the sine. The integral near the
zero end is then approximately ∫ ...

0

dθ

θ3
=
−1

2θ2

∣∣∣∣...
0

and that’s infinite. This way to evaluate Fz is indeterminate: 0 .∞ can be anything. It
doesn’t show that this Fz gives the right answer, but it doesn’t show that it’s wrong either.

Estimating a tough integral
Although this is more difficult, even tricky, I’m going to show you how to examine this case
for small values of c and not for c = 0. The problem is in figuring out how to estimate the
integral (30) for small c, and the key is to realize that the only place the integrand gets big
is in the neighborhood of θ = 0. The trick then is to divide the range of integration into two
pieces ∫ π/2

0

dθ[
c2 + 4a2 sin2 θ

]3/2
=

∫ Λ

0
+

∫ π/2

Λ

For any positive value of Λ the second piece of the integral will remain finite even as c→ 0.
This means that in trying to estimate the way that the whole integral approaches infinity I
can ignore the second part of the integral. Now I choose Λ small enough that for 0 < θ < Λ
I can use the approximation sin θ = θ, the first term in the series for sine. (Perhaps Λ = 0.1
or so.)

for small c,

∫ π/2

0

dθ[
c2 + 4a2 sin2 θ

]3/2
≈
∫ Λ

0

dθ[
c2 + 4a2θ2

]3/2
+ a constant

This is an elementary integral. Let θ = (c/2a) tanφ.∫ Λ

0

dθ[
c2 + 4a2θ2

]3/2
=

∫ Λ′

0

(c/2a) sec2 φdφ

[c2 + c2 tan2 φ]3/2
=

1

2ac2

∫ Λ′

0
cosφ =

1

2ac2
sin Λ′

The limit Λ′ comes from Λ = (c/2a) tan Λ′, so this implies tan Λ′ = 2aΛ/c. Now given the
tangent of an angle, I want the sine — that’s the first page of chapter one.

sin Λ′ =
2aΛ/c√

1 + (2aΛ/c)2
=

2aΛ√
c2 + 4a2Λ2

As c → 0, this approaches one. Put all of this together and you have the behavior of the
integral in Eq. (30) for small c.∫ π/2

0

dθ[
c2 + 4a2 sin2 θ

]3/2
∼ 1

2ac2
+ a constant
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Insert this into Eq. (30) to get

Fz ∼
Q1Q2c

2π2ε0
. 1

2ac2
=

Q1Q2

4π2ε0ac

Now why should I believe this any more than I believed the original integral? When
you are very close to one of the rings, it will look like a long, straight line charge and the
linear charge density on it is then λ = Q1/2πa. What is the electric field of an infinitely
long uniform line charge? Er = λ/2πε0r. So now at the distance c from this line charge you
know the E-field and to get the force on Q2 you simply multiply this field by Q2.

Fz should be
λ

2πε0c
Q2 =

Q1/2πa

2πε0c
Q2

and that’s exactly what I found in the preceding equation. After all these checks I think that
I may believe the result, and more than that you begin to get an intuitive idea of what the
result ought to look like. That’s at least as valuable. It’s what makes the difference between
understanding the physics underlying a subject and simply learning how to manipulate the
mathematics.



44 2—Infinite Series

Problems

2.1 If you borrow $200,000 to buy a house and will pay it back in monthly installments over
30 years at an annual interest rate of 6%, what is your monthly payment and what is the
total money that you have paid (neglecting inflation)? To start, you have N payments p
with monthly interest i and after all N payments your unpaid balance must reach zero. The
initial loan is L and you pay at the end of each month.

((L(1 + i)− p)(1 + i)− p)(1 + i)− p · · · N times = 0

Now carry on and find the general expression for the monthly payment.
Does your general result for arbitrary N reduce to the correct value if you pay everything
back at the end of one month? [L(1 + i) = p]
For general N , what does your result become if the interest rate is zero? Ans: $1199.10

2.2 In the preceding problem, suppose that there is an annual inflation of 2%. What is
now the total amount of money that you’ve paid in constant dollars? That is, one hundred
dollars in the year 2010 would be worth only $100/1.0210 = $82.03 as expressed in year-2000
dollars. Ans: $324211.

2.3 Derive all the power series that you’re supposed to memorize, Eq. (4).

2.4 Sketch graphs of the functions

e−x2

xe−x2

x2e−x2

e−|x| xe−|x| x2e−|x| e−1/x e−1/x2

2.5 The sample series of Eq. (7) has a simple graph (x2 between −L and +L) Sketch graphs
of one, two, three terms of this series to see if the graph is headed toward what is supposed
to be the answer.

2.6 Evaluate this same Fourier series for x2 at x = L; the answer is supposed to be L2.
Rearrange the result from the series and show that you can use it to evaluate ζ(2), Eq. (6).
Ans: π2/6

2.7 Determine the domain of convergence for all the series in Eq. (4).

2.8 Determine the Taylor series for coshx and sinh x.

2.9 Working strictly by hand, evaluate 7
√

0.999. Also
√

50.

2.10 Determine the next, x6, term in the series expansion of the secant. Ans: 61x6/720
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2.11 The power series for the tangent is not as neat and simple as for the sine and cosine.
You can derive it by taking successive derivatives as done in the text or you can use your
knowledge of the series for the sine and cosine, and the geometric series.

tan x =
sin x

cosx
=
x− x3/3! + · · ·
1− x2/2! + · · ·

=
[
x− x3/3! + · · ·

][
1− x2/2! + · · ·

]−1

Use the expansion for the geometric series to place all the x2, x4, etc. terms into the
numerator. Then collect the like powers to obtain the series at least through x5. Ans: x +
x3/3 + 2x5/15 + 17x7/315 + · · ·

2.12 What is the series expansion for csc x = 1/ sin x? As in the previous problem, use your
knowledge of the sine series and the geometric series to get this one at least through x5.
Note: the first term in this series is 1/x. Ans: 1/x+ x/6 + 7x3/360 + 31x5/15120 + · · ·

2.13 The exact relativistic expression for the kinetic energy of an object with non-zero mass
is

K = mc2

[
1√

1− v2/c2
− 1

]
where c is the speed of light in vacuum. If the speed v is small compared to the speed of light,
find an approximate expression for K to show that it reduces to the Newtonian expression
for the kinetic energy. What is the next term in the expansion and how large the speed v
must be in order that this correction term is 10% of the Newtonian expression for the kinetic
energy? Ans: v ≈ 0.36 c

2.14 Use series expansions to evaluate

lim
x→0

1− cosx

1− coshx
and lim

x→0

sin kx

x

2.15 Evaluate using series

lim
x→0

(
1

sin2 x
− 1

x2

)
Now do it again, setting up the algebra differently and finding an easier (or harder) way.
Ans: 1/3

2.16 For some more practice with series, evaluate

lim
x→0

(
2

x
+

1

1−
√

1 + x

)
Ans: Check experimentally with a few values of x on a pocket calculator.

2.17 Expand the integrand and find the power series expansion for

ln(1 + x) =

∫ x

0

dt

1 + t



46 2—Infinite Series

2.18 The error function erf(x) is defined by an integral. Expand the integrand, integrate
term by term, and develop a power series representation for erf. For what values of x does
it converge? Evaluate erf(1) from this series and compare it to the result of problem 1.34.
Also, as further validation of the integral in problem 1.13, do the power series expansion of
both sides and verify the expansions of the two sides of the equation.

2.19 Verify that the combinatorial factor mCn is really what results for the coefficients when
you specialize the binomial series Eq. (4) to the case that the exponent is an integer.

2.20 Determine the double power series representation about (0, 0) of 1
/
(1−x/a)(1− y/b)

2.21 Determine the double power series representation about (0, 0) of 1
/
(1− x/a− y/b)

2.22 Use a pocket calculator that can handle 100! and find the ratio of Stirling’s approx-
imation to the exact value. You may not be able to find the difference of two such large
numbers. An improvement on the basic Stirling’s formula is

√
2πnnne−n

(
1 +

1

12n

)
What is the ratio of approximate to exact for n = 1, 2, 10?
Ans: 0.99898, 0.99948, . . .

2.23 Evaluate the sum
∑∞

1 1/n(n + 1). To do this, write the single term 1/n(n + 1) as
a combination of two fractions with denominator n and (n + 1) respectively, then start to
write out the stated infinite series to a few terms to see the pattern. When you do this you
may be tempted to separate it into two series, of positive and of negative terms. Examine
the problem of convergence and show why this is wrong. Ans: 1

2.24 You can sometimes use the result of the previous problem to improve the convergence
of a slow-converging series. The sum

∑∞
1 1/n2 converges, but not very fast. If you add zero

to it you don’t change the answer, but if you’re clever about how you add it you can change
this into a much faster converging series. Add 1−

∑∞
1 1/n(n+1) to this series and combine

the sums.

2.25 The electric potential from one point charge is kq/r. For two point charges, you add
the potentials of each: kq1/r1 + kq2/r2. Place a charge −q at the origin; place a charge +q
at position (x, y, z) = (0, 0, a). Write the total potential from these at an arbitrary position
P with coordinates (x, y, z). Now suppose that a is small compared to the distance of P to

the origin
(
r =

√
x2 + y2 + z2

)
and expand your result to the first non-vanishing power of

a, or really of a/r. This is the potential of an electric dipole. Also express your answer in
spherical coordinates. Ans: kqa cos θ/r2
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2.26 Do the previous problem, but with charge −2q at the origin and charges +q at each
of the two points (0, 0, a) and (0, 0,−a). Again, you’re looking for the potential at a point
far away from the charges, and up to the lowest non-vanishing power of a. In effect you’re
doing a series expansion in a/r and keeping the first surviving term. Also express the result
in spherical coordinates. The angular dependence should be proportional to P2(cos θ) =
3
2 cos2 θ − 1

2 , a “Legendre polynomial.” This potential is that of a linear quadrupole.

2.27 The combinatorial factor Eq. (16) is supposed to be the number of different ways of
choosing n objects out of a set of m objects. Explicitly verify that this gives the correct
number of ways for m = 1, 2, 3, 4. and all n from zero to m.

2.28 Pascal’s triangle is a visual way to compute the values of mCn. Start with the single
digit 1 on the top line. Every new line is computed by adding the two neighboring digits on
the line above. (At the end of the line, treat the empty space as a zero.)

1

1 1

1 2 1

1 3 3 1

Write the next couple of lines of the triangle and then prove that this algorithm works, that
is that the mth row is the mCn where the top row has m = 0. Mathematical induction is the
technique that I recommend.

2.29 Sum the series
1

2!
+

2

3!
+

3

4!
+ · · ·

Ans: 1

2.30 You know the power series representation for the exponential function, but now apply
it in a slightly different context. Write out the power series for the exponential, but with an
argument that is a differential operator. The letter h represents some fixed number; interpret
the square of d/dx as d2/dx2 and find

eh
d
dxf(x)

Interpret the terms of the series and show that the value of this is f(x+ h).

2.31 The Doppler effect for sound with a moving source and for a moving observer have
different formulas. The Doppler effect for light, including relativistic effects is different still.
Show that for low speeds they are all about the same.

f ′ = f
v − vo
v

f ′ = f
v

v + vs
f ′ = f

√
1− v/c
1 + v/c

The symbols have various meanings: v is the speed of sound in the first two, with the other
terms being the velocity of the observer and the velocity of the source. In the third equation
c is the speed of light and v is the velocity of the observer. And no, 1 = 1 isn’t good enough;
you should get these at least to first order in the speed.
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2.32 In the equation (26) for the light diffracted through a narrow slit, the width of the
central maximum is dictated by the angle at the first dark region. How does this angle vary
as you vary the width of the slit, a? What is this angle if a = 0.1mm and λ = 700 nm? And
how wide will the central peak be on a wall 5meters from the slit? Take this width to be
the distance between the first dark regions on either side of the center.

2.33 An object is a distance d below the surface of a medium with index of refraction n.
(For example, water.) When viewed from directly above the object in air (i.e. use small angle
approximation), the object appears to be a distance below the surface given by (maybe) one
of the following expressions. Show why most of these expressions are implausible; that is,
give reasons for eliminating the wrong ones.

(1)
d
√

1 + n2

n
(2)

dn√
1 + n2

(3)nd (4)
d

n
(5)

dn2

√
1 + n2

d
ay

2.34 A mass m1 hangs from a string that is wrapped around a pulley of mass M . As the
mass m1 falls with acceleration ay, the pulley rotates. An anonymous source claims that
the acceleration of m1 is one of the following answers. Examine them to determine if any is
plausible. That is, examine each and show why it could not be correct. NOTE: solving the
problem and then seeing if any of these agree is not what I want.

(1) (2) (3)

ay =
Mg

m1 −M
ay =

Mg

m1 +M
ay =

m1g

M

2.35 Combine two other series to get the series for ln(cos θ) about θ = 0.

2.36 Subtract the series for ln(1 − x) and ln(1 + x). For what range of x does this series
converge? For what range of arguments of the logarithm does it converge?

R θ

p q

2.37 Light travels from a point on the left (p) to a point
on the right (q), and on the left it is in vacuum while
on the right of the spherical surface it is in glass with an
index of refraction n. The radius of the spherical surface
is R and you can parametrize the point on the surface by
the angle θ from the center of the sphere. Compute the
time it takes light to travel on the indicated path (two
straight line segments) as a function of the angle θ.
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Expand the time through second order in a power series
in θ and show that the function T (θ) has a minimum if the distance q is small enough, but
that it switches to a maximum when q exceeds a particular value.
This position is the focus.

2.38 A function is defined by the integral

f(x) =

∫ x

0

dt

1− t2

Expand the integrand with the binomial expansion and derive the power (Taylor) series
representation for f about x = 0. Also make the hyperbolic substitution to evaluate it in
closed form.

R θ

p
q

2.39 Light travels from a point on the right (p), hits a
spherically shaped mirror and goes to a point (q). The
radius of the spherical surface is R and you can parametrize
the point on the surface by the angle θ from the center of
the sphere. Compute the time it takes light to travel on the
indicated path (two straight line segments) as a function
of the angle θ.
Expand the time through second order in a power series in
θ and show that the function T (θ) has a minimum if the
distance q is small enough, but that it switches to a maximum when q exceeds a particular
value.
This is the focus.

2.40 The quadratic equation ax2+bx+c = 0 is almost a linear equation if a is small enough:
bx+ c = 0⇒ x = −c/b. You can get a solution iteratively by rewriting the equation as

x = −c
b
− a

b
x2

Solve this by neglecting the second term, then with this approximate x1 get an improved
value of the root by

x2 = −c
b
− a

b
x2

1

and you can repeat the process. For comparison take the exact solution and do a power
series expansion on it for small a. See if the results agree.
Where does the other root come from? That x is very large, so the first two terms in the
quadratic are the big ones and must nearly cancel. ax2 + bx = 0 so x = −b/a. Rearrange
the equation so that you can iterate it.

x = − b
a
− c

ax

Iterate using this and compare it to the series expansion of the exact solution. Solve 0.001x2+
x+ 1 = 0.
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2.41 Evaluate the limits

lim
x→0

sin x− tan x

x
, lim

x→0

sin x− tan x

x2
, lim

x→0

sin x− tan x

x3
,

2.42 Fill in the missing steps in the derivation of Eq. (22).

2.43 Is the result in Eq. (22) normalized properly? What is its integral dδ over all δ? Ans: 1

2.44 A political survey asks 1500 people randomly selected from the entire country whom
they will vote for as dog-catcher-in-chief. The results are 49.0% for I. Hulk and 51.0%
for Spiderman. Assuming these numbers are representative, what is the probability that
Mr. Hulk will win the final vote? What would the answer be if the survey had asked 150 or
15000 people with the same 49-51 results? Ans: 22% = 0.5

(
1− erf(15/27.38)

)
2.45 For the function defined in problem 38, what is its behavior near x = 1? Compare this

result to equation (1.4). Note: the integral is
∫ Λ
0 +

∫ x
Λ . Also, 1 − t2 = (1 + t)(1 − t), and

this ≈ 2(1− t) near 1.

2.46 What is the expansion of 1/(1 + t2) in powers of t for small t. That was easy, now
what is it for large t? In each case, what is the domain of convergence?

2.47 The “average” of two numbers a and b commonly means (a + b)/2, the arithmetic
mean. There are many other averages however. (a, b > 0)

Mn(a, b) =
[
(an + bn)/2

]1/n

is the nth mean, also called the power mean, and it includes many others as special cases.
n = 2: root-mean-square, n = −1: harmonic mean. Show that this includes the geometric
mean too:

√
ab = limn→0Mn(a, b).

2.48 Using the definition in the preceding problem, show that dMn/dn > 0. From this, write
down a sequence of inequalities for various means: arithmetic, geometric, rms, harmonic.
[Tough!]

2.49 In problem 18 you found the power series expansion for the error function — good for
small arguments. Now what about large arguments?

erf(x) =
2√
π

∫ x

0
dt e−t2 = 1− 2√

π

∫ ∞

x
dt e−t2 = 1− 2√

π

∫ ∞

x
dt

1

t
. te−t2

Notice that you can integrate the te−t2 factor explicitly, so integrate by parts. Then do it
again and again. This provides a series in inverse powers that allows you evaluate the error
function for large arguments. What is erf(3)? Ans: 0.9999779095 See Abromowitz and
Stegun: 7.1.23.



Complex Algebra

When the idea of negative numbers was broached a couple of thousand years ago, they
were considered suspect, in some sense not “real.” Later, when Pythagoras or one of his
students discovered that numbers such as

√
2 are irrational and cannot be written as a

quotient of integers, it was so upsetting that the discovery was suppressed. Now these are
both taken for granted as ordinary numbers of no special consequence. Why should

√
−1 be

any different? Yet it was not until the middle 1800’s that complex numbers were accepted
as fully legitimate. Even then, it took the prestige of Gauss to persuade some.

3.1 Complex Numbers
What is a complex number? If the answer involves

√
−1 then an appropriate response might

be “What is that?” Yes, we can manipulate objects such as −1+2i and get consistent results
with them. We just have to follow certain rules, such as i2 = −1. But is that an answer to
the question? You can go through the entire subject of complex algebra and even complex
calculus without learning a better answer, but it’s nice to have a more complete answer once,
if then only to relax* and forget it.

An answer to this question is to define complex numbers as pairs of real numbers,
(a, b). These pairs are made subject to rules of addition and multiplication:

(a, b) + (c, d) = (a+ c, b+ d) and (a, b)(c, d) = (ac− bd, ad+ bc)

An algebraic system has to have something called zero, so that it plus any number leaves
that number alone. Here that role is taken by (0, 0)

(0, 0) + (a, b) = (a+ 0, b+ 0) = (a, b) for all values of (a, b)

What is the identity, the number such that it times any number leaves that number alone?

(1, 0)(c, d) = (1 . c− 0 . d, 1 . d+ 0 . c) = (c, d)

so (1, 0) has this role. Finally, where does
√
−1 fit in?

(0, 1)(0, 1) = (0 . 0− 1 . 1, 0 . 1 + 1 . 0) = (−1, 0)

and the sum (−1, 0) + (1, 0) = (0, 0) so (0, 1) is the representation of i =
√
−1, that is

i2 + 1 = 0.
[
(0, 1)2 + (1, 0) = (0, 0)

]
.

This set of pairs of real numbers satisfies all the desired properties that you want for
complex numbers, so having shown that it is possible to express complex numbers in a precise
way, I’ll feel free to ignore this more cumbersome notation and to use the more conventional
representation with the symbol i:

(a, b) ←→ a+ ib

* If you think that this question is an easy one, you can read about some of the difficulties
that the greatest mathematicians in history had with it: “An Imaginary Tale: The Story of√
−1 ” by Paul J. Nahin. I recommend it.
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That complex number will in turn usually be represented by a single letter, such as z = x+iy.

z1

z2

z1 + z2The graphical interpretation of complex numbers is the
Cartesian geometry of the plane. The x and y in z = x + iy
indicate a point in the plane, and the operations of addition
and multiplication can be interpreted as operations in the plane.
Addition of complex numbers is simple to interpret; it’s nothing
more than common vector addition where you think of the point
as being a vector from the origin. It reproduces the parallelo-
gram law of vector addition.

The magnitude of a complex number is defined in the same way that you define the
magnitude of a vector in the plane. It is the distance to the origin using the Euclidean idea
of distance.

|z| = |x+ iy| =
√
x2 + y2 (1)

The multiplication of complex numbers doesn’t have such a familiar interpretation in
the language of vectors. (And why should it?)

3.2 Some Functions
For the algebra of complex numbers I’ll start with some simple looking questions of the sort
that you know how to handle with real numbers. If z is a complex number, what are z2 and√
z? Use x and y for real numbers here.

z = x+ iy, so z2 = (x+ iy)2 = x2 − y2 + 2ixy

That was easy, what about the square root? A little more work:

√
z = w =⇒ z = w2

If z = x+ iy and the unknown is w = u+ iv (u and v real) then

x+ iy = u2 − v2 + 2iuv, so x = u2 − v2 and y = 2uv

These are two equations for the two unknowns u and v, and the problem is now to solve
them.

v =
y

2u
, so x = u2 − y2

4u2
, or u4 − xu2 − y2

4
= 0

This is a quadratic equation for u2.

u2 =
x±

√
x2 + y2

2
, then u = ±

√
x±

√
x2 + y2

2
(2)

Use v = y/2u and you have four roots with the four possible combinations of plus and minus
signs. You’re supposed to get only two square roots, so something isn’t right yet; which of
these four have to be thrown out? See problem 2.

What is the reciprocal of a complex number? You can treat it the same way that I
handled the square root: Solve for it.

(x+ iy)(u+ iv) = 1, so xu− yv = 1, xv + yu = 0
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Solve the two equations for u and v. The result is

1

z
=

x− iy
x2 + y2

(3)

See problem 3. At least it’s obvious that the dimensions are correct even before you verify
the algebra. In both of these cases, the square root and the reciprocal, there is another way
to do it, one that is much simpler. That’s the subject of the next section.

Complex Exponentials
A function that is central to the analysis of differential equations and to untold other math-
ematical ideas: the exponential, the familiar ex. What is this function for complex values of
the exponent?

ez = ex+iy = exeiy (4)

This means that all I have to do is work out the value for the purely imaginary exponent
and the general case is then just a product. There are several ways to work this out and I’ll
pick one, leaving an easier method for you, problem 8.

Whatever eiy is, it has a real and an imaginary part,

eiy = f(y) + ig(y)

Now in order to figure out what the two function f and g are, I’ll find a differential equation
that they satisfy. Differentiate this equation with respect to y.

d

dy
eiy = ieiy = f ′(y) + ig′(y)

= i
[
f(y) + ig(y)

]
= if(y)− g(y)

Equate the real and imaginary parts.

f ′(y) = −g(y) and g′(y) = f(y) (5)

You can solve simultaneous differential equations several ways, and here the simplest is just
to eliminate one of the unknown functions between them. Differentiate the first equation
and eliminate g.

f ′′ = −g′, then f ′′ = −f

This is the standard harmonic oscillator equation, so the solution is a combination of sines
and cosines.

f(y) = A cos y +B sin y

You find the unknown constants A and B by using initial conditions on f , and those values
come from the value of eiy at zero.

ei0 = 1 = f(0) + ig(0), so f(0) = 1 and g(0) = 0

f(0) = 1 = A, f ′(y) = −A sin y +B cos y, f ′(0) = −g(0) = 0 = B
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This determines that f(y) = cos y and then Eq. (5) determines that g(y) = sin y. Put them
together and you have Euler’s formula

eiy = cos y + i sin y (6)

A few special cases of this are worth noting: eiπ = −1 and e2iπ = 1. In fact, e2nπi = 1
so the exponential is a periodic function in the imaginary direction.

What is
√
i? Express it in polar form:

(
eiπ/2

)1/2
, or better,

(
ei(2nπ+π/2)

)1/2
. This is

ei(nπ+π/4) = ±eiπ/4 = ±(cosπ/4 + i sin π/4) = ±1 + i√
2

i

π/4

π/2

3.3 Applications of Euler’s Formula
The magnitude or absolute value of a complex number z = x+ iy is r =

√
x2 + y2. Combine

this with the complex exponential and you have another way to represent complex numbers.

r sin θ

r cos θ

x

r

θ

reiθ

y

z = x+ iy = r cos θ + ir sin θ = r(cos θ + i sin θ) = reiθ (7)

This is the polar form of a complex number and x+ iy is the rectangular form of the same
number. The magnitude is |z| = r =

√
x2 + y2.

When you’re adding or subtracting complex numbers, the rectangular form is more
convenient, but when you’re multiplying or taking powers the polar form has advantages.

z1z2 = r1e
iθ1r2e

iθ2 = r1r2e
i(θ1+θ2) (8)

Putting it into words, you multiply the magnitudes and add the angles in polar form.
From this you can immediately deduce some of the common trigonometric identities.

Use Euler’s formula in the preceding equation and write out the two sides.

r1(cos θ1 + i sin θ1)r2(cos θ2 + i sin θ2) = r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)]

The factors r1 and r2 cancel. Now multiply the two binomials on the left and match the real
and the imaginary parts to the corresponding terms on the right. The result is the pair of
equations

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2

sin(θ1 + θ2) = cos θ1 sin θ2 + sin θ1 cos θ2
(9)
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and you have a much simpler than usual derivation of these common identities. You can do
similar manipulations for other trigonometric identities, and in some cases you will encounter
relations for which there’s really no other way to get the result. That is why you will find
that in physics applications where you might use sines or cosines (oscillations, waves) no one
uses anything but complex exponentials. Get used to it.

The trigonometric functions of complex argument follow naturally from these.

eiθ = cos θ + i sin θ, so, for negative angle e−iθ = cos θ − i sin θ

Add these and subtract these to get

cos θ =
1

2

(
eiθ + e−iθ

)
and sin θ =

1

2i

(
eiθ − e−iθ

)
(10)

What is this if θ = iy?

cos iy =
1

2

(
e−y + e+y

)
= cosh y and sin iy =

1

2i

(
e−y − e+y

)
= i sinh y (11)

Apply Eq. (9) for the addition of angles to the case that θ = x+ iy.

cos(x+ iy) = cosx cos iy − sin x sin iy = cos x cosh y − i sin x sinh y and

sin(x+ iy) = sin x cosh y + i cosx sinh y (12)

You can see from this that the sine and cosine of complex angles can be real and larger than
one. See problem 22. The hyperbolic functions and the circular trigonometric functions
are now the same functions. You’re just looking in two different directions in the complex
plane. It’s just as if you’re changing from the equation of a circle, x2 + y2 = R2, to that of
a hyperbola, x2 − y2 = R2.

Equation (10) doesn’t require that θ itself be real; call it z. Then what is sin2 z+cos2 z?

cos z =
1

2

(
eiz + e−iz

)
and sin z =

1

2i

(
eiz − e−iz

)
cos2 z + sin2 z =

1

4

[
e2iz + e−2iz + 2− e2iz − e−2iz + 2

]
= 1

This polar form shows a geometric interpretation for the periodicity of the exponential.
ei(θ+2π) = eiθ = ei(θ+2kπ). In the picture, you’re going around a circle and coming back to
the same point. If the angle θ is negative you’re just going around in the opposite direction.
An angle of −π takes you to the same point as an angle of +π.

Complex Conjugate
The complex conjugate of a number z = x+ iy is the number z* = x− iy. Another common
notation is z̄. The product z*z is (x − iy)(x + iy) = x2 + y2 and that is |z|2, the square of
the magnitude of z. You can use this to rearrange complex fractions, combining the various
terms with i in them and putting them in one place. This is best shown by some examples.

3 + 5i

2 + 3i
=

(3 + 5i)(2− 3i)

(2 + 3i)(2− 3i)
=

21 + i

13
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What happens when you add the complex conjugate of a number to the number, z + z*?
What happens when you subtract the complex conjugate of a number from the number?
If one number is the complex conjugate of another, how do their squares compare?
What about their cubes?
What about z + z2 and z∗ + z∗2?
What about comparing ez = ex+iy and ez

*
?

What is the product of a number and its complex conjugate written in polar form?
Compare cos z and cos z*.
What is the quotient of a number and its complex conjugate?
What about the magnitude of the preceding quotient?

Examples
Simplify these expressions, making sure that you can do all of these manipulations yourself.

3− 4i

2− i
=

(3− 4i)(2 + i)

(2− i)(2 + i)
=

10− 5i

5
= 2− i.

(3i+ 1)2
[

1

2− i
+

3i

2 + i

]
= (−8 + 6i)

[
(2 + i) + 3i(2− i)

(2− i)(2 + i)

]
= (−8 + 6i)

5 + 7i

5
=

2− 26i

5
.

i3 + i10 + i

i2 + i137 + 1
=

(−i) + (−1) + i

(−1) + (i) + (1)
=
−1

i
= i.

Manipulate these using the polar form of the numbers, though in some cases you can do it
either way.

√
i =

(
eiπ/2

)1/2
= eiπ/4 =

1 + i√
2
.(

1− i
1 + i

)3

=

(√
2e−iπ/4

√
2eiπ/4

)3

=
(
e−iπ/2

)3
= e−3iπ/2 = i.

(
2i

1 + i
√

3

)25

=

(
2eiπ/2

2
(

1
2 + i12

√
3
))25

=

(
2eiπ/2

2eiπ/3

)25

=
(
eiπ/6

)25
= eiπ(4+1/2) = i

Roots of Unity
What is the cube root of one? One of course, but not so fast; there are three cube roots,
and you can easily find all of them using complex exponentials.

1 = e2kπi, so 11/3 =
(
e2kπi

)1/3
= e2kπi/3 (13)

and k is any integer. k = 0, 1, 2 give

11/3 = 1, e2πi/3 = cos(2π/3) + i sin(2π/3),

= −1

2
+ i

√
3

2

e4πi/3 = cos(4π/3) + i sin(4π/3)

= −1

2
− i
√

3

2

and other integers k just keep repeating these three values.



3—Complex Algebra 57

e6πi/5

e4πi/5

e8πi/5

e2πi/5

1

5th roots of 1

The roots are equally spaced around the unit circle. If you want the nth root, you do
the same sort of calculation: the 1/n power and the integers k = 0, 1, 2, . . . , (n− 1). These
are n points equally spaced around the circle.

3.4 Logarithms
The logarithm is the inverse function for the exponential. If ew = z then w = ln z. To
determine what this is, let

w = u+ iv and z = reiθ, then eu+iv = eueiv = reiθ

This implies that eu = r and so u = ln r, but it doesn’t imply v = θ. Remember the
periodic nature of the exponential function? eiθ = ei(θ+2nπ), so you can conclude instead
that v = θ + 2nπ.

ln z = ln
(
reiθ

)
= ln r + i(θ + 2nπ) (14)

has an infinite number of possible values. Is this bad? You’re already familiar with the
square root function, and that has two possible values, ±. This just carries the idea farther.
For example ln(−1) = iπ or 3iπ or −7iπ etc. As with the square root, the specific problem
that you’re dealing with will tell you which choice to make.

3.5 Mapping
When you apply a complex function to a region in the plane, it takes that region into another
region. When you look at this as a geometric problem you start to get some very pretty and
occasionally useful results. Start with a simple example,

w = f(z) = ez = ex+iy = exeiy (15)

If y = 0 and x goes from −∞ to +∞, this function goes from 0 to ∞.
If y is π/4 and x goes over this same range of values, f goes from 0 to infinity along the ray
at angle π/4 above the axis.
At any fixed y, the horizontal line parallel to the x-axis is mapped to the ray that starts at
the origin and goes out to infinity.
The strip from −∞ < x < +∞ and 0 < y < π is mapped into the upper half plane.



58 3—Complex Algebra

A A

B

C
D

E

F

GB
C
D
E
F
G

0

iπ

The line B from −∞+ iπ/6 to +∞+ iπ/6 is mapped onto the ray B from the origin
along the angle π/6.

For comparison, what is the image of the same strip under a different function? Try

w = f(z) = z2 = x2 − y2 + 2ixy

The image of the line of fixed y is a parabola. The real part of w has an x2 in it while
the imaginary part is linear in x. That is the parametric representation of a parabola. The
image of the strip is the region among the lines below.

Pretty yes, but useful? In certain problems in electrostatics and in fluid flow, it is
possible to use complex algebra to map one region into another, with the accompanying
electric fields and potentials or respectively fluid flows mapped from a complicated problem
into a simple one. Then you can map the simple solution back to the original problem and
you have your desired solution to the original problem. Easier said than done. It’s the sort
of method that you can learn about when you find that you need it.
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Problems

3.1 Pick a pair of complex numbers and plot them in the plane. Compute their product and
plot that point. Do this for several pairs, trying to get a feel for how complex multiplication
works. When you do this, be sure that you’re not simply repeating yourself. Place the
numbers in qualitatively different places.

3.2 In the calculation of the square root of a complex number,Eq. (2), I found four roots
instead of two. Which ones don’t belong? Do the other two expressions have any meaning?

3.3 Finish the algebra in computing the reciprocal of a complex number, Eq. (3).

3.4 Pick a complex number and plot it in the plane. Compute its reciprocal and plot it.
Compute its square and square root and plot them. Do this for several more (qualitatively
different) examples.

3.5 Plot ect in the plane where c is a complex constant of your choosing and the parameter
t varies over 0 ≤ t <∞. Pick another couple of values for c to see how the resulting curves
change. Don’t pick values that simply give results that are qualitatively the same; pick
values sufficiently varied so that you can get different behavior. If in doubt about how to
plot these complex numbers as functions of t, pick a few numerical values: e.g. t = 0.01, 0.1,
0.2, 0.3, etc.

3.6 Plot sin ct in the plane where c is a complex constant of your choosing and the parameter
t varies over 0 ≤ t < ∞. Pick another couple of qualitatively different values for c to see
how the resulting curves change.

3.7 Solve the equation z2 + iz + 1 = 0

3.8 Derive Euler’s formula a different way: Use the Taylor series expansion for the expo-
nential to write out the infinite series for eiy. Collect the terms with i and those without it.
Recognize the two collections of terms for what the are.

3.9 From
(
eix
)3

, deduce trigonometric identities for the cosine and sine of triple angles in

terms of single angles. Ans: cos 3x = cos x− 4 sin2 x cosx

3.10 For arbitrary integer n > 1, compute the sum of all the nth roots of one. (When in
doubt, try a couple of special n first.)

3.11 Either solve for z in the equation ez = 0 or prove that it can’t be done.

3.12 Evaluate z/z* in polar form.

3.13 From the geometric picture of the magnitude of a complex number, the set of points z
defined by |z − z0| = R is a circle. Write it out in rectangular components to see what this
is in conventional Cartesian coordinates.
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3.14 An ellipse is the set of points z such that the sum of the distances to two fixed points
is a constant: |z − z1| + |z − z2| = 2a. Pick the two points to be z1 = −f and z2 = +f on
the real axis. Write z as x + iy and manipulate this equation for the ellipse into a simple
standard form.

3.15 Repeat the previous problem, but for the set of points such that the difference of the
distances from two fixed points is a constant.

3.16 There is a vertical line x = −f and a point on the x-axis z0 = +f . Find the set of
points z so that the distance to z0 is the same as the perpendicular distance to the line
x = −f .

3.17 Sketch the set of points |z − 1| < 1.

3.18 Simplify the numbers

1 + i

1− i
,

−1 + i
√

3

+1 + i
√

3
,

i5 + i3√
3
√
i− 7 3

√
17− 4i

,

(√
3 + i

1 + i

)2

3.19 Express in polar form

2− 2i,
√

3 + i, −
√

5i, −17− 23i

3.20 Take two complex numbers; express them in polar form, and subtract them.

z1 = r1e
iθ1 , z2 = r2e

iθ2 , and z3 = z2 − z1

Compute z*3z3, the magnitude squared of z3, and so derive the law of cosines. You did draw
a picture didn’t you?

3.21 What is ii? Ans: If you’d like to check your result, type i ∧ i into Google.

3.22 For what argument does sin θ = 2? cos θ? Ans: 1.5708± i1.3170

3.23 What are the other trigonometric functions, tan(ix), sec(ix), etc. What are tan and
sec for the general argument x+ iy. Ans: tan(x+ iy) = (tanx+ i tanh y)/(1− i tan x tanh y)

3.24 The diffraction pattern from a grating involves the sum of waves from a large number
of parallel slits. For light observed at an angle θ away from directly ahead, this sum is, for
N + 1 slits,

http://www.google.com
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d
d
d
d
d

d sin θ

θ

r0

r0 − d sin θ

cos
(
kr0 − ωt

)
+ cos

(
k(r0 − d sin θ)− ωt

)
+ cos

(
k(r0 − 2d sin θ)− ωt

)
+

. . .+ cos
(
k(r0 −Nd sin θ)− ωt

)
Express this as the real part of complex exponentials and sum the finite series. Show that
the resulting wave is

sin
(

1
2(N + 1)kd sin θ

)
sin
(

1
2kd sin θ

) cos
(
k(r0 − 1

2Nd sin θ)− ωt
)

Interpret this result as a wave that appears to be coming from some particular point (where?)
and with an intensity pattern that varies strongly with θ.

3.25 If the coefficients in a quadratic equation are real, show that if z is a complex root of
the equation then so is z*. If you do this by reference to the quadratic formula, you’d better
find another way too, because the second part of this problem is
(b) generalize this to the root of an arbitrary polynomial with real coefficients.

3.26 You can represent the motion of a particle in two dimensions by using a time-dependent
complex number with z = x+iy = reiθ showing its rectangular or polar coordinates. Assume
that r and θ are functions of time and differentiate reiθ to get the velocity. Differentiate it
again to get the acceleration. You can interpret eiθ as the unit vector along the radius and
ieiθ as the unit vector perpendicular to the radius and pointing in the direction of increasing
theta. Show that

d2z

dt2
= eiθ

[
d2r

dt2
− r

(
dθ

dt

)2
]

+ ieiθ
[
r
d2θ

dt2
+ 2

dr

dt

dθ

dt

]
(16)

and now translate this into the usual language of components of vectors, getting the radial
(r̂) component of acceleration and the theta (θ̂) component of acceleration.

3.27 Use the results of the preceding problem, and examine the case of a particle moving
directly away from the origin. What is its acceleration? (b) If instead, it is moving at
r =constant, what is its acceleration?
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3.28 Was it really legitimate simply to substitute x + iy for θ1 + θ2 in Eq. (12) to get
cos(x + iy)? Verify the result by substituting the expressions for cos x and for cosh y as
exponentials to see if you can reconstruct the left-hand side.

3.29 The roots of the quadratic equation z2 + bz + c = 0 are functions of the parameters b
and c. For real b and c and for both cases c > 0 and c < 0 (say ±1 to be specific) plot the
trajectories of the roots in the complex plane as b varies from −∞ to +∞. You should find
various combinations of straight lines and arcs of circles.

3.30 In integral tables you can find the integrals for such functions as∫
dx eax cos bx, or

∫
dx eax sin bx

Show how easy it is to do these by doing both integrals at once. Do the first plus i times
the second and then separate the real and imaginary parts.

3.31 Find the sum of the series
∞∑
1

in

n

3.32 Evaluate | cos z|2. Evaluate | sin z|2.

3.33 Evaluate
√

1 + i. Evaluate ln(1 + i). Evaluate tan(1 + i).

3.34 Beats occur in sound when two sources emit two frequencies that are almost the same.
The perceived wave is the sum of the two waves, so that at your ear, the wave is a sum of
two cosines of ω1t and of ω2t. Use complex algebra to evaluate this. The sum is the real
part of

eiω1t + eiω2t

Notice the two identities

ω1 =
ω1 + ω2

2
+
ω1 − ω2

2

and the difference of these for ω2. Use the complex exponentials to derive the results; don’t
just look up some trig identity. Factor the resulting expression and sketch a graph of the
resulting real part, interpreting the result in terms of beats if the two frequencies are close
to each other. In the process of doing this problem using complex exponentials, what is
the trigonometric identity for the sum of two cosines? While you’re about it, what is the
difference of two cosines?

3.35 Derive using complex exponentials

sinx− sin y = 2 sin

(
x− y

2

)
cos

(
x+ y

2

)
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3.36 The equation (4) assumed that the usual rule for multiplying exponentials still holds
when you are using complex numbers. Does it? You can prove it by looking at the infinite
series representation for the exponential and showing that

eaeb =

[
1 + a+

a2

2!
+
a3

3!
+ · · ·

] [
1 + b+

b2

2!
+
b3

3!
+ · · ·

]
=

[
1 + (a+ b) +

(a+ b)2

2!
+ · · ·

]
You may find Eq. (2.17) useful.

3.37 Look at the vertical lines in the z-plane as mapped by Eq. (15). I drew the images of
lines y =constant, now you draw the images of the straight line segments x =constant from
0 < y < π. The two sets of lines in the original plane intersect at right angles. What is the
angle of intersection of the corresponding curves in the image?

3.38 Instead of drawing the image of the lines x =constant as in the previous problem, draw
the image of the line y = x tanα, the line that makes an angle α with the horizontal lines.
The image of the horizontal lines were radial lines. At a point where this curve intersects
one of the radial lines, what angle does the curve make with the radial line? Ans: α

3.39 Write each of these functions of z as two real functions u and v such that f(z) =
u(x, y) + iv(x, y).

z3,
1 + z

1− z
,

1

z2
,

z

z*

3.40 Evaluate zi where z is an arbitrary complex number, z = x+ iy = reiθ.

3.41 What is the image of the domain −∞ < x < +∞ and 0 < y < π under the function
w =

√
z? Ans: One boundary is a hyperbola.

3.42 What is the image of the disk |z − a| < b under the function w = cz + d? Allow c and
d to be complex. Take a real.

3.43 What is the image of the disk |z − a| < b under the function w = 1/z? Assume b < a.
Ans: Another disk, centered at a/(a2 − b2).

3.44 (a) Multiply (2 + i)(3 + i) and deduce the identity

tan−1(1/2) + tan−1(1/3) = π/4

(b) Multiply (5 + i)4(−239 + i) and deduce

4 tan−1(1/5) + tan−1(1/239) = π/4

For (b) a sketch will help sort out some signs.
Using the power series representation of the tan−1, Eq. (2.23), how many terms would it
take to compute 100 digits of π as 4 tan−1 1? How many terms would it take using each of
these two representations for π?
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3.45 Use Eq. (10) and look back at the development of Eq. (1.4) to find the sin−1 and cos−1

in terms of logarithms.

3.46 Evaluate the integral
∫∞
−∞ dx e−αx2

cos βx. Ans: e−β2/4α
√
π/α

3.47 Does the equation sin z = 0 have any roots other than the real ones? How about the
cosine? The tangent?

3.48 Compute (a) sin−1 i. (b) cos−1 i. (c) tan−1 i. (d) sinh−1 i.

3.49 By writing
1

1 + x2
=
i

2

[
1

x+ i
− 1

x− i

]
and integrating, check the equation ∫ 1

0

dx

1 + x2
=
π

4

3.50 Solve the equations (a) coshu = 0 (b) tanhu = 2 (c) sechu = 2i

3.51 Solve the equations (a) z − 2z* = 1 (b) z3 − 3z2 + 4z = 2i after verifying
that 1 + i is a root. Compare the result of problem 25.



Differential Equations

The subject of ordinary differential equations encompasses such a large field that you can
make a profession of it. There are however a small number of techniques in the subject that
you have to know. These are the ones that come up so often in physical systems that you
need not only the skills to use them but the intuition about what they will do. That small
group of methods is what I’ll concentrate on in this chapter.

4.1 Linear Constant-Coefficient
A differential equation such as (

d2x

dt2

)3

+ t2x4 + 1 = 0

is not one that I’m especially eager to solve, and one of the things that makes it difficult is
that it is non-linear. This means that if I have two solutions x1(t) and x2(t) then the sum
x1 + x2 is not a solution; look at all the cross-terms you get if you try to plug the sum in to
the equation. Also if you multiply x1(t) by 2 you no longer have a solution.

An equation such as

et
d3x

dt3
+ t2

dx

dt
− x = 0

may be a mess to solve, but if you have two solutions, x1(t) and x2(t) then the sum αx1+βx2

is also a solution. Proof? Plug in. This is called a linear, homogeneous equation because of
this property. A similar-looking equation,

et
d3x

dt3
+ t2

dx

dt
− x = t

does not have this property, though it’s close. It’s called a linear, inhomogeneous equation.
If x1(t) and x2(t) are solutions to this, then if I try their sum as a solution I get 2t = t, and
that’s no solution, but it misses working only because of the single term on the right.

One of the most common sorts of differential equations that you see is an especially
simple one to solve. That’s part of the reason it’s so common. This is the linear, constant-
coefficient, differential equation. If you have a mass tied to the end of a spring and the
other end of the spring is fixed, the force applied to the mass by the spring is to a good
approximation proportional to the distance that the mass has moved from its equilibrium
position.

If the coordinate x is measured from the mass’s equilibrium position, the equation
~F = m~a says

x
m
d2x

dt2
= −kx (1)

If there’s friction (and there’s always friction), the force has another term. Now how do you
describe friction mathematically? The common model for dry friction is that the magnitude

65
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of the force is independent of the magnitude of the mass’s velocity and opposite to the
direction of the velocity. If you try to write that down in a compact mathematical form you
get something like

~Ffriction = −µkFN
~v

|~v|
(2)

This is hard to work with. It can be done, but I’m going to do something different. See
problem 31 however. Wet friction is easier to handle mathematically because when you
lubricate a surface, the friction becomes velocity dependent in a way that is, for low speeds,
proportional to the velocity.

~Ffriction = −b~v (3)

Neither of these two representations is a completely accurate description of the way friction
works. That’s far more complex than either of these simple models, but these approximations
are good enough for many purposes and I’ll settle for them.

Assume “wet friction” and the differential equation for the motion of m is

m
d2x

dt2
= −kx− bdx

dt
(4)

This is a second order, linear, homogeneous, differential equation, which simply means that
the highest derivative present is the second, the sum of two solutions is a solution, and a
constant multiple of a solution is a solution. That the coefficients are constants makes this
an easy equation to solve.

All you have to do is to recall that the derivative of an exponential is an exponential.
det/dt = et. If I substitute this exponential for x(t), of course it can’t work as a solution; it
doesn’t even make sense dimensionally. What is e to the power of a day? You have to have
something in the exponent to make it dimensionless, eαt. Also, the function x is supposed
to give you a position, with dimensions of length. Use another constant: x(t) = Aeαt. Plug
this into the differential equation (4) to find

mAα2eαt + bAαeαt + kAeαt = Aeαt[mα2 + bα + k] = 0

The product of factors is zero, and the only way that a product of two numbers can be zero is
if one of the numbers is zero. The exponential never vanishes, and for a non-trivial solution
A 6= 0, so all that’s left is the polynomial in α.

mα2 + bα + k = 0, with solutions α =
−b±

√
b2 − 4km

2m
(5)

The position function is then
x(t) = Aeα1t +Beα2t (6)

where A and B are arbitrary constants and α1 and α2 are the two roots.
Isn’t this supposed to be oscillating? It is a harmonic oscillator after all, but the expo-

nentials don’t look very oscillatory. If you have a mass on the end of a spring and the entire
system is immersed in honey, it won’t do much oscillating! Translated into mathematics,
this says that if the constant b is too large, there is no oscillation. In the equation for α,
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if b is large enough the argument of the square root is positive and both α’s are real — no
oscillation. Only if b is small enough does the argument of the square root become negative;
then you get complex values for the α’s and hence oscillations.

Push this to the extreme case where the damping vanishes: b = 0. Then α1 = i
√
k/m

and α2 = −i
√
k/m. Denote ω0 =

√
k/m.

x(t) = Aeiω0t +Be−iω0t (7)

You can write this in other forms, see problem 10. To determine the arbitrary constant A
and B you need two equations. They come from some additional information about the
problem, typically some initial conditions. Take a specific example in which you start from
the origin with a kick, x(0) = 0 and ẋ(0) = v0.

x(0) = 0 = A+B, ẋ(0) = v0 = iω0A− iω0B

Solve for A and B to get A = −B = v0/(2iω0). Then

x(t) =
v0

2iω0

[
eiω0t − e−iω0t

]
=
v0
ω0

sinω0t

As a check on the algebra, use the first term in the power series expansion of the sine
function to see how x behaves for small t. The sine factor is sinω0t ≈ ω0t, and then x(t) is
approximately v0t, just as it should be. Also notice that despite all the complex numbers,
the final answer is real. This is another check on the algebra.

Damped Oscillator
If there is damping, but not too much, then the α’s have an imaginary part and a negative
real part. (Is it important whether it’s negative or not?)

α =
−b± i

√
4km− b2

2m
= − b

2m
± iω′, where ω′ =

√
k

m
− b2

4m2
(8)

This represents a damped oscillation and has frequency a bit lower than the one in the
undamped case. Use the same initial conditions as above and you will get similar results (let
γ = b/2m)

x(t) = Ae(−γ+iω′)t +Be(−γ−iω′)t

x(0) = A+B =0, vx(0) = (−γ + iω′)A+ (−γ − iω′)B = v0 (9)

The two equations for the unknowns A and B imply B = −A and

2iω′A = v0, so x(t) =
v0

2iω′
e−γt

[
eiω

′t − e−iω′t] =
v0
ω′
e−γt sinω′t (10)
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For small values of t, the first terms in the power series expansion of this result are

x(t) =
v0
ω′

[1− γt+ γ2t2/2− . . .][ω′t− ω′3t3/6 + . . .] = v0t− v0γt2 + . . .

The first term is what you should expect, as the initial velocity is vx = v0. The negative sign
in the next term says that it doesn’t move as far as it would without the damping, but analyze
it further. Does it have the right size as well as the right sign? It is −v0γt2 = −v0(b/2m)t2.
But that’s an acceleration: axt

2/2. It says that the acceleration just after the motion starts
is ax = −bv0/m. Is that what you should expect? As the motion starts, the mass hasn’t
gone very far so the spring doesn’t yet exert much force. The viscous friction is however
−bvx. Set that equal to max and you see that −v0γt2 has precisely the right value.

What is the energy for this damped oscillator? The kinetic energy is mv2/2 and the
potential energy for the spring is kx2/2. Is the sum constant? No.

d

dt

1

2

(
mv2 + kx2

)
= mv

dv

dt
+ kx

dx

dt
= vx

(
max + kx

)
= −bv2

x = Fx,frictvx (11)

“Force times velocity” is a common expression for power, and this says that the total energy
is decreasing according to this formula. The energy decreases exponentially on average.

4.2 Forced Oscillations
What happens if the equation is inhomogeneous? That is, what if there is a term that doesn’t
involve x or its derivatives at all. In this harmonic oscillator example, apply an extra external
force. Maybe it’s a constant; maybe it’s an oscillating force; it can be anything you want
not involving x.

m
d2x

dt2
= −kx− bdx

dt
+ Fext(t) (12)

The key result that you need for this class of equations is very simple to state and not too
difficult to implement. It is a procedure for attacking any linear inhomogeneous differential
equation and consists of three steps.

1. Temporarily throw out the inhomogeneous term [here Fext(t)] and completely
solve the resulting homogeneous equation. In the current case that’s what I just
got through doing when I solved the equation md2x

/
dt2 + bdx

/
dt + kx = 0.

[xhom(t)]

2. Find any one solution to the full inhomogeneous equation. Note that for step
one you have to have all the arbitrary constants present; for step two you do not.
[xinh(t)]

3. Add the results of steps one and two. [xhom(t) + xinh(t)]
I’ve already done step one. To carry out the next step I’ll start with a particular case

of the forcing function. If Fext(t) is simple enough, you should be able to guess the answer
to step two. If it’s a constant, then a constant will work for x. If it’s a sine or cosine, then
you can guess that a sine or cosine or a combination of the two should work. If it’s an
exponential, then guess an exponential — remember that the derivative of an exponential is
an exponential. If it’s the sum of two terms, such as a constant and an exponential, it’s easy
to verify that you add the results that you get for the two cases separately. If the forcing
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function is too complicated for you to guess a solution then there’s a general method using
Green’s functions that I’ll get to in section 4.5.

Choose a specific example

Fext(t) = F0

[
1− e−βt

]
(13)

This starts at zero and builds up to a final value of F0. It does it slowly or quickly depending
on β.

F0

t

Start with the first term, F0, for external force in Eq. (12). Try x(t) = C and plug
into that equation to find

kC = F0

This is simple and determines C.

Next, use the second term as the forcing function, −F0e
−βt. Guess a solution x(t) =

C ′e−βt and plug in. The exponential cancels, leaving

mC ′β2 − bC ′β + kC ′ = −F0 or C ′ =
−F0

mβ2 − bβ + k

The total solution for the inhomogeneous part of the equation is then the sum of these two
expressions.

xinh(t) = F0

(
1

k
− 1

mβ2 − bβ + k
e−βt

)
The homogeneous part of Eq. (12) has the solution found in Eq. (6) and the total is

x(t) = xhom(t) + xinh(t) = x(t) = Aeα1t +Beα2t + F0

(
1

k
− 1

mβ2 − bβ + k
e−βt

)
(14)

There are two arbitrary constants here, and this is what you need because you have to be
able to specify the initial position and the initial velocity independently; this is a second
order differential equation after all. Take for example the conditions that the initial position
is zero and the initial velocity is zero. Everything is at rest until you start applying the
external force. This provides two equations for the two unknowns.

x(0) = 0 = A+B + F0
mβ2 − bβ

k(mβ2 − bβ + k)

ẋ(0) = 0 = Aα1 +Bα2 + F0
β

mβ2 − bβ + k
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Now all you have to do is solve the two equations in the two unknowns A and B. I would
take the first, multiply it by α2 and subtract the second. This gives A. Do the same with
α1 instead of α2 to get B. The results are

A =
1

α1 − α2
F0
α2(mβ

2 − bβ)− kβ
k(mβ2 − bβ + k)

Interchange α1 and α2 to get B.
The final result is

x(t) =
F0

α1 − α2

(
α2(mβ

2 − bβ)− kβ
)
eα1t −

(
α1(mβ

2 − bβ)− kβ
)
eα2t

k(mβ2 − bβ + k)

+ F0

(
1

k
− 1

mβ2 − bβ + k
e−βt

)
(15)

If you think this is messy and complicated, you haven’t seen messy and complicated. When
it takes 20 pages to write out the equation, then you’re entitled say that it’s starting to become
involved.

The problem isn’t finished until you’ve analyzed the supposed solution. After all, I
may have made some errors in algebra along the way. Also, analyzing the solution is the
way you learn how these functions work.

1. Everything in the solution is proportional to F0 and that’s not surprising.

2. I’ll leave it as an exercise to check the dimensions.

3. A key parameter to vary is β. What should happen if it is either very large or
very small? In the former case the exponential function in the force drops to zero
quickly so the force jumps from zero to F0 in a very short time — a step in the
limit that β → 0.

4. If β is very small the force turns on very gradually and gently, being careful not
to disturb the system.

Take point 3 above: For large β the dominant terms in both numerator and denomi-
nator everywhere are the mβ2 terms. This result is then very nearly

x(t) ≈ F0

α1 − α2

(
α2(mβ

2)
)
eα1t −

(
α1(mβ

2)
)
eα2t

kmβ2
+ F0

(
1

k
− 1

(mβ2)
e−βt

)
≈ F0

k(α1 − α2)

[
(α2e

α1t − α1e
α2t
]
+ F0

1

k

Use the notation of Eq. (9) and you have

x(t) ≈ F0

k
(
− γ + iω′ − (−γ − iω′)

)[((−γ − iω′)e(−γ+iω′)t − (−γ + iω′)e(−γ−iω′)t]+ F0
1

k

=
F0e

−γt

k(2iω′)

[
− 2iγ sinω′t− 2iω′ cosω′t

]
+ F0

1

k

=
F0e

−γt

k

[
− γ

ω′
sinω′t− cosω′t

]
+ F0

1

k
(16)



4—Differential Equations 71

At time t = 0 this is still zero even with the approximations. That’s comforting,
but if it hadn’t happened it’s not an insurmountable disaster. This is an approximation to
the exact answer after all, so it could happen that the initial conditions are obeyed only
approximately. The exponential terms have oscillations and damping, so the mass oscillates
about its eventual equilibrium position and after a long enough time the oscillations die out
and you are left with the equilibrium solution x = F0/k.

Look at point 4 above: For small β the β2 terms in Eq. (15) are small compared to
the β terms to which they are added or subtracted. The numerators of the terms with eαt

are then proportional to β. The denominator of the same terms has a k − bβ in it. That
means that it doesn’t go to zero as β goes to zero. The last terms, that came from the
inhomogeneous part, don’t have any β in the numerator so they don’t vanish in this limit.
The approximate final result then comes just from the xinh(t) term.

x(t) ≈ F0
1

k

(
1− e−βt

)
It doesn’t oscillate at all and just gradually moves from equilibrium to equilibrium as time
goes on. It’s what you get if you go back to the differential equation (12) and say that the
acceleration and the velocity are negligible.

m
d2x

dt2
[≈ 0] = −kx− bdx

dt
[≈ 0] + Fext(t) =⇒ x ≈ 1

k
Fext(t)

The spring force nearly balances the external force at all times; this is “quasi-equilibrium.”

4.3 Series Solutions
A linear, second order differential equation can always be rearranged into the form

y′′ + P (x)y′ +Q(x)y = R(x) (17)

If at some point x0 the functions P and Q are well-behaved, if they have convergent power
series expansions about x0, then this point is called a “regular point” and you can expect
good behavior of the solutions there — at least if R is also regular there.

I’ll look only at the case for which the inhomogeneous term R = 0. If P or Q has
a singularity at x0, perhaps something such as 1/(x − x0) or

√
x− x0, then x0 is called a

“singular point” of the differential equation.

Regular Singular Points
The most important special case of a singular point is the “regular singular point” for which
the behaviors of P and Q are not too bad. Specifically this requires that (x− x0)P (x) and
(x− x0)

2Q(x) have no singularity at x0. For example

y′′ +
1

x
y′ +

1

x2
y = 0 and y′′ +

1

x2
y′ + xy = 0
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have singular points at x = 0, but the first one is a regular singular point and the second one
isn’t. The importance of a regular singular point is that there is a procedure guaranteed to
find a solution near a regular singular point (Frobenius series). For the more general singular
point there is no guaranteed procedure (though there are a few tricks* that sometimes work).

Examples of equations that show up in physics problems are

y′′ + y = 0

(1− x2)y′′ − 2xy′ + `(`+ 1)y = 0 regular singular points at ±1

x2y′′ + xy′ + (x2 − n2)y = 0 regular singular point at zero

xy′′ + (α+ 1− x)y′ + ny = 0 regular singular point at zero

(18)

These are respectively the classical simple harmonic oscillator, Legendre equation, Bessel
equation, generalized Laguerre equation.

A standard procedure to solve these equations is to use series solutions. Essentially,
you assume that there is a solution in the form of an infinite series and you systematically
compute the terms of the series. I’ll pick the Bessel equation from the above examples, as
the other three equations are done the same way. The parameter n in that equation is often
an integer, but it can be anything. It’s common for it to be 1/2 or 3/2 or sometimes even
imaginary, but I don’t have to make any assumptions about it for now.

Assume a solution in the form:

y(x) =
∞∑
0

akx
k+s (19)

If s = 0 or a positive integer, this is just the standard Taylor series. It often happens however
that s is a fraction or negative, but this case is no harder to handle than the Taylor series.
For example, what is the series expansion of 1

x cosx about the origin? This is singular there,
but it’s easy to write the answer anyway because you already know the series for the cosine.

cosx

x
=

1

x
− x

2
+
x3

24
− x5

720
+ · · ·

It starts with the term 1/x corresponding to s = −1 in the Frobenius series.
Assume that a0 6= 0, because that just defines the coefficient of the most negative

power, xs. If you allow it be zero, that’s just the same as redefining s and it gains nothing.
Plug this in to the Bessel differential equation.

x2y′′ + xy′ + (x2 − n2)y = 0

x2
∞∑

k=0

ak(k + s)(k + s− 1)xk+s−2 + x
∞∑

k=0

ak(k + s)xk+s−1 + (x2 − n2)
∞∑

k=0

akx
k+s = 0

∞∑
k=0

ak(k + s)(k + s− 1)xk+s +
∞∑

k=0

ak(k + s)xk+s +
∞∑

k=0

akx
k+s+2 − n2

∞∑
0

akx
k+s = 0

∞∑
k=0

ak

[
(k + s)(k + s− 1) + (k + s)− n2

]
xk+s +

∞∑
k=0

akx
k+s+2 = 0

* The book by Bender and Orszag: “Advanced mathematical methods for scientists and
engineers” is a very readable source for this and many other topics.
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The coefficients of all the like powers of x must match, and in order to work out the matches
efficiently, and so as not to get myself confused in a mess of indices, I’ll make an explicit
change of the index in the sums.

Let ` = k in the first sum. Let ` = k + 2 in the second. Explicitly show the limits of
the index on the sums, or your bound to get it wrong.

∞∑
`=0

a`

[
(`+ s)2 − n2

]
x`+s +

∞∑
`=2

a`−2x
`+s = 0

The lowest power of x in this equation comes from the ` = 0 term in the first sum. That
coefficient of xs must vanish. (a0 6= 0)

a0

[
s2 − n2

]
= 0 (20)

This is called the indicial equation. It determines s, or in this case, maybe two s’s. After
this, set to zero the coefficient of x`+s.

a`

[
(`+ s)2 − n2

]
+ a`−2 = 0 (21)

This determines a2 in terms of a0; it determines a4 in terms of a2 etc.

a` = −a`−2
1

(`+ s)2 − n2
, ` = 2, 4, . . .

For example, if n = 0, the indicial equation says s = 0.

a2 = −a0
1

22
, a4 = −a2

1

42
= +a0

1

2242
, a6 = −a4

1

62
= −a0

1

224262

a2k = (−1)ka0
1

22kk!2
then y(x) = a0

∞∑
k=0

(−1)k
(x/2)2k

(k!)2
= a0J0(x) (22)

and in the last equation I rearranged the factors and used the standard notation for the
Bessel function, Jn(x).

This is a second order differential equation. What about the other solution? This
Frobenius series method is guaranteed to find one solution near a regular singular point.
Sometimes it gives both but not always, and in this example it produces only one of the
two solutions. There are procedures that will let you find the second solution to this sort of
second order differential equation. See problem 49 for one such method.

For the case n = 1/2 the calculations that I just worked out will produce two solutions.
The indicial equation gives s = ±1/2. After that, the recursion relation for the coefficients
give

a` = −a`−2
1

(`+ s)2 − n2
= −a`−2

1

`2 + 2`s
= −a`−2

1

`(`+ 2s)
= −a`−2

1

`(`± 1)
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For the s = +1/2 result

a2 = −a0
1

2 . 3

a4 = −a2
1

4 . 5
= +a0

1

2 . 3 . 4 . 5

a2k = (−1)ka0
1

(2k + 1)!

This solution is then

y(x) = a0x
1/2

[
1− x2

3!
+
x4

5!
− . . .

]
This series looks suspiciously like the series for the sine function, but is has some of the x’s
or some of the factorials in the wrong place. You can fix that if you multiply the series in
brackets by x. You then have

y(x) = a0x
−1/2

[
x− x3

3!
+
x5

5!
− . . .

]
= a0

sin x

x1/2
(23)

I’ll leave it to problem 15 to find the other solution.

4.4 Trigonometry via ODE’s
The differential equation u′′ = −u has two independent solutions. The point of this exercise
is to derive all (or at least some) of the standard relationships for sines and cosines strictly
from the differential equation. The reasons for spending some time on this are twofold. First,
it’s neat. Second, you have to get used to manipulating a differential equation in order to
find properties of its solutions. This is essential in the study of Fourier series as you will see
in section 5.3.

Two solutions can be defined when you specify boundary conditions. Call the functions
c(x) and s(x), and specify their respective boundary conditions to be

c(0) = 1, c′(0) = 0, and s(0) = 0, s′(0) = 1 (24)

What is s′(x)? First observe that s′ satisfies the same differential equation as s and c:

u′′ = −u =⇒ (u′)′′ = (u′′)′ = −u′, and that shows the desired result.

This in turn implies that s′ is a linear combination of s and c, as that is the most general
solution to the original differential equation.

s′(x) = Ac(x) +Bs(x)

Use the boundary conditions:

s′(0) = 1 = Ac(0) +Bs(0) = A

From the differential equation you also have

s′′(0) = −s(0) = 0 = Ac′(0) +Bs′(0) = B
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Put these together and you have

s′(x) = c(x) And a similar calculation shows c′(x) = −s(x) (25)

What is c(x)2 + s(x)2? Differentiate this expression to get

d

dx
[c(x)2 + s(x)2] = 2c(x)c′(x) + 2s(x)s′(x) = −2c(x)s(x) + 2s(x)c(x) = 0

This combination is therefore a constant. What constant? Just evaluate it at x = 0 and you
see that it is one.

There are many more such results that you can derive, but that’s left for the exercises.

4.5 Green’s Functions
Is there a general way to find the solution to the whole harmonic oscillator inhomogeneous
differential equation? One that does not require guessing the form of the solution and
applying initial conditions? Yes there is. It’s called the method of Green’s functions. The
idea behind it is that you can think of any force as a sequence of short, small kicks. In fact,
because of the atomic nature of matter, that’s not so far from the truth. If I can figure out
the result of an impact by one molecule, I can add the results of many such kicks to get the
answer for 1023 molecules.

I’ll start with the simpler case where there’s no damping, b = 0 in the harmonic
oscillator equation.

mẍ+ kx = Fext(t) (26)

Suppose that everything is at rest and then at time t′ the external force provides a small
impulse. The motion from that point on will be a sine function starting at t′,

A sin
(
ω0(t− t′)

)
(t > t′) (27)

The amplitude will depend on the strength of the kick. A constant force F applied for a
very short time, ∆t′, will change the momentum of the mass by m∆vx = F∆t′. If this time
interval is short enough the mass won’t have had a chance to move very far before the force
is turned off, so from then on it’s subject only to the −kx force. This kick gives m a velocity
F∆t′/m, and that’s what determines the unknown constant A.

Just after t = t′, vx = Aω0 = F∆t′/m, so the position of m is

x(t) =

{
F∆t′

mω0
sin
(
ω0(t− t′)

)
(t > t′)

0 (t ≤ t′)
(28)

x

t′

impulse

t
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When the external force is the sum of two terms, the total solution is the sum of the
solutions for the individual forces.

mẍ+ kx = F0 + F1 (29)

If the two terms are two steps

F0 =

{
F (t0) (t0 < t < t1)
0 (elsewhere)

and F1 =

{
F (t1) (t1 < t < t2)
0 (elsewhere)

then if x0 is the solution to Eq. (29) with only the F0 on the right, and x1 is the solution
with only F1, then the full solution to Eq. (29) is the sum, x0 + x1.

Think of a general forcing function Fx,ext(t) in the way that you would set up an
integral. Approximate it as a sequence of short steps as in the picture. Between tk and tk+1

the force is essentially F (tk). The response of m to this piece of the total force is then

xk(t) =

{
F (tk)∆tk

mω0
sin
(
ω0(t− tk)

)
(t > tk)

0 (t ≤ tk)

where ∆tk = tk+1 − tk.

F

t1 t2
t5

t

To complete this idea, the external force is the sum of a lot of terms, the force between
t1 and t2, that between t2 and t3 etc. The total response is the sum of all these individual
responses.

x(t) =
∑

k

{
F (tk)∆tk

mω0
sin
(
ω0(t− tk)

)
(t > tk)

0 (t ≤ tk)

For a specified time t, only the times tk before and up to t contribute to this sum. The
impulses occurring at the times after the time t can’t change the value of x(t); they haven’t
happened yet. In the limit that ∆tk → 0, this sum becomes an integral.

x(t) =

∫ t

−∞
dt′

F (t′)

mω0
sin
(
ω0(t− t′)

)
(30)

Apply this to an example. The simplest is to start at rest and begin applying a constant
force from time zero on.

Fext(t) =

{
F0 (t > 0)
0 (t ≤ 0)

x(t) =

∫ t

0
dt′

F0

mω0
sin
(
ω0(t− t′)

)
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and the last expression applies only for t > 0. It is

x(t) =
F0

mω2
0

[
1− cos(ω0t)

]
(31)

As a check for the plausibility of this result, look at the special case of small times. Use the
power series expansion of the cosine, keeping a couple of terms, to get

x(t) ≈ F0

mω2
0

[
1−

(
1− (ω0t)

2/2
)]

=
F0

mω2
0

ω2
0t

2

2
=
F0

m

t2

2

and this is just the result you’d get for constant acceleration F0/m. In this short time, the
position hasn’t changed much from zero, so the spring hasn’t had a chance to stretch very
far, so it can’t apply much force, and you have nearly constant acceleration.

For another, completely different approach to Green’s functions, see section 15.5.

4.6 Separation of Variables
If you have a first order differential equation — I’ll be more specific for an example, in terms
of x and t — and if you are able to move the variables around until everything involving x
and dx is on one side of the equation and everything involving t and dt is on the other side,
then you have “separated variables.” Now all you have to do is integrate.

For example, the total energy in the undamped harmonic oscillator is E = mv2/2 +
kx2/2. Solve for dx/dt and

dx

dt
=

√
2

m

(
E − kx2/2

)
(32)

To separate variables, multiply by dt and divide by the right-hand side.

dx√
2
m

(
E − kx2/2

) = dt

Now it’s just manipulation to put this into a convenient form to integrate.√
m

k

dx√
(2E/k)− x2

= dt, or

∫
dx√

(2E/k)− x2
=

∫ √
k

m
dt

Make the substitution x = a sin θ and you see that if a2 = 2E/k then the integral on the left
simplifies. ∫

a cos θ dθ

a
√

1− sin2 θ
=

∫ √
k

m
dt so θ = sin−1 x

a
= ω0t+ C

or x(t) = a sin(ω0t+ C) where ω0 =
√
k/m

An electric circuit with an inductor, a resistor, and a battery has a differential equation
for the current flow:

L
dI

dt
+ IR = V0 (33)
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Manipulate this into

L
dI

dt
= V0 − IR, then L

dI

V0 − IR
= dt

Now integrate this to get

L

∫
dI

V0 − IR
= t+ C, or − L

R
ln(V0 − IR) = t+ C

Solve for the current I to get

RI(t) = V0 − e−(L/R)(t+C) (34)

Now does this make sense? Look at the dimensions and you see that it doesn’t, at least
not yet. The problem is the logarithm on the preceding line where you see that its units
don’t make sense either. How can this be? The differential equation that you started with
is correct, so how did the units get messed up? It goes back the the standard equation for
integration, ∫

dx/x = ln x+ C

If x is a length for example, then the left side is dimensionless, but this right side is the
logarithm of a length. It’s a peculiarity of the logarithm that leads to this anomaly. You
can write the constant of integration as C = − lnC ′ where C ′ is another arbitrary constant,
then ∫

dx/x = ln x+ C = ln x− lnC ′ = ln
x

C ′

If C ′ is a length this is perfectly sensible dimensionally. To see that the dimensions in
Eq. (34) will work themselves out (this time), put on some initial conditions. Set I(0) = 0
so that the circuit starts with zero current.

R . 0 = V0 − e−(L/R)(0+C) implies e−(L/R)(C) = V0

RI(t) = V0 − V0e
−Lt/R or I(t) = (1− e−Lt/R)V0/R

and somehow the units have worked themselves out. Logarithms do this, but you still
better check. The current in the circuit starts at zero and climbs gradually to its final value
I = V0/R.

4.7 Simultaneous Equations
What’s this doing in a chapter on differential equations? Patience. Solve two equations in
two unknowns:

(X) ax+ by = e

(Y) cx+ dy = f
d×(X) − b×(Y):

adx+ bdy − bcx− bdy = ed− fb
(ad− bc)x = ed− fb

Similarly, multiply (Y) by a and (X) by c and subtract:

acx+ ady − acx− cby = fa− ec
(ad− bc)y = fa− ec
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Divide by the factor on the left side and you have

x =
ed− fb
ad− bc

, y =
fa− ec
ad− bc

(35)

provided that ad−bc 6= 0. This expression appearing in both denominators is the determinant
of the equations.

Classify all the essentially different cases that can occur with this simple-looking set
of equations and draw graphs to illustrate them. If this looks like problem 1.23, it should.

y

1.

x

y

2.

x

y

3a.

x

1. The solution is just as I found it above and nothing goes wrong. There is one and
only one solution. The two graphs of the two equations are two intersecting straight lines.

2. The denominator, the determinant, is zero and the numerator isn’t. This is impos-
sible and there are no solutions. When the determinant vanishes, the two straight lines are
parallel and the fact that the numerator isn’t zero implies that the two lines are distinct and
never intersect. (This could also happen if in one of the equations, say (X), a = b = 0 and
e 6= 0. For example 0 = 1. This obviously makes no sense.)

3a. The determinant is zero and so are both numerators. In this case the two lines are
not only parallel, they are the same line. The two equations are not really independent and
you have an infinite number of solutions.

3b. You can get zero over zero another way. Both equations (X) and (Y) are 0 = 0.
This sounds trivial, but it can really happen. Every x and y will satisfy the equation.

4. Not strictly a different case, but sufficiently important to discuss it separately:
Suppose the the right-hand sides of (X) and (Y) are zero, e = f = 0. If the determinant is
non-zero, there is a unique solution and it is x = 0, y = 0.

5. With e = f = 0, if the determinant is zero, the two equations are the same equation
and there are an infinite number of non-zero solutions.

In the important case for which e = f = 0 and the determinant is zero, there are two
cases: (3b) and (5). In the latter case there is a one-parameter family of solutions and in
the former case there is a two-parameter family. Put another way, for case (5) the set of all
solutions is a straight line, a one-dimensional set. For case (3b) the set of all solutions is the
whole plane, a two-dimensional set.

y

4.

x

y

5.

x

y

3b.

x
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Example: Consider the two equations

kx+ (k − 1)y = 0, (1− k)x+ (k − 1)2y = 0

For whatever reason, I would like to get a non-zero solution for x and y. Can I? The condition
depends on the determinant, so I take the determinant and set it equal to zero.

k(k − 1)2 − (1− k)(k − 1) = 0, or (k + 1)(k − 1)2 = 0

There are two roots, k = −1 and k = +1. In the k = −1 case the two equations become

−x− 2y = 0, and 2x+ 4y = 0

The second is just −2 times the first, so it isn’t a separate equation. The family of solutions
is all those x and y satisfying x = −2y, a straight line.

In the k = +1 case you have

x+ 0y = 0, and 0 = 0

The solution to this is x = 0 and y =anything and it is again a straight line (the y-axis).

4.8 Simultaneous ODE’s
Single point masses are an idealization that has some application to the real world, but there
are many more cases for which you need to consider the interactions among many masses.
To approach this, take the first step, from one mass to two masses.

k1 k3 k2

x1 x2

Two masses are connected to a set of springs and fastened
between two rigid walls as shown. The coordinates for the two
masses (moving along a straight line only) are x1 and x2, and
I’ll pick the zero point for these coordinates to be the positions
at which everything is at equilibrium — no total force on either.
When a mass moves away from its equilibrium position there
is a force on it. On m1, the two forces are proportional to the distance by which the two
springs k1 and k3 are stretched. These two distances are x1 and x1 − x2 respectively, so
Fx = max applied to each mass gives the equations

m1
d2x1

dt2
= −k1x1 − k3(x1 − x2), and m2

d2x2

dt2
= −k2x2 − k3(x2 − x1) (36)

I’m neglecting friction simply to keep the algebra down. These are linear, constant coefficient,
homogeneous equations, just the same sort as Eq. (4) except that there are two of them.
What made the solution of (4) easy is that the derivative of an exponential is an exponential,
so that when you substituted x(t) = Aeαt all that you were left with was an algebraic
factor — a quadratic equation in α. Exactly the same method works here.

The only way to find out if this is true is to try it. The big difference is that there
are two unknowns instead of one, and the amplitude of the two motions will probably not
be the same. If one mass is a lot bigger than the other, you expect it to move less.

Try the solution
x1(t) = Aeαt, x2(t) = Beαt (37)
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When you plug this into the differential equations for the masses, all the factors of eαt cancel,
just the way it happens in the one variable case.

m1α
2A = −k1A− k3(A−B), and m2α

2B = −k2B − k3(B − A) (38)

Rearrange these to put them into a neater form.(
k1 + k3 +m1α

2
)
A+

(
− k3

)
B = 0(

− k3)A+
(
k2 + k3 +m2α

2
)
B = 0 (39)

The results of problem 1.23 and of section 4.7 tell you all about such equations. In
particular, for the pair of equations ax + by = 0 and cx + dy = 0, the only way to have a
non-zero solution for x and y is for the determinant of the coefficients to be zero: ad−bc = 0.
Apply this result to the problem at hand. Either A = 0 and B = 0 with a trivial solution or
the determinant is zero.

(k1 + k3 +m1α
2
)(
k2 + k3 +m2α

2
)
− (k3

)2
= 0 (40)

This is a quadratic equation for α2, and it determines the frequencies of the oscillation. Note
the plural in the word frequencies.

Equation (40) is only a quadratic, but it’s still messy. For a first example, try a special,
symmetric case: m1 = m2 = m and k1 = k2. There’s a lot less algebra.

(k1 + k3 +mα2
)2 − (k3

)2
= 0 (41)

You could use the quadratic formula on this, but why? It’s already set up to be factored.

(k1 + k3 +mα2 − k3)(k1 + k3 +mα2 + k3) = 0

The product is zero, so one or the other factors is zero. These determine α.

α2
1 = −k1

m
and α2

2 = −k1 + 2k3

m
(42)

These are negative, and that’s what you should expect. There’s no damping and the springs
provide restoring forces that should give oscillations. That’s just what these imaginary α’s
provide.

When you examine the equations ax+ by = 0 and cx+ dy = 0 the condition that the
determinant vanishes is the condition that the two equations are really only one equation,
and that the other is not independent of it; it’s actually a multiple of the first. You still have
to solve that equation for x and y. Here, I arbitrarily pick the first of the equations (39) and
find the relation between A and B.

α2
1 = −k1

m
=⇒

(
k1 + k3 +m(−(k1/m))

)
A+

(
− k3

)
B = 0 =⇒ B = A

α2
2 = −k1 + 2k3

m
=⇒

(
k1 + k3 +m(−(k1 + 2k3/m))

)
A+

(
− k3

)
B = 0 =⇒ B = −A
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For the first case, α1 = ±iω1 = ±i
√
k1/m, there are two solutions to the original differential

equations. These are called ”normal modes.”

x1(t) = A1e
iω1t

x2(t) = A1e
iω1t

and
x1(t) = A2e

−iω1t

x2(t) = A2e
−iω1t

The other frequency has the corresponding solutions

x1(t) = A3e
iω2t

x2(t) = −A3e
iω2t

and
x1(t) = A4e

−iω2t

x2(t) = −A4e
−iω2t

The total solution to the differential equations is the sum of all four of these.

x1(t) = A1e
iω1t + A2e

−iω1t + A3e
iω2t + A4e

−iω2t

x2(t) = A1e
iω1t + A2e

−iω1t − A3e
iω2t − A4e

−iω2t (43)

The two second order differential equations have four arbitrary constants in their solu-
tion. You can specify the initial values of two positions and of two velocities this way. As a
specific example suppose that all initial velocities are zero and that the first mass is pushed
to coordinate x0 and released.

x1(0) = x0 = A1 + A2 + A3 + A4

x2(0) = 0 = A1 + A2 − A3 − A4

vx1(0) = 0 = iω1A1 − iω1A2 + iω2A3 − iω2A4

vx2(0) = 0 = iω1A1 − iω1A2 − iω2A3 + iω2A4 (44)

With a little thought (i.e. don’t plunge blindly ahead) you can solve these easily.

A1 = A2 = A3 = A4 =
x0

4

x1(t) =
x0

4

[
eiω1t + e−iω1t + eiω2t + e−iω2t

]
=
x0

2

[
cosω1t+ cosω2t

]
x2(t) =

x0

4

[
eiω1t + e−iω1t − eiω2t − e−iω2t

]
=
x0

2

[
cosω1t− cosω2t

]
From the results of problem 3.34, you can rewrite these as

x1(t) = x0 cos

(
ω2 + ω1

2
t

)
cos

(
ω2 − ω1

2
t

)
x2(t) = x0 sin

(
ω2 + ω1

2
t

)
sin

(
ω2 − ω1

2
t

)
(45)

As usual you have to draw some graphs to understand what these imply. If the center
spring k3 is a lot weaker than the outer ones, then Eq. (42) implies that the two frequencies
are close to each other and so |ω1 − ω2| � ω1 + ω2. Examine Eq. (45) and you see that one
of the two oscillating factors oscillate at a much higher frequency than the other. To sketch
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the graph of x2 for example you should draw one factor
[
sin
(
(ω2 + ω1)t/2

)]
and the other

factor
[
sin
(
(ω2 − ω1)t/2

)]
and graphically multiply them.

x2

The mass m2 starts without motion and its oscillations gradually build up. Later they
die down and build up again (though with reversed phase). Look at the other mass, governed
by the equation for x1(t) and you see that the low frequency oscillation from the (ω2−ω1)/2
part is big where the one for x2 is small and vice versa. The oscillation energy moves back
and forth from one mass to the other.

4.9 Legendre’s Equation
This equation and its solutions appear when you solve electric and gravitational potential
problems in spherical coordinates [problem 9.20]. They appear when you study Gauss’s
method of numerical integration [Eq. (11.27)] and they appear when you analyze orthogonal
functions [problem 6.7]. Because it shows up so often it is worth the time to go through the
details in solving this equation.[

(1− x2)y′
]′ + Cy = 0, or (1− x2)y′′ − 2xy′ + Cy = 0 (46)

Assume a Frobenius solutions about x = 0

y =
∞∑
0

akx
k+s

and substitute into (46).

(1− x2)
∞∑
0

ak(k + s)(k + s− 1)xk+s−2 − 2x
∞∑
0

ak(k + s)xk+s−1 + C

∞∑
0

aka
k+s = 0

∞∑
0

ak(k + s)(k + s− 1)xk+s−2+

∞∑
0

ak

[
− 2(k + s)− (k + s)(k + s− 1)

]
xk+s + C

∞∑
0

aka
k+s = 0

∞∑
n=−2

an+2(n+ s+ 2)(n+ s+ 1)xn+s−

∞∑
n=0

an

[
(n+ s)2 + (n+ s)

]
xn+s + C

∞∑
n=0

anx
n+s = 0
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In the last equation I did the usual substitution k = n + 2 for the first sum and k = n for
the rest. That makes the exponents match across the equation. In the process, I simplified
some of the algebraic expressions.

The indicial equation comes from the n = −2 term, which appears only once.

a0s(s− 1) = 0, so s = 0, 1

Now set the coefficient of xn+s to zero, and solve for an+2 in terms of an.

an+2 = an
(n+ s)(n+ s+ 1)− C
(n+ s+ 2)(n+ s+ 1)

(47)

a2 = a0
s(s+ 1)− C
(s+ 2)(s+ 1)

, then a4 = a2
(s+ 2)(s+ 3)− C

(s+ 4)(s+ 3)
, etc. (48)

This looks messier than it is. Notice that the only combination of indices that shows up is
n + s. The index s is 0 or 1, and n is an even number, so n + s covers the non-negative
integers: 0, 1, 2, . . .

The two solutions to the Legendre differential equation come from the two cases,
s = 0, 1.

s = 0 : a0

[
1 +

(
−C
2

)
x2 +

(
−C
2

)(
2 . 3− C

4 . 3

)
x4+(

−C
2

)(
2 . 3− C

4 . 3

)(
4 . 5− C

6 . 5

)
x6 · · ·

]
s = 1 : a′0

[
x+

(
1 . 2− C

3 . 2

)
x3 +

(
1 . 2− C

3 . 2

)(
3 . 4− C

5 . 4

)
x5 + · · ·

] (49)

and the general solution is a sum of these.
This procedure gives both solutions to the differential equation, one with even powers

and one with odd powers. Both are infinite series and are called Legendre Functions. An
important point about both of them is that they blow up as x→ 1. This fact shouldn’t be
too surprising, because the differential equation (46) has a singular point there.

y′′ − 2x

(1 + x)(1− x)
y′ +

C

(1 + x)(1− x)
y = 0

It’s a regular singular point, but it is still singular. A detailed calculation shows that these
solutions behave as ln(1− x).

There is an exception! If the constant C is for example C = 6, then with s = 0 the
equations (48) are

a2 = a0
−6

2
, a4 = a2

6− 6

12
= 0, a6 = a8 = . . . = 0

The infinite series terminates in a polynomial

a0 + a2x
2 = a0[1− 3x2]
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This (after a conventional rearrangement) is a Legendre Polynomial,

P2(x) =
3

2
x2 − 1

2

The numerator in Eq. (47) for an+2 is [(n+ s)(n+ s+ 1)−C]. If this happen to equal
zero for some value of n = N , then aN+2 = 0 and so then all the rest of aN+4. . . are zero
too. The series is a polynomial. This will happen only for special values of C, such as the
value C = 6 above. The values of C that have this special property are

C = `(`+ 1), for ` = 0, 1, 2, . . . (50)

This may be easier to see in the explicit representation, Eq. (49). When a numerator equals
zero, all the rest that follow are zero too. When C = `(` + 1) for even `, the first series
terminates in a polynomial. Similarly for odd ` the second series is a polynomial. These are
the Legendre polynomials, denoted P`(x), and the conventional normalization is to require
that their value at x = 1 is one.

P0(x) = 1 P1(x) = x P2(x) = 3/2x
2 − 1/2

P3(x) = 5/2x
3 − 3/2x P4(x) = 35/8x

4 − 30/8x
2 + 3/8

(51)

The special case for which the series terminates in a polynomial is by far the most commonly
used solution to Legendre’s equation. You seldom encounter the general solutions of Eq. (49).

A few properties of the P` are

(a)

∫ 1

−1
dxPn(x)Pm(x) =

2

2n+ 1
δnm where δnm =

{
1 if n = m
0 if n 6= m

(b) (n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x)

(c) Pn(x) =
(−1)n

2nn!

dn

dxn
(1− x2)n

(d) Pn(1) = 1 Pn(−1) = (−1)n

(e)
(
1− 2tx+ t2

)−1/2
=

∞∑
n=0

tnPn(x)

(52)
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Problems

4.1 If the equilibrium position x = 0 for Eq. (4) is unstable instead of stable, this reverses
the sign in front of k. Solve the problem that led to Eq. (10) under these circumstances.
That is, the damping constant is b as before, and the initial conditions are x(0) = 0 and
vx(0) = v0. What is the small time and what is the large time behavior?

4.2 In the damped harmonic oscillator problem, Eq. (4), suppose that the damping term
is an anti -damping term. It has the sign opposite to the one that I used (+b dx/dt). Solve
the problem with the initial condition x(0) = 0 and vx(0) = v0 and describe the resulting
behavior.

4.3 A point mass m moves in one dimension under the influence of a force Fx that has a
potential energy V (x). Recall that the relation between these is

Fx = −dV
dx

Take the specific potential energy V (x) = −V0a
2/(a2 + x2), where V0 is positive. Sketch V .

Write the equation Fx = max. There is an equilibrium point at x = 0, and if the motion is
over only small distances you can do a power series expansion of Fx about x = 0. What is the
differential equation now? Keep only the lowest order non-vanishing term in the expansion
for the force and solve that equation subject to the initial conditions that at time t = 0,
x(0) = x0 and vx(0) = 0.
(b) How does the graph of V change as you vary a from small to large values and how does
this same change in a affect the behavior of your solution? Ans: ω =

√
2V0/ma2

4.4 The same as the preceding problem except that the potential energy function is V (x) =
+V0a

2/(a2 + x2).

4.5 For the case of the undamped harmonic oscillator and the force Eq. (13), start from the
beginning and derive the solution subject to the initial conditions that the initial position is
zero and the initial velocity is zero. At the end, compare your result to the result of Eq. (15)
to see if they agree where they should agree.

4.6 Check the dimensions in the result for the forced oscillator, Eq. (15).

4.7 Fill in the missing steps in the derivation of Eq. (15).

4.8 For the undamped harmonic oscillator apply an extra oscillating force so that the equa-
tion to solve is

m
d2x

dt2
= −kx+ Fext(t)

where the external force is Fext(t) = F0 cosωt. Assume that ω 6= ω0 =
√
k/m.

Find the general solution to the homogeneous part of this problem.
Find a solution for the inhomogeneous case. You can readily guess what sort of function will
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give you a cosωt from a combination of x and its second derivative.
Add these and apply the initial conditions that at time t = 0 the mass is at rest at the origin.
Be sure to check your results for plausibility: 0) dimensions; 1) ω = 0; 2) ω →∞; 3) t small
(not zero). In each case explain why the result is as it should be. Ans: (F0/m)[− cosω0t+
cosωt]/(ω2

0 − ω2)

4.9 In the preceding problem I specified that ω 6= ω0 =
√
k/m. Having solved it, you know

why this condition is needed. Now take the final result of that problem, including the initial
conditions, and take the limit as ω → ω0. [What is the definition of a derivative?] You did
draw a graph of your result didn’t you?

4.10 Show explicitly that you can write the solution Eq. (7) in any of several equivalent
ways,

Aeiω0t +Be−iω0t = C cosω0t+D sinω0t = E cos(ω0t+ φ)

I.e. , given A and B, what are C and D, what are E and φ? Are there any restrictions in
any of these cases?

4.11 In the damped harmonic oscillator, you can have the special case for which b2 = 4km
and for which ω′ = 0. Use a series expansion to take the limit of Eq. (10) as ω′ → 0. Also
graph this solution. What would happen if you took the same limit in Eqs. (8) and (9),
before using the initial conditions?

4.12 In the limiting solution for the forced oscillator, Eq. (16), what is the nature of the
result for small time? Expand the solution through order t2 and understand what you get.
Be careful to be consistent in keeping terms to the same order in t.

4.13 The undamped harmonic oscillator equation is d2x/dt2 +ω2x = 0. Solve this by series
expansion about t = 0.

4.14 Check the algebra in the derivation of the n = 0 Bessel equation. Explicitly verify that
the general expression for a2k in terms of a0 is correct, Eq. (22).

4.15 Work out the Frobenius series solution to the Bessel equation for the n = 1/2, s = −1/2
case. Graph both solutions, this one and Eq. (23).

4.16 Examine the Frobenius series solution to the Bessel equation for the value of n = 1.
Show that this method doesn’t yield a second solution for this case either.

4.17 Try using a Frobenius series method on y′′ + y/x3 = 0 around x = 0.

4.18 Solve by Frobenius series x2u′′ + 4xu′ + (x2 + 2)u = 0.

4.19 The harmonic oscillator equation, d2y/dx2 + k2y = 0, is easy in terms of the variable
x. What is this equation if you change variables to z = 1/x, getting an equation in such
things as d2y/dz2. What sort of singularity does this equation have at z = 0? And of course,
write down the answer for y(z) to see what this sort of singularity can lead to. Graph it.
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4.20 Solve by series solution about x = 0: y′′ + xy = 0.
Ans: 1− (x3/3!) + (1 . 4x6/6!)− (1 . 4 . 7x9/9!) + · · · is one.

4.21 From the differential equation d2u/dx2 = −u, finish the derivation for c′ in Eq. (25).
Derive identities for the functions c(x+ y) and s(x+ y).

4.22 The chain rule lets you take the derivative of the composition of two functions. The
function inverse to s is the function f that satisfies f

(
s(x)

)
= x. Differentiate this with

respect to x and derive that f satisfies df(x)/dx = 1/
√

1− x2. What is the derivative of the
function inverse to c?

4.23 For the differential equation u′′ = +u (note the sign change) use the same boundary
conditions for two independent solutions that I used in Eq. (24). For this new example
evaluate c′ and s′. Does c2 + s2 have the nice property that it did before? What about
c2 − s2? What are c(x+ y) and s(x+ y)? What is the derivative of the function inverse to
s? to c?

4.24 Apply the Green’s function method for the force F0

(
1−e−βt

)
on the harmonic oscillator

without damping. Verify that it agrees with the previously derived result, Eq. (15). They
should match in a special case.

4.25 An undamped harmonic oscillator with natural frequency ω0 is at rest for time t < 0.
Starting at time zero there is an added force F0 sinω0t. Use Green’s functions to find the
motion for time t > 0. Analyze the solution for both small and large time, determining if
your results make sense. Compare the solution to problem 9.

4.26 Derive the Green’s function analogous to Eq. (28) for the case that the harmonic
oscillator is damped.

4.27 Radioactive processes have the property that the rate of decay of nuclei is proportional
to the number of nuclei present. That translates into the differential equation dN/dt = −λN ,
where λ is a constant depending on the nucleus. At time t = 0 there are N0 nuclei; how
many are present at time t later? The half-life is the time in which one-half of the nuclei
decay; what is that in terms of λ? Ans: ln 2/λ

4.28 In the preceding problem, suppose that the result of the decay is another nucleus (the
“daughter”) that is itself radioactive with its own decay constant λ2. Call the first one
above λ1. Write the differential equation for the time-derivative of the number, N2 of this
nucleus. You note that N2 will change for two reasons, so in time dt the quantity dN2 has
two contributions, one is the decrease because of the radioactivity of the daughter, the other
an increase due to the decay of the parent. Set up the differential equation for N2 and you
will be able to use the result of the previous problem as input to this and then to solve
the resulting differential equation for the number of daughter nuclei as a function of time.
Assume that you started with none, N2(0) = 0.
(b) The “activity” is the total number of all types of decays per time. Compute the activity
and graph it. For the plot, assume that λ1 is substantially smaller than λ2 and plot the total
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activity as a function of time. Then examine the reverse case, λ1 � λ2

Ans: (b) N0λ1

[
(2λ2 − λ1)e

−λ1t − λ2e
−λ2t

]
/(λ2 − λ1)

4.29 The “snowplow problem” was made famous by Ralph Agnew: A snowplow starts out
at 12:00 Noon in a heavy and steady snowstorm. In the first hour it goes 2miles; in the
second hour it goes 1 mile. When did the snowstorm start? Ans: 11:23

4.30 Verify that the equations (43) really do satisfy the original differential equations.

4.31 When you use the “dry friction” model Eq. (2) for the harmonic oscillator, you can
solve the problem by dividing it into pieces. Start at time t = 0 and position x = x0

(positive). The initial velocity of the mass m is zero. As the mass is pulled to the left, set
up the differential equation and solve it up to the point at which it comes to a halt. Where
is that? You can take that as a new initial condition and solve the problem as the mass is
pulled to the right until it stops. Where is that? Then keep repeating the process. Instead or
further repetition, examine the case for which the coefficient of kinetic friction is small, and
determine to lowest order in the coefficient of friction what is the change in the amplitude
of oscillation up to the first stop. From that, predict what the amplitude will be after the
mass has swung back to the original side and come to its second stop. In this small µk

approximation, how many oscillations will it undergo until all motion stops. Let b = µkFN

Ans: Let tn = πn/ω0, then for tn < t < tn+1, x(t) = [x0 − (2n+ 1)b/k] cosω0t+ (−1)nb/k.
Stops when t ≈ πkx0/2ω0b roughly.

4.32 A mass m is in an undamped one-dimensional harmonic oscillator and is at rest. A
constant external force F0 is applied for the time interval T and is then turned off. What is
the motion of the oscillator as a function of time for all t > 0? For what value of T is the
amplitude of the motion a maximum after the force is turned off? For what values is the
motion a minimum? Of course you need an explanation of why you should have been able
to anticipate these two results.

4.33 Starting from the solution Eq. (43) assume the initial conditions that both masses start
from the equilibrium position and that the first mass is given an initial velocity vx1 = v0.
Find the subsequent motion of the two masses and analyze it.

4.34 If there is viscous damping on the middle spring of Eqs. (36) so that each mass feels
an extra force depending on their relative velocity, then these equations will be

m1
d2x1

dt2
= −k1x1 − k3(x1 − x2)− b(ẋ1 − ẋ2), and

m2
d2x2

dt2
= −k2x2 − k3(x2 − x1)− b(ẋ2 − ẋ1)

Solve these subject to the conditions that all initial velocities are zero and that the first
mass is pushed to coordinate x0 and released. Use the same assumption as before that
m1 = m2 = m and k1 = k2.
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4.35 For the damped harmonic oscillator apply an extra oscillating force so that the equation
to solve is

m
d2x

dt2
= −bdx

dt
− kx+ Fext(t)

where the external force is Fext(t) = F0e
iωt.

Find the general solution to the homogeneous part of this problem.
Find a solution for the inhomogeneous case. You can readily guess what sort of function will
give you an eiωt from a combination of x and its first two derivatives.
This problem is easier to solve than the one using cosωt, and at the end, to get the solution
for the cosine case, all you have to do is to take the real part of your result.

4.36 You can solve the circuit equation Eq. (33) more than one way. Solve it by the methods
used earlier in this chapter.

4.37 For a second order differential equation you can pick the position and the velocity any
way that you want, and the equation then determines the acceleration. Differentiate the
equation and you find that the third derivative is determined too.

d2x

dt2
= − b

m

dx

dt
− k

m
x implies

d3x

dt3
= − b

m

d2x

dt2
− k

m

dx

dt

Assume the initial position is zero, x(0) = 0 and the initial velocity is vx(0) = v0; determine
the second derivative at time zero. Now determine the third derivative at time zero. Now
differentiate the above equation again and determine the fourth derivative at time zero.
From this, write down the first five terms of the power series expansion of x(t) about t = 0.
Compare this result to the power series expansion of Eq. (10) to this order.

4.38 Use the techniques of section 4.5, start from the equation md2x/dt2 = Fx(t) with no
spring force or damping. Find the Green’s function for this problem, that is, what is the
response of the mass to a small kick over a small time interval (the analog of Eq. (28))?
Develop the analog of Eq. (30) for this case. Apply your result to the special case that
Fx(t) = F0, a constant for time t > 0.
(b) You know that the solution of this differential equation involves two integrals of Fx(t)
with respect to time, so how can this single integral do the same thing? Differentiate this
Green’s function solution (for arbitrary Fx) twice with respect to time to verify that it really
gives what it’s supposed to. This is a special case of some general results, problems 15.19
and 15.20.

4.39 A point mass m moves in one dimension under the influence of a force Fx that has a
potential energy V (x). Recall that the relation between these is Fx = −dV/dx, and take

the specific potential energy V (x) = −V0e
−x2/a2

, where V0 is positive. Sketch V . Write
the equation Fx = max. There is an equilibrium point at x = 0, and if the motion is over
only small distances you can do a power series expansion of Fx about x = 0. What is the
differential equation now? Keep only the lowest order non-vanishing term in the expansion
for the force and solve that equation subject to the initial conditions that at time t = 0,
x(0) = x0 and vx(0) = 0. As usual, analyze large and small a.
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4.40 Solve by Frobenius series methods

d2y

dx2
+

2

x

dy

dx
+

1

x
y = 0

Ans:
∑∞

k=0(−1)k xk

n!(n+1)! is one.

4.41 Find a series solution about x = 0 for y′′ + y sec x = 0, at least to a few terms.
Ans: a0

[
1− 1

2x
2 + 0x4 + 1

720x
6 + · · ·

]
+ a1

[
x− 1

6x
3 + 1

60x
5 + · · ·

]
4.42 Fill in the missing steps in the equations (46) to Eq. (49).

4.43 Verify the orthogonality relation Eq. (52)(a) for the Legendre polynomials of order
` = 0, 1, 2, 3.

4.44 Start with the function
(
1 − 2xt + t2

)−1/2
. Use the binomial expansion and collect

terms to get a power series in t. The coefficients in this series are functions of x. Carry this
out at least to the coefficient of t3 and show that the coefficients are Legendre polynomials.
This is called the generating function for the P`’s. It is

∑∞
0 P`(x)t

`

4.45 In the equation of problem 17, make the change of independent variable x = 1/z.
Without actually carrying out the solution of the resulting equation, what can you say
about solving it?

4.46 Show that Eq. (52)(c) has the correct value Pn(1) = 1 for all n. Note: (1 − x2) =
(1 + x)(1− x) and you are examining the point x = 1.

4.47 Solve for the complete solution of Eq. (46) for the case C = 0. For this, don’t use
series methods, but get the closed form solution. Ans: A tanh−1 x+B

4.48 Derive the condition in Eq. (50). Which values of s correspond to which values of `?

4.49 Start with the equation y′′ + P (x)y′ + Q(x)y = 0 and assume that you have found
one solution: y = f(x). Perhaps you used series methods to find it. Make the substitution
y(x) = f(x)g(x) and deduce a differential equation for g. Let G = g′ and solve the resulting
first order equation for G. Finally write g as an integral. This is one method (not necessarily
the best) to find the second solution to a differential equation.
(b) Apply this result to the ` = 0 solution of Legendre’s equation to find another way to
solve problem 47.

4.50 Treat the damped harmonic oscillator as a two-point boundary value problem.

mẍ+ bẋ+ kx = 0, with x(0) = 0 and x(T ) = d

[For this problem, if you want to set b = k = T = d = 1 that’s o.k.]
(a) Assume that m is very small. To a first approximation neglect it and solve the problem.
(b) Since you failed to do part (a), solve it exactly instead and examine the solution for very
small m. Why couldn’t you make the approximation of neglecting m? Welcome to the world
of boundary layer theory.



Fourier Series

Fourier series started life as a method to solve problems about the flow of heat through
ordinary materials. It has grown so far that if you search our library’s data base for the
keyword “Fourier” you will find 425 entries as of this date. It is a tool in abstract analysis and
electromagnetism and statistics and radio communication and . . . . People have even tried to
use it to analyze the stock market. (It didn’t help.) The representation of musical sounds as
sums of waves of various frequencies is an audible example. It provides an indispensible tool
in solving partial differential equations, and a later chapter will show some of these tools at
work.

5.1 Examples
The power series or Taylor series is based on the idea that you can write a general function
as an infinite series of powers. The idea of Fourier series is that you can write a function as
an infinite series of sines and cosines. You can also use functions other than trigonometric
ones, but I’ll leave that generalization aside for now. Legendre polynomials are an important
example of functions used for such expansions.

An example: On the interval 0 < x < L the function x2 varies from 0 to L2. It can be
written as the series of cosines

x2 =
L2

3
+

4L2

π2

∞∑
1

(−1)n

n2
cos

nπx

L

=
L2

3
− 4L2

π2

[
cos

πx

L
− 1

4
cos

2πx

L
+

1

9
cos

3πx

L
− · · ·

]
(1)

To see if this is even plausible, examine successive partial sums of the series, taking one
term, then two terms, etc. Sketch the graphs of these partial sums to see if they start to
look like the function they are supposed to represent (left graph). The graphs of the series,
using terms up to n = 5 does pretty well at representing the given function.

1

3
5

highest harmonic:   5

1

3

5

highest harmonic:   5

The same function can be written in terms of sines with another series:

x2 =
2L2

π

∞∑
1

[
(−1)n+1

n
− 2

π2n3

(
1− (−1)n)

)]
sin

nπx

L
(2)

92
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and again you can see how the series behaves by taking one to several terms of the series.
(right graph) The graphs show the parabola y = x2 and partial sums of the two series with
terms up to n = 1, 3, 5.

The second form doesn’t seem to work as smoothly as the first example, and there’s a
reason for that. The sine functions all go to zero at x = L and x2 doesn’t, making it hard
for the sum of sines to approximate the desired function. They can do it, but it takes a lot
more terms in the series to get a satisfactory result. The series Eq. (1) has terms that go to
zero as 1/n2, while the terms in the series Eq. (2) go to zero only as 1/n.

5.2 Computing Fourier Series
How do you determine the details of these series starting from the original function? For
the Taylor series, the trick was to assume a series to be an infinitely long polynomial and
then to evaluate it (and its successive derivatives) at a point. You require that all of these
values match those of the desired function at that one point. That method won’t work here.
(Actually it can work here too, but only after a ridiculous amount of labor.)

The idea of the procedure that works here is like one that you can use to determine
the components of a vector in three dimensions. You write such a vector as

~A = Axx̂+ Ayŷ + Az ẑ

And then use the orthonormality of the basis vectors, x̂ . ŷ = 0 etc. Take the scalar product
of the preceding equation with x̂.

x̂ . ~A = x̂ .
(
Axx̂+ Ayŷ + Az ẑ

)
= Ax. (3)

This lets you get all the components of ~A.
There are orthogonality relations similar to the ones for x̂, ŷ, and ẑ, but for sines and

cosines. Let n and m represent integers, then∫ L

0
dx sin

(nπx
L

)
sin
(mπx

L

)
=

{
0 n 6= m
L/2 n = m

(4)

This is sort of like x̂ . ẑ = 0 and ŷ . ŷ = 1.

More Examples
For a simple example, take the function f(x) = 1, the constant on the interval 0 < x < L
and assume that there is a series representation for f on this interval.

1 =
∞∑
1

an sin
(nπx
L

)
(0 < x < L) (5)

Multiply both sides by the sine of mπx/L and integrate from 0 to L.∫ L

0
dx sin

(mπx
L

)
1 =

∫ L

0
dx sin

(mπx
L

) ∞∑
n=1

an sin
(nπx
L

)
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Interchange the order of the sum and the integral, and the integral that shows up is the
orthogonality integral just above. When you use the orthogonality of the sines, only one
term in the infinite series survives.∫ L

0
dx sin

(mπx
L

)
1 =

∞∑
n=1

an

∫ L

0
dx sin

(mπx
L

)
sin
(nπx
L

)
=

∞∑
n=1

an .
{

0 n 6= m
L/2 n = m

(6)

= am L/2.

Now all you have to do is to evaluate the integral on the left.∫ L

0
dx sin

(mπx
L

)
1 =

L

mπ

[
− cos

mπx

L

]L
0

=
L

mπ

[
1− (−1)m

]
This is zero for even m, and when you equate it to (6) you get

am =
4

mπ
for m odd

Relabel the indices so that the sum shows only odd integers and the Fourier series is

4

π

∞∑
k=0

1

2k + 1
sin

(2k + 1)πx

L
= 1, (0 < x < L) (7)

highest harmonic:   5 highest harmonic:  19 highest harmonic:  99

The graphs show the sum of the series up to 2k + 1 = 5, 19, 99 respectively. It is not
a very rapidly converging series, but it’s a start. You can see from the graphs that near the
end of the interval, where the function is discontinuous, the series has a hard time handling
the jump. The resulting overshoot is called the Gibbs phenomenon. See section 5.6.

There is a compact and powerful notation that makes this look much simpler. Further
exploit the analogy with the dot product in three dimensions. In that case I can evaluate a
component of the given vector by using the scalar product:

x̂ . ~A = x̂ .
(
Axx̂+ Ayŷ + Az ẑ

)
= Ax. OR

〈
x̂, ~A

〉
= Ax

The last, with the angle brackets, is an alternate notation for the scalar product.
The orthogonality integral for the sines is another scalar product written in the same

compact notation: 〈
f, g
〉

=

∫ L

0
dx f(x)*g(x) (8)
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and Eq. (4) then becomes

〈
un, um

〉
=

{
0 n 6= m
L/2 n = m

where un(x) = sin
(nπx
L

)
(9)

The Fourier series manipulations become

1 =
∞∑
1

anun, then
〈
um, 1

〉
=
〈
um,

∞∑
1

anun

〉
=

∞∑
n=1

an

〈
um, un

〉
= an

〈
un, un

〉
(10)

This is a far more compact notation than you see in the steps between Eq. (5) and Eq. (7).
You still have to evaluate the integral, but when you master this notation you’ll likely make
fewer mistakes in figuring out what integral you have to do.

The analogy between the vectors such as x̂ and functions such as sine is really far
deeper, and it is central to the subject of the next chapter. In order not to to get confused
by the notation, you have to distinguish between a whole function f , and the value of that
function at a point, f(x). The former is the whole graph of the function, and the latter is
one point of the graph.

The scalar product notation of Eq. (8) is not necessarily restricted to the interval
0 < x < L. Depending on context it can be over any interval that you happen to be
considering at the time. In Eq. (8) there is a complex conjugation symbol. The functions
here have been real, so this made no difference, but you will often deal with complex functions
and then the fact that the notation

〈
f, g
〉

includes a conjugation is important. This notation
is really a special case of a far more general development, but that can wait until section 6.6.

5.3 Choice of Basis
When you work with components of vectors in two or three dimensions, you will choose
the basis that is most convenient for the problem you’re working with. If you do a simple
mechanics problem with a mass moving on an incline, you can choose a basis x̂ and ŷ that
are arranged horizontally and vertically. OR, you can place them at an angle so that they
point down the incline and perpendicular to it. The latter is often a simpler choice in that
type of problem.

The same applies to Fourier series. The interval on which you’re working is not neces-
sarily from zero to L, and even on the interval 0 < x < L you can choose many bases:

sinnπx/L (n = 1, 2, . . .) as above, or you can choose a basis

cosnπx/L (n = 0, 1, 2, . . .), or you can choose a basis

sin(n+ 1/2)πx/L (n = 0, 1, 2, . . .), or you can choose a basis

e2πinx/L (n = 0,±1,±2, . . .), or an infinite number of other possibilities.

Fundamental Theorem
If you want to show that each of these respective choices provides an orthogonal set of
functions you can do a lot of integration or you can do all the cases at once with an important
theorem that starts from the fact that all of these sines and cosines and complex exponentials
satisfy the same differential equation, u′′ = λu, where λ is some constant, different in each
case.
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You have two functions u1 and u2 that satisfy

u′′1 = λ1u1 and u′′2 = λ2u2

Make no assumption about whether the λ’s are positive or negative or even real. The u’s
can also be complex. Multiply the first equation by u*

2 and the second by u*
1, then take the

complex conjugate of the second product.

u*
2u
′′
1 = λ1u

*
2u1 and u1u

*
2
′′ = λ*

2u1u
*
2

Subtract the equations.
u*

2u
′′
1 − u1u*

2
′′ = (λ1 − λ*

2)u
*
2u1

Integrate from a to b ∫ b

a
dx
(
u*

2u
′′
1 − u1u

*
2
′′) = (λ1 − λ*

2)

∫ b

a
dxu*

2u1 (11)

Now do some partial integration. Work on the second term on the left:∫ b

a
dxu1u

*
2
′′ = u1u

*
2
′
∣∣∣b
a
− u′1u*

2

∣∣∣b
a

+

∫ b

a
dxu′′1u

*
2

Put this back into the Eq. (11) and the integral terms on the left cancel.

u′1u
*
2 − u1u

*
2
′
∣∣∣b
a

= (λ1 − λ*
2)

∫ b

a
dxu*

2u1 (12)

This is the central identity from which all the orthogonality relations in Fourier series
derive. It’s even more important than that because it tells you what types of boundary
conditions you can use in order to get the desired orthogonality relations. (It tells you even
more than that, as it tells you how to compute the adjoint of the second derivative operator.
But not now; save that for later.) The expression on the left side of the equation has a name:
“bilinear concomitant.”

The key to using this identity will be to figure out what sort of boundary conditions
will cause the left-hand side to be zero. For example if u(a) = 0 and u(b) = 0 then the left
side is zero, but that is not the only possibility.

The first consequence comes by taking a special case, the one in which the two functions
u1 and u2 are in fact the same function. If the boundary conditions are such that the left
side is zero then

0 = (λ1 − λ*
1)

∫ b

a
dxu*

1(x)u1(x)

The λ’s are necessarily the same because the u’s are. The only way the product of two
numbers can be zero is if one of them is zero. The integrand, u*

1(x)u1(x) is always non-
negative and is continuous, so the integral can’t be zero unless the function u1 is identically
zero. As that would be a trivial case, I assume it’s not so. This then implies that the other
factor, (λ1 − λ*

1) must be zero, and this says that the constant λ1 is real.
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To use another language that will become more familiar later, λ is an eigenvalue and
d2/dx2 with these boundary conditions is an operator. This calculation guarantees that the
eigenvalue is real.

Now go back the the more general case of two different functions, and I can now drop
the complex conjugation on the λ’s.

0 = (λ1 − λ2)

∫ b

a
dxu*

2(x)u1(x)

This says that if the boundary conditions on u make the left side zero, then for two solutions
with different eigenvalues (λ’s) the orthogonality integral is zero.

If λ1 6= λ2, then
〈
u2, u1

〉
=

∫ b

a
dxu*

2(x)u1(x) = 0 (13)

As an example, carry out a full analysis of the case for which a = 0 and b = L, and
for the boundary conditions u(0) = 0 and u(L) = 0. The parameter λ is positive, zero, or
negative. If λ > 0, then set λ = k2 and

u(x) = A sinh kx+B cosh kx, then u(0) = B = 0

and so u(L) = A sinh kL = 0⇒ A = 0

No solutions there, so try λ = 0

u(x) = A+Bx, then u(0) = A = 0 and so u(L) = BL = 0⇒ B = 0

No solutions here either. Try λ < 0, setting λ = −k2.

u(x) = A sin kx+B cos kx, then u(0) = 0 = B and so u(L) = A sin kL = 0

Now there are many solutions because sinnπ = 0 allows k = nπ/L with n any integer. But,
sin(−x) = − sin(x) so negative integers just reproduce the same functions as do the positive
integers; they are redundant and you can eliminate them. The complete set of solutions to
the equation u′′ = λu with these boundary conditions have λn = −n2π2/L2 with

un(x) = sin
(nπx
L

)
n = 1, 2, 3, . . . and〈

un, um

〉
=

∫ L

0
dx sin

(nπx
L

)
sin
(mπx

L

)
= 0 if n 6= m (14)

There are other choices of boundary condition that will make the bilinear concomitant
vanish. For example

u(0) = 0, u′(L) = 0 gives un(x) = sin
(
n+ 1/2

)
πx/L n = 0, 1, 2, 3, . . .

and you have the orthogonality integral for non-negative integers n and m∫ L

0
dx sin

(
(n+ 1/2)πx

L

)
sin

(
(m+ 1/2)πx

L

)
= 0 if n 6= m (15)
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A very common choice of boundary conditions is

u(a) = u(b), u′(a) = u′(b) (periodic boundary conditions) (16)

It’s often more convenient to use complex exponentials in this case (though of course not
necessary). On 0 < x < L

u(x) = eikx, where k2 = −λ and u(0) = 1 = u(L) = eikL

The periodic behavior of the exponential implies that kL = 2nπ. The condition that the
derivatives match at the boundaries makes no further constraint, so the basis functions are

un(x) = e2πinx/L, (n = 0, ±1,±2, . . .) (17)

Notice that in this case the index n runs over all positive and negative numbers and zero. If
the interval is symmetric about the origin as it often is, −L < x < +L, the conditions are

u(−L) = e−ikL = u(+L) = e+ikL, or e2ikL = 1 (18)

This says that 2kL = 2nπ, so

un(x) = enπix/L, (n = 0, ±1,±2, . . .)

Sometimes the real form of this basis is more convenient and you can use the combination
of the two sets un and vn, where

un(x) = cos(nπx/L), (n = 0, 1, 2, . . .) and vn(x) = sin(nπx/L), (n = 1, 2, . . .)
(19)

There are an infinite number of other choices, a few of which are even useful, e.g.

u′(a) = 0 = u′(b) (20)

Take the same function as in Eq. (5) and try a different basis. Choose the basis for
which the boundary conditions are u(0) = 0 and u′(L) = 0. This gives the orthogonality
conditions of Eq. (15). The general structure is always the same.

f(x) =
∑

an un(x), and use
〈
um, un

〉
= 0 (n 6= m)

Take the scalar product of this equation with um to get〈
um, f

〉
=
〈
um,

∑
an un

〉
= am

〈
um, um

〉
(21)

This is exactly as before in Eq. (10), only with a different basis. To evaluate it you still have
to do the integrals.∫ L

0
dx sin

(
(m+ 1/2)πx

L

)
1 = am

∫ L

0
dx sin2

(
(m+ 1/2)πx

L

)
L

(m+ 1/2)π

[
1− cos

(
(m+ 1/2)π

)]
=
L

2
am
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am =
4

(2m+ 1)π

Then the series is
4

π

[
sin

πx

2L
+

1

3
sin

3πx

2L
+

1

5
sin

5πx

2L
+ · · ·

]
(22)

Parseval’s Identity
Let un be the set of orthogonal functions that follow from your choice of boundary conditions.

f(x) =
∑
n

anun(x)

Evaluate the integral of the absolute square of f over the domain.

∫ b

a
dx |f(x)|2 =

∫ b

a
dx

[∑
m

amum(x)

]
*
[∑

n

anun(x)

]

=
∑
m

a*
m

∑
n

an

∫ b

a
dxum(x)*un(x) =

∑
n

|an|2
∫ b

a
dx |un(x)|2

In the more compact notation this is〈
f, f
〉

=
〈∑

m

amum,
∑
n

anun

〉
=
∑
m,n

a*
man

〈
um, un

〉
=
∑
n

|an|2
〈
un, un

〉
(23)

The first equation is nothing more than substituting the series for f . The second moved the
integral under the summation. The third equation uses the fact that all these integrals are
zero except for the ones with m = n. That reduces the double sum to a single sum. If you
have chosen to normalize all of the functions un so that the integrals of |un(x)|2 are one,
then this relation takes on a simpler appearance.

What does this say if you apply it to a series I’ve just computed? Take Eq. (7) and
see what it implies.

〈
f, f
〉

=

∫ L

0
dx 1 = L =

∞∑
k=0

|ak|2
〈
un, un

〉
=

∞∑
k=0

(
4

π(2k + 1)

)2 ∫ L

0
dx sin2

(
(2k + 1)πx

L

)
=

∞∑
k=0

(
4

π(2k + 1)

)2
L

2

Rearrange this to get
∞∑

k=0

1

(2k + 1)2
=
π2

8
(24)

A bonus. You have the sum of this infinite series, a result that would be quite perplexing if
I handed it to you without showing where it came from. While you have it in front of you,
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what do you get if you simply evaluate the infinite series of Eq. (7) at L/2. The answer is 1,
but what is the other side?

1 =
4

π

∞∑
k=0

1

2k + 1
sin

(2k + 1)π(L/2)

L
=

4

π

∞∑
k=0

1

2k + 1
(−1)k

or 1− 1

3
+

1

5
−1

7
+

1

9
− · · · = π

4

But does it Work?
If you are in the properly skeptical frame of mind, you may have noticed a serious omission
on my part. I’ve done all this work showing how to get orthogonal functions and to ma-
nipulate them to derive Fourier series for a general function, but when did I show that this
actually works? Never. How do I know that a general function, even a well-behaved general
function, can be written as such a series? I’ve proved that the set of functions sin(nπx/L)
are orthogonal on 0 < x < L, but that’s not good enough.

Maybe a clever mathematician will invent a new function that I haven’t thought of
and that will be orthogonal to all of these sines and cosines that I’m trying to use for a
basis, just as k̂ is orthogonal to ı̂ and ̂. It won’t happen. There are proper theorems
proved in advanced calculus books that specify the conditions under which all of this Fourier
manipulation works.

For example if the function is continuous with a continuous derivative on the interval
0 ≤ x ≤ L then the Fourier series will exist, will converge, and will converge to the specified
function (except maybe at the endpoints). If you allow it to have a finite number of finite
discontinuities then the Fourier series will converge and will (except maybe at the disconti-
nuities) converge to the specified function. There are a variety of other sufficient conditions
that you can use to insure that all of this stuff works, but I’ll leave that to the advanced
calculus books.

5.4 Periodically Forced ODE’s
If you have a harmonic oscillator with an added external force, such as Eq. (4.12), there are
systematic ways to solve it, such as those found in section 4.2. One part of the problem is
to find a solution to the inhomogeneous equation, and if the external force is simple enough
you can do this easily. Suppose though that the external force is complicated but periodic,
as for example when you’re pushing a child on a swing.

m
d2x

dt2
= −kx− bdx

dt
+ Fext(t)

That the force is periodic means Fext(t) = Fext(t+ T ) for all times t. The period is T .

Pure Frequency Forcing
Before attacking the general problem, look at a simple special case. Take the external forcing
function to be F0 cosωet where this frequency is ωe = 2π/T . This equation is now

m
d2x

dt2
+ kx+ b

dx

dt
= F0 cosωet =

F0

2

[
eiωet + e−iωet

]
(25)
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Find a solution corresponding to each term separately and add the results. To get an
exponential out, put an exponential in.

for m
d2x

dt2
+ kx+ b

dx

dt
= eiωet assume xinh(t) = Aeiωet

Substitute the assumed form and it will determine A.[
m(−ω2

e ) + b(iωe) + k
]
Aeiωet = eiωet

This tells you the value of A is

A =
1

−mω2
e + b iωe + k

(26)

The other term in Eq. (25) simply changes the sign in front of i everywhere. The total
solution for Eq. (25) is then

xinh(t) =
F0

2

[
1

−mω2
e + b iωe + k

eiωet +
1

−mω2
e − b iωe + k

e−iωet

]
(27)

This is the sum of a number and its complex conjugate, so it’s real. You can rearrange it so
that it looks a lot simpler, but I don’t need to do that right now. Instead I’ll look at what
it implies for certain values of the parameters.

Suppose that the viscous friction is small (b is small). If the forcing frequency, ωe

is such that −mω2
e + k = 0, or is even close to zero, the denominators of the two terms

become very small. This in turn implies that the response of x to the oscillating force is
huge. Resonance. See problem 27. In a contrasting case, look at ωe very large. Now the
response of the mass is very small; it barely moves.

General Periodic Force
Now I’ll go back to the more general case of a periodic forcing function, but not one that is
simply a cosine. If a function is periodic I can use Fourier series to represent it on the whole
axis. The basis to use will of course be the one with periodic boundary conditions (what
else?). Use complex exponentials, then

u(t) = eiωt where eiω(t+T ) = eiωt

This is just like Eq. (17) but with t instead of x, so

un(t) = e2πint/T , (n = 0, ±1, . . .) (28)

Let ωe = 2π/T , and this is
un(t) = einωet

The external force can now be represented by the Fourier series

Fext(t) =
∞∑

k=−∞
ak e

ikωet, where

〈
einωet,

∞∑
k=−∞

ak e
ikωet

〉
= an T =

〈
einωet, Fext(t)

〉
=

∫ T

0
dt e−inωet Fext(t)
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(Don’t forget the implied complex conjugation in the definition of the scalar product,
〈
,
〉
.)

Because the force is periodic I can use any other time interval of duration T , perhaps −T/2
to +T/2 if that’s more convenient.

How does this solve the differential equation? Plug in.

m
d2x

dt2
+ b

dx

dt
+ kx =

∞∑
n=−∞

an e
inωet (29)

All that I have to do now is to solve for an inhomogeneous solution one term at a time and
add the results. Take one term alone on the right:

m
d2x

dt2
+ b

dx

dt
+ kx = einωet

This is what I just finished solving a few lines ago, Eq. (26), only with nωe instead of simply
ωe. The inhomogeneous solution is the sum of the solutions from each term.

xinh(t) =
∞∑

n=−∞
an

1

−m(nωe)2 + binωe + k
eniωet (30)

Suppose for example that the forcing function is a simple square wave.

Fext(t) =

{
F0 (0 < t < T/2)
−F0 (T/2 < t < T )

and Fext(t+ T ) = Fext(t) (31)

The Fourier series for this function is one that you can do in problem 12. The result is

Fext(t) = F0
2

πi

∑
n odd

1

n
eniωet (32)

The solution corresponding to Eq. (30) is now

xinh(t) = F0
1

2πi

∑
n odd

1(
−m(nωe)2 + binωe + k

) 1

n
eniωet (33)

A real force ought to give a real result; does this? Yes. For every positive n in the
sum, there is a corresponding negative one and the sum of those two is real. You can see this
because every n that appears is either squared or is multiplied by an “i.” When you add
the n = +5 term to the n = −5 term it’s adding a number to its own complex conjugate,
and that’s real.

What peculiar features does this result imply? With the simply cosine force the phe-
nomenon of resonance occurred, in which the response to a small force at a frequency that
matched the intrinsic frequency

√
k/m produced a disproportionately large response. What

other things happen here?
The natural frequency of the system is (for small damping) still

√
k/m. Look to see

where a denominator in Eq. (33) may become very small. This time it’s when−m(nωe)
2+k =
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0. This is not only when the external frequency ωe matches the natural frequency; it’s when
nωe matches it. If the natural frequency is

√
k/m = 100 radians/sec you get a big response if

the forcing frequency is 100 radians/sec or 33 radians/sec or 20 radians/sec or 14 radians/sec
etc. What does this mean? The square wave in Eq. (31) contains many frequencies. It
contains not only the main frequency 2π/T , it contains 3 times this and 5 times it and many
higher frequencies. When any one of these harmonics matches the natural frequency you
will have the large resonant response.

Not only do you get a large response, look at the way the mass oscillates. If the force
has a frequency 20 radians/sec, the mass responds* with a large oscillation at a frequency 5
times higher.

5.5 Return to Parseval
When you have a periodic wave such as a musical note, you can Fourier analyze it. The
boundary conditions to use are naturally the periodic ones, Eq. (17) or (28), so that

f(t) =
∞∑
−∞

ane
inω0t

If this represents the sound of a flute, the amplitudes of the higher frequency components
(the an) drop off rapidly with n. If you are hearing an oboe or a violin the strength of the
higher components is greater.

If this function represents the sound wave as received by your ear, the power that you
receive is proportional to the square of f . If f represent specifically the pressure disturbance
in the air, the intensity (power per area) carried by the wave is f(t)2v/B where v is the
speed of the wave and B is the bulk modulus of the air. The key property of this is that it
is proportional to the square of the wave’s amplitude. That’s the same relation that occurs
for light or any other wave. Up to a known factor then, the power received by the ear is
proportional to f(t)2.

This time average of the power is (up to that constant factor that I’m ignoring)〈
f2
〉

= lim
T→∞

1

2T

∫ +T

−T
dt f(t)2

Now put the Fourier series representation of the sound into the integral to get

lim
T→∞

1

2T

∫ +T

−T
dt

[ ∞∑
−∞

ane
inω0t

]2

The sound f(t) is real, so by problem 11, a−n = a*
n. Also, using the result of problem 18 the

time average of eiωt is zero unless ω = 0; then it’s one.

〈
f2
〉

= lim
T→∞

1

2T

∫ +T

−T
dt

[∑
n

ane
inω0t

][∑
m

ame
imω0t

]

* The next time you have access to a piano, gently depress a key without making a
sound, then strike the key one octave lower. Release the lower key and listen to the sound
of the upper note. Then try it with an interval of an octave plus a fifth.
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= lim
T→∞

1

2T

∫ +T

−T
dt
∑
n

∑
m

ane
inω0tame

imω0t

=
∑
n

∑
m

anam lim
T→∞

1

2T

∫ +T

−T
dt ei(n+m)ω0t

=
∑
n

ana−n

=
∑
n

|an|2 (34)

Put this into words and it says that the time-average power received is the sum of many
terms, each one of which I can interpret as the amount of power coming in at that frequency
nω0. The Fourier coefficients squared (absolute-squared really) are then proportional to the
part of the power at a particular frequency. The “power spectrum.”

Other Applications
In section 10.2 Fourier series will be used to solve partial differential equations, leading to
equations such as Eq. (10.15).

In quantum mechanics, Fourier series and its generalizations will manifest themselves
in displaying the discrete energy levels of bound atomic and nuclear systems.

Music synthesizers are all about Fourier series.

5.6 Gibbs Phenomenon
There’s a picture of the Gibbs phenomenon with Eq. (7). When a function has a discontinuity,
its Fourier series representation will not handle it in a uniform way, and the series overshoots
its goal at the discontinuity. The detailed calculation of this result is quite pretty, and it’s an
excuse to pull together several of the methods from the chapters on series and on complex
algebra.

4

π

∞∑
k=0

1

2k + 1
sin

(2k + 1)πx

L
= 1, (0 < x < L)

highest harmonic:   5 highest harmonic:  19 highest harmonic:  99

The analysis sounds straight-forward. Find the position of the first maximum. Evalu-
ate the series there. It really is almost that clear. First however, you have to start with the
a finite sum and find the first maximum of that. Stop the sum at k = N .

4

π

N∑
k=0

1

2k + 1
sin

(2k + 1)πx

L
= fN (x) (35)

For a maximum, set the derivative to zero.

f ′N (x) =
4

L

N∑
0

cos
(2k + 1)πx

L
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Write this as the real part of a complex exponential and use Eq. (2.2).

N∑
0

ei(2k+1)πx/L =
N∑
0

z2k+1 = z
N∑
0

z2k = z
1− z2N+2

1− z2

Factor these complex exponentials in order to put this into a nicer form.

= eiπx/L e
−iπx(N+1)/L − eiπx(N+1)/L

e−iπx/L − eiπx/L

eiπx(N+1)/L

eiπx/L
=

sin(N + 1)πx/L

sin πx/L
eiπx(N+1)/L

The real part of this changes the last exponential into a cosine. Now you have the product
of the sine and cosine of (N + 1)πx/L, and that lets you use the trigonometric double angle
formula.

f ′N (x) =
4

L

sin 2(N + 1)πx/L

2 sin πx/L

This is zero at the maximum. The first maximum after x = 0 is at 2(N + 1)πx/L = π, or
x = L/2(N + 1).

Now for the value of fN at this point,

fN

(
L/2(N + 1)

)
=

4

π

N∑
k=0

1

2k + 1
sin

(2k + 1)πL/2(N + 1)

L
=

4

π

N∑
k=0

1

2k + 1
sin

(2k + 1)π

2(N + 1)

The final step is to take the limit as N →∞. As k varies over the set 0 to N , the argument
of the sine varies from a little more than zero to a little less than π. As N grows you have
the sum over a lot of terms, each of which is approaching zero. It’s an integral. Let tk = k/N
then ∆tk = 1/N . This sum is approximately

4

π

N∑
k=0

1

2Ntk
sin tkπ =

2

π

N∑
0

∆tk
1

tk
sin tkπ −→

2

π

∫ 1

0

dt

t
sin πt

In this limit 2k + 1 and 2k are the same, and N + 1 is the same as N .
Finally, put this into a standard form by changing variables to πt = x.

2

π

∫ π

0
dx

sin x

x
=

2

π
Si(π) = 1.17898

∫ x

0
dt

sin t

t
= Si(x) (36)

The function Si is called the “sine integral.” It’s just another tabulated function, along with
erf, Γ, and others. This equation says that as you take the limit of the series, the first part
of the graph approaches a vertical line starting from the origin, but it overshoots its target
by 18%.
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Problems

5.1 Get the results in Eq. (4) by explicitly calculating the integrals.

5.2 The functions with periodic boundary conditions, Eq. (17), are supposed to be orthog-
onal on 0 < x < L. That is,

〈
un, um

〉
= 0 for n 6= m. Verify this explicitly. What is the

result if n = m or n = −m? The notation is defined in Eq. (8).

5.3 Find the Fourier series for the function f(x) = 1 as in Eq. (7), but use as a basis
the set of functions un on 0 < x < L that satisfy the differential equation u′′ = λu with
boundary conditions u′(0) = 0 and u′(L) = 0. Necessarily the first step will be to find all
such functions.

5.4 Compute the Fourier series for the function x2 on the interval 0 < x < L, using as a
basis the functions with boundary conditions u′(0) = 0 and u′(L) = 0.
Sketch the partial sums of the series for 1, 2, 3 terms.

5.5 Compute the Fourier series for the function x on the interval 0 < x < L, using as a
basis the functions with boundary conditions u(0) = 0 = u(L). How does the coefficient of

the nth term decrease as a function of n? Ans: 2L
π

∑∞
1

(−1)n+1

n sin(nπx/L)

5.6 In the preceding problem the sine functions that you used don’t match the qualitative
behavior of the function x on this interval because the sine is zero at x = L and x isn’t.
The qualitative behavior is different from the basis you are using for the expansion. You
should be able to get better convergence for the series if you choose functions that more
closely match the function that you’re expanding, so try repeating the calculation using
basis functions that satisfy u(0) = 0 and u′(L) = 0. How does the coefficient of the nth term
decrease as a function of n?

5.7 In the preceding two series, use the values of the Fourier series to extend the original
function outside the domain 0 < x < L. That is, for the function that is f(x) = x on this
interval what does the series give outside that interval? Draw the graph of the extended
function in each of the two cases. This graph should give some insight about why the series
converges better in one case than in the other.

5.8 In the two problems 5 and 6 you improved the convergence by choosing boundary
conditions that better matched the function that you want. Can you do better? The function
x vanishes at the origin, but its derivative isn’t zero at L, so try boundary conditions u(0) = 0
and u(L) = Lu′(L). These conditions match those of x so this ought to give even better
convergence, but first you have to verify that these conditions guarantee the orthogonality of
the basis functions. You have to verify that the left side of Eq. (12) is in fact zero. When you
set up the basis, you will examine functions of the form sin kx, but you will not be able to
solve explicitly for the values of k. Don’t worry about it. When you use Eq. (21) to get the
coefficients all that you need to do is to use the equation that k satisfies to do the integrals.
You do not need to have solved it. If you do all the algebra correctly you will probably have
a surprise.
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5.9 Use the periodic boundary conditions on −L < x < +L and basis eπinx/L to write x2

as a Fourier series. Sketch the sums up to a few terms. Evaluate your result at x = L where
you know the answer to be L2 and deduce from this the value of ζ(2).

5.10 On the interval −π < x < π, the function f(x) = cosx. Expand this in a Fourier
series defined by u′′ = λu and u(−π) = 0 = u(π). If you use your result for the series outside
of this interval you define an extension of the original function. Graph this extension and
compare it to what you normally think of as the graph of cos x.
Ans:

∑∞
k=0−

4
π

2k+1
(2k+3)(2k−1) sin

(
(2k + 1)(x+ π)/2

)
5.11 Represent a function f on the interval −L < x < L by a Fourier series using periodic
boundary conditions

f(x) =
∞∑
−∞

an e
nπix/L

(a) If the function f is odd, prove that for all n, a−n = −an

(b) If the function f is even, prove that all a−n = an.
(c) If the function f is real, prove that all a−n = a*

n.
(d) If the function is both real and even, characterize an.
(e) If the function is imaginary and odd, characterize an.

5.12 Derive the series Eq. (32).

5.13 For the function e−αt on 0 < t < T , express it as a Fourier series using periodic
boundary conditions [u(0) = u(T ) and u′(0) = u′(T )]. Examine for plausibility the cases of
large and small α. The basis functions for periodic boundary conditions can be expressed
either as cosines and sines or as complex exponentials. Unless you can analyze the problem
ahead of time and determine that it has some special symmetry that matches that of the
trig functions, you’re usually better off with the exponentials. Ans:

[(
1 − e−αT

)/
αT
][

1 +

2
∑∞

1 [α2 cosnωt+ αnω sinnωt]
/
[α2 + n2ω2]

]
5.14 On the interval 0 < x < L, write x(L−x) as a Fourier series, using boundary conditions
that the expansion functions vanish at the endpoints.

5.15 A full-wave rectifier takes as an input a sine wave, sinωt and creates the output | sinωt|.
The period of the original wave is 2π/ω, so write the Fourier series for the output in terms of
functions periodic with this period. Graph the function first and use the graph to anticipate
which terms in the Fourier series will be present.
When you’re done, evaluate the infinite series

∑∞
1 (−1)k+1/(4k2 − 1) Ans: π/4− 1/2

5.16 A half-wave rectifier takes as an input a sine wave, sinωt and creates the output

sinωt if sinωt > 0 and 0 if sinωt ≤ 0

The period of the original wave is 2π/ω, so write the Fourier series for the output in terms
of functions periodic with this period. Graph the function first. Check that the result gives
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the correct value at t = 0, manipulating it into a telescoping series. Sketch a few terms of
the series to see if it’s heading in the right direction.
Ans: 4/π + 1/2 sinωt− 8/π

∑
n even >0 cos(nωt)/(n2 − 1)

5.17 For the undamped harmonic oscillator, apply an oscillating force. This is a simpler
version of Eq. (25). Solve this problem and add the general solution to the homogeneous
equation. Solve this subject to the initial conditions that x(0) = 0 and vx(0) = v0.

5.18 The average (arithmetic mean) value of a function is

〈
f
〉

= lim
T→∞

1

2T

∫ +T

−T
dt f(t) or

〈
f
〉

= lim
T→∞

1

T

∫ T

0
dt f(t)

as appropriate for the problem.

What is
〈
sinωt

〉
? What is

〈
sin2 ωt

〉
? What is

〈
e−at2

〉
?

What is
〈
sinω1t sinω2t

〉
? What is

〈
eiωt
〉
?

5.19 In the calculation leading to Eq. (34) I assumed that f(t) is real and then used the
properties of an that followed from that fact. Instead, make no assumption about the reality
of f(t) and compute 〈

|f(t)|2
〉

=
〈
f(t)*f(t)

〉
Show that it leads to the same result as before,

∑
|an|2.

5.20 The series ∞∑
n=0

an cosnθ (|a| < 1)

represents a function. Sum this series and determine what the function is. While you’re
about it, sum the similar series that has a sine instead of a cosine. Don’t try to do these
separately; combine them and do them as one problem. And check some limiting cases of
course. Ans: a sin θ/

(
1 + a2 − 2a cos θ

)
5.21 Apply Parseval’s theorem to problem 9 and see what you can deduce.

5.22 If you take all the elements un of a basis and multiply each of them by 2, what happens
to the result for the Fourier series for a given function?

5.23 In the section 5.3 several bases are mentioned. Sketch a few terms of each basis.

5.24 A function is specified on the interval 0 < t < T to be

f(t) =

{
1 (0 < t < t0)
0 (t0 < t < T )

0 < t0 < T

On this interval, choose boundary conditions such that the left side of the basic identity (12)
is zero. Use the corresponding choice of basis functions to write f as a Fourier series on this
interval.
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5.25 Show that the boundary conditions u(0) = 0 and αu(L)+βu′(L) = 0 make the bilinear
concomitant in Eq. (12) vanish. Are there any restrictions on α and β? Do not assume that
these numbers have to be real.

5.26 Derive a Fourier series for the function

f(x) =

{
Ax (0 < x < L/2)
A(L− x) (L/2 < x < L)

Choose the Fourier basis that you prefer. Evaluate the resulting series at x = L/2 to check
the result. Sketch the sum of a couple of terms. Comment on the convergence properties of
the result. Are they what you expect?
Ans: (2AL/π2)

∑
k odd(−1)(k−1)/2 sin(kπx/L)

/
k2

5.27 Rearrange the solution Eq. (27) into a more easily understood form. Write the first
denominator as

−mω2
e + b iωe + k = Reiφ

What are R and φ? The second term does not require you to repeat this calculation, just
use its results, now combine everything and write the answer as an amplitude times a phase-
shifted cosine.
(b) Assume that b is not too big and plot both R and φ versus the forcing frequency ωe.
Also, and perhaps more illuminating, plot 1/R.

5.28 Find the form of Parseval’s identity appropriate for power series. Assume a scalar

product
〈
f, g
〉

=
∫ 1
−1 dx f(x)*g(x) for the series f(x) =

∑∞
0 anx

n, and express the result in
terms of matrices. (b) Test your result on a simple, low-order polynomial.

5.29 In the Gibbs phenomenon, after the first maximum there is a first minimum. Where
is it? how big is the function there? What is the limit of this point? That is, repeat the
analysis of section 5.6 for this minimum point. (b) While you’re about it, what will you
get for the limit of the sine integral, Si(∞)? The last result can also be derived by complex
variable techniques of chapter 14. Ans: (2/π) Si(2π) = 0.9028

5.30 Make a blown-up copy of the graph preceding Eq. (35) and measure the size of the
overshoot. Compare this experimental value to the theoretical limit. Same for the first
minimum.

5.31 Find the power series representation about the origin for the sine integral, Si, that
appeared in Eq. (36).
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out
in

5.32 An input potential in a circuit is given to be a square wave
±V0 at frequency ω. What is the output at the other end? In
particular, assume that the resistance is small, and show that
you can pick values of the capacitance and the inductance so
that the output is almost exactly a sine wave at frequency 3ω.

5.33 For the function sin(πx/L) on (0 < x < 2L), expand it in a Fourier series using as
a basis the trigonometric functions with the boundary conditions u′(0) = 0 = u′(2L), the
cosines.

5.34 For the function cos(πx/L) on (0 < x < 2L), expand it in a Fourier series using as a
basis the trigonometric functions with the boundary conditions u(0) = 0 = u(2L), the sines.

5.35 For the function f(x) = x4, evaluate the Fourier series on the interval −L < x < L
using periodic boundary conditions

(
u(−L) = u(L) and u′(−L) = u′(L)

)
. Evaluate the

series at the point x = L to derive the zeta function value ζ(4) = π4/90. Evaluate it at
x = 0 to get a related series.
Ans: 1

5L
4 + L4

∑∞
1 (−1)n

[
8

n2π2 − 48
n4π4

]
cosnπx/L

5.36 Fourier series depends on the fact that the sines and cosines are orthogonal when
integrated over a suitable interval. There are other functions that allow this too, and you’ve
seen one such set. The Legendre polynomials that appeared in section 4.9 in the chapter on
differential equations satisfied the equations (4.52). One of these is∫ 1

−1
dxPn(x)Pm(x) =

2

2n+ 1
δnm

This is an orthogonality relation,
〈
Pn, Pm

〉
= 2δnm/(2n+1), much like that for trigonometric

functions. Write a function f(x) =
∑∞

0 an Pn(x) and deduce an expression for evaluating
the coefficients an. Apply this to the function f(x) = x2.

5.37 For the standard differential equation u′′ = λu, use the boundary conditions u(0) = 0
and 2u(L) = Lu′(L). This is a special case of problem 25, so the bilinear concomitant
vanishes. If you haven’t done that problem, at least do this special case. Find all the
solutions that satisfy these conditions and graph a few of them. You will not be able to find
an explicit solution for the λs, but you can estimate a few of them to sketch graphs.



Vector Spaces

The idea of vectors dates back to the early 1800’s, but the generality of the concept waited
until Peano’s work in 1888. Even then it took many years to understand the importance
and extent of the ideas involved. This one underlying idea can be used to describe the forces
and accelerations in Newtonian mechanics and the potential functions of electromagnetism
and the states of systems in quantum mechanics and the least-square fitting of experimental
data and much more.

6.1 The Underlying Idea
What is a vector?

If your answer is along the lines “something with magnitude and direction” then you
have something to unlearn. Maybe you heard this definition in a class that I taught. If so,
I lied; sorry about that. At the very least I didn’t tell the whole truth. Does an automobile
have magnitude and direction? Does that make it a vector?

The idea of a vector is far more general than the picture of a line with an arrowhead
attached to its end. That special case is an important one, but it doesn’t tell the whole
story, and the whole story is one that unites many areas of mathematics. The short answer
to the question of the first paragraph is

A vector is an element of a vector space.

Roughly speaking, a vector space is some set of things for which the operation of
addition is defined and the operation of multiplication by a scalar is defined. You don’t
necessarily have to be able to multiply two vectors by each other or even to be able to define
the length of a vector, though those are very useful operations and will show up in most of
the interesting cases. You can add two cubic polynomials together:(

2− 3x+ 4x2 − 7x3
)

+
(
− 8− 2x+ 11x2 + 9x3

)
makes sense, resulting in a cubic polynomial. You can multiply such a polynomial by* 17
and it’s still a cubic polynomial. The set of all cubic polynomials in x forms a vector space
and the vectors are the individual cubic polynomials.

The common example of directed line segments (arrows) in two or three dimensions fits
this idea, because you can add such arrows by the parallelogram law and you can multiply
them by numbers, changing their length (and reversing direction for negative numbers).

Another, equally important example consists of all ordinary real-valued functions of
a real variable: two such functions can be added to form a third one; you can multiply a
function by a number to get another function. The example of cubic polynomials above is
then a special case of this one.

A complete definition of a vector space requires pinning down these ideas and making
them less vague. In the end, the way to do that is to express the definition as a set of axioms.
From these axioms the general properties of vectors will derive.

* The physicist’s canonical random number
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A vector space is a set whose elements are called “vectors” and such that there are two
operations defined on them: you can add vectors to each other and you can multiply them
by scalars (numbers). These operations must obey certain simple rules, the axioms for a
vector space.

6.2 Axioms
The precise definition of a vector space is given by listing a set of axioms. For this purpose,
I’ll denote vectors by arrows over a letter, and I’ll denote scalars by Greek letters. These
scalars will, for our purpose, be either real or complex numbers — it makes no difference
which for now.*

1 There is a function, addition of vectors, denoted +, so that ~v1 + ~v2 is another vector.

2 There is a function, multiplication by scalars, denoted by juxtaposition, so that α~v is a
vector.

3 (~v1 + ~v2) + ~v3 = ~v1 + (~v2 + ~v3) (the associative law).

4 There is a zero vector, so that for each ~v, ~v + ~O = ~v.

5 There is an additive inverse for each vector, so that for each ~v, there is another vector
~v ′ so that ~v + ~v ′ = ~O.

6 The commutative law of addition holds: ~v1 + ~v2 = ~v2 + ~v1.

7 (α+ β)~v = α~v + β~v.

8 (αβ)~v = α(β~v).

9 α(~v1 + ~v2) = α~v1 + α~v2.

10 1~v = ~v.
In axioms 1 and 2 I called these operations “functions.” Is that the right use of the

word? Yes. Without going into the precise definition of the word (see section 12.1), you know
it means that you have one or more independent variables and you have a single output.
Addition of vectors and multiplication by scalars certainly fit that idea.

6.3 Examples of Vector Spaces
Examples of sets satisfying these axioms abound:

1 The usual picture of directed line segments in a plane, using the parallelogram law of
addition.

2 The set of real-valued functions of a real variable, defined on the domain [a ≤ x ≤ b].
Addition is defined pointwise. If f1 and f2 are functions, then the value of the function
f1 + f2 at the point x is the number f1(x) + f2(x). That is, f1 + f2 = f3 means f3(x) =
f1(x) + f2(x). Similarly, multiplication by a scalar is defined as (αf)(x) = α(f(x)).
Notice a small confusion of notation in this last expression. The first multiplication,
(αf), multiplies the scalar α by the vector f ; the second multiplies the scalar α by the
number f(x).

3 Like example 2, but restricted to continuous functions. The only observation beyond the
previous example is that the sum of two continuous functions is continuous.

4 Like example 2, but restricted to bounded functions. The only observation beyond the
previous example is that the sum of two bounded functions is bounded.

* For a nice introduction online see distance-ed.math.tamu.edu/Math640, chapter three.

http://distance-ed.math.tamu.edu/Math640
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5 The set of n-tuples of real numbers: (a1, a2, . . . , an) where addition and scalar multipli-
cation are defined by

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn) α(a1, . . . , an) = (αa1, . . . , αan)

6 The set of square-integrable real-valued functions of a real variable on the domain [a ≤
x ≤ b]. That is, restrict example two to those functions with

∫ b
a dx |f(x)|2 <∞. Axiom 1

is the only one requiring more than a second to check.

7 The set of solutions to the equation ∂2φ/∂x2 + ∂2φ/∂y2 = 0 in any fixed domain.
(Laplace’s equation)

8 Like example 5, but with n =∞.

9 Like example 8, but each vector has only a finite number of non-zero entries.

10 Like example 8, but restricting the set so that
∑∞

1 |ak|2 < ∞. Again, only axiom one
takes work.

11 Like example 10, but the sum is
∑∞

1 |ak| <∞.

12 Like example 10, but
∑∞

1 |ak|p <∞. (p ≥ 1)

13 Like example 6, but
∫ b
a dx |f(x)|p <∞.

14 Any of examples 2–13, but make the scalars complex, and the functions complex valued.

15 The set of all n× n matrices, with addition being defined element by element.

16 The set of all polynomials with the obvious laws of addition and multiplication by scalars.

17 Complex valued functions on the domain [a ≤ x ≤ b] with
∑

x |f(x)|2 <∞. (Whatever
this means. See problem 18)

18 { ~O}, the space consisting of only the zero vector.

19 The set of all solutions to the equations describing small motions of the surface of a
drumhead.

20 The set of solutions of Maxwell’s equations without charges or currents and with finite
energy. That is,

∫
[E2 +B2]d3x <∞.

21 The set of all functions of a complex variable that are differentiable everywhere and
satisfy ∫

dx dy e−x2−y2

|f(z)|2 <∞,

where z = x+ iy.
To verify that any of these is a vector space you have to run through the ten axioms,

checking each one. (Actually, in a couple of pages there’s a theorem that will greatly simplify
this.) To see what is involved, take the first, most familiar example, arrows that all start
at one point, the origin. I’ll go through the details of each of the ten axioms to show that
the process of checking is very simple. There are some cases for which this checking isn’t so
simple, but the difficulty is usually confined to verifying axiom one.

The picture shows the definitions of addition of vectors and multiplication by scalars,
the first two axioms. The commutative law, axiom 6, is clear, as the diagonal of the paral-
lelogram doesn’t depend on which side you’re looking at.
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~B

~A

~A+ ~B

~A

2 ~A

( ~A+ ~B) + ~C ~A+ ( ~B + ~C)

The associative law, axiom 3, is also illustrated in the picture. The zero vector, axiom
4, appears in this picture as just a point, the origin.

The definition of multiplication by a scalar is that the length of the arrow is changed
(or even reversed) by the factor given by the scalar. Axioms 7 and 8 are then simply the
statement that the graphical interpretation of multiplication of numbers involves adding and
multiplying their lengths.

~A′
~A

α( ~A+ ~B )

Axioms 5 and 9 appear in this picture.
Finally, axiom 10 is true because you leave the vector alone when you multiply it by

one.
This process looks almost too easy. Some of the axioms even look as though they

are trivial and unnecessary. The last one for example: why do you have to assume that
multiplication by one leaves the vector alone? For an answer, I can show you an example of
something that satisfies all of axioms one through nine but not the tenth. These processes,
addition of vectors and multiplication by scalars, are functions. I could write “f(~v1, ~v2)”
instead of “~v1 + ~v2” and write “g(α,~v )” instead of “α~v ”. The standard notation is just
that — a common way to write a vector-valued function of two variables. I can define any
function that I want and then see if it satisfies the required properties.

On the set of arrows that I just worked through, redefine multiplication by a scalar
(the function g) to be the zero vector for all scalars and vectors. That is, α~v = ~O for all
α and ~v. Look back and you see that this definition satisfies all the assumptions 1–9 but
not 10. This observation proves that the tenth axiom is independent of the others. If you
could derive the tenth axiom from the first nine, then this example couldn’t exist. This
construction is of course not a vector space.

f1 + f2 = f3

f1

f2

f3Function Spaces
Is example 2 a vector space? How can a function be a vector?
This comes down to your understanding of the word “function.”
Is f(x) a function or is f(x) a number? Answer: It’s a num-
ber. This is a confusion caused by the conventional notation
for functions. We routinely call f(x) a function, but it is really
the result of feeding the particular value, x, to the function f
in order to get the number f(x). This confusion in notation is
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so ingrained that it’s hard to change, though in more sophisticated mathematics books it is
changed.

In a better notation, the symbol f is the function, expressing the relation between
all the possible inputs and their corresponding outputs. Then f(1), or f(π), or f(x) are
the results of feeding f the particular inputs, and the results are (at least for example 2)
real numbers. Think of the function f as the whole graph relating input to output; the
pair

(
x, f(x)

)
is then just one point on the graph. Adding two functions is adding their

graphs. For a precise, set theoretic definition of the word function, see section 12.1. Reread
the statement of example 2 in light of these comments.

Special Function Space
Go through another of the examples of vector spaces written above. Number 6, the square-
integrable real-valued functions on the interval a ≤ x ≤ b. The only difficulty here is the
first axiom: Is the sum of two square-integrable functions itself square-integrable? The other
nine axioms I leave to you to check.

Suppose that ∫ b

a
f(x)2 dx <∞ and

∫ b

a
g(x)2 dx <∞.

simply note the combination(
f(x) + g(x)

)2
+
(
f(x)− g(x)

)2
= 2f(x)2 + 2g(x)2

The integral of the right-hand side is by assumption finite, so the same must hold for the left
side. This says that the sum (and difference) of two square-integrable functions is square-
integrable. For this example then, it isn’t very difficult to show that it satisfies the axioms
for a vector space, but it requires more than just a glance.

Theorem: If a subset of a vector space is closed under addition and multiplication
by scalars, then it is itself a vector space. This means that if you add two elements of this
subset to each other they remain in the subset and multiplying any element of the subset by
a scalar leaves it in the subset. It is a “subspace.”
Proof: The assumption of the theorem is that axioms 1 and 2 are satisfied as regards the
subset. That axioms 3 through 10 hold follows because the elements of the subset inherit
their properties from the larger vector space of which they are a part.

There are a few properties of vector spaces that I seem to have left out. I used the
somewhat odd notation ~v ′ for the additive inverse in axiom 5. Isn’t that just −~v ? Isn’t
the zero vector simply the number zero times a vector? Yes in both cases, but these are
theorems that follow easily from the ten axioms listed. See problem 20. I’ll do part (a) of
that exercise as an example here:

Theorem: The vector ~O is unique.
Proof: Assume it is not, then there are two such vectors, ~O1 and ~O2.
By [4], ~O1 + ~O2 = ~O1 ( ~O2 is a zero vector)

By [6], the left side is ~O2 + ~O1

By [4], this is ~O2 ( ~O1 is a zero vector)

Put these together and ~O1 = ~O2.
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6.4 Linear Independence
A set of non-zero vectors is linearly dependent if one element of the set can be written as a
linear combination of the others. The set is linearly independent if this cannot be done.

Bases, Dimension, Components
A basis for a vector space is a linearly independent set of vectors such that any vector in the
space can be written as a linear combination of elements of this set. The dimension of the
space is the number of elements in this basis.

If you take the usual vector space of arrows that start from the origin and lie in a
plane, the common basis is denoted ı̂, ̂. If I propose a basis consisting of

ı̂, −1
2 ı̂+

√
3

2 ̂, −1
2 ı̂−

√
3

2 ̂

these will certainly span the space. Every vector can be written as a linear combination
of them. They are however, redundant; the sum of all three is zero, so they aren’t linearly
independent and aren’t a basis. (If you use them as if they are a basis, the components of a
given vector won’t be unique. Maybe that’s o.k. and you want to do it, but either be careful
or look up the mathematical subject called “frames.”)

Beginning with the most elementary problems in physics and mathematics, it is clear
that the choice of an appropriate coordinate system can provide great computational advan-
tages. In dealing with the usual two and three dimensional vectors it is useful to express an
arbitrary vector as a sum of unit vectors. Similarly, the use of Fourier series for the analysis
of functions is a very powerful tool in analysis. These two ideas are essentially the same
thing when you look at them as aspects of vector spaces.

If the elements of the basis are denoted ~ei, and a vector ~a is

~a =
∑

i

ai~ei,

the numbers {ai} are called the components of ~a in the specified basis. Note that you don’t
have to talk about orthogonality or unit vectors or any other properties of the basis vectors
save that they span the space and they’re independent.

Example 1 is the prototype for the subject, and the basis usually chosen is the one
designated x̂, ŷ, (and ẑ for three dimensions). Another notation for this is ı̂, ̂, k̂ — I’ll use
x̂-ŷ. In any case, the two (or three) arrows are at right angles to each other.

In example 5, the simplest choice of basis is

~e1 = ( 1 0 0 . . . 0 )

~e2 = ( 0 1 0 . . . 0 )
...

~en = ( 0 0 0 . . . 1 ) (1)

In example 6, if the domain of the functions is from −∞ to +∞, a possible basis is
the set of functions

ψn(x) = xne−x2/2.
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The major distinction between this and the previous cases is that the dimension here is
infinite. There is a basis vector corresponding to each non-negative integer. It’s not obvious
that this is a basis, but it’s true.

If two vectors are equal to each other and you express them in the same basis, the
corresponding components must be equal.∑

i

ai~ei =
∑

i

bi~ei =⇒ ai = bi for all i (2)

Suppose you have the relation between two functions of time

A−Bω + γt = βt (3)

that is, that the two functions are the same, think of this in terms of vectors: On the vector
space of polynomials in t a basis is

~e0 = 1, ~e1 = t, ~e2 = t2, etc.

Translate the preceding equation into this notation.

(A−Bω)~e0 + γ~e1 = β~e1 (4)

For this to be valid the corresponding components must match:

A−Bω = 0, and γ = β

Differential Equations
When you encounter differential equations such as

m
d2x

dt2
+ b

dx

dt
+ kx = 0, or γ

d3x

dt3
+ kt2

dx

dt
+ αe−βtx = 0, (5)

the sets of solutions to these equations form vector spaces. All you have to do is to check
the axioms, and because of the theorem in section 6.3 you don’t even have to do all of that.
The solutions are functions, and as such they are elements of the vector space of example 2.
All you need to do now is to verify that the sum of two solutions is a solution and that
a constant times a solution is a solution. That’s what the phrase “linear, homogeneous”
means.

Another common differential equation is

d2θ

dt2
+
g

`
sin θ = 0

This describes the motion of an undamped pendulum, and the set of its solutions do not
form a vector space. The sum of two solutions is not a solution.

The first of Eqs. (5) has two independent solutions,

x1(t) = e−γt cosω′t, and x2(t) = e−γt sinω′t (6)
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where γ = −b/2m and ω′ =
√

k
m −

b2

4m2 . This is from Eq. (4.8). Any solution of this

differential equation is a linear combination of these functions, and I can restate that fact in
the language of this chapter by saying that x1 and x2 form a basis for the vector space of
solutions of the damped oscillator equation. It has dimension two.

The second equation of the pair (5) is a third order differential equation, and as such
you will need to specify three conditions to determine the solution and to determine all
the three arbitrary constants. In other words, the dimension of the solution space of this
equation is three.

In chapter 4 on the subject of differential equations, one of the topics was simulta-
neous differential equations, coupled oscillations. The simultaneous differential equations,
Eq. (4.36), are

m1
d2x1

dt2
= −k1x1 − k3(x1 − x2), and m2

d2x2

dt2
= −k2x2 − k3(x2 − x1)

and have solutions that are pairs of functions. In the development of section 4.8 (at least for
the equal mass, symmetric case), I found four pairs of functions that satisfied the equations.
Now translate that into the language of this chapter, using the notation of column matrices
for the functions. The solution is the vector(

x1(t)
x2(t)

)
and the four basis vectors for this four-dimensional vector space are

~e1 =

(
eiω1t

eiω1t

)
, ~e2 =

(
e−iω1t

e−iω1t

)
, ~e3 =

(
eiω2t

−eiω2t

)
, ~e4 =

(
e−iω2t

−e−iω2t

)
Any solution of the differential equations is a linear combination of these. In the original
notation, you have Eq. (4.43). In the current notation you have(

x1

x2

)
= A1~e1 + A2~e2 + A3~e3 + A4~e4

6.5 Norms
The “norm” or length of a vector is a particularly important type of function that can be
defined on a vector space. It is a function, usually denoted by ‖ ‖, and that satisfies

1. ‖~v ‖ ≥ 0; ‖~v ‖ = 0 if and only if ~v = ~O

2. ‖α~v ‖ = |α| ‖~v ‖
3. ‖~v1 + ~v2‖ ≤ ‖~v1‖+ ‖~v2‖ ( the triangle inequality) The distance between two vectors
~v1 and ~v2 is taken to be ‖~v1 − ~v2‖.

6.6 Scalar Product
The scalar product of two vectors is a scalar valued function of two vector variables. It
could be denoted as f(~u,~v ), but a standard notation for it is

〈
~u,~v

〉
. It must satisfy the

requirements
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1.
〈
~w, (~u+ ~v )

〉
=
〈
~w, ~u

〉
+
〈
~w,~v

〉
2.
〈
~w, α~v

〉
= α

〈
~w,~v

〉
3.
〈
~u,~v

〉
* =

〈
~v, ~u

〉
4.
〈
~v,~v

〉
≥ 0; and

〈
~v,~v

〉
= 0 if and only if ~v = ~O

When a scalar product exists on a space, a norm naturally does too:

‖~v ‖ =
√〈

~v,~v
〉
. (7)

That this is a norm will follow from the Cauchy-Schwartz inequality. Not all norms come
from scalar products.

Examples
Use the examples of section 6.3 to see what these are. The numbers here refer to the numbers
of that section.

1 A norm is the usual picture of the length of the line segment. A scalar product is the
usual product of lengths times the cosine of the angle between the vectors.〈

~u,~v
〉

= ~u .~v = u v cosϑ. (8)

4 A norm can be taken as the least upper bound of the magnitude of the function. This
is distinguished from the “maximum” in that the function may not actually achieve a
maximum value; since it is bounded however, there is an upper bound (many in fact) and
we take the smallest of these as the norm. On −∞ < x < +∞, the function | tan−1 x|
has π/2 for its least upper bound, though it never equals that number.

5 We can take as a scalar product

〈
(a1, . . . , an), (b1, . . . , bn)

〉
=

n∑
k=1

a*
k bk. (9)

We can just as easily have another scalar product for the same vector space, for example

〈
(a1, . . . , an), (b1, . . . , bn)

〉
=

n∑
k=1

k a*
k bk (10)

In fact any other positive function can appear as the coefficient in the sum and it still
defines a valid scalar product. It’s surprising how often something like this happens in
real situations. In studying normal modes of oscillation the masses of different particles
will appear as coefficients in a natural scalar product.

I used complex conjugation on the first factor here, but example 5 referred to real
numbers only. The reason for leaving the conjugation in place is that when you jump to
example 14 you want to allow for complex numbers, and its harmless to put it in for the
real case because in that instance it leaves the number alone.
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For a norm, there are many possibilities:

(1) ‖(a1, . . . , an)‖ =

√∑n

k=1
|ak|2

(2) ‖(a1, . . . , an)‖ =
∑n

k=1
|ak|

(3) ‖(a1, . . . , an)‖ = maxn
k=1 |ak|

(4) ‖(a1, . . . , an)‖ = maxn
k=1 k|ak|.

(11)

The United States Postal Service prefers the second of these norms, see problem 8.45.

6 A possible choice for a scalar product is

〈
f, g
〉

=

∫ b

a
dx f(x)* g(x). (12)

9 Scalar products and norms used here are just like those used for example 5. The difference
is that the sums go from 1 to infinity. The problem of convergence doesn’t occur because
there are only a finite number of non-zero terms.

10 Take the norm to be

‖(a1, a2, . . .)‖ =

√∑∞

k=1
|ak|2, (13)

and this by assumption will converge. The natural scalar product is like that of example
5, but with the sum going out to infinity. It requires a small amount of proof to show
that this will converge. See problem 19.

11 A norm is ‖~v ‖ =
∑∞

i=1 |ai|. There is no scalar product that will produce this norm, a
fact that you can prove by using the results of problem 13.

13 A natural norm is

‖f‖ =

[∫ b

a
dx |f(x)|p

]1/p

. (14)

To demonstrate that this is a norm requires the use of some special inequalities found
in advanced calculus books.

15 If A and B are two matrices, a scalar product is
〈
A,B

〉
= Tr(A†B), where † is the

transpose complex conjugate of the matrix and Tr means the trace, the sum of the

diagonal elements. Several possible norms can occur. One is ‖A‖ =

√
Tr(A†A). Another

is the maximum value of ‖A~u ‖, where ~u is a unit vector and the norm of ~u is taken to

be
[
|u1|2 + · · ·+ |un|2

]1/2
.

19 A valid definition of a norm for the motions of a drumhead is its total energy, kinetic
plus potential. How do you describe this mathematically? It’s something like∫

dx dy
1

2

[(
∂f

∂t

)2

+
(
∇f
)2]
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I’ve left out all the necessary constants, such as mass density of the drumhead and
tension in the drumhead. You can perhaps use dimensional analysis to surmise where
they go.

There is an example in the law in which the distinctions between some of these norms
has very practical consequences. New York provides a longer sentence for someone caught
selling drugs within 1000 feet of a school. If you are an attorney defending someone accused
of this crime, which of the norms in Eq. (11) would you argue for? The legislators who
wrote this law didn’t know linear algebra, so they didn’t specify which norm they intended.
The prosecuting attorney argued for norm #1, “as the crow flies.” The defense argued that
“crows don’t sell drugs” and humans move along city streets so norm #2 is more appropriate.

The New York Court of Appeals decided that the Pythagorean norm (#1) is the ap-
propriate one and they rejected the use of the pedestrian norm that the defendant advocated
(#2).
www.courts.state.ny.us/ctapps/decisions/nov05/162opn05.pdf

6.7 Bases and Scalar Products
When there is a scalar product, a most useful type of basis is the orthonormal one, satisfying

〈
~vi, ~vj

〉
= δij =

{
1 if i = j
0 if i 6= j

(15)

The notation δij represents the very useful Kronecker delta symbol.
In the example of Eq. (1) the basis vectors are orthonormal with respect to the scalar

product in Eq. (9). It is orthogonal with respect to the other scalar product mentioned there,
but it is not in that case normalized to magnitude one.

To see how the choice of even an orthonormal basis depends on the scalar product, a
different scalar product can be used on this space. Take the special case of two dimensions.
The vectors are now pairs of numbers. Think of the vectors as 2× 1 matrix column and use
the 2× 2 matrix (

2 1
1 2

)
The scalar product of two vectors is

〈
(a1, a2), (b1, b2)

〉
=

( a*
1 a*

2 )
(

2 1
1 2

)(
b1
b2

)
= 2a*

1b1 + a*
1b2 + a*

2b1 + 2a*
2b2 (16)

To show that this satisfies all the defined requirements for a scalar product takes a small
amount of labor. The vectors that you may expect to be orthogonal, (1 0) and (0 1), are
not.

In example 6, if we let the domain of the functions be −L < x < +L and the scalar
product is as in Eq. (12), then the set of trigonometric functions can be used as a basis.

sin
nπx

L
and cos

mπx

L
n = 1, 2, 3, . . . and m = 0, 1, 2, 3, . . . .

http://www.courts.state.ny.us/ctapps/decisions/nov05/162opn05.pdf
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That a function can be written as a series

f(x) =
∞∑
1

an sin
nπx

L
+

∞∑
0

bm cos
mπx

L
(17)

on the domain −L < x < +L is just an example of Fourier series, and the components of
f in this basis are Fourier coefficients a1, . . . , b0, . . .. An equally valid and more succinctly
stated basis is

enπix/L, n = 0, ±1, ±2, . . .

Chapter 5 on Fourier series shows many other choices of bases, all orthogonal, but not usually
orthonormal.

6.8 Gram-Schmidt Orthogonalization
From a basis that is not orthonormal, it is possible to construct one that is. This device
is called the Gram-Schmidt procedure. Suppose that a basis is known (finite or infinite),
~v1, ~v2, . . .

Step 1: Normalize ~v1: ~e1 = ~v1
/√〈

~v1, ~v1
〉
.

Step 2: Construct a linear combination of ~v1 and ~v2 that is orthogonal to ~v1:
Let ~e20 = ~v2 − ~e1

〈
~e1, ~v2

〉
and then normalize it.

~e2 = ~e20

/〈
~e20, ~e20

〉1/2
. (18)

Step 3: Let ~e30 = ~v3 − ~e1
〈
~e1, ~v3

〉
− ~e2

〈
~e2, ~v3

〉
etc. repeating step 2.

What does this look like? See problem 3.

6.9 Cauchy-Schwartz inequality
For common three-dimensional vector geometry, it is obvious that for any real angle, cos2 θ ≤
1. In terms of a dot product, this is | ~A . ~B| ≤ AB. This can be generalized to any scalar
product on any vector space: ∣∣〈~u,~v〉∣∣ ≤ ‖~u ‖ ‖~v ‖. (19)

The proof starts from a simple but not-so-obvious point. The scalar product of a vector with
itself is by definition positive, so for any two vectors ~u and ~v you have the inequality〈

~u− λ~v, ~u− λ~v
〉
≥ 0. (20)

where λ is any complex number. This expands to〈
~u, ~u

〉
+ |λ|2

〈
~v,~v

〉
− λ
〈
~u,~v
〉
− λ*

〈
~v, ~u

〉
≥ 0. (21)

How much bigger than zero the left side is will depend on the parameter λ. To find the
smallest value that the left side can have you simply differentiate. Let λ = x + iy and
differentiate with respect to x and y, setting the results to zero. This gives (see problem 5)

λ =
〈
~v, ~u

〉/〈
~v,~v

〉
. (22)
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Substitute this value into the above inequality (21)

〈
~u, ~u

〉
+

∣∣〈~u,~v 〉∣∣2〈
~v,~v

〉 − ∣∣〈~u,~v 〉∣∣2〈
~v,~v

〉 − ∣∣〈~u,~v 〉∣∣2〈
~v,~v

〉 ≥ 0. (23)

This becomes ∣∣〈~u,~v 〉∣∣2 ≤ 〈~u, ~u 〉〈~v,~v 〉 (24)

This isn’t quite the result I wanted, because Eq. (19) is written differently. It refers to a
norm and I haven’t established that the square root of

〈
~v,~v

〉
is a norm. When I do, then

the square root of this is the inequality I want.

For a couple of examples of this inequality, take specific scalar products. First the
common directed line segments:〈

~u,~v
〉

= ~u .~v = uv cos θ, so |uv cos θ|2 ≤ |u|2|v|2

∣∣∣∣∣
∫ b

a
dx f(x)*g(x)

∣∣∣∣∣
2

≤

[∫ b

a
dx |f(x)|2

][∫ b

a
dx |g(x)|2

]
The first of these is familiar, but the second is not, though when you look at it from the
general vector space viewpoint they are essentially the same.

Norm from a Scalar Product

The equation (7), ‖~v ‖ =
√〈

~v,~v
〉
, defines a norm. Properties one and two for a norm are

simple to check. (Do so.) The third requirement, the triangle inequality, takes a bit of work
and uses the inequality Eq. (24).〈

~v1 + ~v2, ~v1 + ~v2
〉

=
〈
~v1, ~v1

〉
+
〈
~v2, ~v2

〉
+
〈
~v1, ~v2

〉
+
〈
~v2, ~v1

〉
≤
〈
~v1, ~v1

〉
+
〈
~v2, ~v2

〉
+
∣∣〈~v1, ~v2〉∣∣+ ∣∣〈~v2, ~v1〉∣∣

=
〈
~v1, ~v1

〉
+
〈
~v2, ~v2

〉
+ 2
∣∣〈~v1, ~v2〉∣∣

≤
〈
~v1, ~v1

〉
+
〈
~v2, ~v2

〉
+ 2
√〈

~v1, ~v1
〉〈
~v2, ~v2

〉
=

(√〈
~v1, ~v1

〉
+
√〈

~v2, ~v2
〉)2

The first inequality is a property of complex numbers. The second one is Eq. (24). The

square root of the last line is the triangle inequality, thereby justifying the use of
√〈

~v,~v
〉

as the norm of ~v and in the process validating Eq. (19).

‖~v1 + ~v2‖ =
√〈

~v1 + ~v2, ~v1 + ~v2
〉
≤
√〈

~v1, ~v1
〉

+
√〈

~v2, ~v2
〉

= ‖~v1‖+ ‖~v2‖ (25)
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6.10 Infinite Dimensions
Is there any real difference between the cases where the dimension of the vector space is
finite and the cases where it’s infinite? Yes. Most of the concepts are the same, but you
have to watch out for the question of convergence. If the dimension is finite, then when you
write a vector in terms of a basis ~v =

∑
ak~ek, the sum is finite and you don’t even have to

think about whether it converges or not. In the infinite-dimensional case you do.
It’s even possible to have such a series converge, but not to converge to a vector. If

that sounds implausible, let me take an example from a slightly different context, ordinary
rational numbers. These are the number m/n where m and n are integers (n 6= 0). Consider
the sequence

1, 14/10, 141/100, 1414/1000, 14142/10000, 141421/100000, . . .

These are quotients of integers, but the limit is
√

2 and that’s not* a rational number. Within
the confines of rational numbers, this sequence doesn’t converge. You have to expand the
context to get a limit. That context is the real numbers. The same thing happens with
vectors when the dimension of the space is infinite — in order to find a limit you sometimes
have to expand the context and to expand what you’re willing to call a vector.

Look at example 9 from section 6.3. These are sets of numbers (a1, a2, . . .) with only
a finite number of non-zero entries. If you take a sequence of such vectors

(1, 0, 0, . . .), (1, 1, 0, 0, . . .), (1, 1, 1, 0, 0, . . .), . . .

Each has a finite number of non-zero elements but the limit of the sequence does not. It
isn’t a vector in the original vector space. Can I expand to a larger vector space? Yes, just
use example 8, allowing any number of non-zero elements.

For a more useful example of the same kind, start with the same space and take the
sequence

(1, 0, . . .), (1, 1/2, 0, . . .), (1, 1/2, 1/3, 0, . . .), . . .

Again the limit of such a sequence doesn’t have a finite number of entries, but example 10
will hold such a limit, because

∑∞
1 |ak|2 <∞.

How do you know when you have a vector space without holes in it? That is, one
in which these problems with limits don’t occur? The answer lies in the idea of a Cauchy
sequence. I’ll start again with the rational numbers to demonstrate the idea. The sequence
of numbers that led to the square root of two has the property that even though the elements
of the sequence weren’t approaching a rational number, the elements were getting close to
each other. Let {rn}, n = 1, 2, . . . be a sequence of rational numbers.

lim
n,m→∞

∣∣rn − rm∣∣ = 0 means

For any ε > 0 there is an N so that if both n and m are > N then
∣∣rn − rm∣∣ < ε. (26)

* Proof: If it is, then express it in simplest form as m/n =
√

2 ⇒ m2 = 2n2 where m and
n have no common factor. This equation implies that m must be even: m = 2m1. Substitute
this value, giving 2m2

1 = n2. That in turn implies that n is even, and this contradicts the
assumption that the original quotient was expressed without common factors.
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A sequence of rational numbers converges to a real number if and only if it is a Cauchy
sequence; this is a theorem found in many advanced calculus texts. Still other texts will take
a different approach and use the concept of a Cauchy sequence to construct the definition of
the real numbers.

The extension of this idea to infinite dimensional vector spaces requires only that you
replace the absolute value by a norm, so that a Cauchy sequence is defined by limn,m ‖~vn −
~vm‖ = 0. A “complete” vector space is one in which every Cauchy sequence converges. A
vector space that has a scalar product and that is also complete using the norm that this
scalar product defines is called a Hilbert Space.
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Problems

6.1 Fourier series represents a choice of basis for functions on an interval. For suitably
smooth functions on the interval 0 to L, one basis is

~en =

√
2

L
sin

nπx

L
. (27)

Use the scalar product
〈
f, g
〉

=
∫ L
0 f*(x)g(x) dx and show that this is an orthogonal basis

normalized to 1, i.e. orthonormal.

6.2 A function F (x) = x(L − x) between zero and L. Use the basis of the problem 1 to
write this vector in terms of its components:

F =
∞∑
1

αn~en. (28)

If you take the result of using this basis and write the resulting function outside the interval
0 < x < L, graph the result.

6.3 For two dimensional real vectors with the usual parallelogram addition, interpret in
pictures the first two steps of the Gram-Schmidt process, section 6.8.

6.4 For two dimensional real vectors with the usual parallelogram addition, interpret the
vectors ~u and ~v and the parameter λ used in the proof of the Cauchy-Schwartz inequality
in section 6.9. Start by considering the set of points in the plane formed by {~u− λ~v } as λ
ranges over the set of reals. In particular, when λ was picked to minimize the left side of the
inequality (21), what do the vectors look like? Go through the proof and interpret it in the
context of these pictures. State the idea of the whole proof geometrically.
Note: I don’t mean just copy the proof. Put the geometric interpretation into words.

6.5 Start from Eq. (21) and show that the minimum value of the function of λ = x + iy is
given by the value stated there. Note: this derivation applies to complex vector spaces and
scalar products, not just real ones. Is this a minimum?

6.6 For the vectors in three dimensions,

~v1 = x̂+ ŷ, ~v2 = ŷ + ẑ, ~v3 = ẑ + x̂

use the Gram-Schmidt procedure to construct an orthonormal basis starting from ~v1.
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6.7 For the vector space of polynomials in x, use the scalar product defined as

〈
f, g
〉

=

∫ 1

−1
dx f(x)*g(x)

(Everything is real here, so the complex conjugation won’t matter.) Start from the vectors

~v1 = 1, ~v2 = x, ~v3 = x2, ~v4 = x3

and use the Gram-Schmidt procedure to construct an orthonormal basis starting from ~v1.
Compare these results to the results of section 4.9. [These polynomials appear in the study of
electric potentials and in the study of angular momentum in quantum mechanics: Legendre
polynomials.]

6.8 Repeat the previous problem, but use a different scalar product:

〈
f, g
〉

=

∫ ∞

−∞
dx e−x2

f(x)*g(x)

[These polynomials appear in the study of the harmonic oscillator in quantum mechanics and
in the study of certain waves in the upper atmosphere. With a conventional normalization
they are called Hermite polynomials.]

6.9 Consider the set of all polynomials in x having degree ≤ N . Show that this is a vector
space and find its dimension.

6.10 Consider the set of all polynomials in x having degree ≤ N and only even powers.
Show that this is a vector space and find its dimension. What about odd powers only?

6.11 Which of these are vector spaces?
(a) all polynomials of degree 3
(b) all polynomials of degree ≤ 3 [Is there a difference between (a) and (b)?]
(c) all functions such that f(1) = 2f(2)
(d) all functions such that f(2) = f(1) + 1
(e) all functions satisfying f(x+ 2π) = f(x)
(f) all positive functions

(g) all polynomials of degree ≤ 4 satisfying
∫ 1
−1 dxxf(x) = 0.

6.12 For the common picture of arrows in three dimensions, prove that the subset of vectors
~v that satisfy ~A .~v = 0 for fixed ~A forms a vector space. Sketch it.
(b) What if the requirement is that both ~A .~v = 0 and ~B .~v = 0 hold. Describe this and
sketch it.
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6.13 If a norm is defined in terms of a scalar product, ‖~v ‖ =
√〈

~v,~v
〉
, then it satisfies the

“polarization identity” (for real scalars),

‖~u+ ~v ‖2 + ‖~u− ~v ‖2 = 2‖~u ‖2 + 2‖~v ‖2. (29)

6.14 If a norm satisfies the polarization identity, then it comes from a scalar product. Again,
assume real scalars. [Consider combinations of ‖~u+~v ‖2, ‖~u−~v ‖2 and construct the scalar
product.]

6.15 Modify the example number 2 of section 6.3 so that f3 = f1 + f2 means f3(x) =
f1(x− a) + f2(x− b) for fixed a and b. Is this still a vector space?

6.16 The scalar product you use depends on the problem you’re solving. The fundamental
equation (5.12) started from the equation u′′ = λu and resulted in the scalar product

〈
u2, u1

〉
=

∫ b

a
dxu2(x)*u1(x)

Start instead from the equation u′′ = λw(x)u and see what identity like that of Eq. (5.12)
you come to. Assume w is real. What happens if it isn’t? In order to have a legitimate
scalar product in the sense of section 6.6, what other requirements must you make about w?

6.17 The equation describing the motion of a string that is oscillating with frequency ω
about its stretched equilibrium position is

d

dx

(
T (x)

dy

dx

)
= −ω2µ(x)y

Here, y(x) is the sideways displacement of the string from zero; T (x) is the tension in the
string (not necessarily a constant); µ(x) is the linear mass density of the string (again, it
need not be a constant). The time-dependent motion is really y(x) cos(ωt + φ), but the
time dependence does not concern us here. As in the preceding problem, derive the analog
of Eq. (5.12) for this equation. For the analog of Eq. (5.13) state the boundary conditions
needed on y and deduce the corresponding orthogonality equation.

Ans:
[
T (x)(y′1y

*
2 − y1y*

2
′)
]b
a

=
(
ω*

2
2 − ω2

1

) ∫ b
a µ(x)y*

2y1 dx

6.18 The way to define the sum in example 17 is∑
x

|f(x)|2 = lim
c→0
{the sum of |f(x)|2 for those x where |f(x)|2 > c > 0}. (30)

This makes sense only if for each c > 0, |f(x)|2 is greater than c for only a finite number of
values of x. Show that the function

f(x) =
{

1/n for x = 1/n
0 otherwise

is in this vector space, and that the function f(x) = x is not. What is a basis for this space?
[Take 0 ≤ x ≤ 1] This is an example of a vector space with non-countable dimension.
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6.19 In example 10, it is assumed that
∑∞

1 |ak|2 < ∞. Show that this implies that the
sum used for the scalar product also converges:

∑∞
1 a*

kbk. [Consider the sums
∑
|ak + ibk|2,∑

|ak − ibk|2,
∑
|ak + bk|2, and

∑
|ak − bk|2, allowing complex scalars.]

6.20 Prove strictly from the axioms for a vector space the following four theorems. Each step
in your proof must explicitly follow from one of the vector space axioms or from a property
of scalars or from a previously proved theorem.
(a) The vector ~O is unique. [Assume that there are two, ~O1 and ~O2. Show that they’re
equal. First step: use axiom 4.]

(b) The number 0 times any vector is the zero vector: 0~v = ~O.
(c) The vector ~v ′ is unique.
(d) (−1)~v = ~v ′.

6.21 For the vector space of polynomials, are the two functions {1 + x2, x + x3} linearly
independent?

6.22 Find the dimension of the space of functions that are linear combinations of
{1, sin x, cosx, sin2 x, cos2 x, sin4 x, cos4 x, sin2 x cos2 x}

−1
0

2
3

4

1
−1

0

1
4

2
3

1
0

−1
−2

−2

6.23 A model vector space is formed by drawing equidistant parallel lines in a plane and
labelling adjacent lines by successive integers from ∞ to +∞. Define multiplication by a
(real) scalar so that multiplication of the vector by α means multiply the distance between
the lines by 1/α. Define addition of two vectors by finding the intersections of the lines and
connecting opposite corners of the parallelograms to form another set of parallel lines. The
resulting lines are labelled as the sum of the two integers from the intersecting lines. (There
are two choices here, if one is addition, what is the other?) Show that this construction
satisfies all the requirements for a vector space. Just as a directed line segment is a good
way to picture velocity, this construction is a good way to picture the gradient of a function.
In the vector space of directed line segments, you pin the vectors down so that they all
start from a single point. Here, you pin them down so that the lines labeled “zero” all pass
through a fixed point. Did I define how to multiply by a negative scalar? If not, then you
should.

6.24 In problem 11 (g), find a basis for the space.
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6.25 In problem 16, what properties must the function w have in order that this is a scalar
product?

6.26 Verify that Eq. (16) does satisfy the requirements for a scalar product.

6.27 A variation on problem 15: f3 = f1 + f2 means
(a) f3(x) = Af1(x− a) +Bf2(x− b) for fixed a, b, A, B. For what values of these constants
is this a vector space?
(b) Now what about f3(x) = f1(x

3) + f2(x
3)?

6.28 Determine if these are vector spaces:
(1) Pairs of numbers with addition defined as (x1, x2) + (y1, y2) = (x1 + y2, x2 + y1) and
multiplication by scalars as c(x1, x2) = (cx1, cx2).
(2) Like example 2 of section 6.3, but restricted to those f such that f(x) ≥ 0. (real scalars)
(3) Like the preceding line, but define addition as (f + g)(x) = f(x)g(x) and (cf)(x) =(
f(x)

)c
.

6.29 Do the same calculation as in problem 7, but use the scalar product

〈
f, g
〉

=

∫ 1

0
x2 dx f*(x)g(x)

6.30 Show that the following is a scalar product.

〈
f, g
〉

=

∫ b

a
dx
[
f*(x)g(x) + λf*′(x)g′(x)

]
where λ is a constant. What restrictions if any must you place on λ? The name Sobolev is
associated with this scalar product.

6.31 With the scalar product of problem 29, find the angle between the vectors 1 and x.
Here I use the word angle in the sense of ~A . ~B = AB cos θ. What is the angle if you use the
scalar product of problem 7? Ans: 14.48◦

6.32 In the online text linked on the second page of this chapter, you will find that section
two of chapter three has enough additional problems to keep you happy.

6.33 Show that the sequence of rational numbers an =
∑n

k=1 1/k is not a Cauchy sequence.
What about

∑n
k=1 1/k2?

6.34 In the vector space of polynomials of the form αx+βx3, use the scalar product
〈
f, g
〉

=∫ 1
0 dx f(x)∗g(x) and construct an orthogonal basis for this space.
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6.35 You can construct the Chebyshev polynomials by starting from the successive powers,
xn, n = 0, 1, 2, . . . and applying the Gram-Schmidt process. The scalar product in this case
is 〈

f, g
〉

=

∫ 1

−1
dx

f(x)∗g(x)√
1− x2

The conventional normalization for these polynomials is Tn(1) = 1, so you don’t have to
make the norm of the resulting vectors one. Construct the first four of these polynomials,
and show that these satisfy Tn(cos θ) = cos(nθ). These polynomials are used in numerical
analysis because they have the property that they oscillate uniformly between −1 and +1
on the domain −1 < x < 1. Verify that your results for the first four polynomials satisfy the
recurrence relation: Tn+1(x) = 2xTn(x)− Tn−1(x)

6.36 In spherical coordinates (θ, φ), the angle θ is measured from the z-axis, and the function
f1(θ, φ) = cos θ can be written in terms of rectangular coordinates as

f1(θ, φ) = cos θ =
z

r
=

z√
x2 + y2 + z2

Pick up the function f1 and rotate it by 90◦ counterclockwise about the positive y-axis. Do
this rotation in terms of rectangular coordinates, but express the result in terms of spherical.
Call it f2

Now pick up the same f1 and rotate it by 90◦ clockwise about the positive x-axis, again
finally expressing the result in terms of spherical coordinates. Call it f3.
If I ask you to take the original f1 and rotate it about some random axis by some random
angle, show that the resulting function f4 is a linear combination of the three functions f1,
f2, and f3. I.e., all these possible rotated functions form only a three dimensional vector
space. Again, calculations such as these are easier to demonstrate in rectangular coordinates.

6.37 Take the functions f1, f2, and f3 from the preceding problem and sketch the shape of
the functions

r e−rf1(θ, φ), r e−rf2(θ, φ), r e−rf3(θ, φ)

To sketch these, picture them as defining some sort of density in space, ignoring the fact
that they are sometimes negative. You can just take the absolute value or the square in
order to visualize where they are big or small. Use dark and light shading to picture where
the functions are big and small. Start by finding where they have the biggest and smallest
magnitudes. See if you can find similar pictures in an introductory chemistry text.
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You’ve been using operators for years even if you’ve never heard the term. Differentiation
falls into this category; so does rotation; so does wheel-balancing. In the subject of quantum
mechanics, familiar ideas such as energy and momentum will be represented by operators.
You probably think that pressure is simply a scalar, but no. It’s an operator.

7.1 The Idea of an Operator
You can understand the subject of matrices as a set of rules that govern certain square or
rectangular arrays of numbers — how to add them, how to multiply them. Approached this
way the subject is remarkably opaque. Who made up these rules and why? What’s the
point? If you look at it as simply a way to write simultaneous linear equations in a compact
way, it’s perhaps convenient but certainly not the big deal that people make of it. It is a big
deal.

There’s a better way to understand the subject, one that relates the matrices to more
fundamental ideas and that even provides some geometric insight into the subject. The
technique of similarity transformations may even make a little sense. This approach is
precisely parallel to one of the basic ideas in the use of vectors. You can draw pictures of
vectors and manipulate the pictures of vectors and that’s the right way to look at certain
problems. You quickly find however that this can be cumbersome. A general method that
you use to make computations tractable is to write vectors in terms of their components, then
the methods for manipulating the components follow a few straight-forward rules, adding
the components, multiplying them by scalars, even doing dot and cross products.

Just as you have components of vectors, which are a set of numbers that depend on
your choice of basis, matrices are a set of numbers that are components of — not vectors,
but functions (also called operators or transformations or tensors). I’ll start with a couple
of examples before going into the precise definitions.

The first example of the type of function that I’ll be interested in will be a function
defined on the two-dimensional vector space, arrows drawn in the plane with their start-
ing points at the origin. The function that I’ll use will rotate each vector by an angle α
counterclockwise. This is a function, where the input is a vector and the output is a vector.

f(~v )
α

~v

f(~v1 + ~v2)

α ~v1 + ~v2

What happens if you change the argument of this function, multiplying it by a scalar?
You know f(~v ), what is f(c~v )? Just from the picture, this is c times the vector that you
got by rotating ~v. What happens when you add two vectors and then rotate the result? The

132
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whole parallelogram defining the addition will rotate through the same angle α, so whether
you apply the function before or after adding the vectors you get the same result.

This leads to the definition of the word linearity:

f(c~v ) = cf(~v ), and f(~v1 + ~v2) = f(~v1) + f(~v2) (1)

Keep your eye on this pair of equations! They’re central to the whole subject.
Another example of the type of function that I’ll examine is from physics instead

of mathematics. A rotating rigid body has some angular momentum. The greater the
rotation rate, the greater the angular momentum will be. Now how do I compute the
angular momentum assuming that I know the shape and the distribution of masses in the
body and that I know the body’s angular velocity? The body is made of a lot of point masses
(atoms), but you don’t need to go down to that level to make sense of the subject. As with
any other integral, you start by dividing the object in to a lot of small pieces.

What is the angular momentum of a single point mass? It starts from basic Newtonian
mechanics, and the equation ~F = d~p/dt. (It’s better in this context to work with this form

than with the more common expressions ~F = m~a.) Take the cross product with ~r, the
displacement vector from the origin.

~r × ~F = ~r × d~p/dt

Add and subtract the same thing on the right side of the equation (add zero) to get

~r × ~F = ~r × d~p

dt
+
d~r

dt
× ~p− d~r

dt
× ~p

=
d

dt

(
~r × ~p

)
− d~r

dt
× ~p

Now recall that ~p is m~v, and ~v = d~r/dt, so the last term in the preceding equation is zero
because you’re taking the cross product of a vector with itself. This means that when I added
and subtracted the term from the right side above I was really adding and subtracting zero.

~r × ~F is the torque applied to the point mass m and ~r × ~p is the mass’s angular
momentum about the origin. Now if I have many masses and many forces I simply put an
index on this torque equation and add the resulting equations over all the masses in the rigid
body. The sums on the left and the right provide the definitions of torque and of angular
momentum.

~τtotal =
∑

k

~rk × ~Fk =
d

dt

∑
k

(
~rk × ~pk

)
=
d~L

dt

~v2(out)

~r2 ×m2~v2

m2

~r2

~ω

~r1

~r1 ×m1~v1

~v1(in)

m1
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For a specific example, attach two masses to the ends of a light rod and attach that
rod to a second, vertical one as sketched — at an angle. Now spin the vertical rod and figure
out what the angular velocity and angular momentum vectors are. Since I said that I’m
spinning it along the vertical rod, that defines the direction of the angular velocity vector ~ω
to be upwards in the picture. (Viewed from above everything is rotating counter-clockwise.)
The angular momentum of one point mass is ~r × ~p = ~r ×m~v. The mass on the right has a
velocity pointing into the page and the mass on the left has it pointing out. Take the origin
to be where the supporting rod is attached to the axis, then ~r × ~p for the mass on the right
is pointing up and to the left. For the other mass both ~r and ~p are reversed, so the cross
product is in exactly the same direction as for the first mass. The total angular momentum
the sum of these two parallel vectors, and it is not in the direction of the angular velocity.

Now make this quantitative and apply it to a general rigid body. There are two basic
pieces to the problem: the angular momentum of a point mass and the velocity of a point
mass in terms of its angular velocity. The position of one point mass is described by its
displacement vector from the origin, ~r. Its angular momentum is then ~r× ~p, where ~p = m~v.
If the rigid body has an angular velocity vector ~ω, the linear velocity of a mass at coordinate
~r is ~ω × ~r.

~ω

θ
~r

~v

r sin θ

~r

~ω

dm

The total angular momentum of a rotating set of masses mk at respective coordinates
~rk is the sum of all the individual pieces of angular momentum

~L =
∑

k

~rk ×mk~vk, and since ~vk = ~ω × ~rk,

~L =
∑

k

~rk ×mk

(
~ω × ~rk

) (2)

If you have a continuous distribution of mass then using an integral makes more sense. For
a given distribution of mass, this integral (or sum) depends on the vector ~ω. It defines a

function having a vector as input and a vector ~L as output. Denote the function by I, so
~L = I(~ω ).

~L =

∫
dm~r ×

(
~ω × ~r

)
= I(~ω ) (3)

This function satisfies the same linearity equations as Eq. (1). When you multiply ~ω

by a constant, the output, ~L is multiplied by the same constant. When you add two ~ω’s
together as the argument, the properties of the cross product and of the integral guarantee
that the corresponding ~L’s are added.

I(c~ω ) = cI(~ω ), and I(~ω1 + ~ω2) = I(~ω1) + I(~ω2)
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This function I is called the “inertia operator” or more commonly the “inertia tensor.” It’s
not simply multiplication by a scalar, so the rule that appears in an introductory course in
mechanics (~L = I~ω) is valid only in special cases, for example those with enough symmetry.

Note: I is not a vector and ~L is not a function. ~L is the output of the function I when
you feed it the argument ~ω. This is the same sort of observation that I made in section 6.3
under “Function Spaces.”

If an electromagnetic wave passes through a crystal, the electric field will push the
electrons around, and the bigger the electric field, the greater the distance that the electrons
will be pushed. They may not be pushed in the same direction as the electric field however,
as the nature of the crystal can make it easier to push the electrons in one direction than
in another. The relation between the applied field and the average electron displacement
is a function that (for moderate size fields) obeys the same linearity relation that the two
previous functions do.

~P = α( ~E )

~P is the electric dipole moment density and ~E is the applied electric field. The function α
is called the polarizability.

If you have a mass attached to six springs that are in turn attached
to six walls, the mass will come to equilibrium somewhere. Now push on
this mass with another (not too large) force. The mass will move, but will it
move in the direction that you push it? If the six springs are all the same it
will, but if they’re not then the displacement will be more in the direction of
the weaker springs. The displacement, ~d, will still however depend linearly
on the applied force, ~F .

7.2 Definition of an Operator
An operator, also called a linear transformation, is a particular type of function. It is first
of all, a vector valued function of a vector variable. Second, it is linear; that is, if A is such
a function then A(~v) is a vector, and

A(α~v1 + β~v2) = αA(~v1) + βA(~v2). (4)

The domain is the set of variables on which the operator is defined. The range is the set of
all values put out by the function. Are there nonlinear operators? Yes, but not here.

7.3 Examples of Operators
The four cases that I started with, rotation in the plane, angular momentum of a rotating
rigid body, polarization of a crystal by an electric field, and the mass attached to some
springs all fit this definition. Other examples:

5. The simplest example of all is just multiplication by a scalar: A(~v) ≡ c~v for all ~v. This
applies to any vector space and its domain is the entire space.

6. On the vector space of all real valued functions on a given interval, multiply any function
f by 1+x2: (Af)(x) = (1+x2)f(x). The domain of A is the entire space of functions of
x. This is an infinite dimensional vector space, but no matter. There’s nothing special
about 1 + x2, and any other function will do.
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7. On the vector space of square integrable functions
[ ∫

dx |f(x)|2 < ∞
]

on a < x < b,
define the operator as multiplication by x. The only distinction to make here is that if
the interval is infinite, then xf(x) may not itself be square integrable. The domain of
this operator is therefore not the entire space, but only those functions such that xf(x)
is also square-integrable. On the same vector space, differentiation is a linear operator:
(Af)(x) = f ′(x). This too has a restriction on the domain: It is necessary that f ′ also
exist and be square integrable.

8. On the vector space of infinitely differentiable functions, the operation of differentiation,
d/dx, is itself a linear operator. It’s certainly linear, and it takes a differentiable function
into a differentiable function.

So where are the matrices? I started this chapter by saying that I’m going to show
you the inside scoop on matrices and so far I’ve failed to produce even one.

When you describe vectors you can use a basis as a computational tool and manipulate
the vectors using their components. In the common case of three-dimensional vectors we
usually denote the basis in one of several ways

ı̂, ̂, k̂, or x̂, ŷ, ẑ, or ~e1, ~e2, ~e3

and they all mean the same thing. The first form is what you see in the introductory physics
texts. The second form is one that you encounter in more advanced books, and the third
one is more suitable when you want to have a compact index notation. It’s that third one
that I’ll use here; it has the advantage that it doesn’t bias you to believe that you must
be working in three spatial dimensions. The index could go beyond 3, and the vectors that
you’re dealing with may not be the usual geometric arrows. (And why does it have to start
with one? Maybe I want 0, 1, 2 instead.) These don’t have to be either perpendicular to
each other or to be unit vectors.

The way to write a vector ~v in components is

~v = vxx̂+ vyŷ + vz ẑ, or v1~e1 + v2~e2 + v3~e3 =
∑

k

vk~ek (5)

Once you’ve chosen a basis, you can find the three numbers that form the components
of that vector. In a similar way, I will define the components of an operator, only that will
take nine numbers to do it (in three dimensions). If you evaluate the effect of an operator
on any one of the basis vectors, the output is a vector. That’s part of the definition of the
word operator. This output vector can itself be written in terms of this same basis. The
defining equation for the components of an operator f is

f(~ei) =
3∑

k=1

fki~ek (6)

For each input vector you have the three components of the output vector. Pay careful
attention to this equation! It is the defining equation for the entire subject of matrix theory,
and everything in that subject comes from this one innocuous looking equation. (And yes if
you’re wondering, I wrote the indices in the correct order.)
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Why?

Take an arbitrary input vector for f : ~u = f(~v ). Both ~u and ~v are vectors, so I can
write them in terms of my chosen basis.

~u =
∑

k

uk~ek = f(~v ) = f
(∑

i

vi~ei

)
=
∑

i

vif(~ei) (7)

The last equation is the result of the linearity property, Eq. (1), that I have assumed for f .
I can pull the sum and the numerical factors vi out in front of the function. Write it out and
it’s clear:

f(v1~e1 + v2~e2) = f(v1~e1) + f(v2~e2) = v1f(~e1) + v2f(~e2)

Now you see where the defining equation for operator components comes in. Eq. (7) is∑
k

uk~ek =
∑

i

vi

∑
k

fki~ek

For two vectors to be equal, the corresponding coefficients of ~e1, ~e2, etc. must match; their
respective components must be equal.

uk =
∑

i

vifki, usually written uk =
∑

i

fkivi (8)

so that in the latter form it starts to resemble what you may think of as matrix manipulation.
frow,column is the conventional way to write the indices, and multiplication is defined so that
the following product means Eq. (8).u1

u2

u3

 =

 f11 f12 f13

f21 f22 f23

f31 f32 f33

 v1
v2
v3

 (9)

u1

u2

u3

 =

 f11 f12 f13

f21 f22 f23

f31 f32 f33

 v1
v2
v3

 is u1 = f11v1 + f12v2 + f13v3 etc.

And this is the reason behind the definition of how to multiply a matrix and a column matrix.
The order in which the indices appear is the conventional one, and the indices appear in the
matrix as they do because I chose the order of the indices the way that I did in Eq. (6).

Components of Rotations
Apply this to the first example, rotate all vectors in the plane through the angle α. I don’t
want to keep using the same symbol f for every function that I deal with, so I’ll call this
function R instead, or better yet Rα. Rα(~v ) is the rotated vector. Pick two perpendicular
unit vectors for a basis. You may call them x̂ and ŷ, but again I’ll call them ~e1 and ~e2. Use
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the definition of components to get

Rα(~e2)

~e2

cosα

α

Rα(~e1)

sinα

~e1

Rα(~e1) =
∑

k

Rk1~ek

Rα(~e2) =
∑

k

Rk2~ek
(10)

The rotated ~e1 has two components, so

Rα(~e1) = ~e1 cosα+ ~e2 sinα = R11~e1 +R21~e2 (11)

This determines the first column of the matrix of components,

R11 = cosα, and R21 = sinα

Similarly the effect on the other basis vector determines the second column:

Rα(~e2) = ~e2 cosα− ~e1 sinα = R12~e1 +R22~e2 (12)

Check: Rα(~e1) .Rα(~e2) = 0.

R12 = − sinα, and R22 = cosα

The component matrix is then

(
Rα

)
=

(
cosα − sinα
sinα cosα

)
(13)

Components of Inertia
The definition, Eq. (3), and the figure preceding it specify the inertia tensor as the function
that relates the angular momentum of a rigid body to its angular velocity.

~L =

∫
dm~r ×

(
~ω × ~r

)
= I(~ω) (14)

Use the vector identity,

~A× ( ~B × ~C ) = ~B( ~A . ~C )− ~C( ~A . ~B ) (15)

then the integral is

~L =

∫
dm
[
~ω(~r .~r )− ~r(~ω .~r )

]
= I(~ω) (16)
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Pick the common rectangular, orthogonal basis and evaluate the components of this function.
Equation (6) says ~r = x~e1 + y~e2 + z~e3 so

I(~ei) =
∑

k

Iki~ek

I(~e1) =

∫
dm
[
~e1(x

2 + y2 + z2)− (x~e1 + y~e2 + z~e3)(x)
]

= I11~e1 + I21~e2 + I31~e3

from which I11 =

∫
dm (y2 + z2), I21 = −

∫
dmyx, I31 = −

∫
dmzx

This provides the first column of the components, and you get the rest of the components
the same way. The whole matrix is∫

dm

 y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

 (17)

These are the components of the tensor of inertia. The diagonal elements of the matrix
may be familiar; they are the moments of inertia. x2 + y2 is the distance-squared to the
z-axis, so the element I33 or Izz is the moment of inertia about that axis,

∫
dmr2⊥. The

other components are less familiar and are called the products of inertia. This particular
matrix is symmetric: Iij = Iji. That’s a special property of the inertia tensor.

Components of Dumbbell
Look again at the specific case of two masses rotating about an axis, and do it quantitatively.

~v2(out)

~r2 ×m2~v2

m2

~r2

~ω

~r1

~r1 ×m1~v1

~v1(in)

m1

~e2
~e1

The integrals in Eq. (17) are simply sums this time, and the sums have only two
terms. I’m making the approximation that these are point masses. Make the coordinate
system match the indicated basis, with x right and y up, then z is zero for all terms in the
sum, and the rest are∫

dm (y2 + z2) = m1r
2
1 cos2 α+m2r

2
2 cos2 α

−
∫
dmxy = −m1r

2
1 cosα sinα−m2r

2
2 cosα sinα∫

dm (x2 + z2) = m1r
2
1 sin2 α+m2r

2
2 sin2 α∫

dm (x2 + y2) = m1r
2
1 +m2r

2
2



140 7—Operators and Matrices

The matrix is then

(I ) =
(
m1r

2
1 +m2r

2
2

) cos2 α − cosα sinα 0
− cosα sinα sin2 α 0

0 0 1

 (18)

Don’t count on all such results factoring so nicely.
In this basis, the angular velocity ~ω has only one component, so what is ~L?

(
m1r

2
1 +m2r

2
2

) cos2 α − cosα sinα 0
− cosα sinα sin2 α 0

0 0 1

 0
ω
0

 =

(
m1r

2
1 +m2r

2
2

)−ω cosα sinα
ω sin2 α

0


Translate this into vector form:

~L =
(
m1r

2
1 +m2r

2
2

)
ω sinα

(
− ~e1 cosα+ ~e2 sinα

)
(19)

When α = 90◦, then cosα = 0 and the angular momentum points along the y-axis. This is
the symmetric special case where everything lines up along one axis. Notice that if α = 0
then everything vanishes, but then the masses are both on the axis, and they have no angular
momentum. In the general case as drawn, the vector ~L points to the upper left, perpendicular
to the line between the masses.

Parallel Axis Theorem
When you know the tensor of inertia about one origin, you can relate the result to the tensor
about a different origin.

The center of mass of an object is

~rcm =
1

M

∫
~r dm (20)

where M is the total mass. Compare the operator I using an origin at the center of mass to
I about another origin.

~r

~rcm

~r − ~rcm

I(~ω ) =

∫
dm~r × (~ω × ~r ) =

∫
dm [~r − ~rcm + ~rcm]×

(
~ω × [~r − ~rcm + ~rcm]

)
=

∫
dm [~r − ~rcm]×

(
~ω × [~r − ~rcm]

)
+

∫
dm~rcm ×

(
~ω × ~rcm

)
+ two cross terms

(21)
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The two cross terms vanish, problem 17. What’s left is

I(~ω ) =

∫
dm [~r − ~rcm]×

(
~ω × [~r − ~rcm]

)
+M rcm ×

(
~ω × ~rcm

)
= Icm(~ω ) +M ~rcm ×

(
~ω × ~rcm

) (22)

Put this in words and it says that the tensor of inertia about any point is equal to the tensor
of inertia about the center of mass plus the tensor of inertia of a point mass M placed at
the center of mass.

As an example, place a disk of mass M and radius R and uniform mass density so that
its center is at (x, y, z) = (R, 0, 0) and it is lying in the x-y plane. Compute the components
of the inertia tensor. First get the components about the center of mass, using Eq. (17).

x

z

y

The integrals such as

−
∫
dmxy, −

∫
dmyz

are zero. For fixed y each positive value of x has a corresponding negative value to make
the integral add to zero. It’s odd in x (or y); remember that this is about the center of the
disk. Next do the I33 integral.∫

dm (x2 + y2) =

∫
dmr2 =

∫
M

πR2
dA r2

For the element of area, use dA = 2πr dr and you have

I33 =
M

πR2

∫ R

0
dr 2πr3 =

M

πR2
2π
R4

4
=

1

2
MR2

For the next two diagonal elements,

I11 =

∫
dm (y2 + z2) =

∫
dmy2 and I22 =

∫
dm (x2 + z2) =

∫
dmx2

Because of the symmetry of the disk, these two are equal, also you see that the sum is

I11 + I22 =

∫
dmy2 +

∫
dmx2 = I33 =

1

2
MR2 (23)

This saves integration. I11 = I22 = MR2/4.
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For the other term in the sum (22), you have a point mass at the distance R along the
x-axis, (x, y, z) = (R, 0, 0). Substitute this point mass into Eq. (17) and you have

M

 0 0 0
0 R2 0
0 0 R2


The total about the origin is the sum of these two calculations.

MR2

 1/4 0 0
0 5/4 0
0 0 3/2


Why is this called the parallel axis theorem when you’re translating a point (the origin) and
not an axis? Probably because this was originally stated for the moment of inertia alone
and not for the whole tensor. Then you have only an axis to deal with.

Components of the Derivative
The set of all polynomials in x having degree ≤ 2 forms a vector space. There are three
independent vectors that I can choose to be 1, x, and x2. Differentiation is a linear operator
on this space because the derivative of a sum is the sum of the derivatives and the derivative
of a constant times a function is the constant times the derivative of the function. With
this basis I’ll compute the components of d/dx. Start the indexing for the basis from zero
instead of one because it will cause less confusion between powers and subscripts.

~e0 = 1, ~e1 = x, ~e2 = x2

By the definition of the components of an operator — I’ll call this one D,

D(~e0) =
d

dx
1 = 0, D(~e1) =

d

dx
x = 1 = ~e0, D(~e2) =

d

dx
x2 = 2x = 2~e1

These define the three columns of the matrix.

(D) =

 0 1 0
0 0 2
0 0 0

 check:
dx2

dx
= 2x is

 0 1 0
0 0 2
0 0 0

 0
0
1

 =

 0
2
0


There’s nothing here about the basis being orthonormal. It isn’t.

7.4 Matrix Multiplication
How do you multiply two matrices? There’s a rule for doing it, but where does it come from?

The composition of two functions means you first apply one function then the other,
so

h = f ◦ g means h(~v ) = f
(
g(~v )

)
(24)

I’m assuming that these are vector-valued functions of a vector variable, but this is the
general definition of composition anyway. If f and g are linear, does it follow the h is? Yes,
just check:

h(c~v ) = f
(
g(c~v )

)
= f

(
c g(~v )

)
= c f

(
g(~v )

)
, and

h(~v1 + ~v2) = f
(
g(~v1 + ~v2)

)
= f

(
g(~v1) + g(~v2)

)
= f

(
g(~v1)

)
+ f
(
g(~v2)

)
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What are the components of h? Again, use the definition and plug in.

h(~ei) =
∑

k

hki~ek = f
(
g(~ei)

)
= f

(∑
j

gji~ej
)

=
∑

j

gjif
(
~ej
)

=
∑

j

gji
∑

k

fkj~ek (25)

and now all I have to do is equate the corresponding coefficients of ~ek.

hki =
∑

j

gjifkj or more conventionally hki =
∑

j

fkjgji (26)

This is in the standard form for matrix multiplication, recalling the subscripts are ordered
as frc for row-column.h11 h12 h13

h21 h32 h23

h31 h32 h33

 =

 f11 f12 f13

f21 f32 f23

f31 f32 f33

 g11 g12 g13

g21 g32 g23

g31 g32 g33

 (27)

The computation of h12 from Eq. (26) ish11 h12 h13

h21 h22 h23

h31 h32 h33

 =

 f11 f12 f13

f21 f22 f23

f31 f32 f33

 g11 g12 g13

g21 g22 g23

g31 g32 g33


−→ h12 = f11g12 + f12g22 + f13g32

Matrix multiplication is just the component representation of the composition of two
functions, Eq. (26). There’s nothing here that restricts this to three dimensions. In Eq. (25)
I may have made it look too easy. If you try to reproduce this without looking, the odds are
that you will not get the indices to match up as nicely as I did. Remember: When an index
is summed it is a dummy, and you are free to relabel it as anything you want. You can use
this fact to make the indices come out neatly.

Composition of Rotations
In the first example, rotating vectors in the plane, the operator that rotates every vector by
the angle α has components (

Rα

)
=

(
cosα − sinα
sinα cosα

)
(28)

What happens if you do two such transformations, one by α and one by β? The result better
be a total rotation by α + β. One function, Rβ is followed by the second function Rα and
the composition is

Rα+β = RαRβ

This is mirrored in the components of these operators, so the matrices must obey the same
equation. (

cos(α+ β) − sin(α+ β)
sin(α+ β) cos(α+ β)

)
=

(
cosα − sinα
sinα cosα

)(
cos β − sin β
sin β cos β

)
Multiply the matrices on the right to get(

cosα cos β − sinα sin β − cosα sin β − sinα cos β
sinα cos β + cosα sin β cosα cos β − sinα sin β

)
(29)

The respective components must agree, so this gives an immediate derivation of the formulas
for the sine and cosine of the sum of two angles. Cf. Eq. (3.9)



144 7—Operators and Matrices

7.5 Inverses
The simplest operator is the one that does nothing. f(~v ) = ~v for all values of the vector
~v. This implies that f(~e1) = ~e1 and similarly for all the other elements of the basis, so the
matrix of its components is diagonal. The 2× 2 matrix is explicitly the identity matrix

(I ) =

(
1 0
0 1

)
or in index notation δij =

{
1 (if i = j)
0 (if i 6= j)

(30)

and the index notation is completely general, not depending on whether you’re dealing with
two dimensions or many more. Unfortunately the words “inertia” and “identity” both start
with the letter “I” and this symbol is used for both operators. Live with it. The δ symbol
in this equation is the Kronecker delta — very handy.

The inverse of an operator is defined in terms of Eq. (24), the composition of functions.
If the composition of two functions takes you to the identity operator, one function is said
to be the inverse of the other. This is no different from the way you look at ordinary real
valued functions. The exponential and the logarithm are inverse to each other because*

ln(ex) = x for all x.

For the rotation operator, Eq. (10), the inverse is obviously going to be rotation by the same
angle in the opposite direction.

RαR−α = I

Because the matrix components of these operators mirror the the original operators, this
equation must also hold for the corresponding components, as in Eqs. (27) and (29). Set
β = −α in (29) and you get the identity matrix.

In an equation such as Eq. (7), or its component version Eqs. (8) or (9), if you want
to solve for the vector ~u, you are asking for the inverse of the function f .

~u = f(~v ) implies ~v = f−1(~u )

The translation of these equations into components is Eq. (9)(
u1

u2

)
=

(
f11 f12

f21 f22

)(
v1
v2

)

which implies
1

f11f22 − f12f21

(
f22 −f12

−f21 f11

)(
u1

u2

)
=

(
v1
v2

)
(31)

The verification that these are the components of the inverse is no more than simply multi-
plying the two matrices and seeing that you get the identity matrix.

* The reverse, eln x works only for positive x, unless you recall that the logarithm of a
negative number is complex. Then it works there too. This sort of question doesn’t occur
with finite dimensional matrices.
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7.6 Areas, Volumes, Determinants

In the two-dimensional example of arrows in the plane, look what happens to areas when an
operator acts. The unit square with corners at the origin and (0, 1), (1, 1), 1, 0) gets distorted
into a parallelogram. The arrows from the origin to every point in the square become arrows
that fill out the parallelogram.

What is the area of this parallelogram?

I’ll ask a more general question. (It isn’t really, but it looks like it.) Start with any
region in the plane, and say it has area A1. The operator takes all the vectors ending in
this area into some new area of a size A2, probably different from the original. What is the
ratio of the new area to the old one? A2/A1. How much does this transformation stretch
or squeeze the area? What isn’t instantly obvious is that this ratio of areas depends on the
operator only, and not on how you chose the initial region to be transformed. If you accept
this for the moment, then you see that the question in the previous paragraph, in which I
started with the unit square and asked for the area into which it transformed, is the same
question as finding the ratio of the two more general areas. (Or the ratio of two volumes in
three dimensions.) See the end of the next section for a proof.

This ratio is called the determinant of the operator.

The first example is the simplest. Rotations in the plane, Rα. Because rotations leave
area unchanged, this determinant is one. For almost any other example you have to do some
work. Use the component form to do the computation. The basis vector ~e1 is transformed
into the vector f11~e1 + f21~e2 with a similar expression for the image of ~e2. You can use the
cross product to compute the area of the parallelogram that these define. For another way,
see problem 3. This is

(
f11~e1 + f21~e2

)
×
(
f12~e1 + f22~e2

)
=
(
f11f22 − f21f12

)
~e3 (32)

The product in parentheses is the determinant of the transformation.

det(f) = f11f22 − f21f12 (33)

What if I had picked a different basis, maybe even one that isn’t orthonormal? From the
definition of the determinant it is a property of the operator and not of the particular basis
and components you use to describe it, so you must get the same answer. But will I get the
same simple formula (33) for the answer if I pick a different basis? Now that’s a legitimate
question. The answer is yes, and that fact will come out of the general computation of the
determinant in a moment. [What is the determinant of Eq. (13)?]
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det > 0

det < 0

The determinant can be either positive or negative. That tells you more than simply
how the transformation alters the area; it tells you whether it changes the orientation of the
area. If you place a counterclockwise loop in the original area, does it remain counterclock-
wise in the image or is it reversed? In three dimensions, the corresponding plus or minus
sign for the determinant says that you’re changing from a right-handed set of vectors to a
left-handed one. What does that mean? Look toward the origin from a point inside the
box. Number the vectors that form the sides of the box 1-2-3 counterclockwise. After the
transformation, again from a point inside the box, are they still 1-2-3 counterclockwise (det
> 0) or are they ordered clockwise (det < 0)?

1
2

3

1
2

3

2
1

21

3
3

det > 0

det < 0

The equation (33) is a special case of a rule that you’ve probably encountered elsewhere.
You compute the determinant of a square array of numbers by some means such as Kramer’s
rule or Gauss reduction. Here I’ve defined the determinant geometrically, and it has no
obvious relation the traditional numeric definition. They are the same, and the reason for
that comes by looking at how the area (or volume) of the parallelogram depends on the
vectors that make up its sides.

Start with the basis ~e1, ~e2 and call the output of the transformation ~v1 = f(~e1) and
~v2 = f(~e2). The final area is a function of these last two vectors, call it Λ

(
~v1, ~v2

)
, and this

function has two key properties:

Λ
(
~v,~v

)
= 0, and Λ

(
~v1, α~v2 + β~v3

)
= αΛ

(
~v1, ~v2

)
+ βΛ

(
~v1, ~v3

)
(34)

That the area vanishes if the two sides are the same is obvious. That the area is a linear
function of the vectors forming the two sides is not so obvious. (It’s linear in both arguments.)
Part of the proof of linearity is easy:

Λ
(
~v1, α~v2) = αΛ

(
~v1, ~v2)

simply says that if I keep one side of the parallelogram fixed and multiply the other by some
factor, then the area changes by that same factor. For the other part, Λ

(
~v1, ~v2 + ~v3

)
, start
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with a picture and see if the area that this function represents is the same as the sum of the
two areas made from the vectors ~v1&~v2 and ~v1&~v3.

~v1&~v2 form the area OCBA. ~v1&~v3 form the area OCED.

O

A

B

C

D

E

F G

H
J

~v1

~v2
~v3

HDF ∼= JEG

HDO ∼= JEC

so

area HJGF = area DEGF = area OCBA

area OCJH = area OCED

add these equations:

area OCGF = area OCBA + area OCED

The last line is the statement that sum of the areas of the two parallelograms is the area of
the parallelogram formed using the sum of the two vectors:

Λ
(
~v1, ~v2 + ~v3

)
= Λ

(
~v1, ~v2

)
+ Λ

(
~v1, ~v3

)
This sort of function Λ, generalized to three dimensions, is characterized by

(1) Λ
(
α~v1 + β~v ′1, ~v2, ~v3

)
= αΛ

(
~v1, ~v2, ~v3

)
+ βΛ

(
~v ′1, ~v2, ~v3

)
(2) Λ

(
~v1, ~v1, ~v3

)
= 0 (35)

It is linear in each variable, and it vanishes if any two arguments are equal. I’ve written it
for three dimensions, but in N dimensions you have the same equations with N arguments,
and these properties hold for all of them.

Theorem: Up to an overall constant factor, this function is unique.

The first important result is that these assumptions imply the function is antisymmetric
in any two arguments. Proof:

Λ
(
~v1 + ~v2, ~v1 + ~v2, ~v3

)
= 0 = Λ

(
~v1, ~v1, ~v3

)
+ Λ

(
~v1, ~v2, ~v3

)
+ Λ

(
~v2, ~v1, ~v3

)
+ Λ

(
~v2, ~v2, ~v3

)
This is just the linearity property. Now the left side, and the 1st and 4th terms on the right,
are zero because two arguments are equal. The rest is

Λ
(
~v1, ~v2, ~v3

)
+ Λ

(
~v2, ~v1, ~v3

)
= 0 (36)

and this says that interchanging two arguments of Λ changes the sign. (The reverse is true
also. Assume antisymmetry and deduce that it vanishes if two arguments are equal.)

I said that this function is unique up to a factor. Suppose that there are two of them:
Λ and Λ′. I want to show for some constant α, that Λ− αΛ′ is identically zero. To do this,
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take three independent vectors and evaluate the number Λ′
(
~va, ~vb, ~vc

)
There is some set of

~v ’s for which this is non-zero, otherwise Λ′ is identically zero and that’s not much fun. Now
consider

α =
Λ
(
~va, ~vb, ~vc

)
Λ′
(
~va, ~vb, ~vc

) and define Λ0 = Λ− αΛ′

This function Λ0 is zero for the special argument: (~va, ~vb, ~vc), and now I’ll show why it’s zero
for all arguments. That means that it is the zero function, and says that the two functions
Λ and Λ′ are proportional.

The vectors (~va, ~vb, ~vc) are independent and there are three of them (in three dimen-
sions). They are a basis. You can write any vector as a linear combination of these. E.g.

~v1 = A~va +B~vb and ~v2 = C~va +D~vb and

Put these (and let’s say ~vc) into Λ0.

Λ0

(
~v1, ~v2, ~vc

)
= ACΛ0

(
~va, ~va, ~vc

)
+ ADΛ0

(
~va, ~vb, ~vc

)
+BCΛ0

(
~vb, ~va, ~vc

)
+BDΛ0

(
~vb, ~vb, ~vc

)
All these terms are zero. Any argument that you put into Λ0 is a linear combination of ~va, ~vb,
and ~vc, and that means that this demonstration extends to any set of vectors, which in turn
means that Λ0 vanishes for any arguments. It is identically zero and that implies Λ and Λ′

are, up to a constant overall factor, the same.

InN dimensions, a scalar-valued function ofN vector variables,
linear in each argument and antisymmetric under interchanging
any pairs of arguments, is unique up to a factor.

I’ve characterized this volume function Λ by two simple properties, and surprisingly
enough this is all you need to compute it in terms of the components of the operator! With
just this much information I can compute the determinant of a transformation.

Recall: ~v1 has for its components the first column of the matrix for the components of
f , and ~v2 forms the second column. Adding any multiple of one vector to another leaves the
volume alone. This is

Λ
(
~v1, ~v2 + α~v1, ~v3

)
= Λ

(
~v1, ~v2, ~v3

)
+ αΛ

(
~v1, ~v1, ~v3

)
(37)

and the last term is zero. Translate this into components. I will use the common notation
for a determinant, a square array with vertical bars, but forget that you know how to compute
this symbol! I’m going to use it simply as a notation by keep track of vector manipulations.
The numerical value will come out at the end as the computed value of a volume. ~vi =
f
(
~ei
)

=
∑

j fji~ej , then Λ
(
~v1, ~v2, ~v3

)
= Λ

(
~v1, ~v2 + α~v1, ~v3

)
=∣∣∣∣∣∣

f11 f12 + αf11 f13

f21 f22 + αf21 f23

f31 f32 + αf31 f33

∣∣∣∣∣∣ =

∣∣∣∣∣∣
f11 f12 f13

f21 f22 f23

f31 f32 f33

∣∣∣∣∣∣+ α

∣∣∣∣∣∣
f11 f11 f13

f21 f21 f23

f31 f31 f33

∣∣∣∣∣∣ =

∣∣∣∣∣∣
f11 f12 f13

f21 f22 f23

f31 f32 f33

∣∣∣∣∣∣
To evaluate this object, simply choose α to make the element f12+αf11 = 0. Then repeat the
operation, adding a multiple of the first column to the third, making the element f13+βf11 =
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0. This operation doesn’t change the original value of Λ
(
~v1, ~v2, ~v3

)
.

Λ
(
~v1, ~v2 + α~v1, ~v3 + β~v1

)
=

∣∣∣∣∣∣
f11 0 0
f21 f22 + αf21 f23 + βf21

f31 f32 + αf31 f33 + βf31

∣∣∣∣∣∣ =

∣∣∣∣∣∣
f11 0 0
f21 f ′22 f ′23
f31 f ′32 f ′33

∣∣∣∣∣∣
Repeat the process to eliminate f ′23, adding γ~v ′2 to the third argument, where γ = −f ′23/f

′
22.

=

∣∣∣∣∣∣
f11 0 0
f21 f ′22 f ′23
f31 f ′32 f ′33

∣∣∣∣∣∣ =

∣∣∣∣∣∣
f11 0 0
f21 f ′22 f ′23 + γf ′22
f31 f ′32 f ′33 + γf ′32

∣∣∣∣∣∣ =

∣∣∣∣∣∣
f11 0 0
f21 f ′22 0
f31 f ′32 f ′′33

∣∣∣∣∣∣ (38)

Written in the last form, as a triangular array, the final result for the determinant does not
depend on the elements f21, f31, f

′
32. They may as well be zero. Why? Just do the same

sort of column operations, but working toward the left. Eliminate f31 and f ′32 by adding
a constant times the third column to the first and second columns. Then eliminate f21 by
using the second column. You don’t actually have to do this, you just have to recognize that
it can be done so that you can ignore the lower triangular part of the array.

Translate this back to the original vectors and Λ is unchanged:

Λ
(
~v1, ~v2, ~v3

)
= Λ

(
f11~e1, f

′
22~e2, f

′′
33~e3

)
= f11f

′
22f

′′
33 Λ

(
~e1, ~e2, ~e3

)
The volume of the original box is Λ

(
~e1, ~e2, ~e3

)
, so the quotient of the new volume to

the old one is
det = f11f

′
22f

′′
33 (39)

The fact that Λ is unique only up to a constant factor doesn’t matter. Do you want to
measure volume in cubic feet, cubic centimeters, or cubic light-years? This algorithm is
called Gauss elimination. It’s development started with the geometry and used vector ma-
nipulations to recover what you may recognize from elsewhere as the traditional computed
value of the determinant.

Did I leave anything out in this computation of the determinant? Yes, one point.
What if in Eq. (38) the number f ′22 = 0? You can’t divide by it then. You can however
interchange any two arguments of Λ, causing only a sign change. If this contingency occurs
then you need only interchange the two columns to get a component of zero where you want
it. Just keep count of such switches whenever they occur.

Trace
There’s a property closely related to the determinant of an operator. It’s called the trace. If
you have an operator f , then consider the determinant of M = I+εf , where I is the identity.
This combination is very close to the identity if ε is small enough, so its determinant is very
close to one. How close? The first order in ε is called the trace of f , or more formally

Tr(f) =
d

dε
det
(
I + εf

)∣∣∣∣
ε=0

(40)

Express this in components for a two dimensional case, and

(f) =

(
a b
c d

)
⇒ det

(
I + εf

)
= det

(
1 + εa εb
εc 1 + εd

)
= (1 + εa)(1 + εd)− ε2bc (41)
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The first order coefficient of ε is a + d. This is the form of the result in any dimension,
and the proof involves carefully looking at the method of Gauss elimination for the determi-
nant, remembering at every step that you’re looking for only the first order term in ε. See
problem 53.

7.7 Matrices as Operators
There’s an important example of a vector space that I’ve avoided mentioning up to now.
Example 5 in section 6.3 is the set of n-tuples of numbers: (a1, a2, . . . , an). I can turn this on
its side, call it a column matrix, and it forms a perfectly good vector space. The functions
(operators) on this vector space are the matrices themselves.

When you have a system of linear equations, you can translate this into the language
of vectors.

ax+ by = e and cx+ dy = f −→
(
a b
c d

)(
x
y

)
=

(
e
f

)
Solving for x and y is inverting a matrix.

There’s an aspect of this that may strike you as odd. This matrix is an operator on
the vector space of column matrices. What are the components of this operator? What?
Isn’t the matrix a set of components already? That depends on your choice of basis. Take
an example

M =

(
1 2
3 4

)
with basis ~e1 =

(
1
0

)
, ~e2 =

(
0
1

)
Compute the components as usual.

M~e1 =

(
1 2
3 4

)(
1
0

)
=

(
1
3

)
= 1~e1 + 3~e2

This says that the first column of the components of M in this basis are

(
1
3

)
. What else

would you expect? Now select a different basis.

~e1 =

(
1
1

)
, ~e2 =

(
1
−1

)
Again compute the component.

M~e1 =

(
1 2
3 4

)(
1
1

)
=

(
3
7

)
= 5

(
1
1

)
− 2

(
1
−1

)
= 5~e1 − 2~e2

M~e2 =

(
1 2
3 4

)(
1
−1

)
=

(
−1
−1

)
= −1~e1

The components of M in this basis are (
5 −1
−2 0

)
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It doesn’t look at all the same, but it represents the same operator. Does this matrix have
the same determinant, using Eq. (33)?

Determinant of Composition
If you do one linear transformation followed by another one, that is the composition of the
two functions, each operator will then have its own determinant. What is the determinant
of the composition? Let the operators be F and G. One of them changes areas by a scale
factor det(F ) and the other ratio of areas is det(G). If you use the composition of the two
functions, FG or GF , the overall ratio of areas from the start to the finish will be the same:

det(FG) = det(F ) . det(G) = det(G) . det(F ) = det(GF ) (42)

Recall that the the determinant measures the ratio of areas for any input area, not just a
square; it can be a parallelogram. The overall ratio of the product of the individual ratios,
det(F ) det(G). The product of these two numbers is the total ratio of a new area to the
original area and it is independent of the order of F and G, so the determinant of the
composition of the functions is also independent of order.

Now what about the statement that the definition of the determinant doesn’t depend
on the original area that you start with. To show this takes a couple of steps. First, start
with a square that’s not at the origin. You can always picture it as a piece of a square that
is at the origin. The shaded square that is 1/16 the area of the big square goes over to a
parallelogram that’s 1/16 the area of the big parallelogram. Same ratio.

An arbitrary shape can be divided into a lot of squares. That’s how you do an integral.
The image of the whole area is distorted, but it retains the fact that a square that was inside
the original area will become a parallelogram that is inside the new area. In the limit as the
number of squares goes to infinity you still maintain the same ratio of areas as for the single
original square.

7.8 Eigenvalues and Eigenvectors
There is a particularly important basis for an operator, the basis in which the components
form a diagonal matrix. Such a basis almost always* exists, and it’s easy to see from the

* See section 7.11.
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definition as usual just what this basis must be.

f(~ei) =
N∑

k=1

fki~ek

To be diagonal simply means that fki = 0 for all i 6= k, and that in turn means that all but
one term in the sum disappears. This defining equation reduces to

f(~ei) = fii~ei (with no sum this time) (43)

This is called an eigenvalue equation. It says that for any one of these special vectors, the
operator f on it returns a scalar multiple of that same vector. These multiples are called
the eigenvalues, and the corresponding vectors are called the eigenvectors. The eigenvalues
are then the diagonal elements of the matrix in this basis.

The inertia tensor relates the angular momentum of a rigid body to its angular velocity,
and if the angular momentum isn’t in the same direction as the angular velocity, the angular
momentum vector will be spinning about the ~ω axis. There will then be a torque necessary
to keep it going, ~τ = d~L/dt, and because ~L is rotating about ~ω, this rotating torque will
cause a vibration of the axis at this rotation frequency. If on the other hand the angular
momentum is parallel to the angular velocity, the angular momentum will not be changing,
d~L/dt = 0, and the torque ~τ = d~L/dt will be zero, meaning the vibrations will be absent.
Have you ever taken your car in and asked the mechanic to align the angular momentum
and the angular velocity vectors of the wheels? It’s called wheel-balancing.

How do you compute these eigenvectors? Just move everything to the left side of the
equation.

f(~ei)− fii~ei = 0, or (f − fiiI)~ei = 0

I is the identity operator, output equals input. This notation is cumbersome. I’ll change it.

(f − λI)~v = 0 (44)

λ is the eigenvalue and ~v is the eigenvector. This operator (f − λI) takes some non-zero
vector into the zero vector. In two dimensions then it will squeeze an area down to a line or
a point. In three dimensions it will squeeze a volume down to an area (or a line or a point).
In any case its determinant is zero, and that’s the key to computing the eigenvectors. Figure
out which λ’s will make this determinant vanish.

Look back at section 4.7 and you’ll see that the analysis there closely parallels what
I’m doing here. In that case I didn’t use the language of matrices or operators, but was
asking about the possible solutions of two simultaneous linear equations.

ax+ by = 0 and cx+ dy = 0, or

(
a b
c d

)(
x
y

)
=

(
0
0

)
The explicit algebra there led to the conclusion that there can be a non-zero solution to the
two equations only if the determinant of the coefficients vanishes, ad − bc = 0, and that’s
the same thing that I’m looking for here: a non-zero vector solution to Eq. (44).
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Write the problem in terms of components, and of course you aren’t yet in the basis
where the matrix is diagonal. If you were, you’re already done. The defining equation is
f(~v ) = λ~v, and in components this reads

∑
fkivi = λvk, or

 f11 f12 f13

f21 f22 f23

f31 f32 f33

 v1
v2
v3

 = λ

 v1
v2
v3


Here I arbitrarily wrote the equation for three dimensions. That will change with the prob-
lem. Put everything on the left side and insert the components of the identity, the unit
matrix.  f11 f12 f13

f21 f22 f23

f31 f32 f33

− λ
 1 0 0

0 1 0
0 0 1

 v1
v2
v3

 =

 0
0
0

 (45)

The only way that this has a non-zero solution for the vector ~v is for the determinant of the
left-hand side to be zero. This equation is called the characteristic equation of the matrix,
and in the example here that’s a cubic equation in λ. If it has all distinct roots, no double
roots, then you’re guaranteed that this procedure will work, and you will be able to find
a basis in which the components form a diagonal matrix. If this equation has a multiple
root then there is no guarantee. It may work, but it may not; you have to look closer. See
section 7.11. If the operator has certain symmetry properties then it’s guaranteed to work.
For example, the property found in problem 16 is enough to insure that you can find a basis
in which the matrix is diagonal. It’s even an orthogonal basis in that case.

Example of Eigenvectors
To keep the algebra to a minimum, I’ll work in two dimensions and will specify an arbitrary
but simple example:

f(~e1) = 2~e1 + ~e2, f(~e2) = 2~e2 + ~e1 with components M =

(
2 1
1 2

)
(46)

The eigenvalue equation is, in component form(
2 1
1 2

)(
v1
v2

)
= λ

(
v1
v2

)
or

[(
2 1
1 2

)
− λ

(
1 0
0 1

)](
v1
v2

)
= 0

The condition that there be a non-zero solution to this is

det

[(
2 1
1 2

)
− λ

(
1 0
0 1

)]
= 0 = (2− λ)2 − 1

The solutions to this quadratic are λ = 1, 3. For these values then, the apparently two equa-
tion for the two unknowns v1 and v2 are really one equation. The other is not independent.
Solve this single equation in each case. Take the first of the two linear equations for v1 and
v2 as defined by Eq. (46).

2v1 + v2 = λv1

λ = 1 implies v2 = −v1, λ = 3 implies v2 = v1
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The two new basis vectors are then

~e ′1 = (~e1 − ~e2) and ~e ′2 = (~e1 + ~e2) (47)

and in this basis the matrix of components is the diagonal matrix of eigenvalues.(
1 0
0 3

)
If you like to keep your basis vectors normalized, you may prefer to say that the new basis
is (~e1 − ~e2)/

√
2 and (~e1 + ~e2)/

√
2. The eigenvalues are the same, so the new matrix is the

same.

Example: Coupled Oscillators
Another example drawn from physics: Two masses are connected to a set of springs and
fastened between two rigid walls. This is a problem that appeared in chapter 4, Eq. (4.36).

m1d
2x1/dt

2 = −k1x1 − k3(x1 − x2), and m2d
2x2/dt

2 = −k2x2 − k3(x2 − x1)

The exponential form of the solution that I used was

x1(t) = Aeiωt, x2(t) = Beiωt

The algebraic equations that you get by substituting these into the differential equa-
tions are a pair of linear equations for A and B, Eq. (4.38). In matrix form these equations
are, after rearranging some minus signs,(

k1 + k3 −k3

−k3 k2 + k3

)(
A
B

)
= ω2

(
m1 0
0 m2

)(
A
B

)
You can make it look more like the previous example with some further arrangement[(

k1 + k3 −k3

−k3 k2 + k3

)
− ω2

(
m1 0
0 m2

)](
A
B

)
=

(
0
0

)
The matrix on the left side maps the column matrix to zero. That can happen only if the
matrix has zero determinant (or the column matrix is zero). If your write out the determinant
of this 2 × 2 matrix you have a quadratic equation in ω2. It’s simple but messy, so rather
than looking first at the general case, look at a special case with more symmetry. Take
m1 = m2 = m and k1 = k2.

det

[(
k1 + k3 −k3

−k3 k1 + k3

)
− ω2m

(
1 0
0 1

)]
= 0 =

(
k1 + k3 −mω2

)2 − k2
3

This is now so simple that you don’t even need the quadratic formula; it factors directly.(
k1 + k3 −mω2 − k3

)(
k1 + k3 −mω2 + k3

)
= 0
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The only way that the product of two numbers is zero is if one of the numbers is zero, so
either

k1 −mω2 = 0 or k1 + 2k3 −mω2 = 0

This determines two possible frequencies of oscillation.

ω1 =

√
k1

m
and ω2 =

√
k1 + 2k3

m

You’re not done yet; these are only the eigenvalues. You still have to find the eigenvectors
and then go back to apply them to the original problem. This is ~F = m~a after all. Look
back to section 4.8 for the development of the solutions.

7.9 Change of Basis
In many problems in physics and mathematics, the correct choice of basis can enormously
simplify a problem. Sometimes the obvious choice of a basis turns out in the end not to be
the best choice, and you then face the question: Do I start over with a new basis, or can I
use the work that I’ve already done to transform everything into the new basis?

For linear transformations, this becomes the problem of computing the components of
an operator in a new basis in terms of its components in the old basis.

First: Make sure that I can do this for vector components, something that I ought to
be able to do. The equation (5) defines the components with respect to a basis, any basis. If
I have a second proposed basis, then by the definition of the word basis, every vector in that
second basis can be written as a linear combination of the vectors in the first basis. I’ll call
the vectors in the first basis, ~ei and those in the second basis ~e ′i, for example in the plane
you could have

~e1 = x̂, ~e2 = ŷ, and ~e ′1 = 2x̂+ 0.5ŷ, ~e ′2 = 0.5x̂+ 2ŷ (48)

Each vector ~e ′i is a linear combination* of the original basis vectors:

~e ′i = S(~ei) =
∑

j

Sji~ej (49)

This follows the standard notation of Eq. (6); you have to put the indices in this order in
order to make the notation come out right in the end. One vector expressed in two different
bases is still one vector, so

~v =
∑

i

v′i~e
′
i =

∑
i

vi~ei

and I’m using the fairly standard notation of v′i for the ith component of the vector ~v with
respect to the second basis. Now insert the relation between the bases from the preceding
equation (49).

~v =
∑

i

v′i
∑

j

Sji~ej =
∑

j

vj~ej

* There are two possible conventions here. You can write ~e ′i in terms of the ~ei, calling
the coefficients Sji, or you can do the reverse and call those components Sji. Naturally, both
conventions are in common use. The reverse convention will interchange the roles of the
matrices S and S−1 in what follows.
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and I pulled the standard trick of changing the last dummy label of summation from i to j
so that I can compare the components more easily.∑

i

Sjiv
′
i = vj or in matrix notation (S)(v′) = (v), =⇒ (v′) = (S)−1(v)

Similarity Transformations
Now use the definition of the components of an operator to get the components in the new
basis.

f
(
~e ′i
)

= =
∑

j

f ′ji~e
′
j

f
(∑

j

Sji~ej

)
=
∑

j

Sjif
(
~ej
)

=
∑

j

Sji

∑
k

fkj~ek =
∑

j

f ′ji
∑

k

Skj~ek

The final equation comes from the preceding line. The coefficients of ~ek must agree on the
two sides of the equation. ∑

j

Sjifkj =
∑

j

f ′jiSkj

Now rearrange this in order to place the indices in their conventional row,column order.∑
j

Skjf
′
ji =

∑
j

fkjSji(
S11 S12

S21 S22

)(
f ′11 f ′12
f ′21 f ′22

)
=

(
f11 f12

f21 f22

)(
S11 S12

S21 S22

) (50)

In turn, this matrix equation is usually written in terms of the inverse matrix of S,

(S)(f ′) = (f)(S) is (f ′) = (S)−1(f)(S) (51)

and this is called a similarity transformation. For the example Eq. (48) this is

~e ′1 = 2x̂+ 0.5ŷ = S11~e1 + S21~e2

which determines the first column of the matrix (S), then ~e ′2 determines the second column.

(S) =

(
2 0.5

0.5 2

)
then (S)−1 =

1

3.75

(
2 −0.5
−0.5 2

)
Eigenvectors
In defining eigenvalues and eigenvectors I pointed out the utility of having a basis in which
the components of an operator form a diagonal matrix. Finding the non-zero solutions to
Eq. (44) is then the way to find the basis in which this holds. Now I’ve spent time showing
that you can find a matrix in a new basis by using a similarity transformation. Is there a
relationship between these two subjects? Another way to ask the question: I’ve solved the
problem to find all the eigenvectors and eigenvalues, so what is the similarity transformation
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that accomplishes the change of basis (and why do I need to know it if I already know that
the transformed, diagonal matrix is just the set of eigenvalues, and I already know them.)

For the last question, the simplest answer is that you don’t need to know the explicit
transformation once you already know the answer. It is however useful to know that it
exists and how to construct it. If it exists — I’ll come back to that presently. Certain
manipulations are more easily done in terms of similarity transformations, so you ought to
know how they are constructed, especially because almost all the work in constructing them
is done when you’ve found the eigenvectors.

The equation (50) tells you the answer. Suppose that you want the transformed matrix
to be diagonal. That means that f ′12 = 0 and f ′21 = 0. Write out the first column of the
product on the right.(

f11 f12

f21 f22

)(
S11 S12

S21 S22

)
−→

(
f11 f12

f21 f22

)(
S11

S21

)
This equals the first column on the left of the same equation

f ′11

(
S11

S21

)
This is the eigenvector equation that you’ve supposedly already solved. The first column
of the component matrix of the similarity transformation is simply the set of components
of the first eigenvector. When you write out the second column of Eq. (50) you’ll see that
it’s the defining equation for the second eigenvector. You already know these, so you can
immediately write down the matrix for the similarity transformation.

For the example Eq. (46) the eigenvectors are given in Eq. (47). In components these
are

~e ′1 →
(

1
−1

)
, and ~e ′2 →

(
1
1

)
, implying S =

(
1 1
−1 1

)
The inverse to this matrix is

S−1 =
1

2

(
1 −1
1 1

)
You should verify that S−1MS is diagonal.

7.10 Summation Convention
In all the manipulation of components of vectors and components of operators you have to
do a lot of sums. There are so many sums over indices that a convention* was invented (by
Einstein) to simplify the notation.

A repeated index in a term is summed.

Eq. (6) becomes f(~ei) = fki~ek.
Eq. (8) becomes uk = fkivi.
Eq. (26) becomes hki = fkjgji.
IM = M becomes δijMjk = Mik.

* There is a modification of this convention that appears in chapter 12, section 12.4
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What if there are three identical indices in the same term? Then you made a mistake;
that can’t happen. What about Eq. (43)? That has three indices. Yes, and there I explicitly
said that there is no sum. This sort of rare case you have to handle as an exception.

7.11 Can you Diagonalize a Matrix?
At the beginning of section 7.8 I said that the basis in which the components of an operator
form a diagonal matrix “almost always exists.” There’s a technical sense in which this is
precisely true, but that’s not what you need to know in order to manipulate matrices; the
theorem that you need to have is that every matrix is the limit of a sequence of diagonalizable
matrices. If you encounter a matrix that cannot be diagonalized, then you can approximate
it as closely as you want by a matrix that can be diagonalized, do your calculations, and
finally take a limit. You already did this if you did problem 4.11, but in that chapter it didn’t
look anything like a problem involving matrices, much less diagonalization of matrices. Yet
it is the same.

Take the matrix (
1 2
0 1

)
You can’t diagonalize this. If you try the standard procedure, here is what happens:(

1 2
0 1

)(
v1
v2

)
= λ

(
v1
v2

)
then det

(
1− λ 2

0 1− λ

)
= 0 = (1− λ)2

The resulting equations you get for λ = 1 are

0v1 + 2v2 = 0 and 0 = 0

This provides only one eigenvector, a multiple of

(
1
0

)
. You need two for a basis.

Change this matrix in any convenient way to make the two roots of the characteristic
equation different from each other. For example,

Mε =

(
1 + ε 2

0 1

)
The eigenvalue equation is now

(1 + ε− λ)(1− λ) = 0

and the resulting equations for the eigenvectors are

λ = 1 : εv1 + 2v2 = 0, 0 = 0 λ = 1 + ε : 0v1 + 2v2 = 0, εv2 = 0

Now you have two distinct eigenvectors,

λ = 1 :

(
1
−ε/2

)
, and λ = 1 + ε :

(
1
0

)
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Differential Equations at Critical
Problem 4.11 was to solve the damped harmonic oscillator for the critical case that b2−4km =
0.

m
d2x

dt2
= −kx− bdx

dt
(52)

Write this as a pair of equations, using the velocity as an independent variable.

dx

dt
= vx and

dvx

dt
= − k

m
x− b

m
vx

In matrix form, this is a matrix differential equation.

d

dt

(
x
vx

)
=

(
0 1

−k/m −b/m

)(
x
vx

)
This is a linear, constant-coefficient differential equation, only now the constant coefficients
are matrices. Don’t let that slow you down. The reason that an exponential form of solution
works is that the derivative of an exponential is an exponential. Assume such a solution
here.(

x
vx

)
=

(
A
B

)
eαt, giving α

(
A
B

)
eαt =

(
0 1

−k/m −b/m

)(
A
B

)
eαt (53)

When you divide the equation by eαt, you’re left with an eigenvector equation, where the
eigenvalue is α. As usual, to get a non-zero solution set the determinant of the coefficients
to zero and the characteristic equation is

det

(
0− α 1
−k/m −b/m− α

)
= α(α+ b/m) + k/m = 0

with familiar roots

α =
(
− b±

√
b2 − 4km

)
/2m

If the two roots are equal you may not have distinct eigenvectors, and in this case you do
not. No matter, you can solve any such problem for the case that b2 − 4km 6= 0 and then
take the limit as this approaches zero.

The eigenvectors come from the equation αA = B, the simpler of the two linear
equations represented by Eq. (53). Really one linear equation because of the determinant
condition. (

x
vx

)
(t) = A+

(
1
α+

)
eα+t + A−

(
1
α−

)
eα−t

Pick the initial conditions that x(0) = 0 and vx(0) = v0. You must choose some initial
conditions in order to apply this technique. In matrix terminology this is(

0
v0

)
= A+

(
1
α+

)
+ A−

(
1
α−

)
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These are two equations for the two unknowns

A+ + A− = 0, α+A+ + α−A− = v0, so A+ =
v0

α+ − α−
, A− = −A+(

x
vx

)
(t) =

v0
α+ − α−

[(
1
α+

)
eα+t −

(
1
α−

)
eα−t

]
If you now take the limit as b2 → 4km, or equivalently as α− → α+, this expression is just
the definition of a derivative.(

x
vx

)
(t) −→ v0

d

dα

(
1
α

)
eαt = v0

(
teαt

(1 + αt)eαt

)
α = − b

2m
(54)

7.12 Eigenvalues and Google
The motivating idea behind the search engine Google is that you want the first items returned
by a search to be the most important items. How do you do this? How do you program a
computer to decide which web sites are the most important?

A simple idea is to count the number of sites that contain a link to a given site, and the
site that is linked to the most is then the most important site. This has the drawback that
all links are treated as equal. If your site is referenced from the home page of Al Einstein, it
counts no more than if it’s referenced by Joe Blow. This shouldn’t be.

A better idea is to assign each web page a numerical importance rating. If your site,
#1, is linked from sites #11, #59, and #182, then your rating, x1, is determined by adding
those ratings (and multiplying by a suitable scaling constant).

x1 = K
(
x11 + x59 + x182

)
Similarly the second site’s rating is determined by what links to it, as

x2 = K
(
x137 + x157983 + x1 + x876

)
But this assumes that you already know the ratings of the sites, and that’s what you’re
trying to find!

Write this in matrix language. Each site is an element in a huge column matrix {xi}.

xi = K

N∑
j=1

αijxj or

x1

x2
...

 = K


0 0 1 0 1 . . .
1 0 0 0 0 . . .
0 1 0 1 1 . . .
. . .


x1

x2
...


An entry of 1 indicates a link and a 0 is no link. This is an eigenvector problem with the
eigenvalue 1/K, and though there are many eigenvectors, there is a constraint that lets you
pick the right one. All the xis must be positive, and there’s a theorem (Perron-Frobenius)
that guarantees you can find such an eigenvector. This algorithm is a key idea behind
Google’s ranking methods. They have gone well beyond this basic technique of course, but
the spirit of the method remains. See www-db.stanford.edu/˜backrub/google.html for more
on this.

http://www-db.stanford.edu/~backrub/google.html
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7.13 Special Operators
Symmetric
Antisymmetric
Hermitian
Antihermitian
Orthogonal
Unitary
Idempotent
Nilpotent
Self-adjoint

In no particular order of importance, these are names for special classes of operators. It
is often the case that an operator defined in terms of a physical problem will be in some way
special, and it’s then worth knowing the consequent simplifications. The first ones involve a
scalar product.

Symmetric:
〈
~u, S(~v )

〉
=
〈
S(~u ), ~v

〉
Antisymmetric:

〈
~u,A(~v )

〉
= −

〈
A(~u ), ~v

〉
The inertia operator of Eq. (3) is symmetric.

I(~ω ) =

∫
dm~r×

(
~ω×~r

)
satisfies

〈
~ω1, I(~ω2)

〉
= ~ω1 . I(~ω2) =

〈
I(~ω1), ~ω2

〉
= I(~ω1) . ~ω2

Proof: Plug in.

~ω1 . I(~ω2) = ~ω1 .
∫
dm~r ×

(
~ω2 × ~r

)
= ~ω1 .

∫
dm
[
~ω2 r

2 − ~r (~ω2 .~r )
]

=

∫
dm
[
~ω1 . ~ω2 r

2 − (~ω1 .~r )(~ω2 .~r )
]

= I(~ω1) . ~ω2

What good does this do? You’re guaranteed that all eigenvalues are real, all eigenvectors are
orthogonal, and the eigenvectors form an orthogonal basis. In this example, the eigenvalues
are moments of inertia about the axes defined by the eigenvectors, so these moments better
be real.

Hermitian operators obey the same identity as the symmetric:
〈
~u,H(~v )

〉
=
〈
H(~u ), ~v

〉
.

The only difference is that in this case you allow the scalars to be complex numbers. That
means that the scalar product has a complex conjugation implied in the first factor. You
saw this sort of operator in the chapter on Fourier series, section 5.3, but I didn’t refer to it
by this name. You will become familiar with this class of operators when you hit quantum
mechanics. Then they are ubiquitous. The same theorem as for symmetric operators applies
here, that the eigenvalues are real and that the eigenvectors are orthogonal and form a basis.

Orthogonal operators satisfy
〈
O(~u ), O(~v )

〉
=
〈
~u,~v

〉
. The most familiar example

is rotation. When you rotate two vectors, their magnitudes and the angle between them
do not change. That’s all that this equation says — scalar products are preserved by the
transformation.

Unitary operators are the complex analog of orthogonal ones:
〈
U(~u ), U(~v )

〉
=
〈
~u,~v

〉
,

but all the scalars are complex and the scalar product is modified accordingly.
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The next couple you don’t see as often. Idempotent means that if you take successive
powers of the operator, letting it act again and again, you eventually reach the identity
operator.

Nilpotent sounds like the preceding one except that you eventually reach the zero
operator instead.

Self-adjoint is, in a finite dimensional vector space exactly the same thing as Hermi-
tian. In infinite dimensions it is not, and in quantum mechanics the important operators are
the self-adjoint ones. The issues involved are a bit technical, and I’ll leave them to chapter
18 if I ever write it. As an aside, in infinite dimensions you need one extra hypothesis for
unitary and orthogonal: that they are invertible.
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Problems

7.1 Draw a picture of the effect of these linear transformations on the unit square with
vertices at (0, 0), (1, 0), (1, 1), (0, 1). The matrices representing the operators are

(a)

(
1 2
3 4

)
, (b)

(
1 −2
2 −4

)
, (c)

(
−1 2
1 2

)
Is the orientation preserved or not in each case? See the figure at the end of section 7.6

7.2 Using the same matrices as the preceding question, what is the picture resulting from
doing (a) followed by (c)? What is the picture resulting from doing (c) followed by (a)? The
results of section 7.4 may prove helpful.

(a,c)

(b,d)

(a+b,c+d)
7.3 Look again at the parallelogram that is the image of the
unit square in the calculation of the determinant. In Eq. (33) I
used the cross product to get its area, but sometimes a brute-
force method is more persuasive. If the transformation has

components

(
a b
c d

)
The corners of the parallelogram that is

the image of the unit square are at (0, 0), (a, c), (a+ b, c+ d),
(b, d). You can compute its area as sums and differences of
rectangles and triangles. Do so; it should give the same result
as the method that I used.

7.4 In three dimensions, there is an analogy to the geometric interpretation of the cross
product as the area of a parallelogram. The triple scalar product ~A . ~B × ~C is the volume
of the parallelepiped having these three vectors as edges. Prove both of these statements
starting from the geometric definitions of the two products. That is, from the AB cos θ and
AB sin θ definitions of the dot product and the magnitude of the cross product (and its
direction).

7.5 Derive the relation ~v = ~ω × ~r for a point mass rotating about an axis. Refer to the
figure before Eq. (2).

7.6 You have a mass attached to four springs in a plane and that are in turn attached to
four walls, the mass is at equilibrium. Two opposing spring have spring constant k1 and the
other two are k2. Push on the mass with a force ~F and the resulting displacement of m is
~d = f(~F ), defining a linear operator. Compute the components of f in an obvious basis and
check a couple of special cases to see if the displacement is in a plausible direction, especially
if the two k’s are quite different.

7.7 On the vector space of quadratic polynomials, degree ≤ 2, the operator d/dx is defined:
the derivative of such a polynomial is a polynomial. (a) Use the basis ~e0 = 1, ~e1 = x, and
~e2 = x2 and compute the components of this operator. (b) Compute the components of the
operator d2/dx2. (c) Compute the square of the first matrix and compare it to the result for
(b).
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7.8 Repeat the preceding problem, but look at the case of cubic polynomials, a four-
dimensional space.

7.9 In the preceding problem the basis 1, x, x2, x3 is too obvious. Take another basis, the
Legendre polynomials:

P0(x) = 1, P1(x) = x, P2(x) =
3

2
x2 − 1

2
, P3(x) =

5

2
x3 − 3

2
x

and repeat the problem, finding components of the first and second derivative operators.
Verify an example explicitly to check that your matrix reproduces the effect of differentiation
on a polynomial of your choice. Pick one that will let you test your results.

7.10 What is the determinant of the inverse of an operator, explaining why?

7.11 Eight identical point masses m are places at the corners of a cube that has one corner
at the origin of the coordinates and has its sides along the axes. The side of the cube is
length = a. In the basis that is placed along the axes as usual, compute the components of
the inertia tensor.
Ans: I11 = 8ma2

7.12 For the dumbbell rotating about the off-axis axis in Eq. (19), what is the time-derivative

of ~L? In very short time dt, what new direction does ~L take and what then is d~L? That will
tell you d~L/dt. Prove that this is ~ω × ~L.

7.13 A cube of uniform volume mass density, mass m, and side a has one corner at the
origin of the coordinate system and the adjacent edges are placed along the coordinate axes.
Compute the components of the tensor of inertia. Do it directly and by using the parallel
axis theorem to check your result.

Ans: ma2

 2/3 −1/4 −1/4
−1/4 2/3 −1/4
−1/4 −1/4 2/3


7.14 Compute the cube of Eq. (13) to find the trigonometric identities for the cosine and sine
of triple angles in terms of single angle sines and cosines. Compare the results of problem 3.9.

7.15 On the vectors of column matrices, the operators are matrices. For the two dimensional

case take M =

(
a b
c d

)
and find its components in the basis

(
1
1

)
and

(
1
−1

)
.

What is the determinant of the resulting matrix?Ans: M11 = (a+ b+ c+ d)/2.

7.16 Show that the tensor of inertia, Eq. (3), satisfies ~ω1 . I(~ω2) = I(~ω1) . ~ω2. What does
this identity tell you about the components of the operator when you use the ordinary
orthonormal basis? First determine in such a basis what ~e1 . I(~e2) is. This identity is to
linear operators (tensors) what Eq. (5.12) is to Fourier series.

7.17 Use the definition of the center of mass to show that the two cross terms in Eq. (21)
are zero.
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7.18 Prove the Perpendicular Axis Theorem. This says that for a mass that lies flat in a
plane, the moment of inertia about an axis perpendicular to the plane equals the sum of
the two moments of inertia about the two perpendicular axes that lie in the plane and that
intersect the third axis.

7.19 Verify in the conventional, non-matrix way that Eq. (54) really does provide a solution
to the original second order differential equation (52).

7.20 The Pauli spin matrices are

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
Show that σxσy = iσz and the same for cyclic permutations of the indices x, y, z. Compare
the products σxσy and σyσx and the other pairings of these matrices.

7.21 Interpret ~σ . ~A as σxAx + σyAy + σzAz and prove that

~σ . ~A~σ . ~B = ~A . ~B + i~σ . ~A× ~B

where the first term on the right has to include the identity matrix for this to make sense.

7.22 Evaluate the matrix
I

I − ~σ . ~A
=
(
I − ~σ . ~A

)−1

You can evaluate this a couple of ways: You may assume that ~A is in some sense small
enough for you to manipulate by infinite series methods. This then becomes a geometric
series that you can sum. Use the results of the preceding problem.
(b) You can manipulate the algebra directly without series. I suggest that you recall the
sort of manipulation that allows you to write the complex number 1/(1− i) without any i’s
in the denominator.
Do it both ways, perhaps using one to guide the other. I suppose you could do it a third way,
writing out the 2 × 2 matrix and explicitly inverting it, but I definitely don’t recommend
this.

7.23 Evaluate the sum of the infinite series defined by e−iσyθ. Where have you seen this
result before? The first term in the series must be interpreted as the identity matrix.

7.24 For the moment of inertia about an axis, the integral is
∫
r2⊥ dm. State precisely what

this m function must be for this to make sense as a Riemann-Stieljes integral, Eq. (1.24).
For the case that you have eight masses, all m0 at the 8 corners of a cube of side a, write
explicitly what this function is and evaluate the moment of inertia about an axis along one
edge of the cube.
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7.25 The summation convention allows you to write some compact formulas. Evaluate these,
assuming that you’re dealing with three dimensions. Note Eq. (30). Define the alternating
symbol εijk to be
1: This is totally anti-symmetric. That is, interchange any two indices and you change the
sign of the value.
2: ε123 = 1. [E.g. ε132 = −1, ε312 = +1]

δii, εijkAjBk, δijεijk, δmnAmBn, Smnumvn, unvn,

εijkεmnk = δimδjn − δinδjm

Multiply the last identity by AjBmCn and interpret.

7.26 The set of Hermite polynomials starts out as

H0 = 1, H1 = 2x, H2 = 4x2 − 2, H3 = 8x3 − 12x, H4 = 16x4 − 48x2 + 12,

(a) For the vector space of polynomials in x of degree ≤ 3 choose a basis of Hermite poly-
nomials and compute the matrix of components of the differentiation operator, d/dx.
(b) Compute the components of the operator d2/dx2 and show the relation between this
matrix and the preceding one.

7.27 On the vector space of functions of x, define the translation operator

Taf = g means g(x) = f(x− a)

This picks up a function and moves it by a to the right.
(a) Pick a simple example function f and test this definition graphically to verify that it
does what I said.
(b) On the space of polynomials of degree ≤ 3 and using a basis of your choice, find the
components of this operator.
(c) Square the resulting matrix and verify that the result is as it should be.
(d) What is the inverse of the matrix? (You should be able to guess the answer and then
verify it. Or you can work out the inverse the traditional way.)

7.28 The force by a magnetic field on a moving charge is ~F = q~v × ~B. The operation
~v × ~B defines a linear operator on ~v, stated as f(~v ) = ~v × ~B. What are the components

of this operator expressed in terms of the three components of the vector ~B? What are the
eigenvectors and eigenvalues of this operator? For this last part, pick the basis in which you
want to do the computations. If you’re not careful about this choice, you are asking for a
lot of algebra.
Ans: eigenvalues: 0, ±iB

7.29 In section 7.7 you have an operator M expressed in two different bases. What is its
determinant computed in each basis?
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7.30 In a given basis, an operator has the values

A(~e1) = ~e1 + 3~e2 and A(~e2) = 2~e1 + 4~e4

Draw a picture of what this does.
Find the eigenvalues and eigenvectors of A and see how this corresponds to the picture you
just drew.

7.31 The characteristic polynomial of a matrix M is det(M − λI). I is the identity matrix
and λ is the variable in the polynomial. Write the characteristic polynomial for the general
2× 2 matrix. Then in place of λ in this polynomial, put the matrix M itself. The constant
term will have to include the factor I for this to make sense. For this 2 × 2 case verify the
Cayley-Hamilton Theorem, that the matrix satisfies its own characteristic equation, making
this polynomial the zero matrix.

7.32 For the magnetic field operator defined in problem 28, place ẑ = ~e3 along the direction
of ~B. Then take ~e1 = (x̂− iŷ)/

√
2, ~e2 = (x̂+ iŷ)/

√
2 and find the components of the linear

operator representing the magnetic field. A charged particle is placed in this field and the
equations of motion are m~a = ~F = q~v × ~B. Translate this into the operator language with
a matrix like that of problem 28, and write ~F = m~a in this language and this basis.
Ans: (part) mr̈1 = −iqBr1, where r1 = (x + iy)/

√
2. mr̈2 = +iqBr2, where r2 =

(x− iy)/
√

2.

7.33 For the operator in problem 27 part (b), what are the eigenvectors and eigenvalues?

7.34 A nilpotent operator was defined in section 7.13. For the operator defined in problem 8,
show that it is nilpotent. How does this translate into the successive powers of its matrix
components?

7.35 A cube of uniform mass density has side a and mass m. Evaluate its moment of inertia
about an axis along a longest diagonal of the cube. Note: If you find yourself entangled in a
calculation having multiple integrals with hopeless limits of integration, toss it out and start
over. You may even find problem 18 useful. Ans: ma2/6

7.36 Show that the set of all 2 × 2 matrices forms a vector space. Produce a basis for it,
and so what is its dimension?

7.37 In the vector space of the preceding problem, a similarity transformation is an operator.
f(M) = S−1MS. For S, use the rotation matrix of Eq. (13) and compute the components
of this operator f . The obvious choice of basis would be matrices with a single non-zero
element 1. Instead, try the basis I, σx, σy, σz.

7.38 What are the eigenvectors and eigenvalues of the operator in the preceding problem?
Now you’ll be happy I suggested the basis that I did.
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7.39 The commutator of two matrices is defined to be [A,B] = AB − BA. Show that this
commutator satisfies the Jacobi identity.

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0

The anti-commutator of two matrices is {A,B} = AB+BA. Show that there is an identity
like the Jacobi identity, but with one of the two commutators (the inner one or the outer
one) replaced by an anti-commutator. I’ll leave it to you to figure out which.

7.40 Diagonalize each of the Pauli spin matrices of problem 20. That is, find their eigen-
values and specify the respective eigenvectors as the basis in which they are diagonal.

7.41 What are the eigenvalues and eigenvectors of the rotation matrix Eq. (13)? Translate
the answer back into a statement about rotating vectors, not just their components.

7.42 Same as the preceding problem, but replace the circular trigonometric functions with
hyperbolic ones. Also change the sole minus sign in the matrix to a plus sign. Draw pictures
of what this matrix does to the basis vectors. What is its determinant?

7.43 Compute the eigenvalues and eigenvectors of the matrix Eq. (18). Interpret each.

7.44 Look again at the vector space of problem 6.36 and use the basis f1, f2, f3 that you
constructed there. In this basis, what are the components of the two operators described in
that problem?
(b) What is the product of these two matrices? Do it in the order so that it represents the
composition of the first rotation followed by the second rotation.
(c) Find the eigenvectors of this product and from the result show that the combination
of the two rotations is a third rotation about an axis that you can now specify. Can you
anticipate before solving it, what one of the eigenvalues will be?
(d) Does a sketch of this rotation axis agree with what you should get by doing the two
original rotations in order?

7.45 Verify that the Gauss elimination method of Eq. (38) agrees with (32).

7.46 What is the determinant of a nilpotent operator? See problem 34.

7.47 Recall (or look up) Kramer’s rule for evaluating a determinant. For 2×2, 3×3, and in
fact, for N×N arrays, how many multiplication operations are required for this. Ignore the
time to do any additions and assume that a computer can do a product in 10−10 seconds.
How much time does it take by this method to do the determinant for 10×10, 20×20, and
30×30 arrays? Express the times in convenient units.
(b) Repeat this for the Gauss elimination algorithm at Eq. (38). How much time for the
above three matrices and for 100×100 and 1000×1000? Count division as taking the same
time as multiplication.
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7.48 On the vector space of functions on 0 < x < L, use the basis of complex exponentials,
Eq. (5.17), and compute the matrix components of d/dx.
(b) Use the basis of Eq. (5.14) to do the same thing.

7.49 Repeat the preceding problem, but for d2/dx2. Compare the result here to the squares
of the matrices from that problem.

7.50 Repeat problem 27 but using a different vector space of functions with basis
(a) enπix/L, (n = 0, ±1, ±2, . . .)
(b) cos(nπx/L), and sin(mπx/L).
These functions will be a basis in the set of periodic functions of x.

7.51 What is the determinant of the translation operator of problem 27?
What is the determinant of d/dx on the vector space of problem 26?

7.52 Write out the construction of the trace in the case of a three dimensional operator,
analogous to Eq. (41). What are the coefficients of ε2 and ε3? Back in the two dimensional
case, draw a picture of what (I + εf) does to the basis vectors to first order in ε.

7.53 Evaluate the trace for arbitrary dimension. Use the procedure of Gauss elimination to
compute the determinant, and note at every step that you are keeping terms only through
ε0 and ε1. Any higher orders can be dropped as soon as they appear. Ans:

∑N
i=1 fii



Multivariable Calculus

The world is not one-dimensional, and calculus doesn’t stop with a single independent vari-
able. The ideas of partial derivatives and multiple integrals are not too different from their
single-variable counterparts, but some of the details about manipulating them are not so
obvious. Some are downright tricky.

8.1 Partial Derivatives
The basic idea of derivatives and of integrals in two, three, or more dimensions follows the
same pattern as for one dimension. They’re just more complicated.

The derivative of a function of one variable is defined as

df(x)

dx
= lim

∆x→0

f(x+ ∆x)− f(x)

∆x
(1)

You would think that the definition of a derivative of a function of x and y would then be
defined as

∂f(x, y)

∂x
= lim

∆x→0

f(x+ ∆x, y)− f(x, y)

∆x
(2)

and more-or-less it is. The ∂ notation instead of d is a reminder that there are other
coordinates floating around that are temporarily being treated as constants.

In order to see why I used the phrase “more-or-less” I’ll take a very simple example:
f(x, y) = y. Use the preceding definition, and because y is being held constant, the derivative
∂f/∂x = 0. What could be easier?

I don’t like these variables so I’ll switch to a different set of coordinates, x′ and y′:

y′ = x+ y and x′ = x

What is ∂f/∂x′ now?
f(x, y) = y = y′ − x = y′ − x′

Now the derivative of f with respect to x′ is −1, because I’m keeping the other coordinate
fixed. Or is the derivative still zero because x′ = x and I’m taking ∂f/∂x and why should
that change just because I’m using a different coordinate system?

The problem is that the notation is ambiguous. When I write ∂f/∂x it doesn’t tell be
what I’m to hold constant. Is it to be y or y′ or yet something else? In some contexts the
answer is clear and you won’t have any difficulty deciding, but you’ve already encountered
cases for which the distinction is crucial. In thermodynamics, when you add heat to a gas to
raise its temperature does this happen at constant pressure or at constant volume or with
some other constraint? The specific heat at constant pressure is not the same as the specific
heat at constant volume; it’s necessarily bigger because during an expansion some of the
energy has to go into the work of changing the volume. This sort of derivative depends on
type of process that you’re using, and for a classical ideal gas the difference between the two
molar specific heats obeys the equation

cp − cv = R

170
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If the gas isn’t ideal, this equation is replaced by a more complicated and general one, but
the same observation applies, that the two derivatives dQ/dT aren’t the same.

In thermodynamics there are so many variables in use that there is a standard notation
for a partial derivative, indicating exactly which other variables are to be held constant.(

∂U

∂V

)
T

and

(
∂U

∂V

)
P

represent the change in the internal energy of an object per change in volume during processes
in which respectively the temperature and the pressure are held constant. In the previous
example with the function f = y, this says(

∂f

∂x

)
y

= 0 and

(
∂f

∂x

)
y′

= −1

This notation is a way to specify the direction in the x-y plane along which you’re taking the
derivative.

8.2 Differentials
For a function of a single variable you can write

df =
df

dx
dx (3)

and read (sort of) that the infinitesimal change in the function f is the slope times the
infinitesimal change in x. Does this really make any sense? What is an infinitesimal change?
Is it zero? Is dx a number or isn’t it? What’s going on?

It is possible to translate this intuitive idea into something fairly simple and that makes
perfectly good sense. Once you understand what it really means you’ll be able to use the
intuitive idea and its notation with more security.

Let g be a function of two variables, x and h.

g(x, h) =
df(x)

dx
h has the property that

1

h

∣∣f(x+ h)− f(x)− g(x, h)
∣∣ −→ 0 as h→ 0

That is, the function g(x, h) approximates very well the change in f as you go from x to
x+ h. The difference between g and ∆f goes to zero so fast that even after you’ve divided
by h the difference goes to zero.

The usual notation is to use the symbol dx instead of h and to call the function df
instead* of g.

df(x, dx) = f ′(x) dx has the property that

1

dx

∣∣f(x+ dx)− f(x)− df(x, dx)
∣∣ −→ 0 as dx→ 0

(4)

* Who says that a variable in algebra must be only a single letter? You would never
write a computer program that way. dFred2

/
dFred = 2 Fred is perfect sensible.
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In this language dx is just another variable that can go from −∞ to +∞ and df is just a
specified function of two variables. The point is that this function is useful because when
the variable dx is small df provides a very good approximation to the increment ∆f in f .

Differentials in Several Variables
The analog of Eq. (3) for several variables is

df = df(x, y, dx, dy) =

(
∂f

∂x

)
y

dx+

(
∂f

∂y

)
x

dy (5)

Roughly speaking, near a point in the x-y plane, the value of the function f changes as a
linear function of the coordinates as you move a (little) distance away. This function df
describes this change to high accuracy.

For example, take the function f(x, y) = x2 + y2. At the point (x, y) = (1, 2), the
differential is

df(1, 2, dx, dy) = (2x)

∣∣∣∣
(1,2)

dx+ (2y)

∣∣∣∣
(1,2)

dy = 2dx+ 4dy

so that

f(1.01, 1.99) ≈ f(1, 2) + df(1, 2, .01,−.01) = 12 + 22 + 2(.01) + 4(−.01) = 4.98

compared to the exact answer, 4.9802.
The equation analogous to (4) is

df(x, y, dx, dy) has the property that
1

dr

∣∣f(x+ dx, y + dy)− f(x, y)− df(x, y, dx, dy)
∣∣ −→ 0 as dr → 0 (6)

where dr =
√
dx2 + dy2 is the distance to (x, y). It’s not that you will be able to do a lot

more with this precise definition than you could with the intuitive idea. You will however
be able to work with a better understanding of you’re actions. When you say that “dx is an
infinitesimal” you can understand that this means simply that dx is any number but that
the equations using it are useful only for very small values of that number.

You can’t use this notation for everything as the notation for the derivative demon-
strates. The symbol “df/dx” does not mean to divide a function by a length; it refers to
a well-defined limiting process. This notation is however constructed so that it provides an
intuitive guide, and even if you do think of it as the function df divided by the variable dx,
you get the right answer.

Why should such a thing as a differential exist? It’s essentially the first terms after
the constant in the power series representation of the original function: section 2.5. But how
do I know that such a series works anyway. I’ve been notably cavalier about proofs. The
answer is that there is a proper theorem guaranteeing that Eq. (6) works. It is that if both
partial derivatives exist in the neighborhood of the expansion point and if these derivatives
are continuous there, then the differential exists and has the value that I stated in Eq. (5).
For this I refer you to any of many advanced calculus texts, such as Apostol’s.*

* Mathematical Analysis, Addison-Wesley
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8.3 Chain Rule
If the coordinates x and y are themselves functions of another variable, perhaps time, then
how does does the function f vary as a function of t? Just use the idea of the differential to
find out. At time t the differentials of x and y are, from Eq. (3),

dx =
dx

dt
dt, and dy =

dy

dt
dt

Notational confusion reminder: The dx on the left is the function of two variables: dx(t, dt).
The dx in the numerator on the right is a part of the notation for a derivative and isn’t
defined independently of dx/dt. But, this Leibnitz notation is designed to lead you in the
right direction, so it’s not an accident that it looks like you’re just canceling the dt’s.

Apply this to the differential of f fromEq. (5).

df = df
(
x(t), y(t), dx(t, dt), dy(t, dt)

)
=

(
∂f

∂x

)
y

dx+

(
∂f

∂y

)
x

dy

=

(
∂f

∂x

)
y

dx

dt
dt+

(
∂f

∂y

)
x

dy

dt
dt

The derivative df/dt is the coefficient of dt in this differential, just as in Eq. (3).

df

dt
=

(
∂f

∂x

)
y

dx

dt
+

(
∂f

∂y

)
x

dy

dt
(7)

What is f also has an explicit t in it: f
(
t, x(t), y(t)

)
? That simply adds another term.

Remember, dt/dt = 1.

df

dt
=

(
∂f

∂t

)
x,y

+

(
∂f

∂x

)
y,t

dx

dt
+

(
∂f

∂y

)
x,t

dy

dt
(8)

Example: (When you want to check out an equation, you should construct an example
so that it reveals a lot of structure without requiring a lot of calculation.)

f(x, y) = Axy2, and x(t) = Ct3, y(t) = Dt2

First do it using the chain rule.

df

dt
=

(
∂f

∂x

)
y

dx

dt
+

(
∂f

∂y

)
x

dy

dt

=
(
Ay2

)(
3Ct2

)
+
(
2Axy

)(
2Dt

)
=
(
A(Dt2)2

)(
3Ct2

)
+
(
2A(Ct3)(Dt2)

)(
2Dt

)
= 7ACD2t6

Now repeat the calculation by first substituting the values of x and y and then differentiating.

df

dt
=

d

dt

[
A(Ct3)(Dt2)2

]
=

d

dt

[
ACD2t7

]
= 7ACD2t6
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Sometimes you see the chain rule written in a slightly different form. You can change
coordinates from (x, y) to (r, θ), switching from rectangular to polar. You can switch from
(x, y) to a system such as (x′, y′) = (x + y, x − y). The function can be expressed in the
new coordinates explicitly. Solve for x, y in terms of r, θ or x′, y′ and then differentiate with
respect to the new coordinate. OR you can use the chain rule to differentiate with respect
to the new variable.

Suppose that I know f(x, y) and I want to find the derivative of f with respect to x′

holding y′ fixed. The equation (5) tells you the differential df in terms of the coordinates
dx and dy. All that I have to do now is to compute these in terms of dx′ and dy′. The
coordinate x is a function of x′ and y′, so apply the same Eq. (5) to them.

dx =

(
∂x

∂x′

)
y′
dx′ +

(
∂x

∂y′

)
x′
dy′ and dy =

(
∂y

∂x′

)
y′
dx′ +

(
∂y

∂y′

)
x′
dy′

I want the derivative of f with respect to x′ holding y′ constant, so that means that I’m
going to compute dx and dy given that dy′ is zero, then substitute the values of dx and dy
into the Eq. (5) for df . The second term in each of the preceding equations is zero because
dy′ = 0.

df = df(x, y, dx, dy) =

(
∂f

∂x

)
y

dx+

(
∂f

∂y

)
x

dy (5)

df =

(
∂f

∂x

)
y

(
∂x

∂x′

)
y′
dx′ +

(
∂f

∂y

)
x

(
∂y

∂x′

)
y′
dx′ (9)

and the derivative that I want, (∂f/∂x′)y′ is the coefficient of dx′ in this equation

(
∂f

∂x′

)
y′

=

(
∂f

∂x

)
y

(
∂x

∂x′

)
y′

+

(
∂f

∂y

)
x

(
∂y

∂x′

)
y′ (10)

Example: When you switch from rectangular to plane polar coordinates what is ∂f/∂θ
in terms of the x and y derivatives?

x = r cos θ, y = r sin θ, so(
∂f

∂θ

)
r

=

(
∂f

∂x

)
y

(
∂x

∂θ

)
r

+

(
∂f

∂y

)
x

(
∂y

∂θ

)
r

=

(
∂f

∂x

)
y

(−r sin θ) +

(
∂f

∂y

)
x

(r cos θ)

If f(x, y) = x2 + y2 this better be zero, because I’m finding how f changes when r is held
fixed. Check it out; it is. The equation (10) presents the form that is most important in
many applications.
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8.4 Geometric Interpretation
For one variable, the picture of the differential is simple. Start with a graph of the function
and at a point (x, y) = (x, f(x)), find the straight line that best approximates the function in
the immediate neighborhood of that point. Now set up a new coordinate system with origin
at this (x, y) and call the new coordinates dx and dy. In this coordinate system the straight
line passes through the origin and the slope is the derivative df(x)/dx. The equation for the
straight line is then Eq. (3), describing the differential.

dy =
df(x)

dx
dx

y

x

dy

dx

For two variables, the picture parallels this one. At a point (x, y, z) = (x, y, f(x, y)) find
the plane that best approximates the function in the immediate neighborhood of that point.
Set up a new coordinate system with origin at this (x, y, z) and call the new coordinates dx,
dy, and dz. The equation for a plane that passes through this origin is αdx+β dy+γ dz = 0,
and for this best approximating plane, the equation is nothing more than the equation for
the differential, Eq. (5).

dz =

(
∂f(x, y)

∂x

)
y

dx+

(
∂f(x, y)

∂y

)
x

dy

dx

dy

dz

The picture is a bit harder to draw, but with a little practice you can do it. (I didn’t say
that I could.)

For the case of three independent variables, I’ll leave the sketch to you.

Examples
The temperature on the surface of a heated disk is given to be T (r, θ) = T0 +
T1

(
1− r2/a2

)
, where a is the radius of the disk and T0 and T1 are constants. If

you start at position x = c < a, y = 0 and move parallel to the y-axis at speed
v0 what is the rate of change of temperature that you feel?

Use Eq. (7), and the relation r =
√
x2 + y2.

dT

dt
=

(
∂T

∂r

)
θ

dr

dt
+

(
∂T

∂θ

)
r

dθ

dt
=

(
∂T

∂r

)
θ

[(
∂r

∂x

)
y

dx

dt
+

(
∂r

∂y

)
x

dy

dt

]

=
(
−2T1

r

a2

)[ y√
x2 + y2

v0

]
= −2T1

√
c2 + v2

0t
2

a2
. v2

0t√
c2 + v2

0t
2

= −2T1
v2
0t

a2



176 8—Multivariable Calculus

As a check, the dimensions are correct (are they?). At time zero, this vanishes, and
that’s what I expect because at the beginning of the motion you’re starting to move in the
direction perpendicular to the direction in which the temperature is changing. The farther
you go, the more nearly parallel to the direction of the radius you’re moving. If you are
moving exactly parallel to the radius, this time-derivative is easier to calculate; it’s then
almost a problem in a single variable.

dT

dt
≈ dT

dr

dr

dt
≈ −2T1

r

a2
v0 ≈ −2T1

V0t

a2
v0

So the approximate and the exact calculation agree. In fact they agree so well that you
should try to find out if this is a lucky coincidence or if there some special aspect of the
problem that you might have seen from the beginning and that would have made the whole
thing much simpler.

8.5 Gradient
The equation (5) for the differential has another geometric interpretation. For a function
such as f(x, y) = x2 + 4y2, the equations representing constant values of f describe curves
in the x-y plane. In this example, they are ellipses. If you start from any fixed point in the
plane and start to move away from it, the rate at which the value of f changes will depend
on the direction in which you move. If you move along the curve defined by f =constant
then f won’t change at all. If you move perpendicular to that direction then f may change
a lot.

The gradient of f at a point is the vector pointing in
the direction in which f is increasing most rapidly and
the component of the gradient along that direction is the
derivative of f with respect to the distance in that direction.

To relate this to the partial derivatives that we’ve been using, and to understand how
to compute and to use the gradient, return to Eq. (5) and write it in vector form. Use the
common notation for the basis: x̂ and ŷ. Then let

d~r = dx x̂+ dy ŷ and ~G =

(
∂f

∂x

)
y

x̂+

(
∂f

∂y

)
x

ŷ (11)

The equation for the differential is now

df = df(x, y, dx, dy) = ~G . d~r (12)

~G

d~r
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Because you know the properties of the dot product, you know that this is Gdr cos θ
and it is largest when the directions of d~r and of ~G are the same. It’s zero when they are
perpendicular. You also know that df is zero when d~r is in the direction along the curve
where f is constant. The vector ~G is therefore perpendicular to this curve. It is in the
direction in which f is changing most rapidly. Also because df = Gdr cos 0, you see that G
is the derivative of f with respect to distance along that direction. ~G is the gradient.

For the example f(x, y) = x2 + 4y2, ~G = 2xx̂ + 8yŷ. At each point in the x-y plane
it provides a vector showing the steepness of f at that point and the direction in which f is
changing most rapidly.

Notice that the gradient vectors are twice as long where the ellipses are closest together
as they are at the ends where the ellipses are farthest apart. The function changes more
rapidly in the y-direction.

The United States Coast and Geodetic Survey makes a large number of maps, and
hikers are particularly interested in the contour maps. They show curves indicating the lines
of constant altitude. As the highest altitude in Florida is less than 100 meters, denizens of
that state may never have seen one of these maps, but they’re important where there are
mountains.

The gravitational potential energy of a mass m near the Earth’s surface is mgh. This
divided by the mass is the gravitational potential, gh. These lines of constant altitude are
then lines of constant potential, equipotentials of the gravitational field. Walk along such
an equipotential and you are doing no work against gravity, just walking on the level.

8.6 Electrostatics

The electric field can be described in terms of a gradient. For a single point charge at the
origin the electric field is

~E(x, y, z) =
kq

r2
r̂

where r̂ is the unit vector pointing away from the origin and r is the distance to the origin.
This vector can be written as a gradient. Because this ~E is everywhere pointing away from
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the origin, it’s everywhere perpendicular to the sphere centered at the origin.

~E = −grad
kq

r

You can verify this a several ways. The first is to go straight to the definition of a gradient.
(There’s a blizzard of minus signs in this approach, so have a little patience. It will get
better.) This function is increasing most rapidly in the direction moving toward the origin.
(1/r) The derivative with respect to distance in this direction is −d/dr, so −d/dr(1/r) =
+1/r2. The direction of greatest increase is along −r̂, so grad (1/r) = −r̂(1/r2). But the
relation to the electric field has another −1 in it, so

−grad
kq

r
= +r̂

kq

r2

There’s got to be a better way.
Yes, instead of insisting that you move in the direction in which the function is increas-

ing most rapidly, simply move in the direction in which it is changing most rapidly. The
derivative with respect to distance in that direction is the component in that direction and
the plus or minus signs take care of themselves. The derivative with respect to r of (1/r)
is −1/r2. That is the component in the direction r̂, the direction in which you took the
derivative. This says grad (1/r) = −r̂(1/r2). You get the same result as before but without
so much fussing. This also makes it look more like the familiar ordinary derivative in one
dimension.

Still another way is from the Stallone-Schwarzenegger brute force school of computing.
Express everything in rectangular coordinates and do the partial derivatives using Eqs. (11)
and (9).(

∂(1/r)

∂x

)
y,z

=

(
∂(1/r)

∂r

)
θ,φ

(
∂r

∂x

)
y,z

= − 1

r2
∂

∂x

√
x2 + y2 + z2 = − 1

r2
x√

x2 + y2 + z2

Repeat this for y and z with similar results and assemble the output.

−grad
kq

r
=
kq

r2
xx̂+ yŷ + zẑ√
x2 + y2 + z2

=
kq

r2
~r

r
=
kq

r2
r̂

The symbol ∇ is commonly used for the gradient operator. This vector operator will
appear in several other places, the curl of a vector field will be the one you see most often.

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(13)

From Eq. (11) you have

grad f = ∇f (14)
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8.7 Plane Polar Coordinates
When doing integrals in the plane there are many coordinate systems to choose from, but
rectangular and polar coordinates are the most common. You can find the element of area
with a simple sketch: The lines (or curves) of constant coordinate enclose an area that is, for
small enough increments in the coordinates, a rectangle. Then you just multiply the sides.
In one case ∆x .∆y and in the other case ∆r . r∆θ.

Vibrating Drumhead
A circular drumhead can vibrate in many complicated ways. The simplest and lowest fre-
quency mode is approximately

z(r, θ, t) = z0
(
1− r2/R2

)
cosωt (15)

where R is the radius of the drum and ω is the frequency of oscillation. (The shape is more
accurately described by Eq. (4.22) but this approximation is pretty good for a start.) The

kinetic energy density of the moving drumhead is u = 1
2σ
(
∂z/∂t

)2
. That is, in a small

area ∆A, the kinetic energy is ∆K = u∆A and the limit as ∆A → 0 of ∆K/∆A is the
area-energy-density. In the same way, σ is the area mass density, dm/dA.

What is the total kinetic energy because of this oscillation? It is
∫
u dA. To evaluate

it, use polar coordinates and integrate over the area of the drumhead.∫
u dA =

∫ R

0
r dr

∫ 2π

0
dθ
σ

2
z2
0

(
(1− r2/R2)ω sinωt

)2
=
σ

2
2πz2

0ω
2 sin2 ωt

∫ R

0
dr r

(
1− r2/R2

)2
= σπz2

0ω
2 sin2 ωt

1

2

∫ r=R

r=0
d(r2)

(
1− r2/R2

)2
= σπz2

0ω
2 sin2 ωt

1

2
R21

3

(
1− r2/R2

)3
(−1)

∣∣∣∣r=R

0

=
1

6
σR2πz2

0ω
2 sin2 ωt

(16)

See problem 10 and following for more on this.

8.8 Cylindrical, Spherical Coordinates
The three common coordinate systems used in three dimensions are rectangular, cylindrical,
and spherical coordinates, and these are the ones you have to master. When you need to
use prolate spheroidal coordinates you can look them up.
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x

z

y

θ

r

z

φ

θ r

−∞ < x <∞ 0 < r <∞ 0 < r <∞
−∞ < y <∞ 0 < θ < 2π 0 < θ < π
−∞ < z <∞ −∞ < z <∞ 0 < φ < 2π

The surfaces that have constant values of these coordinates are planes in rectangular
coordinates; planes and cylinders in cylindrical; planes, spheres, and cones in spherical.
In every one of these cases the constant-coordinate surfaces intersect each other at right
angles, hence the name “orthogonal coordinate” systems. In spherical coordinates I used the
coordinate θ as the angle from the z-axis and φ as the angle around the axis. In mathematics
books these are typically reversed, so watch out for the notation. On the globe of the Earth,
φ is the longitude and θ the latitude except that longitude goes ±180◦ instead of zero to 2π.
Latitude is ±90◦ from the equator instead of zero to π from the pole.

The volume elements for these systems come straight from the drawings, just as the
area elements do in plane coordinates. In every case you can draw six surfaces, bounded by
constant coordinates, and surrounding a small box. Because these are orthogonal coordinates
you can compute the volume of the box easily as the product of its three edges.

In the spherical case, one side is ∆r. Another side is r∆θ. The third side is not r∆φ;
it is r sin θ∆φ. The reason for the factor sin θ is that the arc of the circle made at constant
r and constant θ is not in a plane passing through the origin. It is in a plane parallel to the
x-y plane, so it has a radius r sin θ.

rectangular cylindrical spherical
volume dx dy dz r dr dθ dz r2 sin θ dr dθ dφ
area dx dy r dθ dz or r dθ dr r2 sin θ dθ dφ

Examples of Multiple Integrals
Even in rectangular coordinates integration can be tricky. That’s because you have to pay
attention to the limits of integration far more closely than you do for simple one dimensional
integrals. I’ll illustrate this with two dimensional rectangular coordinates first, and will
choose a problem that is easy but still shows what you have to look for.
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An Area
Find the area in the x-y plane between the curves y = x2/a and y = x.

(A)

∫ a

0
dx

∫ x

x2/a
dy 1 and (B)

∫ a

0
dy

∫ √
ay

y
dx 1

y

x

y

x

In the first instance I fix x and add the pieces of dy in the strip indicated. The lower
limit of the dy integral comes from the specified equation of the lower curve. The upper
limit is the value of y for the given x at the upper curve. After that the limits on the sum
over dx comes from the intersection of the two curves: y = x = x2/a gives x = a for that
limit.

In the second instance I fix y and sum over dx first. The left limit is easy, x = y, and
the upper limit comes from solving y = x2/a for x in terms of y. When that integral is done,
the remaining dy integral starts at zero and goes up to the intersection at y = x = a.

Now do the integrals.

(A)

∫ a

0
dx
[
x− x2/a

]
=
a2

2
− a3

3a
=
a2

6

(B)

∫ a

0
dy
[√
ay − y

]
= a1/2a

3/2

3/2
− a2

2
=
a2

6

If you would care to try starting this calculation from the beginning, without drawing any
pictures, be my guest.

b

a

A Moment of Inertia
The moment of inertia about an axis is

∫
r2⊥ dm. What is the moment of inertia of a uniform

sheet of mass M in the shape of a right triangle of sides a and b? Take the moment about
the right angled vertex. The area mass density, σ = dm/dA is 2M/ab. The moment of
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inertia is then∫
(x2 + y2)σ dA =

∫ a

0
dx

∫ b(a−x)/a

0
dy σ(x2 + y2) =

∫ a

0
dxσ

[
x2y + y3/3

]b(a−x)/a

0

=

∫ a

0
dxσ

[
x2 b

a
(a− x) +

1

3

(
b

a

)3

(a− x)3
]

= σ

[
b

a

(
a4

3
− a4

4

)
+

1

3

(
b3

a3

a4

4

)]
=

1

12
σ
(
ba3 + ab3

)
=
M

6

(
a2 + b2

)
The dimensions are correct. For another check take the case where a = 0, reducing this to
Mb2/6. But wait, this now looks like a thin rod, and I remember that the moment of inertia
of a thin rod about its end is Mb2/3. What went wrong? Nothing. Look again more closely.
Show why this limiting answer ought to be less than Mb2/3.

Volume of a Sphere
What is the volume of a sphere of radius R? The most obvious approach would be to use
spherical coordinates. See problem 16 for that. I’ll use cylindrical coordinates instead. The
element of volume is dV = r drdθdz, and the integrals can be done a couple of ways.

∫
dV =

∫ R

0
r dr

∫ 2π

0
dθ

∫ +
√

R2−r2

−
√

R2−r2
dz =

∫ +R

−R
dz

∫ 2π

0
dθ

∫ √R2−z2

0
r dr (17)

You can finish these now, see problem 17.

A Surface Charge Density
An example that appears in electrostatics: The surface charge density, dq/dA, on a sphere
of radius R is σ(θ, φ) = σ0 sin2 θ cos2 φ. What is the total charge on the sphere?

The element of area is R2 sin θ dθ dφ, so the total charge is
∫
σ dA,

Q =

∫ π

0
sin θ dθ R2

∫ 2π

0
dφσ0 sin2 θ cos2 φ = R2

∫ +1

−1
d cos θ σ0

(
1− cos2 θ

) ∫ 2π

0
dφ cos2 φ

The mean value of cos2 is 1/2. so the φ integral gives π. For the rest, it is

σ0πR
2

[
cos θ − 1

3
cos3 θ

]+1

−1

=
4

3
σ0πR

2

Limits of Integration
Sometimes the trickiest part of multiple integrals is determining the limits of integration.
Especially when you have to change the order of integration, the new limits may not be
obvious. Are there any special techniques or tricks to doing this? Yes, there is one, perhaps
obscure, method that you may not be accustomed to.

Draw Pictures.
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If you have an integral such as the first one, you have to draw a picture of the integration
domain to switch limits.

∫ 1

0
dy

∫ 2−y2

y
dx f(x, y)

x

y ∫ 1

0
dx

∫ x

0
dy +

∫ √
2

1
dx

∫ √2−x2

0
dy

 f(x, y)

(18)
Of course, once you’ve drawn the picture you may realize that simply interchanging the order
of integration won’t help, but that polar coordinates may.∫ √

2

0
r dr

∫ π/4

0
dθ

8.9 Vectors: Cylindrical, Spherical Bases
When you describe vectors in three dimensions are you restricted to the basis x̂, ŷ, ẑ? In a
different coordinate system you should use basis vectors that are adapted to that system. In
rectangular coordinates these vectors have the convenient property that they point along the
direction perpendicular to the plane where the corresponding coordinate is constant. They
also point in the direction in which the other two coordinates are constant. E.g. the unit
vector x̂ points perpendicular to the plane of constant x (the y-z plane); it also point along
the line where y and z are constant.

x

z

y
x̂

ẑ

ŷ

θ

r
ẑ

z
r̂

θ̂

φ

θ r

r̂

θ̂

φ̂

Do the same thing for cylindrical coordinates. The unit vector ẑ points perpendicular
to the x-y plane. The unit vector r̂ points perpendicular to the cylinder r =constant. The
unit vector θ̂ points perpendicular to the plane θ =constant and along the direction for
which r and z are constant. The conventional right-hand rule specifies ẑ = r̂ × θ̂.

For spherical coordinates r̂ points perpendicular to the sphere r =constant. The
φ̂ vector is perpendicular to the plane φ =constant and points along the direction where
r =constant and θ =constant and toward increasing coordinate φ. Finally θ̂ is perpendicular
to the cone θ =constant and again, points toward increasing θ. Then φ̂ = r̂× θ̂, and on the
Earth, these vectors r̂, θ̂, and φ̂ are ûp, ˆSouth, and ˆEast.

Solenoid
A standard solenoid is cylindrical coil of wire, so that when the wire carries a current it
produces a magnetic field. To describe this field, it seems that cylindrical coordinates are
advised. Until you know something about the field the most general thing that you can write
is

~B(r, θ, z) = r̂ Br(r, θ, z) + θ̂ Bθ(r, θ, z) + ẑ Bz(r, θ, z)
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In a real solenoid that’s it; all three of these components are present. If you have an
ideal, infinitely long solenoid (found only in textbooks) the use of Maxwell’s equations and
appropriately applied symmetry arguments will simplify this to ẑ Bz(r).

Gravitational Field
The gravitational field of the Earth is simple, ~g = −r̂ GM/r2, pointing straight toward the
center of the Earth. Well no, not really. The Earth has a bulge at the equator; its equatorial
diameter is about 43 km larger than its polar diameter. This changes the ~g-field so that it
has a noticeable θ̂ component. At least it’s noticeable if you’re trying to place a satellite in
orbit or to send a craft to another planet.

A better approximation to the gravitational field of the Earth is

~g = −r̂GM
r2
−G3Q

r4
[
r̂
(
3 cos2 θ − 1

)
/2 + θ̂ cos θ sin θ

]
(19)

The letter Q stands for the quadrupole moment. |Q| � MR2, and it’s a measure of the
bulge. By convention a football (American football) has a positive Q; the Earth’s Q is
negative. (What about a European football?)

Nuclear Magnetic Field
The magnetic field from the nucleus of many atoms (even as simple an atom as hydrogen)
is proportional to

1

r3
[
2r̂ cos θ + θ̂ sin θ

]
(20)

As with the preceding example these are in spherical coordinates, and the component along
the φ̂ direction is zero. This field’s effect on the electrons in the atom is small but detectable.
The magnetic properties of the nucleus are central to the subject of nuclear magnetic reso-
nance (NMR), and that has its applications in magnetic resonance imaging* (MRI).

8.10 Gradient in other Coordinates
The equation for the gradient computed in rectangular coordinates is Eq. (11) or (14). How
do you compute it in cylindrical or spherical coordinates? You do it the same way that you
got Eq. (11) from Eq. (5). The coordinates r, θ, and z are just more variables, so Eq. (5) is
simply

df = df(r, θ, z, dr, dθ, dz) =

(
∂f

∂r

)
θ,z

dr +

(
∂f

∂θ

)
r,z

dθ +

(
∂f

∂z

)
r,θ

dz

All that’s left is to write d~r in these coordinates, just as in Eq. (11).

d~r = r̂ dr + θ̂ r dθ + ẑ dz (21)

The part in the θ̂ direction is the displacement of d~r in that direction. As θ changes by a
small amount the distance moved is not dθ; it is r dθ. The equation

df = df(r, θ, z, dr, dθ, dz) = grad f . d~r

* In medicine MRI was originally called NMR, but someone decided that this would
disconcert the patients.
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defines grad f as

grad f = r̂
∂f

∂r
+ θ̂

1

r

∂f

∂θ
+ ẑ

∂f

∂z
= ∇f (22)

Notice that the units work out right too.
In spherical coordinates the procedure is identical. All that you have to do is to identify

what d~r is.

d~r = r̂ dr + θ̂ r dθ + φ̂ r sin θ dφ

Again with this case you have to look at the distance moved when the coordinates changes
by a small amount. Just as with cylindrical coordinates this determines the gradient in
spherical coordinates.

grad f = r̂
∂f

∂r
+ θ̂

1

r

∂f

∂θ
+ φ̂

1

r sin θ

∂f

∂φ
= ∇f (23)

The equations (11), (22), and (23) define the gradient (and correspondingly∇) in three
coordinate systems.

8.11 Maxima, Minima, Saddles
With one variable you can look for a maximum or a minimum by taking a derivative and
setting it to zero. For several variables you do it several times so that you will get as many
equations as you have unknown coordinates.

Put this in the language of gradients: ∇f = 0. The derivative of f vanishes in every
direction as you move from such a point. As examples,

f(x, y) = x2 + y2, or = −x2 − y2, or = x2 − y2

For all three of these the gradient is zero at (x, y) = (0, 0); the first has a minimum there,
the second a maximum, and the third neither — it is a “saddle point.” Draw a picture to
see the reason for the name. The generic term for all three of these is “critical point.”

An important example of finding a minimum is “least square fitting” of functions.
How close are two functions to each other? The most commonly used, and in every way the
simplest, definition of the distance between f and g on the interval a < x < b is∫ b

a
dx
∣∣f(x)− g(x)

∣∣2 (24)

This means that a large deviation of one function from the other in a small region counts
more than smaller deviations spread over a larger domain. The square sees to that. As a
specific example, I have a function f on the interval 0 < x < L and I want to fit it to the
sum of a couple of trigonometric functions. The best fit will be the one that minimizes the
distance between f and the sum. (Take f to be a real-valued function for now.)

D(α, β) =

∫ L

0
dx

(
f(x)− α sin

πx

L
− β sin

2πx

L

)2

(25)
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D is the distance between the given function and the sines that I want to fit to it. To
minimize the distance, take derivatives with respect to the parameters α and β.

dD

dα
= 2

∫ L

0
dx

(
f(x)− α sin

πx

L
− β sin

2πx

L

)(
− sin

πx

L

)
= 0

dD

dβ
= 2

∫ L

0
dx

(
f(x)− α sin

πx

L
− β sin

2πx

L

)(
− sin

2πx

L

)
= 0

These two equations determine the parameters α and β.

α

∫ L

0
dx sin2 πx

L
=

∫ L

0
dx f(x) sin

πx

L

β

∫ L

0
dx sin2 2πx

L
=

∫ L

0
dx f(x) sin

2πx

L

The other integrals vanish because of the orthogonality of sin πx/L and sin 2πx/L on this
interval. What you get is exactly the coefficients of the Fourier series expansion of f . The
Fourier series is the best fit (in the least square sense) of a sum of orthogonal functions to
f . See section 11.6 for more on this

Is it a minimum? Yes. Look at the coefficients of α2 and β2 in Eq. (25). They are
positive; +α2 + β2 has a minimum, not a maximum or saddle point, and there is no cross
term in αβ to mess it up.

The distance function Eq. (24) is simply (the square of) the norm in the vector space
sense of the difference of the two vectors f and g. Equations(6.12) and (6.7) here become

‖f − g‖2 =
〈
f − g, f − g

〉
=

∫ b

a
dx
∣∣f(x)− g(x)

∣∣2
~e1

~e2

shortest distance
to the plane

The geometric meaning of Eq. (25) is that ~e1 and ~e2 provide a basis for the two dimensional
space

α~e1 + β~e2 = α sin
πx

L
+ β sin

2πx

L

The plane is the set of all linear combinations of the two vectors, and for a general vector
not in this plane, the shortest distance to the plane defines the vector in the plane that is
the best fit to the given vector. It’s the one that’s closest. Because the vectors ~e1 and ~e2
are orthogonal it makes it easy to find the closest vector. You require that the difference,
~v − α~e1 − β~e2 have only an ~e3 component. That is Fourier series.

Hessian
In this example leading to Fourier components, it’s pretty easy to see that you’re dealing
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with a minimum and not anything else. In other situations it may not be so easy. You may
have a lot of variables. You may have complicated cross terms. Is x2 + xy + y2 a minimum
at the origin? Is x2 + 3xy + y2? (Yes and No respectively.)

When there’s only one variable there is a simple rule that lets you decide. Check the
second derivative. If it’s positive you have a minimum; if it’s negative you have a maximum.
If it’s zero you have more work to do. Is there a similar method for several variables? Yes,
and I’ll show it explicitly for two variables. Once you see how to do it in two dimensions,
the generalization to N is just a matter of how much work you’re willing to do (or how much
computer time you can use).

The Taylor series in two variables, Eq. (2.14), is to second order

f(x+ dx, y + dy) = f(x, y) +
∂f

∂x
dx+

∂f

∂y
dy +

∂2f

∂x2
dx2 + 2

∂2f

∂x∂y
dx dy +

∂2f

∂y2
dy2 + · · ·

Write this in a more compact notation in order to emphasize the important parts.

f(~r + d~r )− f(~r ) = ∇f . d~r +
〈
d~r,H d~r

〉
+ · · ·

The part with the gradient is familiar, and to have either a minimum or a maximum, that
will have to be zero. The next term introduces a new idea, the Hessian. Write these second
order terms as a matrix to see what they are, and in order to avoid a lot of clumsy notation
use subscripts as an abbreviation for the partial derivatives.

〈
d~r,H d~r

〉
= ( dx dy )

(
fxx fxy

fyx fyy

)(
dx
dy

)
where d~r = x̂ dx+ ŷ dy (26)

This matrix is symmetric because of the properties of mixed partials. How do I tell
from this whether the function f has a minimum or a maximum (or neither) at a point
where the gradient of f is zero? Eq. (26) describes a function of two variables even after I’ve
fixed the values of x and y by saying that ∇f = 0. It’s a quadratic function of dx and dy.
Expressed in the language of vectors this says that f has a minimum if (26) is positive no
matter what the direction of d~r is.

Pull back from the problem a step. I have a 2×2 symmetric matrix sandwiched inside
a scalar product.

h(x, y) = (x y )

(
a b
b c

)(
x
y

)
(27)

Is h positive definite? That is, positive for all x, y? If this matrix is diagonal it’s much easier
to see what is happening, so diagonalize it. Find the eigenvectors and use those for a basis.(

a b
b c

)(
x
y

)
= λ

(
x
y

)
requires det

(
a− λ b
b c− λ

)
= 0

λ2 − λ(a+ c) + ac− b2 = 0 =⇒ λ =
[
(a+ c)±

√
(a− c)2 + b2

]/
2

For the applications here all the a, b, c are the real partial derivatives, so the eigenvalues are
real and the only question is whether the λs are positive or negative, because they will be
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the (diagonal) components of the Hessian matrix in the new basis. If this is a double root,
the matrix was already diagonal. You can verify that the eigenvalues are positive if a > 0,
c > 0, and ac > b2, and that will indicate a minimum point.

Geometrically the equation z = h(x, y) from Eq. (27) defines a surface. If it is positive
definite the surface is a paraboloid opening upward. If negative definite it is a paraboloid
opening down. The mixed case is a saddle.

In this 2×2 case you have a quadratic formula to fall back on, and with more variables
there are standard algorithms for determining eigenvalues of matrices, but I’ll leave those to
some other book.

8.12 Lagrange Multipliers
This is an incredibly clever method to handle problems of maxima and minima in several
variables when there are constraints.

An example: “What is the largest rectangle?” obviously has no solution, but “What
is the largest rectangle contained in an ellipse?” does.

Another: Particles are to be placed into states of specified energies. You know the
total number of particles; you know the total energy. All else being equal, what is the most
probable distribution of the number of particles in each state?

I’ll describe this procedure for two variables; it’s the same for more. The problem
stated is that I want to find the maximum (or minimum) of a function f(x, y) given the
fact that the coordinates x and y must lie on the curve φ(x, y) = 0. If you can solve the φ
equation for y in terms of x explicitly, then you can substitute it into f and turn it into a
problem in ordinary one variable calculus. What if you can’t?

Analyze this graphically. The equation φ(x, y) = 0 represents one curve in the plane.
The succession of equations f(x, y) = constant represent many curves in the plane, one for
each constant. Think of equipotentials.

f = 5

f = 0

4

φ = 0

1 2 3

φ = 0

f = 0
1 2 3

4

f = 5

Look at the intersections of the φ-curve and the f -curves. Where they intersect, they
will usually cross each other. Ask if such a crossing could possibly be a point where f is
a maximum. Clearly the answer is no, because as you move along the φ-curve you’re then
moving from a point where f has one value to where it has another.

The only way to have f be a maximum at a point on the φ-curve is for them to touch
and not cross. When that happens the values of f will increase as you approach the point
from one side and decrease on the other. That makes it a maximum. In this sketch, the
values of f decrease from 4 to 3 to 2 and then back to to 3, 4, and 5. This point where the
curve f = 2 touches the φ = 0 curve is then a minimum of f along φ = 0.

To implement this picture so that you can compute with it, look at the gradient of f
and the gradient of φ. The gradient vectors are perpendicular to the curves f =constant
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and φ =constant respectively, and at the point where the curves are tangent to each other
these gradients are in the same direction (or opposite, no matter). Either way one vector is
a scalar times the other.

∇f = λ∇φ (28)

In the second picture, the arrows are the gradient vectors for f and for φ. Break this into
components and you have

∂f

∂x
− λ∂φ

∂x
= 0,

∂f

∂y
− λ∂φ

∂y
= 0, φ(x, y) = 0

There are three equations in three unknowns (x, y, λ), and these are the equations to solve
for the position of the maximum or minimum value of f . You’re looking for x and y, so you’ll
be tempted to ignore the third variable λ and to eliminate it. Look again. This parameter,
the Lagrange multiplier, has a habit of being significant.

Examples of Lagrange Multipliers
The first example that I mentioned: What is the largest rectangle that you can inscribe in an
ellipse? Let the ellipse and the rectangle be centered at the origin. The upper right corner
of the rectangle is at (x, y), then the area of the rectangle is

Area = f(x, y) = 4xy,

with constraint φ(x, y) =
x2

a2
+
y2

b2
− 1 = 0

The equations to solve are now

∇(f − λφ) = 0, and φ = 0, which become

4y − λ2x

a2
= 0, 4x− λ2y

b2
= 0,

x2

a2
+
y2

b2
− 1 = 0 (29)

The solutions to these three equations are straight-forward. They are x = a/
√

2, y = b/
√

2,
λ = 2ab. The maximum area is then 4xy = 2ab. The Lagrange multiplier turns out to be
the required area. Does this reduce to the correct result for a circle?

The second example said that you have several different allowed energies, typical of
what happens in quantum mechanics. If the total number of particles and the total energy
are given, how are the particles distributed among the different energies?

If there are N particles and exactly two energy levels, E1 and E2,

N = n1 + n2, and E = n1E1 + n2E2

you have two equations in two unknowns and all you have to do is solve them for the numbers
n1 and n2, the number of particles in each state. If there are three or more possible energies
the answer isn’t uniquely determined by just two equations, and there can be many ways
that you can put particles into different energy states and still have the same number of
particles and the same total energy.
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If you’re dealing with four particles and three energies, you can perhaps count the
possibilities by hand. How many ways can you put four particles in three states? (400),
(310), (301), (220), 211), etc. There’s only one way to get the (400) configuration: All four
particles go into state 1. For (310) there are four ways to do it; any one of the four particles
can be in the second state and the rest in the first. Keep going. If you have 1020 particles
you have to find a better way.

If you have a total of N particles and you place n1 of them in the first state, the
number of ways that you can do that is N for the first particle, (N − 1) for the second
particle, etc. = N(N − 1)(N − 2) · · · (N − n1 + 1) = N !/(N − n1)!. This is over-counting
because you don’t care which one went into the first state first, only that it’s there. There
are n1! rearrangements of these n1 particles, so you have to divide by that to get the number
of ways that you can get this number of particles into state 1: N !/n1!(N−n1)! For example,
N = 4, n1 = 4 as in the (400) configuration in the preceding paragraph is 4!/0!4! = 1, or
4!/3!1! = 4 as in the (310) configuration.

Once you’ve got n1 particles into the first state you want to put n2 into the second
state (out of the remaining N − n1). Then on to state 3.

The total number of ways that you can do this is the product of all of these numbers.
For three allowed energies it is

N !

n1!(N − n1)!
. (N − n1)!

n2!(N − n1 − n2)!
. (N − n1 − n2)!

n3!(N − n1 − n2 − n3)!
=

N !

n1!n2!n3!
(30)

There’s a lot of cancellation and the final factor in the denominator is one because of the
constraint n1 + n2 + n3 = N .

Lacking any other information about the particles, the most probable configuration
is the one for which Eq. (30) is a maximum. This calls for Lagrange multipliers because
you want to maximize a complicated function of several variables subject to constraints on
N and on E. Now all you have to do is to figure out out to differentiate with respect to
integers. Answer: If N is large you will be able to treat these variables as continuous and to
use standard calculus to manipulate them.

For large n, recall Stirling’s formula, Eq. (2.18),

n! ∼
√

2πnnne−n or its log: ln(n!) ∼ ln
√

2πn+ n lnn− n (31)

This, I can differentiate. Maximizing (30) is the same as maximizing its logarithm, and
that’s easier to work with.

maximize f = ln(N !)− ln(n1!)− ln(n2!)− ln(n3!)

subject to n1 + n2 + n3 = N and n1E1 + n2E2 + n3E3 = E

There are two constraints here, so there are two Lagrange multipliers.

∇
(
f − λ1(n1 + n2 + n3 −N)− λ2(n1E1 + n2E2 + n3E3 − E)

)
= 0

For f , use Stirling’s approximation, but not quite. The term ln
√

2πn is negligible. For n as
small as 106, it is about 6 × 10−7 of the whole. Logarithms are much smaller than powers.
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That means that I can use

∇

(
3∑

`=1

(
− n` ln(n`) + n`

)
− λ1n` − λ2n`E`

)
= 0

This is easier than it looks because each derivative involves only one coordinate.

∂

∂n1
→ − lnn1 − 1 + 1− λ1 − λ2E1 = 0, etc.

This is
n` = e−λ1−λ2E` , ` = 1, 2, 3

There are two unknowns here, λ1 and λ2. There are two equations, for N and E, and the
parameter λ1 simply determines an overall constant, e−λ1 = C.

C
3∑

`=1

e−λ2E` = N, and C
3∑

`=1

E` e
−λ2E` = E

The quantity λ2 is usually denoted β in this type of problem, and it is related to
temperature by β = 1/kT where as usual the Lagrange multiplier is important on its own.
It is usual to manipulate these results by defining the “partition function”

Z(β) =
3∑

`=1

e−βE` (32)

In terms of this function Z you have

C = N/Z, and E = −N
Z

dZ

dβ
(33)

For a lot more on this subject, you can refer to any one of many books on thermodynamics
or statistical physics. There for example you can find the reason that β is related to the
temperature and how the partition function can form the basis for computing everything
there is to compute in thermodynamics. Especially there you will find that more powerful
versions of the same ideas will arise when you allow the total energy and the total number
of particles to be variables too.

8.13 Solid Angle
The extension of the concept of angle to three dimensions is called “solid angle.” To explain
what this is, I’ll first show a definition of ordinary angle that’s different from what you’re
accustomed to. When you see that, the extension to one more dimension is easy.

Place an object in the plane somewhere not at the origin. You are at the origin and
look at it. I want a definition that describes what fraction of the region around you is
spanned by this object. For this, draw a circle of radius R centered at the origin and draw
all the lines from everywhere on the object to the origin. These lines will intersect the circle
on an arc of length s. Define the angle subtended by the object to be θ = s/R.
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s

R

A

R

Now step up to three dimensions and again place yourself at the origin. This time place
a sphere of radius R around the origin and draw all the lines from the three dimensional
object to the origin. This time the lines intersect the sphere on an area of size A. Define the
solid angle subtended by the object to be Ω = A/R2. (If you want four or more dimensions,
see problem 52.)

For the circle, the circumference is 2πR, so if you’re surrounded, the angle subtended
is 2πR/R = 2π radians. For the sphere, the area is 4πR2, so this time if you’re surrounded,
the solid angle subtended is 4πR2/R2 = 4π sterradians. That is the name for this unit.

All very pretty. Is it useful? Only if you want to describe radiative transfer, nuclear
scattering, illumination, the structure of the atom, or rainbows. Except for illumination,
these subjects center around one idea, that of a “cross section.”

Cross Section, Absorption
Before showing how to use solid angle to describe scattering, I’ll take a simpler example:
absorption. There is a hole in a wall and I propose to measure its area. Instead of taking a
ruler to it I blindly fire bullets at the wall and see how many go in. The bigger the area, the
larger the fraction that will go into the hole of course, but I have to make this quantitative
to make it useful.

Define the flux of bullets: f = dN/(dt dA). That is, suppose
that I’m firing all the bullets in the same direction, but not starting
from the same place. Pick an area ∆A perpendicular to the stream of
bullets and pick a time interval ∆t. How many bullets pass through
this area in this time? ∆N , and that’s proportional to both ∆A and
∆t.

lim
∆t→0
∆A→0

∆N

∆t∆A
= f (34)

The rate at which these bullets enter the hole is proportional to the
size of the hole, R = fσ, where R is the rate and σ is the area of the hole. If I can measure
the rate of absorption R and the flux f , I have measured the area of the hole, σ = R/f .
This letter is commonly used for cross sections.

Why should I go to this complicated trouble for a hole? I probably shouldn’t, but if I
want to measure absorption of neutrons hitting nuclei this is precisely what you do. I can’t
use a ruler on a nucleus, but I can throw things at it. In this example, neutron absorption
by nuclei, the value of the measured absorption cross section can vary from millibarns to
kilobarns, where a barn is 10−24 cm2. The radii of nuclei vary by a factor of only about six
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from hydrogen through uranium ( 3
√

238), so the cross section measured this way has little
to do with the geometric area πr2. It is instead a measure of interaction strength

Cross Section, Scattering
There are many types of cross sections besides absorption, and the next simplest is the
scattering cross section, especially the differential scattering cross section.

θ b

b+ db

θ
∆Ω

dσ = 2πb db

The same flux of particles that you throw at an object may not be absorbed, but
may scatter instead. You detect the scattering by using a detector. (You were expecting a
catcher’s mitt?) The detector will have an area ∆A facing the particles and be at a distance
r from the center of scattering. The detection rate will be proportional the the area of the
detector, but if I double r for the same ∆A, the detection rate will go down by a factor of
four. The detection rate is proportional to ∆A/r2, but this is just the solid angle of the
detector from the center:

∆Ω = ∆A/r2 (35)

The detection rate is proportional to the incoming flux and to the solid angle of the detector.
The proportionality is an effective scattering area, ∆σ.

∆R = f∆σ, so
dσ

dΩ
=

dR

fdΩ
(36)

This is the differential scattering cross section.
You can compute this if you know something about the interactions involved. The

one thing that you need is the relationship between where the particle comes in and the
direction in which it leaves. That is, the incoming particle is aimed to hit at a distance b
(called the impact parameter) from the center and it scatters at an angle θ, called of course
the scattering angle, from its original direction. Particles that come in at distance between b
and b+db from the axis through the center will scatter into directions between θ and θ+dθ.

The cross section for being sent in a direction between these two angles is the area
of the ring: dσ = 2πb db. Anything that hits in there will scatter into the outgoing angles
shown. How much solid angle is this? Put the z-axis of spherical coordinates to the right,
so that θ is the usual spherical coordinate angle from z. The element of area on the surface
of a sphere is dA = r2 sin θdθdφ, so the integral over all the azimuthal angles φ around the
ring just gives a factor 2π. The element of solid angle is then

dΩ =
dA

r2
= 2π sin θdθ
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As a check on this, do the integral over all theta to get the total solid angle around a point.
Divide the effective area for this scattering by the solid angle, and the result is the

differential scattering cross section.

dσ

dΩ
=

2πb db

2π sin θ dθ
=

b

sin θ

db

dθ

If I know θ as a function of b, I can compute this. There are a couple of very minor
modifications that you need in order to finish. The first is that the derivative db/dθ can
easily be negative, but both the area and the solid angle are positive. That means that you
need an absolute value here. One other complication is that one value of θ can come from
several values of b. It may sound unlikely, but it happens routinely. It even happens in the
example that comes up in the next section.

dσ

dΩ
=
∑

i

bi
sin θ

∣∣∣∣dbidθ
∣∣∣∣ (37)

8.14 Rainbow
An interesting, if slightly complicated example is the rainbow. Sunlight scatters from small
drops of water in the air and the detector is your eye. The water drops are small enough that
I’ll assume them to be spheres, where surface tension is enough to hold them in this shape
for the ordinary small sizes of water droplets in the air. The first and simplest model uses
geometric optics and Snell’s law to figure out where the scattered light goes. This model
ignores the wave nature of light and it does not take into account the fraction of the light
that is transmitted and reflected at each surface.

b

β

β

β

α

α

α

α

θ

sin β = n sinα

θ = (β − α) + (π − 2α) + (β − α)

b = R sin β

(38)

The light comes in at the indicated distance b from the axis through the center of
the sphere. It is then refracted, reflected, and refracted. Snell’s law describes the first and
third of these, and the middle one has equal angles of incidence and reflection. The dashed
lines are from the center of the sphere. The three terms in Eq. (38) for the evaluation of θ
come from the three places at which the light changes direction, and they are the amount of
deflection at each place. The third equation simply relates b to the radius of the sphere.

With these three equations, I can try to eliminate the two variables α and β to get
the single relation between b and θ that I’m looking for. When you do this, you find that
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the resulting equations are a bit awkward. It’s sometimes easier to use one of the two
intermediate angles as a parameter, and in this case you may choose to use β. From the
picture you know that it varies from zero to π/2. The third equation gives b in terms of β.
The first equation gives α in terms of β. The second equation determines θ in terms of β
and the α that you’ve just found.

The parametrized relation between b and θ is then

b = R sin β, θ = π + 2β − 4 sin−1

(
1

n
sin β

)
, (0 < β < π/2) (39)

or you can carry it through and eliminate β.

θ = π + 2 sin−1

(
b

R

)
− 4 sin−1

(
1

n

b

R

)
(40)

The derivative db/dθ = 1
/
[dθ/db]. Compute this.

dθ

db
=

2√
R2 − b2

− 4√
n2R2 − b2

(41)

In the parametrized form this is

db

dθ
=
db/dβ

dθ/dβ
=

R cos β

2− 4 cos β/
√
n2 − sin2 β

In analyzing this, it’s convenient to have both forms, as you never know which one will be
easier to interpret. (Have you checked to see if they agree with each other in any special
cases?)

0 90 180
0

R

θ

b

n = 1 to 1.5, left to right

0 90 180

θ

dσ/dΩ

These graphs are generated from Eq. (39) for eleven values of the index of refraction
equally spaced from 1 to 1.5, and the darker curve corresponds to n = 1.3. The key factor
that enters the cross-section calculation, Eq. (37), is db/dθ, because it goes to infinity when
the curve has a vertical tangent. For water, with n = 1.33, the b-θ curve has a vertical slope
that occurs for θ a little less than 140◦. That is the rainbow.

To complete this I should finish with dσ/dΩ. The interesting part of the problem is
near the vertical part of the curve. To see what happens near such a point I can use the
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power series expansion near there. Not b(θ) but θ(b). This has zero derivative here, so near
the vertical point

θ(b) = θ0 + γ(b− b0)2

At (b0, θ0), Eq. (41) gives zero and Eq. (40) tells you θ0. The coefficient γ comes from the
second derivative of Eq. (40) at b0. What is the differential scattering cross section in this
neighborhood?

b = b0 ±
√

(θ − θ0)/γ, so db/dθ = ± 1

2
√
γ(θ − θ0)

dσ

dΩ
=
∑

i

bi
sin θ

∣∣∣∣dbidθ
∣∣∣∣

=
b0 +

√
(θ − θ0)/γ
sin θ

1

2
√
γ(θ − θ0)

+
b0 −

√
(θ − θ0)/γ
sin θ

1

2
√
γ(θ − θ0)

≈ b0

sin θ0
√
γ(θ − θ0)

(42)

In the final expression, because this is near θ − θ0 and because I’m doing a power series
expansion of the exact solution anyway, I dropped all the θ-dependence except the dominant
factors. This is the only consistent thing to do because I’ve previously dropped higher order
terms in the expansion of θ(b).

Why is this a rainbow? (1) With the sun at your back you see a bright arc of a circle
in the direction for which the scattering cross-section is very large. The angular radius of
this circle is π − θ0 ≈ 42◦. (2) The value of θ0 depends on the index of refraction, n, and
that varies slightly with wavelength. The variation of this angle of peak intensity is

dθ0
dλ

=
dθ0
db0

db0
dn

dn

dλ
(43)

When you graph Eq. (42) note carefully that it is zero on the left of θ0 (smaller θ) and
large on the right. Large scattering angles correspond to the region of the sky underneath
the rainbow, toward the center of the circular arc. This implies that there is much more
light scattered toward your eye underneath the arc of the rainbow than there is above it.
Look at your next rainbow and compare the area of sky below and above the rainbow.

There’s a final point about this calculation. I didn’t take into account the fact that
when light hits a surface, some is transmitted and some is reflected. The largest effect is at
the point of internal reflection, because typically only a few percent of the light is reflected
and the rest goes through. The cross section should be multiplied by this factor to be
complete. The detailed equations for this are called the Fresnel formulas and they tell you
the fraction of the light transmitted and reflected at a surface as a function of angle and
polarization.

This is far from the whole story about rainbows. Light is a wave, and the geometric
optics approximation that I’ve used doesn’t account for everything. In fact Eq. (37) doesn’t
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apply to waves, so the whole development has to be redone. To get an idea of some of the
other phenomena associated with the rainbow, see for example
www.usna.edu/Users/oceano/raylee/RainbowBridge/Chapter 8.html
www.philiplaven.com/links.html

8.15 3D Visualization
Wrapping your mind around three dimensional objects is a practiced skill, one that takes
time to master. For an interesting way to enhance this ability, I recommend the Java Applet
www.ausserfern.at/pbeck/blockout/

http://www.usna.edu/Users/oceano/raylee/RainbowBridge/Chapter_8.html
http://www.philiplaven.com/links.html
http://www.ausserfern.at/pbeck/blockout/
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Problems

8.1 Let r =
√
x2 + y2, x = A sinωt, y = B cosωt. Use the chain rule to compute the

derivative with respect to t of ekr. Notice the various checks you can do on the result,
verifying (or disproving) your result.

8.2 Sketch these functions* in plane polar coordinates:
(a) r = a cos θ (b) r = a sec θ (c) r = aθ (d) r = a/θ (e) r2 = a2 sin 2θ

8.3 The two coordinates x and y are related by f(x, y) = 0. What is the derivative of
y with respect to x under these conditions? [What is df along this curve? And have
you drawn a sketch?] Make up a test function (with enough structure to be a test but
still simple enough to verify your answer independently) and see if your answer is correct.
Ans: −(∂f/∂x)

/
(∂f/∂y)

8.4 If x = u+ v and y = u− v, show that(
∂y

∂x

)
u

= −
(
∂y

∂x

)
v

8.5 If x = r cos θ and y = r sin θ, compute(
∂x

∂r

)
θ

and

(
∂x

∂r

)
y

8.6 What is the differential of f(x, y, z) = ln(xyz).

8.7 If f(x, y) = x3 + y3 and you switch to plane polar coordinates, use the chain rule to
evaluate (

∂f

∂r

)
θ

,

(
∂f

∂θ

)
r

,

(
∂2f

∂r2

)
θ

,

(
∂2f

∂θ2

)
r

,

(
∂2f

∂r∂θ

)
Check one or more of these by substituting r and θ explicitly and doing the derivatives.

8.8 When current I flows through a resistance R the heat produced is I2R. Two terminals
are connected in parallel by two resistors having resistance R1 and R2. Given that the total
current is divided as I = I1 + I2, show that the condition that the total heat generated is a
minimum leads to the relation I1R1 = I2R2.

8.9 Sketch the magnetic field represented by Eq. (20). I suggest that you start by fixing r

and drawing the ~B-vectors at various values of θ. It will probably help your sketch if you
first compute the magnitude of B to see how it varies around the circle. Recall, this field is
expressed in spherical coordinates, though you can take advantage of its symmetry about the
z-axis to make the drawing simpler. Don’t stop with just the field at fixed r as I suggested
you begin. The field fills space, so try to describe it.

* See http://www-groups.dcs.st-and.ac.uk/~history/Curves/Curves.html for more.

http://www-groups.dcs.st-and.ac.uk/~history/Curves/Curves.html
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8.10 A drumhead can vibrate in more complex modes. One such mode that vibrates at a
frequency higher than that of Eq. (15) looks approximately like

z(r, θ, t) = Ar
(
1− r2/R2

)
sin θ cosω2t

Find the total kinetic energy of this oscillating drumhead.
(b) Sketch the shape of the drumhead at t = 0. Compare it to the shape of Eq. (15).
At the instant that the total kinetic energy is a maximum, what is the shape of the drumhead?

8.11 Just at there is kinetic energy in a vibrating drumhead, there is potential energy, and
as the drumhead moves its total potential energy will change because of the slight stretching
of the material. The potential energy density (dP.E./dA) in a drumhead is

up =
1

2
T
(
∇z
)2

T is the tension in the drumhead. It has units of Newtons/meter and it is the force per
length you would need if you cut a small slit in the surface and had to hold the two sides of
the slit together. This potential energy arises from the slight stretching of the drumhead as
it moves away from the plane of equilibrium. For the motion described by Eq. (15) compute
the total potential energy. (Naturally, you will have checked the dimensions first to see if
the claimed expression for up is sensible.)
(b) Energy is conserved, so the sum of the total potential energy and the total kinetic energy
from Eq. (16) must be a constant. What must the frequency ω be for this to hold? Is this
a plausible result? The exact result is 2.404

√
T/σR2. Ans:

√
6T/σR2

8.12 Repeat the preceding problem for the drumhead mode of problem 10. The exact result,
calculated in terms of roots of Bessel functions is 3.832

√
T/σR2. Ans: 4

√
T/σR2

8.13 Sketch the gravitational field of the Earth from Eq. (19). Is the direction of the field
plausible?

8.14 Prove that the unit vectors in polar coordinates are related to those in rectangular
coordinates by

r̂ = x̂ cos θ + ŷ sin θ, θ̂ = −x̂ sin θ + ŷ cos θ

What are x̂ and ŷ in terms of r̂ and θ̂?

8.15 Prove that the unit vectors in spherical coordinates are related to those in rectangular
coordinates by

r̂ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ

θ̂ = x̂ cos θ cosφ+ ŷ cos θ sinφ− ẑ sin θ

φ̂ = −x̂ sinφ+ ŷ cosφ

8.16 Compute the volume of a sphere using spherical coordinates. Also do it using rectan-
gular coordinates. Also do it in cylindrical coordinates.
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8.17 Finish both integrals Eq. (17). Draw sketches to demonstrate that the limits stated
there are correct.

8.18 Find the volume under the plane 2x + 2y + z = 8a and over the triangle bounded by
the lines x = 0, y = 2a, and x = y in the x-y plane. Ans: 8a3

8.19 Find the volume enclosed by the doughnut-shaped surface (spherical coordinates) r =
a sin θ. Ans: π2a3/4

8.20 In plane polar coordinates, compute ∂r̂/∂θ, also ∂θ̂/∂θ. This means that r is fixed
and you’re finding the change in these vectors as you move around a circle. In both cases
express the answer in terms of the r̂-θ̂ vectors. Draw pictures that will demonstrate that
your answers are at least in the right direction. Ans: ∂θ̂/∂θ = −r̂

8.21 Compute the gradient of the distance from the origin (in three dimensions) in three
coordinate systems and verify that they agree.

8.22 Taylor’s power series expansion of a function of several variables was discussed in
section 2.5. The Taylor series in one variable was expressed in terms of an exponential in
problem 2.30. Show that the series in three variables can be written as

e
~h .∇f(x, y, z)

8.23 The wave equation is (a). Change variables to z = x − vt and w = x + vt and show
that in these coordinates this equation is (b). (Except for an irrelevant constant factor) Did
you explicitly note which variables are kept fixed at each stage of the calculation? See also
problem 53.

(a)
∂2u

∂x2
− 1

v2

∂2u

∂t2
= 0 (b)

∂2u

∂z∂w
= 0

8.24 The equation (19) comes from taking the gradient of the Earth’s gravitational potential
in an expansion to terms in 1/r3.

V = −GM
r
− GQ

r3
P2(cos θ)

where P2(cos θ) = 3
2 cos2 θ− 1

2 is the second order Legendre polynomial. Compute ~g = −∇V .

8.25 In problem 2.25 you computed the electric potential at large distances from a pair of
charges, −q at the origin and +q at z = a (r � a). The result was

V =
kqa

r2
P1(cos θ)

where P1(cos θ) = cos θ is the first order Legendre polynomial. Compute the electric field

from this potential, ~E = −∇V . And sketch it of course.
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8.26 In problem 2.26 you computed the electric potential at large distances from a set of
three charges, −2q at the origin and +q at z = ±a (r � a). The result was

V =
kqa2

r3
P2(cos θ)

where P2(cos θ) is the second order Legendre polynomial. Compute the electric field from

this potential, ~E = −∇V . And sketch it of course.

8.27 Compute the area of an ellipse having semi-major and semi-minor axes a and b. Com-
pare your result to that of Eq. (29). Ans: πab

8.28 Two equal point charges q are placed at z = ±a. The origin is a point of equilibrium;
~E = 0 there. Compute the potential near the origin, writing V in terms of powers of x, y,
and z near there, carrying the powers high enough to describe the nature of the equilibrium
point. Is V maximum, minimum, or saddle point there? It will be easier if you carry the
calculation as far as possible using vector notation, such as |~r − aẑ| =

√
(~r − aẑ)2, and

r � a.
(b) Write your result for V near the origin in spherical coordinates also.

8.29 When current I flows through a resistance R the heat produced is I2R. Two terminals
are connected in parallel by three resistors having resistance R1, R2, and R3. Given that
the total current is divided as I = I1 + I2 + I3, show that the condition that the total
heat generated is a minimum leads to the relation I1R1 = I2R2 = I3R3. You can easily
do problem 8 by eliminating a coordinate the doing a derivative. Here it’s starting to get
sufficiently complex that you should use Lagrange multipliers. Does λ have any significance
this time?

8.30 Given a right circular cylinder of volume V , what radius and height will provide the
minimum total area for the cylinder. Ans: r = (V/2π)1/3, h = 2r

8.31 Sometimes the derivative isn’t zero at a maximum or a minimum. Also, there are two
types of maxima and minima; local and global. The former is one that is max or min in
the immediate neighborhood of a point and the latter is biggest or smallest over the entire
domain of the function. Examine these functions for maxima and minima both inside the
domains and on the boundary.

|x|, (−1 ≤ x ≤ +2)

T0

(
x2 − y2

)
/a2, (−a ≤ x ≤ a, −a ≤ y ≤ a)

V0(r
2/R2)P2(cos θ), (r ≤ R, 3 dimensions)

8.32 In Eq. (33) it is more common to specify N and β = 1/kT , the Lagrange multiplier,
than it is to specify N and E, the total energy. Pick three energies, E`, to be 1, 2, and
3 electron volts. What is the average energy, E/N , as β →∞ (T → 0)?
(b) What is the average energy as β → 0?
(c) What are n1, n2, and n3 in these two cases?
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8.33 Find the gradient of V , where V = (x2 + y2 + z2)e−
√

x2+y2+z2
.

8.34 A billiard ball of radius R is suspended in space and is held rigidly in position. Very
small pellets are thrown at it and the scattering from the surface is completely elastic, with
no friction. Compute the relation between the impact parameter b and the scattering angle
θ. Then compute the differential scattering cross section dσ/dΩ.
Finally compute the total scattering cross section, the integral of this over dΩ.

8.35 Modify the preceding problem so that the incoming object is a ball of radius R1 and
the fixed billiard ball has radius R2.

8.36 Find the differential scattering cross section from a spherical drop of water, but instead
of Snell’s law, use a pre-Snell law: β = nα, without the sines. Is there a rainbow in this
case?
Ans: R2 sin 2β

/[
4 sin θ|1− 2/n|

]
, where θ = π + 2(1− 2/n)β

8.37 From the equation (37), assuming only a single b for a given θ, what is the integral
over all dΩ of dσ/dΩ?

8.38 Solve Eq. (41) for b when dθ/db = 0. For n = 1.33 what value of θ does this give?

8.39 If the scattering angle θ = π
2 sin(πb/R) for 0 < b < R, what is the resulting differential

scattering cross section (with graph). What is the total scattering cross section? Start by
sketching a graph of θ versus b. Ans: 2R2

/[
π2 sin θ

√
1− (2θ/π)2

]
8.40 Work out the signs of all the factors in Eq. (43), and determine from that whether red
or blue is on the outside of the rainbow. Ans: Look

8.41 If it suddenly starts to rain small, spherical diamonds instead of water, what happens
to the rainbow? n = 2.4 for diamond.

8.42 What would the rainbow look like for n = 2? You’ll have to look closely at the
expansions in this case. For small b, where does the ray hit the inside surface of the drop?

8.43 The secondary rainbow occurs because there can be two internal reflections before the
light leave the drop. What is the analog of Eqs. (38) for this case? Repeat problems 38 and
40 for this case.

8.44 What is the shortest distance from the origin to the plane defined by ~A .(~r − ~r0) = 0?
Do this using Lagrange multipliers, and then explain why of course the answer is correct.

8.45 The U.S. Post Office has decided to use a norm like Eq. (6.11)(2) to measure boxes.
The size is defined to be the sum of the height and the circumference of the rectangular box,
and the circumference is around the thickest part of the package. What is the maximum
volume you can ship if this size is constrained to be less than 130 inches? Does it matter if
the box is rectangular or cylindrical?
See http://www.usps.com/customersguide/dmm100.htm#WhatAreYouMailing

http://www.usps.com/customersguide/dmm100.htm#WhatAreYouMailing
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8.46 Plot θ versus b in equation (39) or (40).

8.47 A disk of radius R is at a distance c above the x-y plane and parallel to that plane.
What is the solid angle that this disk subtends from the origin? Ans: 2π

[
1− c/

√
c2 +R2

]
8.48 Within a sphere of radius R, what is the volume contained between the planes defined
by z = a and z = b?

8.49 Find the mean-square distance, 1
V

∫
r2 dV , from a point on the surface of a sphere to

points inside the sphere. Note: Plan ahead and try to make this problem as easy as possible.
Ans: 8R2/5

8.50 Find the mean distance, 1
V

∫
r dV , from a point on the surface of a sphere to points

inside the sphere. Unlike the preceding problem, this requires a bit of brute force.

8.51 A volume mass density is specified in spherical coordinates to be

ρ(r, θ, φ) = ρ0

(
1 + r2/R2

)[
1 + 1/2 cos θ sin2 φ+ 1/4 cos2 θ sin3 φ

]
Compute the total mass in the volume 0 < r < R. Ans: 32πρ0R

3/15

8.52 The circumference of a circle is some constant times its radius (C1r). For the two-
dimensional surface that is a sphere in three dimensions the area is of the form C2r

2. Start

from the fact that you know the integral
∫∞
−∞ dx e−x2

= π1/2, write out the following two
dimensional integral twice. It is over the entire plane.∫

dA e−r2

using dA = dx dy and using dA = C1r dr

From this, evaluate C1. Repeat this for dV and C2r
2 in three dimensions, evaluating C2.

Now repeat this in arbitrary dimensions to evaluate Cn. Do you need to reread chapter
one? In particular, what is C3, telling you about the three dimensional hypersphere in four
dimensions? What is then the total “hypersolid angle” in four dimensions (like 4π in three)?
Ans: 2π2

8.53 Do the reverse of problem 23. Start with the second equation there and change variables
to see that it reverts to the first equation.

8.54 Carry out the interchange of limits in Eq. (18). Does the drawing really represent the
integral?

8.55 Is x2 + xy + y2 a minimum or maximum or what at (0, 0)? Same question for x2 +
3xy + y2. Sketch the surface z = f(x, y) in each case.



Vector Calculus 1

The first rule in understanding vector calculus is draw lots of pictures. This subject can
become rather abstract if you let it, but try to visualize all the manipulations. Try a lot of
special cases and explore them. Keep relating the manipulations to the underlying pictures
and don’t get lost in the forest of infinite series. Along with the pictures, there are three
types of derivatives, a couple of types of integrals, and some theorems relating them.

9.1 Fluid Flow
When water or any fluid moves through a pipe, what is the relationship between the motion
of the fluid and the total rate of flow through the pipe (volume per time)? Take a rectangular
pipe of sides a and b with fluid moving at constant speed through it and with the velocity
of the fluid being the same throughout the pipe. It’s a simple calculation: In time ∆t the
fluid moves a distance v∆t down the pipe. The cross-section of the pipe has area A = ab, so
the volume that move past a given flat surface is ∆V = Av∆t. The flow rate is the volume
per time, ∆V/∆t = Av. (The usual limit as ∆t→ 0 isn’t needed here.)

A

v∆t (a)

A

v∆t (b)

Just to make the problem look a little more involved I want to know what the result
will be if I ask for the flow through a surface that is tilted at an angle to the velocity. Do the
calculation the same way as before, but use the drawing (b) instead of (a). The fluid still
moves a distance v∆t, but the volume that moves past this flat but tilted surface is not its
new (bigger) area A times v∆t. The area of a parallelogram is not the product of its sides
and the volume of a parallelepiped is not the area of a base times the length of another side.

A

h

v∆t

α

n̂

α

The area of a parallelogram is the length of one side times the perpendicular distance
from that side to its opposite side. Similarly the volume of a parallelepiped is the area of one
side times the perpendicular distance from that side to the side opposite. The perpendicular
distance is not the distance that the fluid moved (v∆t). This perpendicular distance is
smaller by a factor cosα, where α is the angle that the plane is tilted. It is most easily
described by the angle that the normal to the plane makes with the direction of the fluid
velocity.

∆V = Ah = A(v∆t) cosα

204
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The flow rate is then ∆V/∆t = Av cosα. Introduce the unit normal vector n̂, then this
expression can be rewritten in terms of a dot product,

Av cosα = A~v . n̂ = ~A .~v (1)

where α is the angle between the direction of the fluid velocity and the normal to the area.
This invites the definition of the area itself as a vector, and that’s what I wrote in the final
expression. The vector ~A is a notation for An̂, and defines the area vector. If it looks a little
odd to have an area be a vector, do you remember the geometric interpretation of a cross
product? That’s the vector perpendicular to two given vectors and it has a magnitude equal
to the area of the parallelogram between the two vectors. It’s the same thing.

General Flow, Curved Surfaces
The fluid velocity will not usually be a constant in space. It will be some function of
position. The surface doesn’t have to be flat; it can be cylindrical or spherical or something
more complicated. How do you handle this? That’s why integrals were invented.

The idea behind an integral is that you will divide a complicated thing into small
pieces and add the results of the small pieces to estimate the whole. Improve the estimation
by making more, smaller pieces, and in the limit as the size of the pieces goes to zero get an
exact answer. That’s the procedure to use here.

The concept of the surface integral is that you systematically divide a surface into a
number (N) of pieces (k = 1, 2, . . . N). The pieces have area ∆Ak and each piece has a unit
normal vector n̂k. Within the middle of each of these areas the fluid has a velocity ~vk. This
may not be a constant, but as usual with integrals, you pick a point somewhere in the little
area and pick the ~v there; in the limit as all the pieces of area shrink to zero it won’t matter
exactly where you picked it. The flow rate through one of these pieces is Eq. (1), ~vk

. n̂k∆Ak,
and the corresponding estimate of the total flow through the surface is, using the notation
∆ ~Ak = n̂k∆Ak,

N∑
k=1

~vk
.∆ ~Ak

This limit as the size of each piece is shrunk to zero and correspondingly the number of
pieces goes to infinity is the definition of the integral∫

~v . d ~A = lim
∆Ak→0

N∑
k=1

~vk
.∆ ~Ak (2)

Example of Flow Calculation
In the rectangular pipe above, suppose that the flow exhibits shear, rising from zero at the
bottom to v0 at the top. The velocity field is

~v(x, y, z) = vx(y)x̂ = v0
y

b
x̂ (3)

The origin is at the bottom of the pipe and the y-coordinate is measured upward from the
origin. What is the flow rate through the area indicated, tilted at an angle φ from the
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vertical? The distance in and out of the plane of the picture (the z-axis) is the length a.
Can such a fluid flow really happen? Yes, real fluids such as water have viscosity, and if you
construct a very wide pipe but not too high, and make the top surface movable you can slide
the top part of the pipe to the right. That will drag the fluid with it so that the fluid just
next to the top is moving at the same speed that the top surface is while the fluid at the
bottom is kept at rest by the friction with the bottom surface. In between you get a gradual
transition in the flow that is represented by Eq. (3).

y
x

φ

n̂k

b

Now to implement the calculation of the flow rate:
Divide the area into N pieces of length ∆`k along the slant.
The length in and out is a so the piece of area is ∆Ak = a∆`k.
The unit normal is n̂k = x̂ cosφ− ŷ sinφ. (It happens to be independent of the index k, but
that’s special to this example.)
The velocity vector at the position of this area is ~v = v0 x̂ yk/b.
Put these together and you have the piece of the flow rate contributed by this area.

∆flowk = ~v .∆ ~Ak = v0
yk

b
x̂ . a∆`k

(
x̂ cosφ− ŷ sinφ

)
= v0

yk

b
a∆`k cosφ = v0

`k cosφ

b
a∆`k cosφ

In the last line I put all the variables in terms of `, using y = ` cosφ.
Now sum over all these areas and take a limit.

lim
∆`k→0

N∑
k=1

v0
`k cosφ

b
a∆`k cosφ =

∫ b/ cos φ

0
d` v0

a

b
` cos2 φ = v0

a

b

`2

2
cos2 φ

∣∣∣∣b/ cos φ

0

= v0
a

2b

(
b

cosφ

)2

cos2 φ = v0
ab

2

This turns out to be independent of the orientation of the plane; the parameter φ is absent
from the result. If you think of two planes, at angles φ1 and φ2, what flows into one flows
out of the other. Nothing is lost in between.

Another Flow Calculation
Take the same sort of fluid flow in a pipe, but make it a little more complicated. Instead of
a flat surface, make it a cylinder. The axis of the cylinder is in and out in the picture and
its radius is half the width of the pipe. Describe the coordinates on the surface by the angle
θ as measured from the midline. That means that −π/2 < θ < π/2. Divide the surface into
pieces that are rectangular strips of length a (in and out in the picture) and width b∆θk/2.
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(The radius of the cylinder is b/2.)

∆Ak = a
b

2
∆θk, and n̂k = x̂ cos θk + ŷ sin θk (4)

y
x

θk+1

n̂k
b

θk

ŷ

x̂
y

b/2

(b/2) sin θ

The velocity field is the same as before, ~v(x, y, z) = v0 x̂ y/b, so the contribution to the flow
rate through this piece of the surface is

~vk
.∆ ~Ak = v0

yk

b
x̂ . a

b

2
∆θk n̂k

The value of yk at the angle θk is

yk =
b

2
+
b

2
sin θk, so

yk

b
=

1

2
[1 + sin θk]

Put the pieces together and you have

v0
1

2

[
1 + sin θk

]
x̂ . a

b

2
∆θk

[
x̂ cos θk + ŷ sin θk

]
= v0

1

2

[
1 + sin θk

]
a
b

2
∆θk cos θk

The total flow is the sum of these over k and then the limit as ∆θk → 0.

lim
∆θk→0

∑
k

v0
1

2

[
1 + sin θk

]
a
b

2
∆θk cos θk =

∫ π/2

−π/2
v0

1

2

[
1 + sin θ

]
a
b

2
dθ cos θ

Finally you can do the two terms of the integral: Look at the second term first. You can of
course start grinding away and find the right trigonometric formula to do the integral, OR,
you can sketch a graph of the integrand, sin θ cos θ, on the interval −π/2 < θ < π/2 and
write the answer down by inspection. The first part of the integral is

v0
ab

4

∫ π/2

−π/2
cos θ = v0

ab

4
sin θ

∣∣∣∣π/2

−π/2

= v0
ab

2

And this is the same result that I got for the flat surface calculation. I set it up so that the
two results are the same; it’s easier to check that way. Gauss’s theorem of vector calculus
will guarantee that you get the same result for any surface spanning this pipe and for this
particular velocity function.
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9.2 Vector Derivatives
I want to show the underlying ideas of the vector derivatives, divergence and curl, and as
the names themselves come from the study of fluid flow, that’s where I’ll start. You can
describe the flow of a fluid, either gas or liquid or anything else, by specifying its velocity
field, ~v(x, y, z) = ~v(~r ).

For a single real-valued function of a real variable, it’s often too complex to capture all
the properties of a function at one glance, so it’s going to be even harder here. One of the
uses of ordinary calculus is to provide information about the local properties of a function
without attacking the whole function at once. That is what derivatives do. If you know that
the derivative of a function is positive at a point then you know that it is increasing there.
This is such an ordinary use of calculus that you hardly give it a second thought (until you
hit some advanced calculus and discover that some continuous functions don’t even have
derivatives). The geometric concept of derivative is the slope of the curve at a point — the
tangent of the angle between the x-axis and the straight line that best approximates the
curve at that point. Going from this geometric idea to calculating the derivative takes some
effort.

How can you do this for fluid flow? If I inject a small amount of dye into the fluid at
some point it will spread into a volume that depends on how much I inject. As time goes on
this region will move and distort and possibly become very complicated, too complicated to
grasp in one picture.

How can I get some simpler picture? Do it in the same spirit that you introduce the
derivative: Concentrate on a little piece of the picture. Inject only a little bit of dye and
wait only a little time. To make it explicit, assume that the initial volume of dye forms a
sphere of (small) volume V and let the fluid move for a little time.

1. In a small time ∆t the center of the sphere will move.
2. The sphere can expand or contract, changing its volume.
3. The sphere can rotate.
4. The sphere can distort.

Div, Curl, Strain
The first one, the motion of the center, tells you about the velocity at the center of the
sphere. It’s like knowing the value of a function at a point, and that tells you nothing about
the behavior of the function in the neighborhood of the point.
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The second one, the volume, gives new information. You can simply take the time
derivative dV/dt to see if the fluid is expanding or contracting; just check the sign and
determine if it’s positive or negative. But how big is it? That’s not yet in a useful form
because the size of this derivative will depend on how much the original volume is. If you
put in twice as much dye, each part of the volume will change and there will be twice as
much rate of change in the total volume. If I divide the time derivative by the volume itself
this effect will cancel. Finally, to get the effect at one point I have to take the limit as the
volume approaches a point. This defines a kind of derivative of the velocity field called the
divergence.

lim
V→0

1

V

dV

dt
= divergence of ~v (5)

This doesn’t tell you how to compute it any more than saying that the derivative is the slope
tells you how to compute an ordinary* derivative. I’ll have to work that out.

But first look at the third way that the sphere can move: rotation. Again, if you take
a large object it will distort a lot and it will be hard to define a single rotation for it. Take
a very small sphere instead. The time derivative of this rotation is its angular velocity, the
vector ~ω. In the limit as the sphere approaches a point, this tells me about the rotation of
the fluid in the immediate neighborhood of that point. If I place a tiny paddlewheel in the
fluid, how will it rotate?

2~ω = curl of ~v (6)

The factor of 2 is for later convenience.

The fourth way that the sphere can change after expansion and rotation is that it
can change its shape. In a very small time interval, the sphere can slightly distort into an
ellipsoid. This will lead to the mathematical concept of the strain. This is important in the
subject of elasticity and viscosity, but I’ll put it aside for now save for one observation: how
much information is needed to describe whatever it is? The sphere changes to an ellipsoid,
and the first question is: what is the longest axis and how much stretch occurs along it —
that’s the three components of a vector. After that what is the shortest axis and how much
contraction occurs along it? That’s one more vector, but you need only two new components
to define its direction because it’s perpendicular to the long axis. After this there’s nothing
left. The direction of the third axis is determined and so is its length if you assume that
the total volume hasn’t changed. You can assume that is so because the question of volume
change is already handled by the divergence; you don’t need it here too. The total number
of components needed for this object is 2 + 3 = 5. It comes under the heading of tensors.

9.3 Computing the divergence
Now how do you calculate these? I’ll start with the simplest, the divergence, and compute
the time derivative of a volume from the velocity field. To do this, go back to the definition
of derivative:

dV

dt
= lim

∆t→0

V (t+ ∆t)− V (t)

∆t
(7)

* Can you start from the definition of the derivative as a slope, use it directly with no
limits, and compute the derivative of x2 with respect to x, getting 2x?
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~v∆t

Pick an arbitrary surface to start with and see how the volume changes as the fluid
moves, carrying the surface with it. In time ∆t a point on the surface will move by a distance
~v∆t and it will carry with it a piece of neighboring area ∆A. This area sweeps out a volume.
This piece of volume is not ∆A times v∆t because the motion isn’t likely to be perpendicular
to the surface. It’s only the component of the velocity normal to the surface that contributes
to the volume swept out. Use n̂ to denote the unit vector perpendicular to ∆A, then this
volume is ∆A n̂ .~v∆t. This is the same as the the calculation for fluid flow except that I’m
interpreting the picture differently.

If at a particular point on the surface the normal n̂ is more or less in the direction of
the velocity then this dot product is positive and the change in volume is positive. If it’s
opposite the velocity then the change is negative. The total change in volume of the whole
initial volume is the sum over the entire surface of all these changes. Divide the surface into
a lot of pieces ∆Ai with accompanying unit normals n̂i, then

∆Vtotal =
∑

i

∆Ai n̂i .~vi ∆t

Not really. I have to take a limit before this becomes an equality. The limit of this as all the
∆Ai → 0 defines an integral

∆Vtotal =

∮
dA n̂ .~v∆t

and this integral notation is special; the circle through the integral designates an integral
over the whole closed surface and the direction of n̂ is always taken to be outward. Finally,
divide by ∆t and take the limit as ∆t approaches zero.

dV

dt
=

∮
dA n̂ .~v (8)

The ~v . n̂ dA is the rate at which the area dA sweeps out volume as it’s carried with the fluid.
Note: There’s nothing in this calculation that says that I have to take the limit as V → 0;
it’s a perfectly general expression for the rate of change of volume in a surface being carried
with the fluid. It’s also a completely general expression for the rate of flow of fluid through
a fixed surface as the fluid moves past it. I’m interested in the first interpretation for now,
but the second is just as valid in other contexts.

Again, use the standard notation in which the area vector combines the unit normal
and the area: d ~A = n̂ dA.

divergence of ~v = lim
V→0

1

V

dV

dt
= lim

V→0

1

V

∮
~v . d ~A (9)
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If the fluid is on average moving away from a point then the divergence there is positive. It’s
diverging.

The Divergence as Derivatives
This is still a long way from something that you can easily compute. I’ll first go through
a detailed analysis of how you turn this into a simple result, and I’ll then go back to try
to capture the essence of the derivation so you can see how it applies in a wide variety of
coordinate systems. At that point I’ll also show how to get to the result with a lot less
algebra. You will see that a lot of the terms that appear in this first calculation will vanish
in the end. It’s important then to go back and see what was really essential to the calculation
and what was not. As you go through this derivation then, try to anticipate which terms are
going to be important and which terms are going to disappear.

Express the velocity in rectangular components, vxx̂+vyŷ+vz ẑ. For the small volume,
choose a rectangular box with sides parallel to the axes. One corner is at point (x0, y0, z0)
and the opposite corner has coordinates that differ from these by (∆x,∆y,∆z). Expand
everything in a power series about the first corner as in section 2.5. Instead of writing out
(x0, y0, z0) every time, I’ll abbreviate it by (0).

∆z

(x0, y0, z0) ∆x
∆y

x̂

vx(x, y, z) = vx(0) + (x− x0)
∂vx

∂x
(0) + (y − y0)

∂vx

∂y
(0)

+ (z − z0)
∂vx

∂z
(0) +

1

2
(x− x0)

2∂
2vx

∂x2
(0)

+ (x− x0)(y − y0)
∂2vx

∂x∂y
(0) + · · ·

(10)

There are six integrals to do, one for each face of the box, and there are three functions, vx,
vy, and vz to expand in three variables x, y, and z. Don’t Panic. A lot of these are zero. If
you look at the face on the right in the sketch you see that it’s parallel to the y-z plane and
has normal n̂ = x̂. When you evaluate ~v . n̂ only the vx term survives; flow parallel to the
surface (vy, vz) contributes nothing to volume change along this part of the surface. Already
then, many terms have simply gone away.

Write the two integrals over the two surfaces parallel to the y-z plane, one at x0 and
one at x0 + ∆x.

∫
right

~v . d ~A+

∫
left
~v . d ~A

=

∫ y0+∆y

y0

dy

∫ z0+∆z

z0

dz vx(x0 + ∆x, y, z)−
∫ y0+∆y

y0

dy

∫ z0+∆z

z0

dz vx(x0, y, z)

The minus sign comes from the dot product because n̂ points left on the left side. I can
evaluate these integrals by using their power series representations. You may have an infinite
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number of terms to integrate, but at least they’re all easy. Take the first of them:∫ y0+∆y

y0

dy

∫ z0+∆z

z0

dz

[
vx(0)+

(∆x)
∂vx

∂x
(0) + (y − y0)

∂vx

∂y
(0) + (z − z0)

∂vx

∂z
(0) +

1

2
(∆x)2

∂2vx

∂x2
(0) + · · ·

]
= vx(0)∆y∆z + (∆x)

∂vx

∂x
(0)∆y∆z+

1

2
(∆y)2∆z

∂vx

∂y
(0) +

1

2
(∆z)2∆y

∂vx

∂z
(0) +

1

2
(∆x)2

∂2vx

∂x2
(0)∆y∆z + · · ·

Now look at the second integral, the one that you have to subtract from this one. Before
plunging in to the calculation, stop and look around. What will cancel; what will contribute;
what will not contribute? The only difference is that this is now evaluated at x0 instead of
at x0 + ∆x. The terms that have ∆x in them simply won’t appear this time. All the rest
are exactly the same as before. That means that all the terms in the above expression that
do not have a ∆x in them will be canceled when you subtract the second integral. All the
terms that do have a ∆x will be untouched. The combination of the two integrals is then

(∆x)
∂vx

∂x
(0)∆y∆z +

1

2
(∆x)2

∂2vx

∂x2
(0)∆y∆z +

1

2
(∆x)

∂2vx

∂x∂y
(0)(∆y)

2∆z + · · ·

Two down four to go, but not really. The other integrals are the same except that
x becomes y and y becomes z and z becomes x. The integral over the two faces with y
constant are then

(∆y)
∂vy

∂y
(0)∆z∆x+

1

2
(∆y)2

∂2vy

∂y2
(0)∆z∆x+ · · ·

and a similar expression for the final two faces. The definition of Eq. (9) says to add all
three of these expressions, divide by the volume, and take the limit as the volume goes to
zero. V = ∆x∆y∆z, and you see that this is a common factor in all of the terms above.
Cancel what you can and you have

∂vx

∂x
(0) +

∂vy

∂y
(0) +

∂vx

∂x
(0) +

1

2
(∆x)

∂2vx

∂x2
(0) +

1

2
(∆y)

∂2vy

∂y2
(0) +

1

2
(∆z)

∂2vz

∂z2
(0) + · · ·

In the limit that the all the ∆x, ∆y, and ∆z shrink to zero the terms with a second derivative
vanish, as do all the other higher order terms. You are left then with a rather simple
expression for the divergence.

divergence of ~v = div~v =
∂vx

∂x
+
∂vy

∂y
+
∂vx

∂x
(11)

This is abbreviated by using the differential operator ∇, “del.”

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(12)
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Then you can write the preceding equation as

divergence of ~v = div~v = ∇ .~v (13)

The symbol ∇ will take other forms in other coordinate systems.
Now that you’ve waded through this rather technical set of manipulations, is there an

easier way? Yes but, without having gone through the preceding algebra you won’t be able
to see and to understand which terms are important and which terms are going to cancel or
otherwise disappear. When you need to apply these ideas to something besides rectangular
coordinates you have to know what to keep and what to ignore. Once you know this, you
can go straight to the end of the calculation and write down only those terms that you know
are going to survive. This takes practice.

Simplifying the derivation
In the long derivation of the divergence, the essence is that you find ~v . n̂ on one side of the
box (maybe take it in the center of the face), and multiply it by the area of that side. Do
this on the other side, remembering that n̂ isn’t in the same direction there, and combine
the results. Do this for each side and divide by the volume of the box.[
vx(x0+∆x, y0+∆y/2, z0+∆z/2)∆y∆z−vx(x0, y0+∆y/2, z0+∆z/2)∆y∆z

]
÷
(
∆x∆y∆z

)
(14)

the ∆y and ∆z factors cancel, and what’s left is, in the limit ∆x→ 0, the derivative ∂vx/∂x.
I was careful to evaluate the values of vx in the center of the sides, but you see that

it didn’t matter. In the limit as all the sides go to zero I could just as easily taken the
coordinates at one corner and simplified the steps still more. Do this for the other sides,
add, and you get the result. It all looks very simple when you do it this way, but what if
you need to do it in cylindrical coordinates?

∆r
∆z

r∆θ

When everything is small, the volume is close to a rectangular box, so its volume
is V = (∆r)(∆z)(r∆θ). Go through the simple version for the calculation of the surface
integral. The top and bottom present nothing significantly different from the rectangular
case. [

vz(r0, θ0, z0 + ∆z)− vz(r0, θ0, z0)
]
(∆r)(r0∆θ)÷ r0∆r0∆θ∆z −→

∂vz

∂z
The curved faces of constant r are a bit different, because the areas of the two opposing

faces aren’t the same.[
vr(r0 + ∆r, θ0, z0)(r0 + ∆r)∆θ∆z − vr(r0, θ0, z0)r0∆θ∆z

]
÷ r0∆r∆θ∆z −→

1

r

∂(rvr)

∂r

A bit more complex than the rectangular case, but not too bad.
Now for the constant θ sides. Here the areas of the two faces are the same, so even

though they are not precisely parallel to each other this doesn’t cause any difficulties.[
vθ(r0, θ0 + ∆θ, z0)− vz(r0, θ0, z0)

]
(∆r)(∆z)÷ r0∆r∆θ∆z −→

1

r

∂vθ

∂θ
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The sum of all these terms is the divergence expressed in cylindrical coordinates.

div ~v =
1

r

∂(rvr)

∂r
+

1

r

∂vθ

∂θ
+
∂vz

∂z
(15)

The corresponding expression in spherical coordinates is found in exactly the same
way, problem 4.

div ~v =
1

r2
∂(r2vr)

∂r
+

1

r sin θ

∂(sin θvθ)

∂θ
+

1

r sin θ

∂vφ

∂φ
(16)

These are the three commonly occurring coordinates system, though the same simpli-
fied method will work in any other orthogonal coordinate system. The coordinate system
is orthogonal if the surfaces made by setting the value of the respective coordinates to a
constant intersect at right angles. In the spherical example this means that a surface of
constant r is a sphere. A surface of constant θ is a half-plane starting from the z-axis. These
intersect perpendicular to each other. If you set the third coordinate, φ, to a constant you
have a cone that intersects the other two at right angles.orthogonal coordinates

9.4 Integral Representation of Curl
The calculation of the divergence was facilitated by the fact the the equation (5) could be
manipulated into the form of an integral, Eq. (9). Is there a similar expression for the curl?
Yes.

curl~v = lim
V→0

1

V

∮
d ~A × ~v (17)

For the divergence there was a logical and orderly development to derive Eq. (9) from (5).
Is there a similar intuitively clear path here? I don’t know of one. The best that I can do is
to show that it gives the right answer.

And what’s that surface integral doing with a × instead of a .? No mistake. Just
replace the dot product by a cross product in the definition of the integral. This time
however you have to watch the order of the factors.

~ω
θ

n̂ dA

To verify that this does give the correct answer, use a vector field that represents pure
rigid body rotation. You’re going to take the limit as ∆V → 0, so it may as well be uniform.
The velocity field for this is the same as from problem 7.5.

~v = ~ω × ~r (18)

To evaluate the integral use a sphere of radius R centered at the origin, making n̂ = r̂. You
also need the identity ~A× ( ~B × ~C) = ~B( ~A . ~C)− ~C( ~A .B).

d ~A× (~ω × ~r) = ~ω(d ~A .~r )− ~r(~ω . d ~A ) (19)
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Choose a spherical coordinate system with the z-axis along ~ω.

d ~A = n̂ dA = r̂ dA, and ~ω . d ~A = ω dA cos θ∮
d ~A× ~v =

∮
~ωRdA− ~r ω dA cos θ

= ~ωR 4πR2 − ω
∫ π

0
R2 sin θ dθ

∫ 2π

0
dφ ẑ R cos θ cos θ

= ~ωR 4πR2 − ωẑ 2πR3

∫ π

0
sin θdθ cos2 θ

= ~ωR 4πR2 − ωẑ 2πR3

∫ 1

−1
cos2 θ d cos θ = ~ωR 4πR2 − ωẑ 2πR3 . 2

3

= ~ω
8

3
πR3

Divide by the volume of the sphere and you have 2~ω as promised. In the first term on the
first line of the calculation, ~ωR is a constant over the surface so you can pull it out of the
integral. In the second term, ~r has components in the x̂, ŷ, and ẑ directions; the first two
of these integrate to zero because for every vector with a positive x̂-component there is a
negative one. Same for ŷ. All that is left of ~r is ẑ R cos θ.

The Curl in Components
With the integral representation, Eq. (17), available for the curl, the process is much like
that for computing the divergence. Start with rectangular of course. Use the same equation,
Eq. (10) and the same picture that accompanied that equation. With the experience gained
from computing the divergence however, you don’t have to go through all the complications
of the first calculation. Use the simpler form that followed.

In Eq. (14) you have ~v .∆A = vx∆y∆z on the right face and on the left face. This
time replace the dot with a cross (in the right order).

On the right,

∆ ~A× ~v = ∆y∆z x̂× ~v(x0 + ∆x, y0 + ∆y/2, z0 + ∆z/2) (20)

On the left it is

∆ ~A× ~v = ∆y∆z x̂× ~v(x0, y0 + ∆y/2, z0 + ∆z/2) (21)

When you subtract the second from the first and divide by the volume, ∆x∆y∆z, what is
left is (in the limit ∆x→ 0) a derivative.

x̂×~v(x0 + ∆x, y0, z0)− ~v(x0, y0, z0)

∆x
−→ x̂× ∂~v

∂x

= x̂×
(
x̂
∂vx

∂x
+ ŷ

∂vy

∂x
+ ẑ

∂vz

∂x

)
= ẑ

∂vy

∂x
− ŷ ∂vz

∂x
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Similar calculations for the other four faces of the box give results that you can get
simply by changing the labels: x → y → z → x, a cyclic permutation of the indices. The
result can be expressed most succinctly in terms of ∇.

curl v = ∇× ~v (22)

In the process of this calculation the normal vector x̂ was parallel on the opposite faces
of the box (except for a reversal of direction). Watch out in other coordinate systems and
you’ll see that this isn’t always true. Just draw the picture in cylindrical coordinates and
this will be clear.

9.5 The Gradient
The gradient is the closest thing to an ordinary derivative here, taking a scalar-valued func-
tion into a vector field. The simplest geometric definition is “the derivative of a function
with respect to distance along the direction in which the function changes most rapidly,” and
the direction of the gradient vector is along that most-rapidly-changing direction. If you’re
dealing with one dimension, ordinary real-valued functions of real variables, the gradient is
the ordinary derivative. Section 8.5 has some discussion and examples of this, including its
use in various coordinate systems. It is most conveniently expressed in terms of ∇.

grad f = ∇f (23)

The equations (8.11), (8.22), and (8.23) show the gradient (and correspondingly ∇) in
three coordinate systems.

rectangular: ∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

cylindrical: ∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ ẑ

∂

∂z
(24)

spherical: ∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ

In all nine of these components, the denominator (e.g. r sin θ dφ) is the element of displace-
ment along the direction indicated.

9.6 Shorter Cut for div and curl
There is another way to compute the divergence and curl in cylindrical and rectangular
coordinates. A direct application of Eqs. (13), (22), and (24) gets the the result quickly. The
only caution is that you have to be careful that the unit vectors are inside the derivative, so
you have to differentiate them too.

∇ .~v is the divergence of ~v, and in cylindrical coordinates

∇ .~v =

(
r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ ẑ

∂

∂z

)
.
(
r̂vr + θ̂vθ + ẑvz

)
(25)

The unit vectors r̂, θ̂, and ẑ don’t change as you alter r or z. They do change as you alter
θ. (except for ẑ).

∂r̂

∂r
=

∂θ̂

∂r
=

∂ẑ

∂r
=

∂r̂

∂z
=

∂θ̂

∂z
=

∂ẑ

∂z
=

∂ẑ

∂θ
= 0 (26)
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Next come ∂r̂/∂θ and ∂θ̂/∂θ. This is problem 8.20. You can do this by first showing
that

r̂ = x̂ cos θ + ŷ sin θ and θ̂ = −x̂ sin θ + ŷ cos θ (27)

and differentiating with respect to θ. This gives

∂r̂/∂θ = θ̂, and ∂θ̂/∂θ = −r̂ (28)

Put these together and you have

∇ .~v =
∂vr

∂r
+ θ̂ . 1

r

∂

∂θ

(
r̂vr + θ̂vθ

)
+
∂vz

∂z

=
∂vr

∂r
+ θ̂ . 1

r

(
vr
dr̂

dθ
+ θ̂

∂vθ

∂θ

)
+
∂vz

∂z

=
∂vr

∂r
+

1

r
vr +

1

r

∂vθ

∂θ
+
∂vz

∂z
(29)

This agrees with equation (15).
Similarly you can use the results of problem 8.15 to find the derivatives of the corre-

sponding vectors in spherical coordinates. The non-zero values are

dr̂

dφ
= φ̂ sin θ

dθ̂

dφ
= φ̂ cos θ

dφ̂

dφ
= −r̂ sin θ − θ̂ cos θ

dr̂

dθ
= θ̂

dθ̂

dθ
= −r̂ (30)

The result is for spherical coordinates

∇ .~v =
1

r2
∂(r2vr)

∂r
+

1

r sin θ

∂(sin θvθ)

∂θ
+

1

r sin θ

∂vφ

∂φ
(31)

The expressions for the curl are, cylindrical:

∇× ~v = r̂

(
1

r

∂vz

∂θ
− ∂vθ

∂z

)
+ θ̂

(
∂vr

∂z
− ∂vz

∂r

)
+ ẑ

(
1

r

∂(rvθ)

∂r
− 1

r

∂vr

∂θ

)
(32)

and spherical:

∇× ~v = r̂
1

r sin θ

(
∂(sin θvφ)

∂θ
− ∂vθ

∂φ

)
+ θ̂

(
1

r sin θ

∂vr

∂φ
− 1

r

∂(rvφ)

∂r

)
+ φ̂

1

r

(
∂(rvθ)

∂r
− ∂vr

∂θ

)
(33)

9.7 Identities for Vector Operators
Some of the common identities can be proved simply by computing them in rectangular
components. These are vectors, and if you show that one vector equals another vector it
doesn’t matter that you used a simple coordinate system to demonstrate the fact.

∇ .∇× ~v = 0 ∇×∇f = 0 ∇×∇× ~v = ∇
(
∇ .~v

)
−
(
∇ .∇

)
~v (34)
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There are many other identities, but these are the big three.∮
~v . d ~A =

∫
d3r∇ .~v

∮
~v . d~r =

∫
∇× ~v . d ~A (35)

are the two fundamental integral relationships, going under the names of Gauss and Stokes.
See chapter 13 for the proofs of these integral relations.

9.8 Applications to Gravity
The basic equations to describe the gravitational field in Newton’s theory are

∇ .~g = −4πGρ, and ∇× ~g = 0 (36)

In these equations, the vector field ~g is defined by placing a (very small) test mass m at
a point and measuring the gravitational force on it. This force is proportional to m itself,
and the proportionality factor is called the gravitational field ~g. The other symbol used
here is ρ, and that is the volume mass density, dm/dV of the matter that is generating the
gravitational field. G is Newton’s gravitational constant: G = 6.67× 10−11N.m2/kg2.

r̂
r

For the first example of solutions to these equations, take the case of a mass that is the
source of a gravitational field and that is spherically symmetric. The total mass is M and it
occupies a sphere of radius R with a uniform mass density. Whatever ~g is, it has only a radial
component, ~g = grr̂. Proof: Suppose it has a sideways component at some point. Rotate the
whole system by 180◦ about an axis that passes through this point and through the center
of the sphere. The system doesn’t change because of this, but the sideways component of ~g
would reverse. That can’t happen.

The component gr can’t depend on either θ or φ because the source doesn’t change if
you rotate it about any axis; it’s spherically symmetric.

~g = gr(r)r̂ (37)

Now compute the divergence and the curl of this field. Use Eqs. (16) and (33) to get

∇ . gr(r)r̂ =
1

r2
d
(
r2gr

)
dr

and ∇× gr(r)r̂ = 0

The first equation says that the divergence of ~g is proportional to ρ.

1

r2
d
(
r2gr

)
dr

= −4πGρ (38)

Outside the surface r = R, the mass density is zero, so this is

1

r2
d
(
r2gr

)
dr

= 0, implying r2gr = C, and gr =
C

r2



9—Vector Calculus 1 219

where C is some as yet undetermined constant. Now do this inside.

1

r2
d
(
r2gr

)
dr

= −4πGρ0, where ρ0 = 3M/4πR3

This is
d
(
r2gr

)
dr

= −4πGρ0 r
2, so r2gr = −4

3
πGρ0 r

3 + C ′,

or gr(r) = −4

3
πGρ0 r +

C ′

r2

There are two constants that you have to evaluate: C and C ′. The latter has to be zero,
because C ′/r2 → ∞ as r → 0, and there’s nothing in the mass distribution that will cause
this. As for the other, note that gr must be continuous at the surface of the mass. If it isn’t,
then when you try to differentiate it in Eq. (38) you’ll be differentiating a step function and
you get an infinite derivative there (and the mass density isn’t infinite there).

gr(R−) = −4

3
πGρ0R = gr(R+) =

C

R2

Solve for C and you have

C = −4

3
πGρ0R

3 = −4

3
πG

3M

4πR3
R3 = −GM

Put this all together and express the density ρ0 in terms of M and R to get

gr R

gr(r) =

{
−GM/r2 (r > R)
−GMr/R3 (r < R)

(39)

This says that outside the spherical mass distribution you can’t tell what its radius
R is. It creates the same gravitational field as a point mass. Inside the uniform sphere,
the field drops to zero linearly toward the center. For a slight variation on how to do this
calculation see problem 14.

Non-uniform density
The density of the Earth is not uniform; it’s bigger in the center. The gravitational field
even increases as you go down below the Earth’s surface. What does this tell you about the
density function? ∇ .~g = −4πGρ remains true, and I’ll continue to make the approximation
of spherical symmetry, so this is

1

r2
d
(
r2gr

)
dr

=
dgr
dr

+
2

r
gr = −4πGρ(r) (40)

That gravity increases with depth (for a little while) says

dgr
dr

= −4πGρ(r)− 2

r
gr > 0
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Why > 0? Remember: gr is itself negative and r is measured outward. Sort out the signs.
I can solve for the density to get

ρ(r) < − 1

2πGr
gr

At the surface, gr(R) = −GM/R2, so this is

ρ(R) <
M

2πR3
=

2

3
. 3M

4πR3
=

2

3
ρaverage

The mean density of the Earth is 5.5 gram/cm3, so this bound is 3.7 gram/cm3. Pick up a
random rock. What is its density?

9.9 Gravitational Potential
The gravitational potential is that function V for which

~g = −∇V (41)

That such a function even exists is not instantly obvious, but it is a consequence of the
second of the two defining equations (36). If you grant that, then you can get an immediate
equation for V by substituting it into the first of (36).

∇ .~g = −∇ .∇V = −4πGρ, or ∇2V = 4πGρ (42)

This is a scalar equation instead of a vector equation, so it will often be easier to handle.
Apply it to the same example as above, the uniform spherical mass.

The Laplacian, ∇2 is the divergence of the gradient, so to express it in spherical
coordinates, combine Eqs. (24) and (31).

∇2V =
1

r2
∂

∂r

(
r2
∂V

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+

1

r2 sin2 θ

∂2V

∂φ2
(43)

Because the mass is spherical it doesn’t change no matter how you rotate it so the
same thing holds for the solution, V (r). Use this spherical coordinate representation of ∇2

and for this case the θ and φ derivatives vanish.

1

r2
d

dr

(
r2
dV

dr

)
= 4πGρ(r) (44)

I changed from ∂ to d because there’s now only one independent variable. Just as with
Eq. (38) I’ll divide this into two cases, inside and outside.

Outside:
1

r2
d

dr

(
r2
dV

dr

)
= 0, so r2

dV

dr
= C

Continue solving this and you have

dV

dr
=
C

r2
−→ V (r) = −C

r
+D (r > R) (45)



9—Vector Calculus 1 221

Inside:
1

r2
d

dr

(
r2
dV

dr

)
= 4πGρ0 so r2

dV

dr
= 4πGρ0

r3

3
+ C ′

Continue, dividing by r2 and integrating,

V (r) = 4πGρ0
r2

6
− C ′

r
+D′ (r < R) (46)

There are now four arbitrary constants to examine. Start with C ′. It’s the coefficient of 1/r
in the domain where r < R. That means that it blows up as r → 0, but there’s nothing
at the origin to cause this. C ′ = 0. Notice that the same argument does not eliminate C
because (45) applies only for r > R.

Boundary Conditions
Now for the boundary conditions at r = R. There are a couple of ways to determine this. I
find the simplest and the most general approach is to recognize the the equations (42) and
(44) must be satisfied everywhere. That means not just outside, not just inside, but at the
surface too. The consequence of this statement is the result*

V is continuous at r = R dV/dr is continuous at r = R (47)

Where do these continuity conditions come from? Assume for a moment that the first one is
false, that V is discontinuous at r = R, and look at the proposition graphically. If V changes
value in a very small interval the graphs of V , of dV/dr, and of d2V/dr2 look like

V dV/dr d2V/dr2

The second derivative on the left side of Eq. (44) has a double spike that does not
appear on the right side. It can’t be there, so my assumption that V is discontinuous is false
and V must be continuous.

Assume next that V is continuous but its derivative is not. The graphs of V , of dV/dr,
and of d2V/dr2 then look like

* Watch out for the similar looking equations that appear in electromagnetism. Only
the first of these equations holds there; the second must be modified.
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V dV/dr d2V/dr2

The second derivative on the left side of Eq. (44) still has a spike in it and there is no
such spike in the ρ on the right side. This is impossible, so dV/dr too must be continuous.

Back to the Problem
Of the four constants that appear in Eqs. (45) and (46), one is already known, C ′. For the
rest,

V (R−) = V (R+) is 4πGρ0
R2

6
+D′ = −C

R
+D

dV

dr
(R−) =

dV

dr
(R+) is 8πGρ0

R

6
= +

C

R2

These two equations determine two of the constants.

C = 4πGρ0
R3

3
, then D −D′ = 4πGρ0

R2

6
+ 4πGρ0

R2

3
= 2πGρ0R

2

Put this together and you have

V R

V (r) =

{
2
3πGρ0r

2 − 2πGρ0R
2 +D (r < R)

−4
3πGρ0R

3
/
r +D (r > R)

(48)

Did I say that the use of potentials is supposed to simplify the problems? Yes, but only the
harder problems. The negative gradient of Eq. (48) should be ~g. Is it? The constant D can’t
be determined and is arbitrary. You may choose it to be zero.

9.10 Summation Convention
In section 7.10 I introduced the summation convention for repeated indices. That says that
when you have a summation index involving vectors and operators you will invariably have
exactly two instances of the index in one term. The convention is then that you don’t have
to write the sum symbol

∑
explicitly; it is understood to be present. That way ~A . ~B =

AiBi means A1B1 + A2B2 + A3B3 (49)

(in three dimensions). You can use the summation convention to advantage in calculus too.
The ∇ vector operator has components

∇i or some people prefer ∂i
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For unity of notation, use x1 = x and x2 = y and x3 = z. In this language,

∂1 or ∇1 =
∂

∂x
or

∂

∂x1
(50)

Note: This notation applies to rectangular component calculations only! The generalization to
curved coordinate systems will wait until chapter 12.

div~v = ∇ .~v = ∂ivi =
∂v1
∂x1

+
∂v2
∂x2

+
∂v3
∂x3

(51)

Similarly the curl is expressed using the alternating symbol that was defined in problem 7.25.

ε123 = 1 and εijk changes sign if you interchange any two indices

The immediate corollary of this definition is that the symbol equals zero if any two indices
are equal. (Interchange them and nothing happens, but it has to change sign. Only zero is
equal to minus itself.)

curl~v = ∇× ~v becomes εijk∂jvk =
(
curl~v

)
i

(52)

the ith components of the curl. More generally εijkujvk =
(
~u× ~v

)
i
.

9.11 More Complicated Potentials
The gravitational field from a point mass is ~g = −Gmr̂/r2, so the potential for this point
mass is φ = −Gm/r. This satisfies

~g = −∇φ = −∇−Gm
r

= r̂
∂

∂r

Gm

r
= −Gmr̂

r2

For several point masses, the gravitational field is the vector sum of the contributions from
each mass. In the same way the gravitational potential is the (scalar) sum of the potentials
contributed by each mass. This is almost always easier to calculate than the vector sum. If
the distribution is continuous, you have an integral.

φtotal =
∑
−Gmk

rk
or −

∫
Gdm

r

~r ′

~r

x′
y′

z′

This sort of very abbreviated notation for the sums and integrals is normal once you have
done a lot of them, but when you’re just getting started it is useful to go back and forth
between this terse notation and a more verbose form. Expand the notation and you have

φtotal(~r ) = −G
∫

dm∣∣~r − ~r ′∣∣ (53)
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This is still not very explicit, so expand it some more. Let

~r ′ = x̂x′ + ŷy′ + ẑz′ and ~r = x̂x+ ŷy + ẑz

then φ(x, y, z) = −G
∫
dx′dy′dz′ ρ(x′, y′, z′)

1√
(x− x′)2 + (y − y′)2 + (z − z′)2

where ρ is the volume mass density so that dm = ρ dV , and the limits of integration are
such that this extends over the whole volume of the mass that is the source of the potential.
The primed coordinates represent the positions of the masses, and the non-primed ones are
the position of the point where you are evaluating the potential, the field point.

For a simple example, what is the gravitational potential from a uniform thin rod?
Place its center at the origin and its length = 2L along the z-axis. The potential is

φ(~r ) = −
∫
Gdm

r
= −G

∫
λdz′√

x2 + y2 + (z − z′)2

where λ = M/2L is its linear mass density. This is an elementary integral. Let u = z′ − z,
and a =

√
x2 + y2.

φ = −Gλ
∫ L−z

−L−z

du√
a2 + u2

= −Gλ
∫
dθ = −Gλθ

∣∣∣∣u=L−z

u=−L−z

where u = a sinh θ. Put this back into the original variables and you have

φ = −Gλ

[
sinh−1

(
L− z√
x2 + y2

)
+ sinh−1

(
L+ z√
x2 + y2

)]
(54)

The inverse hyperbolic function is a logarithm as in Eq. (1.4), so this can be rearranged and
the terms combined into the logarithm of a function of x, y, and z, but the sinh−1s are easier
to work with so there’s not much point. This is not too complicated a result, and it is far
easier to handle than the vector field you get if you take its gradient. It’s still necessary to
analyze it in order to understand it and to check for errors. See problem 48.
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Problems

9.1 Use the same geometry as that following Eq. (3), and take the velocity function to be
~v = x̂ v0xy/b

2. Take the bottom edge of the plane to be at (x, y) = (0, 0) and calculate the
flow rate. Should the result be independent of the angle φ? Sketch the flow to understand
this point. Does the result check for any special, simple value of φ?

9.2 Repeat the preceding problem using the cylindrical surface of Eq. (4), but place the
bottom point of the cylinder at coordinate (x, y) = (x0, 0). Ans: (v0a/4)(2x0 + πb/4)

9.3 Use the same velocity function ~v = x̂ v0xy/b
2 and evaluate the flow integral outward

from the closed surface of the rectangular box, (c < x < d), (0 < y < b), (0 < z < a).
The convention is that the unit normal vector points outward from the six faces of the box.
Ans: v0a(d− c)/2

9.4 Work out the details of the divergence of a vector field in spherical coordinates, Eq. (16).

9.5 For the vector field ~v = A~r, that is pointing away from the origin with a magnitude
proportional to the distance from the origin, express this in rectangular components and
compute its divergence.
Repeat this in cylindrical coordinates (still pointing away from the origin though).
Repeat this in spherical coordinates, Eq. (16).

9.6 Gauss’s law for electromagnetism says
∮
~E . d ~A = qencl/ε0. If the electric field is given

to be ~E = A~r, what is the surface integral of ~E over the whole closed surface of the cube
that spans the region from the origin to (x, y, z) = (a, a, a)? What is the charge enclosed in
the cube?
(b) What is the volume integral,

∫
d3r∇ . ~E inside the same cube?

9.7 Evaluate the surface integral of ~v = r̂Ar2 sin2 θ + θ̂Br cos θ sinφ over the surface of the
sphere centered at the origin and of radius R. Recall section 8.8.

9.8 What is the area of the spherical cap on the surface of a sphere of radius R: 0 ≤ θ ≤ θ0?
(b) Does the result have the correct behavior for both small and large θ0?
(c) What are the surface integrals over this cap of the vector field ~v = r̂v0 cos θ sin2 φ?

Consider both
∫
~v . d ~A and

∫
~v × d ~A. Ans: v0πR

2(1− cos2 θ0)/2

9.9 A rectangular area is specified parallel to the x-y plane at z = d and 0 < x < a,
a < y < b. A vector field is ~v =

(
x̂Axyz + ŷByx2 + ẑCx2yz2

)
Evaluate the two integrals

over this surface ∫
~v . d ~A, and

∫
d ~A× ~v

9.10 For the vector field ~v = Arn~r, compute the integral over the surface of a sphere of
radius R centered at the origin:

∮
~v . d ~A.

Compute the integral over the volume of this same sphere
∫
d3r∇ .~v.
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9.11 The velocity of a point in a rotating rigid body is ~v = ω×~r. See problem 7.5. Compute
its divergence and curl. Do this in rectangular, cylindrical, and spherical coordinates.

9.12 Fill in the missing steps in the calculation of Eq. (29).

9.13 Paralleling the calculation in section 9.6 for the divergence in cylindrical coordinates,
compute the curl in cylindrical coordinates, ∇× ~v. Ans: Eq. (32).

9.14 Another way to get to Eq. (39) is to work with Eq. (38) directly and to write the
function ρ(r) explicitly as two cases: r < R and r > R. Multiply Eq. (38) by r2 and
integrate it from zero to r, being careful to handle the integral differently when the upper
limit is < R and when it is > R.

r2gr(r) = −4πG

∫ r

0
dr′ r′2ρ(r′)

Note: This is not simply reproducing that calculation that I’ve already done. This is doing
it a different way.

9.15 If you have a very large (assume it’s infinite) slab of mass of thickness d the gravitational
field will be perpendicular to its plane. To be specific, say that there is a mass density ρ0

between z = ±d/2 and ~g = gz(z)ẑ. Use Eqs. (36) to find gz(z).
Be precise in your reasoning when you evaluate any constants. (What happens when you
rotate the system about the x-axis?) Does your graph of the result make sense? Ans: gz =
+2πGρ0d, (z < −d/2)

9.16 Use Eqs. (36) to find the gravitational field of a very long solid cylinder of uniform
mass density ρ0 and radius R. (Assume it’s infinitely long.)

9.17 The gravitational field in a spherical region r < R is stated to be ~g(r) = −r̂C/r, where
C is a constant. What mass density does this imply?
If there is no mass for r > R, what is ~g there?

9.18 In Eq. (8.19) you have an approximate expression for the gravitational field of Earth,
including the effect of the equatorial bulge. Does it satisfy Eqs. (36)? (r > REarth)

9.19 Compute the divergence of the velocity function in problem 3 and integrate this diver-
gence over the volume of the box specified there.

9.20 The gravitational potential, equation (42), for the case that the mass density is zero
says to set the Laplacian Eq. (43) equal to zero. Assume a solution to ∇2V = 0 to be a
function of the spherical coordinates r and θ alone and that

V (r, θ) = Ar−(`+1)f(x), where x = cos θ

Show that this works provided that f satisfies a certain differential equation and show that
it is the Legendre equation of Eq. (4.18) and section 4.9.
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9.21 The volume energy density, dU/dV in the electric field is ε0E
2/2. The electrostatic

field equations are the same as the gravitational field equations, Eq. (36).

∇ . ~E = ρ/ε0, and ∇× ~E = 0

A uniformly charged ball of radius R has charge density ρ0 for r < R, Q = 4πρ0R
3/3. What

is the electric field everywhere due to this charge distribution?
(b) The total energy of this electric field is the integral over all space of the energy density.
What is it?
(c) If you want to account for the mass of the electron by saying that all this energy that
you just computed is the electron’s mass via E0 = mc2, then what must the electron’s radius
be? What is its numerical value? Ans: re = 3/5

(
e2/4πε0mc

2
)

= 1.69 fm

9.22 The equations relating a magnetic field, ~B, to the current producing it are, for the
stationary case,

∇× ~B = µ0
~J and ∇ . ~B = 0

Here ~J is the current density, current per area, defined so that across a tiny area d ~A the
current that flows through the area is dI = ~J . d ~A. (This is precisely parallel to Eq. (1) for
fluid flow rate.) A cylindrical wire of radius R carries a total current I distributed uniformly
across the cross section of the wire. Put the z-axis of a cylindrical coordinate system along
the central axis of the wire with positive z in the direction of the current flow. Write the
function ~J explicitly in these coordinates (for all values of r < R, r > R). Use the curl and
divergence expressed in cylindrical coordinates to show that you can satisfy the equations
relating ~J and ~B with a solution having only one non-zero component, ~B = θ̂Bθ(r). Sketch
a graph of the result. Ans: µ0Ir/2πR

2 (r < R)

9.23 A long cylinder of radius R has a uniform charge density inside it, ρ0 and it is rotating
about its long axis with angular speed ω. This provides an azimuthal current density ~J =
ρ0rωθ̂ in cylindrical coordinates. Assume the form of the magnetic field that this creates has
only a z-component: ~B = Bz(r, θ, z)ẑ and apply the equations of the preceding problem to
determine this field. First show that it must be independent of some of these variables.
(b) What is the ‘f‘ield outside? Ans: −ρr2ω/2 + C

9.24 By analogy to Eqs. (9) and (17) the expression

lim
V→0

1

V

∮
φd ~A

is the gradient of the scalar function φ. Compute this in rectangular coordinates to show
that it has the correct components.

9.25 A fluid of possibly non-uniform mass density is in equilibrium in a possibly non-uniform
gravitational field. Pick a volume and write down the total force vector on the fluid in that
volume; the things acting on it are gravity and the surrounding fluid. Take the limit as
the volume shrinks to zero, and use the result of the preceding problem in order to get the
equation for equilibrium.
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(b) Apply the result to the special case of a uniform gravitational field and a constant mass
density to find the pressure variation with height. Starting from an atmospheric pressure of
1.01×105 N/m2, how far must you go under water to reach double this pressure? Ans: about
10 meters

9.26 The energy density, u = dU/dV , in the gravitational field is g2/8πG. Use the results
found in Eq. (39) for the gravitational field of a spherical mass and get the energy density.
An extension of Newton’s theory of gravity is that the source of gravity is energy not just
mass! This energy that you just computed from the gravitational field is then the source of
more gravity, and this energy density contributes as a mass density ρ = u/c2 would. Find
the additional gravitational field gr(r) that this provides and add it to the previous result
for gr(r).
(b) For our sun, its mass is 2 × 1030 kg and its radius is 700, 000 km. Assume its density is
constant throughout so that you can apply the results of this problem. At the sun’s surface,
what is the ratio of this correction to the original value?
(c) What radius would the sun have to be so that this correction is equal to the original
gr(R), resulting in double gravity?

9.27 Continuing the ideas of the preceding problem, the energy density, u = dU/dV , in the
gravitational field is g2/8πG, and the source of gravity is energy not just mass. In the region
of space that is empty of matter, show that the divergence equation for gravity, (36), then
becomes

∇ .~g = −4πGu/c2 = −g2/2c2

Assume that you have a spherically symmetric system, ~g = gr(r)r̂, and write the differential
equation for gr. Solve it and apply the boundary condition that as r →∞, the gravitational
field should go to gr(r)→ −GM/r2. How does this solution behave as r → 0 and compare
its behavior to that of the usual gravitational field of a point mass.
(b) Can you explain why the behavior is different? Note that in this problem it’s the
gravitational field itself that is the source of the gravitational field; mass as such isn’t present.
(c) A characteristic length appears in this calculation. Evaluate it for the sun.
Ans: (a) gr = −GM

/[
r(r +R)

]
, where R = GM/2c2

9.28 In the preceding problem, what is the total energy in the gravitational field,
∫
u dV ?

How does this (÷c2) compare to the mass M that you used in setting the value of gr as
r →∞?

9.29 Verify that the solution Eq. (48) does satisfy the continuity conditions on V and V ′.

9.30 The r-derivatives in Eq. (43) can be written in a different and more convenient form.
Show that they are equivalent to

1

r

∂2(rV )

∂r2
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9.31 The gravitational potential from a point mass M is −GM/r where r is the distance to
the mass. Place a single point mass at coordinates (x, y, z) = (0, 0, d) and write its potential
V . Write this expression in terms of spherical coordinates about the origin, (r, θ), and then
expand it for the case r > d in a power series in d/r, putting together the like powers of d/r.
Do this through order (d/r)3. Express the result in the language of Eq. (4.51).

9.32 As in the preceding problem a point mass M has potential −GM/r where r is the
distance to the mass. The mass is at coordinates (x, y, z) = (0, 0, d). Write its potential V in
terms of spherical coordinates about the origin, (r, θ), but this time take r < d and expand
it in a power series in r/d. Do this through order (r/d)3.
Ans: (−GM/d)[1 + (r/d)P1(cos θ) + (r2/d2)P2(cos θ) + (r3/d3)P3(cos θ) + · · ·]

9.33 Theorem: Given that a vector field satisfies ∇×~v = 0 everywhere, then it follows that
you can write ~v as the gradient of a scalar function, ~v = −∇ψ. For each of the following
vector fields find, probably by trail and error, a function ψ that does this. First determine
is the curl is zero, because if it isn’t then your hunt for a ψ will be futile. You’re welcome to
try however — it will be instructive.

x̂ y3 + 3ŷ xy2, x̂ y cos(xy) + ŷ x cos(xy),

x̂ x2y + ŷ xy2, x̂ y2 sinh(2xy2) + 2ŷ xy sinh(2xy2)

9.34 A hollow sphere has inner radius a, outer radius b, and mass M , with uniform mass
density in this region. Find (and sketch) its gravitational field gr(r) everywhere.
(b) What happens in the limit that a → b? In this limiting case, graph gr. Use gr(r) =
−dV/dr and compute and graph the potential function V (r) for this limiting case. This
violates Eq. (47). Why?
(c) Compute the area mass density, σ = dM/dA, in this limiting case and find the relationship
between the discontinuity in dV/dr and the value of σ.

9.35 Evaluate

δijεijk, εmjkεnjk, ∂ixi, ∂ixj , εijkεijk, δijvj

and show that εijkεmnk = δimδjn − δinδjm

9.36 Verify the identities for arbitrary ~A,(
~A .∇

)
~r = ~A or Ai∂ixj = Aj

∇ .∇× ~v = 0 or ∂iεijk∂jvk = 0

∇×∇f = 0 or εijk∂j∂kf = 0

∇ .
(
f ~A
)

=
(
∇f
)
. ~A+ f

(
∇ . ~A

)
or ∂i(fAi) = (∂if)Ai + f∂iAi

You can try proving all these in the standard vector notation, but use the index notation
instead. It’s a lot easier.
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9.37 Prove ∇ × ∇ × ~v = ∇(∇ .~v ) − ∇2~v. First translate it into index notation and see
what identity you have to prove about ε’s.

9.38 Is ∇ × ~v perpendicular to ~v ? Either prove it’s true or give an explicit example for
which it’s false.

9.39 If for arbitrary Ai and arbitrary Bj it is known that aijAiBj = 0, prove then that all
the aij are zero.

9.40 Compute the divergences of
Axx̂+By2ŷ + Cẑ in rectangular coordinates.
Arr̂ +Bθ2θ̂ + Cφ̂ in spherical coordinates.

How do the pictures of these vector fields correspond to the results of these calculations?

9.41 Compute the divergence and the curl of

yx̂− xŷ
x2 + y2

, and of
yx̂− xŷ

(x2 + y2)2

9.42 Translate the preceding vector fields into polar coordinates, then take their divergence
and curl.

9.43 As a review of ordinary vector algebra, and perhaps some practice in using index
notation, translate the triple scalar product into index notation and prove first that it is
invariant under cyclic permutations of the vectors.
(a) ~A . ~B × ~C = ~B . ~C × ~A = ~C . ~A× ~B. Then that

(b) ~A . ~B × ~C = ~A× ~B . ~C.
(c) What is the result of interchanging any pair of the vectors in the product?
(d) Show why the geometric interpretation of this product is as the volume of a parallelepiped.

9.44 What is the total flux,
∮
~E . d ~A, out of the cube of side a with one corner at the origin?

(a) ~E = αx̂+ βŷ + γẑ (b) ~E = αxx̂+ βyŷ + γzẑ.

9.45 The electric potential from a single point charge q is kq/r. Two charges are on the
z-axis: −q at position z = z0 and +q at position z0 + a.
(a) Write the total potential at the point (r, θ, φ) in spherical coordinates.
(b) Assume that r � a and r � z0, and use the binomial expansion to find the series
expansion for the total potential out to terms of order 1/r3.
(c) how does the coefficient of the 1/r2 term depend on z0? The coefficient of the 1/r3 term?
These tell you the total electric dipole moment and the total quadrupole moment.
(d) What is the curl of the gradient of each of these two terms?
The polynomials of section 4.9 will appear here, with argument cos θ.
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9.46 For two point charges q1 and q2, the electric field very far away will look like that of a
single point charge q1 + q2. Go the next step beyond this and show that the electric field at
large distances will approach a direction such that it points along a line that passes through
the “center of charge” (like the center of mass): (q1~r1 + q2~r2)/(q1 + q2). What happens to
this calculation if q2 = −q1? You will find the results of problem 31 useful. Sketch various
cases of course. At a certain point in the calculation, you will probably want to pick a
particular coordinate system and to place the charges conveniently. You should keep terms
in the expansion for the potential up through 1/r2 and then take −∇V .

9.47 Fill in the missing steps in deriving Eq. (54).

9.48 Analyze the behavior of Eq. (54). The first thing you will have to do is to derive the
behavior of sinh−1 in various domains and maybe to do some power series expansions. In
every case seek an explanation of why the result comes out as it does.
(a) If z = 0 and r =

√
x2 + y2 � L what is it and what should it be?

(b) If z = 0 and r � L what is it and what should it be?
(c) If z > L and r → 0 what is this and what should it be? Be careful with your square
roots here.
(d) What is the result of (c) for z � L and for z − L� L?

9.49 Use the magnetic field equations as in problem 22, and assume a current density that
is purely azimuthal and dependent on r alone. That is, in cylindrical coordinates it is

~J = J0θ̂f(r)

Look for a solution for the magnetic field in the form ~B = ẑ Bz(r). What is the total current
per length in this case? That is, for a length ∆z how much current is going around the axis
and how is this related to Bz along r = 0?
Examine also the special case for which f(r) = 0 except in a narrow range a < r < b with
b − a � b (thin). Compare this result to what you find in introductory texts about the
solenoid.

9.50 For a spherical mass distribution such as the Earth, what would the mass density
function have to be so that the gravitational field has constant strength as a function of
depth?
Ans: ρ ∝ 1/r.



Partial Differential Equations

If the subject of ordinary differential equations is large, this is enormous. I am going to
examine only one corner of it, and develop only one tool to handle it: Separation of Variables.
Another major tool is the method of characteristics and I’ll not go beyond mentioning the
word. When I develop a technique to handle the heat equation or the potential equation,
don’t think that it stops there. The same set of tools will work on the Schroedinger equation
in quantum mechanics and on the wave equation in its many incarnations.

10.1 The Heat Equation
The flow of heat in one dimension is described by the heat conduction equation

P = −κA∂T
∂x

(1)

where P is the power in the form of heat energy flowing toward positive x through a wall
and A is the area of the wall. κ is the wall’s thermal conductivity. Put this equation into
words and it says that if a thin slab of material has a temperature on one side different from
that on the other, then heat energy will flow through the slab. If the temperature difference
is big or the wall is thin (∂T/∂x is big) then there’s a big flow. The minus sign says that
the energy flows from hot toward cold.

When more heat comes into a region than leaves it, the temperature there will rise.
This is described by the specific heat, C.

dQ = mCdT, or
dQ

dt
= mC

dT

dt
(2)

Again in words, the temperature rise in a chunk of material is proportional to the amount
of heat added to it and inversely proportional to its mass.

P (x, t)

x

A

P (x+ ∆x, t)

x+ ∆x

For a slab of area A, thickness ∆x, and mass density ρ, let the coordinates of the two
sides be x and x+ ∆x.

m = ρA∆x, and
dQ

dt
= P (x, t)− P (x+ ∆x, t)

The net power into this volume is the power in from one side minus the power out from the
other. Put these three equations together.

dQ

dt
= mC

dT

dt
= ρA∆xC

dT

dt
= −κA∂T (x, t)

∂x
+ κA

∂T (x+ ∆x, t)

∂x

232



10—Partial Differential Equations 233

If you let ∆x→ 0 here, all you get is 0 = 0, not very helpful. Instead divide by ∆x first and
then take the limit.

∂T

∂t
= +

κA

ρCA

(
∂T (x+ ∆x, t)

∂x
− ∂T (x, t)

∂x

)
1

∆x

and in the limit this is
∂T

∂t
=

κ

Cρ

∂2T

∂x2
(3)

I was a little cavalier with the notation in that I didn’t specify the argument of T on the
left side. You could say that it was (x + ∆x/2, t), but in the limit everything is evaluated
at (x, t) anyway. I also assumed that κ, the thermal conductivity, is constant. If not, then
it stays inside the derivative,

∂T

∂t
=

1

Cρ

∂

∂x

(
κ
∂T

∂x

)
(4)

In Three Dimensions
In three dimensions, this becomes

∂T

∂t
=

κ

Cρ
∇2T (5)

Roughly speaking, the temperature in a box can change because of heat flow in any of three
directions. More precisely, the correct three dimensional equation that replaces Eq. (1) is

~H = −κ∇T (6)

where ~H is the heat flow vector, the power per area in the direction of the energy transport.
~H . d ~A = dP , the power going across the area d ~A. The total heat flowing into a volume is

n̂

dQ

dt
= −

∮
dP = −

∮
~H . d ~A (7)

where the minus sign occurs because I want the heat in. For a small volume ∆V , you now
have m = ρ∆V and

mC
∂T

∂t
= ρ∆V C

∂T

∂t
= −

∮
~H . d ~A

Divide by ∆V and take the limit as ∆V → 0. The right hand side is the divergence

ρC
∂T

∂t
= − lim

∆V→0

1

∆V

∮
~H . d ~A = −∇ . ~H = +∇ .κ∇T = +κ∇2T

Again, this assumes that the thermal conductivity, κ, is independent of position.



234 10—Partial Differential Equations

10.2 Separation of Variables
How do you solve these equations? I’ll start with the one-dimensional case and use the
method of separation of variables. The trick is to start by looking for a solution to the
equation in the form of a product of a function of x and a function of t. T (x, t) = f(t)g(x).
I do not assume that every solution to the equation will look like this — that’s just not true.
What will happen is that I’ll be able to express every solution as a sum of such factored
forms.

If you want to find out if you’ve got a solution, plug in:

∂T

∂t
=

κ

Cρ

∂2T

∂x2
is

df

dt
g =

κ

Cρ
f
d2g

dx2

Denote the constant by κ/Cρ = D and divide by the product fg.

1

f

df

dt
= D

1

g

d2g

dx2
(8)

The left side of this equation is a function of t alone, no x. The right side is a function of
x alone with no t, hence the name separation of variables. Because x and t can vary quite
independently of each other, the only way that this can happen is if the two side are constant
(the same constant).

1

f

df

dt
= α and D

1

g

d2g

dx2
= α (9)

At this point, the constant α can be anything, even complex. For a particular specified
problem there will be boundary conditions placed on the functions, and those will constrain
the α’s. If α is real and positive then

g(x) = A sinh
√
α/D x+B cosh

√
α/D x and f(t) = eαt (10)

For negative real α, the hyperbolic functions become circular functions.

g(x) = A sin
√
−α/D x+B cos

√
−α/D x and f(t) = eαt (11)

If α = 0 then
g(x) = Ax+B, and f(t) = constant (12)

For imaginary α the f(t) is oscillating and the g(x) has both exponential and oscillatory
behavior in space. This can really happen in very ordinary physical situations; see section
10.3.

This analysis provides a solution to the original equation (3) valid for any α. A sum
of such solutions for different α’s is also a solution, for example

T (x, t) = A1e
α1t sin

√
−α1/D x+ A2e

α2t sin
√
−α2/D x

or any other linear combination with various α’s

T (x, t) =
∑
{α′s}

fα(t)gα(x)



10—Partial Differential Equations 235

It is only the combined product that forms a solution to the original partial differential
equation, not the separate factors. Determining the details of the sum is a job for Fourier
series.

Example
A specific problem: You have a slab of material of thickness L and at a uniform temperature
T0. Plunge it into ice water at temperature T = 0 and find the temperature inside at
later times. The boundary condition here is that the surface temperature is zero, T (0, t) =
T (L, t) = 0. This constrains the separated solutions, requiring that g(0) = g(L) = 0. For
this to happen you can’t use the hyperbolic functions of x that occur when α > 0, you
will need the circular functions of x, sines and cosines, implying that α < 0. That is also
compatible with your expectation that the temperature should approach zero eventually,
and that needs a negative exponential in time, Eq. (11).

g(x) = A sin kx+B cos kx, with k2 = −α/D and f(t) = e−Dk2t

g(0) = 0 implies B = 0. g(L) = 0 implies sin kL = 0.
The sine vanishes for the values nπ where n is any integer, positive, negative, or zero. This
implies kL = nπ, or k = nπ/L. The corresponding values of α are αn = −Dn2π2/L2, and
the separated solution is

sin
(
nπx/L

)
e−n2π2Dt/L2

(13)

If n = 0 this whole thing vanishes, so it’s not much of a solution. (Not so fast there! See
problem 2.) Notice that the sine is an odd function so when n < 0 this expression just
reproduces the positive n solution except for an overall factor of (−1), and that factor was
arbitrary anyway. The negative n solutions are redundant, so ignore them.

The general solution is a sum of separated solutions, see problem 3.

T (x, t) =
∞∑
1

an sin
nπx

L
e−n2π2Dt/L2

(14)

The problem now is to determine the coefficients an. This is why Fourier series were invented.
(Yes, literally, the problem of heat conduction is where Fourier series started.) At time t = 0
you know the temperature distribution is T = T0, a constant on 0 < x < L. This general
sum must equal T0 at time t = 0.

T (x, 0) =
∞∑
1

an sin
nπx

L
(0 < x < L)

Multiply by sin
(
mπx/L

)
and integrate over the domain to isolate the single term, n = m.∫ L

0
dxT0 sin

mπx

L
= am

∫ L

0
dx sin2 mπx

L

T0[1− cosmπ]
L

mπ
= am

L

2
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This expression for am vanishes for even m, and when you assemble the whole series for the
temperature you have

T (x, t) =
4

π
T0

∑
m odd

1

m
sin

mπx

L
e−m2π2Dt/L2

(15)

For small time, this converges, but very slowly. For large time, the convergence is very
fast, often needing only one or two terms. As the time approaches infinity, the interior
temperature approaches the surface temperature of zero. The graph shows the temperature
profile at a sequence of times.

0 L

T0

x

You can see that the boundary conditions on the temperature led to these specific
boundary conditions on the sines and cosines. This is exactly what happened in the general
development of Fourier series when the fundamental relationship, Eq. (5.12), required cer-
tain boundary conditions in order to get the orthogonality of the solutions of the harmonic
oscillator differential equation. That the function vanishes at the boundaries was one of the
possible ways to insure orthogonality.

10.3 Oscillating Temperatures
Take a very thick slab of material and assume that the temperature on one side of it is
oscillating. Let the material occupy the space 0 < x < ∞ and at the coordinate x = 0 the
temperature is varying in time as T1 cosωt. Is there any real situation in which this happens?
Yes, the surface temperature of the Earth varies periodically from summer to winter (at least
outside of Florida). What happens to the temperature underground?

The differential equation for the temperature is still Eq. (3), and I’ll assume that the
temperature inside the material approaches T = 0 far away from the surface. Separation of
variables is the same as before, Eq. (9), but this time I know the time dependence at the
surface. It’s typical in cases involving oscillations that it is easier to work with complex
exponentials than it is to work with sines and cosines. For that reason I specify that
the surface temperature is T1e

−iωt instead of a cosine. I understand that at the end of
the problem I’ll take the real part of the result and throw away the imaginary part. The
imaginary part corresponds to solving the problem for a surface temperature of sinωt instead
of cosine. It’s easier to solve the two problems together then either one separately. (The
minus sign in the exponent of e−iωt is arbitrary; you could use a plus instead.)

The equation (9) says that the time dependence that I expect is

1

f

df

dt
= α =

1

e−iωt

(
− iωe−iωt

)
= −iω

The equation for the x-dependence is then

D
d2g

dx2
= αg = −iωg
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This is again a simple exponential solution, say eβx. Substitute and you have

Dβ2eβx = −iωeβx, implying β = ±
√
−iω/D (16)

Evaluate this as
√
−i =

(
e−iπ/2

)1/2
= e−iπ/4 =

1− i√
2

Let β0 =
√
ω/2D, then the solution for the x-dependence is

g(x) = Ae(1−i)β0x +Be−(1−i)β0x (17)

Look at the behavior of these two terms. The first has a factor that goes as e+x and the
second goes as e−x. The temperature at large distances is supposed to approach zero, so
that says that A = 0. The solutions for the temperature is now

Be−iωte−(1−i)β0x (18)

The further condition is that at x = 0 the temperature is T1e
−iωt, so that tells you that

B = T1.
T (x, t) = T1e

−iωte−(1−i)β0x = T1e
−β0xei(−ωt+β0x) (19)

When you remember that I’m solving for only the real part of this solution, the final result
is

T

x T1e
−β0x cos(β0x− ωt) (20)

This has the appearance of a temperature wave moving into the material, albeit a very
strongly damped one. In a half wavelength of this wave, β0x = π, and at that point the
amplitude coming from the exponential factor out in front is down by a factor of e−π = 0.04.
That’s barely noticeable. This is why wine cellars are cellars. Also, you can see that at a
distance where β0x > π/2 the temperature change is reversed from the value at the surface.
Some distance underground, summer and winter are reversed.

10.4 Spatial Temperature Distributions
The governing equation is Eq. (5). For an example of a problem that falls under this
heading, take a cube that is heated on one side and cooled on the other five sides. What is
the temperature distribution within the cube? How does it vary in time?

I’ll take a simpler version of this problem to start with. First, I’ll work in two di-
mensions instead of three; make it a very long rectangular shaped rod, extending in the
z-direction. Second, I’ll look for the equilibrium solution, for which the time derivative is
zero. These restrictions reduce the equation (5) to

∇2T =
∂2T

∂x2
+
∂2T

∂y2
= 0 (21)
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I’ll specify the temperature T (x, y) on the surface of the rod to be zero on three faces and
T0 on the fourth. Place the coordinates so that the length of the rod is along the z-axis and
the origin is in one corner of the rectangle.

T (0, y) = 0 (0 < y < b), T (x, 0) = 0 (0 < x < a)

T (a, y) = 0 (0 < y < b), T (x, b) = T0 (0 < x < a)
(22)

O

0

b

y

0

T0

a

0

x

Look at this problem from several different angles, tear it apart, look at a lot of special
cases, and see what can go wrong. In the process you’ll see different techniques and especially
a lot of applications of Fourier series. This single problem will illustrate many of the methods
used to understand boundary value problems.

Use the same method that I used before for heat flow in one dimension: separation of
variables. Assume a solution to be the product of a function of x and a function of y, then
plug into the equation.

T (x, y) = f(x)g(y), then ∇2T =
d2f(x)

dx2
g(y) + f(x)

d2g(y)

dy2
= 0

Just as in Eq. (8), when you divide by fg the resulting equation is separated into a term
involving x only and one involving y only.

1

f

d2f(x)

dx2
+

1

g

d2g(y)

dy2
= 0

Because x and y can be varied independently, these must be constants adding to zero.

1

f

d2f(x)

dx2
= α, and

1

g

d2g(y)

dy2
= −α (23)

As before, the separation constant can be any real or complex number until you start applying
boundary conditions. You recognize that the solutions to these equations can be sines or
cosines or exponentials or hyperbolic functions or linear functions, depending on what α is.

The boundary conditions state that the surface temperature is held at zero on the
surfaces x = 0 and x = a. This suggests looking for solutions that vanish there, and that in
turn says you should work with sines of x. In the other direction the surface temperature
vanishes on only one side so you don’t need sines in that case. The α = 0 case gives linear
functions is x and in y, and the fact that the temperature vanishes on x = 0 and x = a kills
these terms. (It does doesn’t it?) Pick α to be a negative real number: call it α = −k2.

d2f(x)

dx2
= −k2f =⇒ f(x) = A sin kx+B cos kx
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The accompanying equation for g is now

d2g(y)

dy2
= +k2g =⇒ g(y) = C sinh ky +D cosh ky

(Or exponentials if you prefer.) The combined, separated solution to ∇2T = 0 is

(A sin kx+B cos kx)(C sinh ky +D cosh ky) (24)

The general solution will be a sum of these, summed over various values of k. This is where
you have to apply the boundary conditions to determine the allowed k’s.

left: T (0, y) = 0 = B(C sinh ky +D cosh ky), so B = 0

(This holds for all y in 0 < y < b, so the second factor can’t vanish unless both C and D
vanish. If that is the case then everything vanishes.)

right: T (a, y) = 0 = A sin ka(C sinh ky +D cosh ky), so sin ka = 0

(Again, the factor with y can’t vanish or everything vanishes. If A = 0 then everything
vanishes. All that’s left is sin ka = 0.)

bottom: T (x, 0) = 0 = A sin kxD, so D = 0

(If A = 0 everything is zero, so it’s got to be D.)
You can now write a general solution that satisfies three of the four boundary condi-

tions. Combine the coefficients A and C into one, and since it will be different for different
values of k, call it γn.

T (x, y) =
∞∑

n=1

γn sin
nπx

a
sinh

nπy

a
(25)

The nπ/a appears because sin ka = 0, and the limits on n omit the negative n because they
are redundant.

Now to find all the unknown constants γn, and as before that’s where Fourier techniques
come in. The fourth side, at y = b, has temperature T0 and that implies

∞∑
n=1

γn sin
nπx

a
sinh

nπb

a
= T0

On this interval 0 < x < a these sine functions are orthogonal, so you take the scalar product
of both side with the sine.∫ a

0
dx sin

mπx

a

∞∑
n=1

γn sin
nπx

a
sinh

nπb

a
=

∫ a

0
dx sin

mπx

a
T0

a

2
γm sinh

mπb

a
= T0

a

mπ

[
1− (−1)m

]
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Only the odd m terms are present, m = 2`+ 1, so the result is

T (x, y) =
4

π
T0

∞∑
`=0

1

2`+ 1

sinh
(
(2`+ 1)πy/a

)
sinh

(
(2`+ 1)πb/a

) sin
(2`+ 1)πx

a
(26)

You’re not done.
Does this make sense? The dimensions are clearly correct, but after that it takes some

work. There’s really only one parameter that you have to play around with, and that’s the
ratio b/a. If it’s either very big or very small you may be able to check the result.

O

y

0

T0

a� b

a
x

O

0 0

a
b� a

If a � b, it looks almost like a one-dimensional problem. It is a thin slab with
temperature T0 on one side and zero on the other. There’s little variation along the x-
direction, so the equilibrium equation is

∇2T = 0 =
∂2T

∂x2
+
∂2T

∂y2
≈ ∂2T

∂y2

This simply says that the second derivative with respect to y vanishes, so the answer is the
straight line T = A + By, and with the condition that you know the temperature at y = 0
and at y = b you easily find

T (x, y) ≈ T0y/b

Does the exact answer look like this? It doesn’t seem to, but look closer. If b � a then
because 0 < y < b you also have y � a. The hyperbolic function factors in Eq. (26) will
have very small arguments, proportional to b/a. Recall the power series expansion of the
hyperbolic sine: sinhx = x+ · · ·. These factors become approximately

sinh
(
(2`+ 1)πy/a

)
sinh

(
(2`+ 1)πb/a

) ≈ (2`+ 1)πy/a

(2`+ 1)πb/a
=
y

b

The temperature solution is then

T (x, y) ≈ 4

π
T0

∞∑
`=0

1

2`+ 1

y

b
sin

(2`+ 1)πx

a
= T0

y

b

Where did that last equation come from? The coefficient of y/b is just the Fourier series of
the constant T0 in terms of sines on 0 < x < a.

What about the opposite extreme, for which b � a? This is the second picture just
above. Instead of being short and wide it is tall and narrow. For this case, look again at
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the arguments of the hyperbolic sines. Now πb/a is large and you can approximate the
hyperbolic functions by going back to their definition.

sinh x =
ex + e−x

2
≈ 1

2
ex, for x� 1

The denominators in all the terms of Eq. (26) are large, ≈ eπb/a (or larger still because of the
(2` + 1)). This will make all the terms in the series extremely small unless the numerators
are correspondingly large. This means that the temperature stays near zero unless y is
large. That makes sense. It’s only for y near the top end that you are near to the wall with
temperature T0.

You now have the case for which b � a and y � a. This means that I can use the
approximate form of the hyperbolic function for large arguments.

sinh
(
(2`+ 1)πy/a

)
sinh

(
(2`+ 1)πb/a

) ≈ e(2`+1)πy/a

e(2`+1)πb/a
= e(2`+1)π(y−b)/a

The temperature distribution is now approximately

T (x, y) ≈ 4

π
T0

∞∑
`=0

1

2`+ 1
e−(2`+1)π(b−y)/a sin

(2`+ 1)πx

a
(27)

As compared to the previous approximation where a � b, you can’t as easily tell whether
this is plausible or not. You can however learn from it. See also problem 30.

At the very top, where y = b this reduces to the constant T0 that you’re supposed to
have at that position. Recall again the Fourier series for a constant on 0 < x < a.

Move down from y = b by the distance a, so that b − y = a. That’s a distance from
the top equal to the width of the rectangle. It’s still rather close to the end, but look at the
series for that position.

x = 0 x = a
y = b

y = b− a
T (x, b− a) ≈ 4

π
T0

∞∑
`=0

1

2`+ 1
e−(2`+1)π sin

(2`+ 1)πx

a

For ` = 0, the exponential factor is e−π = 0.043 and for ` = 1 this factor is e−3π = 0.00008.
This means that measured from the T0 end, within the very short distance equal to the
width, the temperature has dropped 95% of the way down to its limiting value of zero. The
temperature in the rod is quite uniform until you’re very close to the heated end.

The Heat Flow into the Box
All the preceding analysis and discussion was intended to make this problem and its solution
sound oh-so-plausible. There’s more, and it isn’t pretty.
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The temperature on one of the four sides was given as different from the temperatures
on the other three sides. What will the heat flow into the region be? That is, what power
must you supply to maintain the temperature T0 on the single wall?

At the beginning of this chapter, Eq. (1), you have the equation for the power through
an area A, but that equation assumed that the temperature gradient ∂T/∂x is the same all
over the area A. If it isn’t, you simply turn it into a density.

∆P = −κ∆A∂T
∂x

, and then
∆P

∆A
→ dP

dA
= −κ∂T

∂x
(28)

Equivalently, just use the vector form from Eq. (6), ~H = −κ∇T . In Eq. (22) the temperature
is T0 along y = b, and the power density (energy / (time . area)) flowing in the +y direction
is −κ∂T/∂y, so the power density flowing into this area has the reversed sign,

+κ ∂T/∂y (29)

The total power flow is the integral of this over the area of the top face.
Let L be the length of this long rectangular rod, its extent in the z-direction. The

element of area along the surface at y = b is then dA = Ldx, and the power flow into this
face is ∫ a

0
Ldxκ

∂T

∂y

∣∣∣∣
y=b

The temperature function is the solution Eq. (26), so differentiate that equation with respect
to y. ∫ a

0
Ldxκ

4

π
T0

∞∑
`=0

[(2`+ 1)π/a]

2`+ 1

cosh
(
(2`+ 1)πy/a

)
sinh

(
(2`+ 1)πb/a

) sin
(2`+ 1)πx

a
at y = b

=
4LκT0

a

∫ a

0
dx

∞∑
`=0

sin
(2`+ 1)πx

a

and this sum does not converge. I’m going to push ahead anyway, temporarily pretending
that I didn’t notice this minor difficulty with the series. Just go ahead and integrate the
series term by term and hope for the best.

=
4LκT0

a

∞∑
`=0

a

π(2`+ 1)

[
− cos

(
(2`+ 1)π

)
+ 1
]

=
4LκT0

π

∞∑
`=0

2

2`+ 1
=∞

This infinite series for the total power entering the top face is infinite. The series doesn’t
converge (use the integral test).

This innocuous-seeming problem is suddenly pathological because it would take an
infinite power source to maintain this temperature difference. Why should that be? Look at
the corners. You’re trying to maintain a non-zero temperature difference (T0 − 0) between
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two walls that are touching. This can’t happen, and the equations are telling you so! It
means that the boundary conditions that I specified in Eq. (22) are impossible to maintain.
The temperature on the boundary at y = b can’t be constant all the way to the edge. It
must drop off to zero as it approaches x = 0 and x = a. This makes the problem more
difficult, but then reality is typically more complicated than our simple, idealized models.

Does this make the solution Eq. (26) valueless? No, it simply means that you can’t
push it too hard. This solution will be good until you get near the corners, where you can’t
possibly maintain the constant-temperature boundary condition. In other regions it will be
a good approximation to the physical problem.

10.5 Specified Heat Flow
In the previous examples, I specified the temperature on the boundaries and from that I
determined the temperature inside. In the particular example, the solution was not physi-
cally plausible all the way to the edge, though the mathematics were (I hope) enlightening.
Instead, I’ll reverse the process and try to specify the size of the heat flow, computing the
resulting temperature from that. This time perhaps the results will be a better reflection of
reality.

Equation (29) tells you the power density at the surface, and I’ll examine the case for
which this is a constant. Call it F0. (There’s not a conventional symbol, so this will do.)
The plus sign occurs because the flow is into the box.

+κ
∂T

∂y
(x, b) = F0

The other three walls have the same zero temperature conditions as Eq. (22). Which forms
of the separated solutions do I have to use now? The same ones as before or different ones?

Look again at the α = 0 solutions to Eqs. (23). That solution is

(A+Bx)(C +Dy)

In order to handle the fact that the temperature is zero at y = 0 and that the derivative
with respect to y is given at y = b,

(A+Bx)(C) = 0 and (A+Bx)(D) = F0/κ,

implying C = 0 = B, then AD = F0/κ =⇒ F0

κ
y (30)

This matches the boundary conditions at both y = 0 and y = b. All that’s left is to make
everything work at the other two faces.

O

0

b

y

0

F0

a

0

x

−F0y/κ

O

b
y

0 a

−F0y/κ

x

If I can find a solution that equals −F0y/κ on the left and right faces then it will
cancel the +F0y/κ that Eq. (30) provides. But I can’t disturb the top and bottom boundary
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conditions. The way to do that is to find functions that equal zero at y = 0 and whose
derivative equals zero at y = b. This is a familiar sort of condition that showed up several
times in chapter five on Fourier series. It is equivalent to saying that the top surface is
insulated so that heat can’t flow through it. You then use superposition to combine the
solution with uniform heat flow and the solution with an insulated boundary.

Instead of Eq. (24), use the opposite sign for α, so the solutions are of the form

(A sin ky +B cos ky)(C sinh kx+D cosh kx)

I require that this equals zero at y = 0, so that says

(0 +B)(C sinh kx+D cosh kx) = 0

so B = 0. I require that the derivative equals zero at y = b, so

Ak cos kb = 0, or kb = (n+ 1/2)π for n = 0, 1, 2 . . .

The value of the temperature is the same on the left that it is on the right, so

C sinh k0 +D cosh k0 = C sinh ka+D cosh ka =⇒ C = D(1− cosh ka)/ sinh ka (31)

This is starting to get messy, so I think it’s time to look around and see if I’ve missed
anything that could simplify the calculation. There’s no guarantee that there is any simpler
way, but it’s always worth looking. The fact that the system is the same on the left as on
the right means that the temperature will be symmetric about the central axis of the box,
about x = a/2. That it is even about this point implies that the hyperbolic functions of x
should be even about x = a/2. You can do this simply by using a cosh about that point.

A sin ky
(
D cosh k(x− a/2)

)
Put these together and you have a sum

∞∑
n=0

an sin

(
(n+ 1/2)πy

b

)
cosh

(
(n+ 1/2)π(x− a/2)

b

)
(32)

Each of these terms satisfies Laplace’s equation, satisfies the boundary conditions at y = 0
and y = b, and is even about the centerline x = a/2. It is now a problem in Fourier series
to match the conditions at x = 0. They’re then automatically satisfied at x = a.

∞∑
n=0

an sin

(
(n+ 1/2)πy

b

)
cosh

(
(n+ 1/2)πa

2b

)
= −F0

y

κ
(33)

The sines are orthogonal by the theorem Eq. (5.12), so you can pick out the component an

by the orthogonality of these basis functions.

un = sin

(
(n+ 1/2)πy

b

)
, then

〈
um, left side

〉
=
〈
um, right side

〉
or, am

〈
um, um

〉
cosh

(
(m+ 1/2)πa

2b

)
= −F0

κ

〈
um, y

〉
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Write this out; do the integrals, add the linear term, and you have

T (x, y) = F0
y

κ
−8F0b

κπ2

∞∑
n=0

(−1)n

(2n+ 1)2
× (34)

sin

(
(n+ 1/2)πy

b

)
cosh

(
(n+ 1/2)π(x− a/2)

b

)
sech

(
(n+ 1/2)πa

2b

)
Now I have to analyze this to see if it makes sense. I’ll look at the same cases that I

did the last time: b� a and a� b. The simpler case, where the box is short and wide, has
b� a. This makes the arguments of the cosh and sech large, with an a/b in them. For large
argument you can approximate the cosh by

coshx ≈ ex/2, x� 1

Now examine a typical term in the sum (34), and I have to be a little more specific and
choose x on the left or right of a/2. The reason for that is the preceding equation requires
x large and positive. I’ll take x on the right, as it makes no difference. The hyperbolic
functions in (34) are approximately

exp
(
(n+ 1/2)π(x− a/2)

/
b
)

exp
(
(n+ 1/2)πa

/
2b
) = e((2n+1)π(x−a)/2b)

As long as x is not near the end, that is, not near x = a, the quantity in the exponential is
large and negative for all n. The exponential in turn makes this extremely small so that the
entire sum becomes negligible. The temperature distribution is then the single term

T (x, y) ≈ F0
y

κ

It’s essentially a one dimensional problem, with the heat flow only along the −y direction.

In the reverse case for which it is tall and thin, a� b, the arguments of the hyperbolic
functions are small. This invites a power series expansion, but that approach doesn’t work.
The analysis of this case is quite tricky, and I finally concluded that it’s not worth the trouble
to write it up. It leads to a rather complicated integral.

10.6 Electrostatics
The equation for the electrostatic potential in a vacuum is exactly the same as Eq. (21) for

the temperature in static equilibrium, ∇2V = 0, with the electric field ~E = −∇V . The same
equation applies to the gravitational potential, Eq. (9.42).

Perhaps you’ve looked into a microwave oven. You can see inside it, but the microwaves
aren’t supposed to get out. How can this be? Light is just another form of electromagnetic
radiation, so why does one EM wave get through while the other one doesn’t? I won’t solve
the whole electromagnetic radiation problem here, but I’ll look at the static analog to get
some general idea of what’s happening.
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−L 0 L 2L x

z

y V0

Arrange a set of conducting strips in the x-y plane and with insulation between them
so that they don’t quite touch each other. Now apply voltage V0 on every other one so that
the potentials are alternately zero and V0. This sets the potential in the z = 0 plane to be
independent of y and

z = 0 : V (x, y) =

{
V0 (0 < x < L)
0 (L < x < 2L)

V (x+ 2L, y) = V (x, y), all x, y (35)

What is then the potential above the plane, z > 0? Above the plane V satisfies Laplace’s
equation,

∇2V =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= 0 (36)

The potential is independent of y in the plane, so it will be independent of y everywhere.
Separate variables in the remaining coordinates.

V (x, z) = f(x)g(z) =⇒ d2f

dx2
g + f

d2g

dz2
= 0 =⇒ 1

f

d2f

dx2
+

1

g

d2g

dz2
= 0

This is separated as a function of x plus a function of y, so the terms are constants.

1

f

d2f

dx2
= −α2,

1

g

d2g

dz2
= +α2 (37)

I’ve chosen the separation constant in this form because the boundary condition is periodic
in x, and that implies that I’ll want oscillating functions there, not exponentials.

f(x) = eiαx and f(x+ 2L) = f(x)

=⇒ e2Liα = 1, or 2Lα = 2nπ, n = 0, ±1, ±2, . . .

The separated solutions are then

f(x)g(z) = enπix/L
(
Aenπz/L +Be−nπz/L

)
(38)

The solution for z > 0 is therefore the sum

V (x, z) =
∞∑

n=−∞
enπix/L

(
Ane

nπz/L +Bne
−nπz/L

)
(39)

The coefficients An and Bn are to be determined by Fourier techniques. First however, look
at the z-behavior. As you move away from the plane toward positive z, the potential should
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not increase without bound. Terms such as eπz/L however increase with z. This means that
the coefficients of the terms that increase exponentially in z cannot be there.

An = 0 for n > 0, and Bn = 0 for n < 0

V (x, z) = A0 +B0 +
∞∑

n=1

enπix/LBne
−nπz/L +

−1∑
n=−∞

enπix/LAne
nπz/L (40)

The combined constant A0 + B0 is really one constant; you can call it C0 if you like. Now
use the usual Fourier techniques given that you know the potential at z = 0.

V (x, 0) = C0 +
∞∑

n=1

Bne
nπix/L +

−1∑
n=−∞

Ane
nπix/L

The scalar product of emπix/L with this equation is

〈
emπix/L, V (x, 0)

〉
=

 2LC0 (m = 0)
2LBm (m > 0)
2LAm (m < 0)

(41)

Now evaluate the integral on the left side. First, m 6= 0:

〈
emπix/L, V (x, 0)

〉
=

∫ L

−L
dx e−mπix/L

{
0 (−L < x < 0)
V0 (0 < x < L)

= V0

∫ L

0
dx e−mπix/L = V0

L

−mπi
e−mπix/L

∣∣∣L
0

= V0
L

−mπi
[
(−1)m − 1

]
Then evaluate it separately for m = 0, and you have

〈
1, V (x, 0)

〉
= V0L.

Now assemble the result. Before plunging in, look at what will happen.
The m = 0 term sits by itself.
For the other terms, only odd m have non-zero values.

V (x, z) =
1

2
V0 + V0

∞∑
m=1

1

−2mπi

[
(−1)m − 1

]
emπix/Le−mπz/L

+V0

−1∑
m=−∞

1

−2mπi

[
(−1)m − 1

]
emπix/Le+mπz/L

(42)

To put this into a real form that is easier to interpret, change variables, letting m = −n in
the second sum and m = n in the first, finally changing the sum so that it is over only the
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odd terms.

V (x, z) =
1

2
V0 + V0

∞∑
n=1

1

−2nπi

[
(−1)n − 1

]
enπix/Le−nπz/L

+V0

∞∑
1

1

+2nπi

[
(−1)n − 1

]
e−nπix/Le−nπz/L

=
1

2
V0 + V0

∞∑
n=1

[
(−1)n − 1

] 1

−nπ
sin(nπx/L)e−nπz/L

=
1

2
V0 +

2

π
V0

∞∑
`=0

1

2`+ 1
sin
(
(2`+ 1)πx/L

)
e−(2`+1)πz/L

(43)

Having done all the work to get to the answer, what can I learn from it?
What does it look like?
Are there any properties of the solution that are unexpected?
Should I have anticipated the form of the result?
Is there an easier way to get to the result?

To see what it looks like, examine some values of z, the distance above the surface. If
z = L, the coefficient for successive terms is

` = 0 :
2

π
e−π = 0.028 ` = 1 :

2

3π
e−3π = 1.7× 10−5 (44)

The constant term is the average potential, and the ` = 0 term adds only a modest ripple,
about 5% of the constant average value. If you move up to z = 2L the first factor is 0.0012
and that’s a little more than 0.2% ripple. The sharp jumps from +V0 to zero and back
disappear rapidly. That the oscillations vanish so quickly with distance is perhaps not what
you would guess until you have analyzed such a problem.

The graph shows the potential function at the surface, z = 0, as it oscillates between
V0 and zero. It then shows successive graphs of Eq. (43) at z = L/2, then at z = L, then
at z = 1.5L. The ripple is barely visible at the third distance. The radiation through the
screen of a microwave oven is filtered in much the same way because the wavelength of the
radiation is large compared to the size of the holes in the screen.

When you write the form of the series for the potential, Eq. (40), you can see this
coming if you look for it. The oscillating terms in x are accompanied by exponential terms
in z, and the rapid damping with distance is already apparent: e−nπz/L. You don’t have to
solve for a single coefficient to see that the oscillations vanish very rapidly with distance.
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The original potential on the surface was neither even nor odd, but except for the
constant average value, it is an odd function.

z = 0 : V (x, y) =
1

2
V0 +

{
+V0/2 (0 < x < L)
−V0/2 (L < x < 2L)

V (x+ 2L, y) = V (x, y) (45)

Solve the potential problem for the constant V0/2 and you have a constant. Solve it for
the remaining odd function on the boundary and you should expect an odd function for
V (x, z). If you make these observations before solving the problem you can save yourself
some algebra, as it will lead you to the form of the solution faster.

The potential is periodic on the x-y plane, so periodic boundary conditions are the
appropriate ones. You can express these in more than one way, taking as a basis for the
expansion either complex exponentials or sines and cosines.

enπix/L, n = 0, ±1, . . .

or the combination cos(nπx/L), n = 0, 1, . . . sin(nπx/L), n = 1, 2, . . .
(46)

For a random problem with no special symmetry the exponential choice typically leads to
easier integrals. In this case the boundary condition has some symmetry that you can take
advantage of: it’s almost odd. The constant term in Eq. (30) is the n = 0 element of
the cosine set, and that’s necessarily orthogonal to all the sines. For the rest, you do the
expansion {

+V0/2 (0 < x < L)
−V0/2 (L < x < 2L)

=
∞∑
1

an sin(nπx/L)

The odd term in the boundary condition (45) is necessarily a sum of sines, with no cosines.
The cosines are orthogonal to an odd function. See problem 11.

More Electrostatic Examples
Specify the electric potential in the x-y plane to be an array, periodic in both the x and the
y-directions. V (x, y, z = 0) is V0 on the rectangle (0 < x < a, 0 < y < b) as well as in the
darkened boxes in the picture; it is zero in the white boxes. What is the potential for z > 0?

z

a
b

x

y

The equation is still Eq. (36), but now you have to do the separation of variables along
all three coordinates, V (x, y, z) = f(x)g(y)h(z). Substitute into the Laplace equation and
divide by fgh.

1

f

d2f

dx2
+

1

g

d2g

dy2
+

1

h

d2h

dz2
= 0

These terms are functions of the single variables x, y, and z respectively, so the only way
this can work is if they are separately constant.

1

f

d2f

dx2
= −k2

1,
1

g

d2g

dy2
= −k2

2,
1

h

d2h

dz2
= k2

1 + k2
2 = k2

3
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I made the choice of the signs for these constants because the boundary function is periodic
in x and in y, so I expect sines and cosines along those directions. The separated solution is

(A sin k1x+B cos k1x)(C sin k2y +D cos k2y)(Ee
k3z + Fe−k3z) (47)

What about the case for separation constants of zero? Yes, I need that too; the average
value of the potential on the surface is V0/2, so just as with the example leading to Eq. (43)
this will have a constant term of that value. The periodicity in x is 2a and in y it is 2b, so
this determines

k1 = nπ/a and k2 = mπ/b then k3 =

√
n2π2

a2
+
m2π2

b2
, n, m = 1, 2, . . .

where n and m are independent integers. Use the experience that led to Eq. (45) to write V
on the surface as a sum of the constant V0/2 and a function that is odd in both x and in
y. As there, the odd function in x will be represented by a sum of sines in x, and the same
statement will hold for the y coordinate. This leads to the form of the sum

V (x, y, z) =
1

2
V0 +

∞∑
n=1

∞∑
m=1

αnm sin
(nπx

a

)
sin
(mπy

b

)
e−knmz

where knm is the k3 of the preceding equation. What happened to the other term in z,
the one with the positive exponent? Did I say that I’m looking for solutions in the domain
z > 0?

At z = 0 this must match the boundary conditions stated, and as before, the orthogo-
nality of the sines on the two domains allows you to determine the coefficients. You simply
have to do two integrals instead of one. See problem 19.

V (x, y, z > 0) =
1

2
V0 +

8V0

π2

∞∑
odd n

∞∑
odd m

1

nm
sin
(nπx

a

)
sin
(mπy

b

)
e−knmz (48)

10.7 Cylindrical Coordinates
Rectangular coordinates are not always the right choice. Cylindrical, spherical, and other
choices are often needed. For cylindrical coordinates, the gradient and divergence are, from
Eqs. (9.24) and (9.15)

∇V = r̂
∂V

∂r
+ θ̂

1

r

∂V

∂θ
+ ẑ

∂V

∂z
and ∇ .~v =

1

r

∂(rvr)

∂r
+

1

r

∂vθ

∂θ
+
∂vz

∂z

Combine these to get the Laplacian in cylindrical coordinates.

∇ .∇V = ∇2V =
1

r

∂

∂r

(
r
∂V

∂r

)
+

1

r2
∂2V

∂θ2
+
∂2V

∂z2
(49)

For electrostatics, the equation remains ∇2V = 0, and you can approach it the same way as
before, using separation of variables. I’ll start with the special case for which everything is
independent of z. Assume a solution of the form V = f(r)g(θ), then

∇2V = g
1

r

∂

∂r

(
r
∂f

∂r

)
+ f

1

r2
∂2g

∂θ2
= 0
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Multiply this by r2 and divide by f(r)g(θ) to get

r

f

∂

∂r

(
r
∂f

∂r

)
+

1

g

∂2g

∂θ2
= 0

This is separated. The first terms depends on r alone, and the second term on θ alone. For
this to hold the terms must be constants.

r

f

d

dr

(
r
df

dr

)
= α and

1

g

d2g

dθ2
= −α (50)

The second equation, in θ, is familiar. If α is positive this is a harmonic oscillator, and that
is the most common way this solution is applied. I’ll then look at the case for α ≥ 0, for
which the substitution α = n2 makes sense.

α = 0 :
d2g

dθ2
= 0 =⇒ g(θ) = A+Bθ

r
d

dr

(
r
df

dr

)
= 0 =⇒ f(r) = C +D ln r

α = n2 > 0
d2g

dθ2
= −n2g =⇒ g(θ) = A cosnθ +B sinnθ

r2
d2f

dr2
+ r

df

dr
− n2f = 0 =⇒ f(r) = Crn +Dr−n

There’s not yet a restriction that n is an integer, though that’s often the case. Verifying the
last solution for f is easy.

A general solution that is the sum of all these terms is

V (r, θ) = (C0 +D0 ln r)(A0 +B0θ) +
∑
n

(Cnr
n +Dnr

−n)(An cosnθ +Bn sinnθ) (51)

Some of these terms should be familiar:
C0A0 is just a constant potential.
D0A0 ln r is the potential of a uniform line charge; d ln r/dr = 1/r, and that is the way that
the electric field drops off with distance from the axis.
C1A1r cos θ is the potential of a uniform field (as is the r sin θ term). Write this in the form
C1A1r cos θ = C1A1x, and the gradient of this is C1A1x̂. The sine gives ŷ.
See problem 24.

Example
A conducting wire, radius R, is placed in a uniform electric field ~E0, and perpendicular to
it. Put the wire along the z-axis and call the positive x-axis the direction that the field
points. That’s θ = 0. In the absence of the wire, the potential for the uniform field is
V = −E0x = −E0r cos θ, because −∇V = E0x̂. The total solution will be in the form of
Eq. (51).

Now turn the general form of the solution into a particular one for this problem. The
entire range of θ from 0 to 2π appears here; you can go all the way around the origin and
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come back to where you started. The potential is a function, meaning that it’s single valued,
and that eliminates B0θ. It also implies that all the n are integers. The applied field has
a potential that is even in θ. That means that you should expect the solution to be even
in θ too. Does it really? You also have to note that the physical system and its attendant
boundary conditions are even in θ — it’s a cylinder. Then too, the first few times that you
do this sort of problem you should see what happens to the odd terms; what makes them
vanish? I won’t eliminate the sin θ terms from the start, but I’ll calculate them and show
that they do vanish.

V (r, θ) = (C0 +D0 ln r)B0 +
∞∑

n=1

(Cnr
n +Dnr

−n)(An cosnθ +Bn sinnθ)

Carrying along all these products of (still unknown) factors such as DnAn is awkward. It
makes it look neater and it’s easier to follow if I combine and rename some of them.

V (r, θ) = C0 +D0 ln r +
∞∑

n=1

(Cnr
n +Dnr

−n) cosnθ +
∞∑

n=1

(C ′nr
n +D′

nr
−n) sinnθ (52)

As r → ∞, the potential looks like −E0r cos θ. That implies that Cn = 0 for n > 1, and
that C ′n = 0 for all n, and that C1 = −E0.

Now use the boundary conditions on the cylinder. It is a conductor, so in this static
case the potential is a constant all through it, in particular on the surface. I may as well
take that constant to be zero, though it doesn’t really matter.

V (R, θ) = 0 = C0 +D0 lnR +
∞∑

n=1

(CnR
n +DnR

−n) cosnθ +
∞∑

n=1

(C ′nR
n +D′

nR
−n) sinnθ

Multiply by sinmθ and integrate over θ. The trigonometric functions are orthogonal, so all
that survives is

0 = (C ′mR
m +D′

mR
−m)π all m ≥ 1

That gets rid of all the rest of the sine terms as promised: D′
m = 0 for all m because C ′m = 0

for all m. Now repeat for cosmθ.

0 = C0 +D0 lnR (m = 0) and 0 = (CmR
m +DmR

−m)π (m > 0)

All of the Cm = 0 for m > 1, so this says that the same applies to Dm. The m = 1 equation
determines D1 in terms of C1 and then E0.

D1 = −C1R
2 = +E0R

2

Only the C0 and D0 terms are left, and that requires another boundary condition. When I
specified the problem initially, I didn’t say whether or not there is any charge on the wire.
In such a case you could naturally assume that it is zero, but you have to say so explicitly
because that affects the final result. Make it zero. That kills the ln r term. The reason for
that goes back to the interpretation of this term. Its negative gradient is the electric field,
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and that would be −1/r, the field of a uniform line charge. If I assume there isn’t one, then
D0 = 0 and so the same for C0. Put this all together and

V (r, θ) = −E0r cos θ + E0
R2

r
cos θ (53)

The electric field that this presents is, from Eq. (9.24)

~E = −∇V = E0

(
r̂ cos θ − θ̂ sin θ

)
− E0R

2

(
−r̂ 1

r2
cos θ − θ̂ 1

r2
sin θ

)
= E0x̂+ E0

R2

r2
(
r̂ cos θ + θ̂ sin θ

)
As a check to see what this looks like, what is the electric field at the surface of the cylinder?

~E(R, θ) = E0

(
r̂ cos θ − θ̂ sin θ

)
− E0R

2

(
−r̂ 1

R2
cos θ − θ̂ 1

R2
sin θ

)
= 2E0r̂ cos θ

It’s perpendicular to the surface, as it should be. At the left and right, θ = 0, π, it is twice
as large as the uniform field alone would be at those points.



254 10—Partial Differential Equations

Problems

10.1 The specific heat of a particular type of stainless steel (CF8M) is 490 J/kg.K. Its
thermal conductivity is 13.5W/m.K and its density is 775 kg/m3. A slab of this steel 1.00 cm
thick is at a temperature 100◦C and it is placed into ice water. Assume the simplest boundary
condition that its surface temperature stays at zero, and find the internal temperature at
later times. When is the 2nd term in the series only 5% of the 1st? Sketch the temperature
distribution then, indicating the scale correctly.
metalcasting.auburn.edu/data/CF8M_Stainless_Steel/CF8MSS.html

10.2 In Eq. (13) I eliminated the n = 0 solution by a fallacious argument. What is α in
this case? This gives one more term in the sum, Eq. (14). Show that with the boundary
conditions stated, this extra term is zero anyway (this time).

10.3 In Eq. (14) you have the sum of many terms. Does it still satisfy the original differential
equation, Eq. (3)?

10.4 In the example Eq. (15) the final temperature was zero. What if the final temperature
is T1? Or what if I use the Kelvin scale, so that the final temperature is 273◦? Add the
appropriate extra term, making sure that you still have a solution to the original differential
equation and that the boundary conditions are satisfied.

10.5 In the example Eq. (15) the final temperature was zero on both sides. What if it’s zero
on only the side at x = 0 while the side at x = L stays at T0? What is the solution now?

Ans: T0x/L+ (2T0/π)
∑∞

1 (1/n) sin(nπx/L)e−n2π2Dt/L2

10.6 You have a slab of material of thickness L and at a uniform temperature T0. The side
at x = L is insulated so that heat can’t flow in or out of that surface. By Eq. (1), this tells
you that ∂T/∂x = 0 at that surface. Plunge the other side into ice water at temperature
T = 0 and find the temperature inside at later time. The boundary condition on the x = 0
surface is the same as in the example in the text, T (0, t) = 0. Separate variables and find the
appropriate separated solutions for these boundary conditions. Are the separated solutions
orthogonal? Use the techniques of Eq. (5.12). When the lowest order term has dropped to
where its contribution to the temperature at x = L is T0/2, how big is the next term in the
series? Sketch the temperature distribution in the slab at that time.

Ans: (4T0/π)
∑∞

0 (1/2n+1) sin
[
(n+ 1/2)πx/L

]
e−(n+1/2)2π2Dt/L2

, −9.43× 10−5T0

10.7 In the analysis leading to Eq. (26) the temperature at y = b was set to T0. If instead,
you have the temperature at x = a set to T0 with all the other sides at zero, write down the
answer for the temperature within the rod. Now use the fact that Eq. (21) is linear to write
down the solution if both the sides at y = b and x = a are set to T0.

10.8 In leading up to Eq. (25) I didn’t examine the third possibility for the separation
constant, that it’s zero. Do so.

http://metalcasting.auburn.edu/data/CF8M_Stainless_Steel/CF8MSS.html
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10.9 Look at the boundary condition of Eq. (22) again. Another way to solve this problem
is to use the solution for which the separation constant is zero, and to use it to satisfy the
conditions at y = 0 and y = b. You will then have one term in the separated solution that
is T0y/b, and that means that in Eq. (23) you will have to choose the separation variable to
be positive instead of negative. Why? Because now all the rest of the terms in the sum over
separated solutions must vanish at y = 0 and y = b. You’ve already satisfied the boundary
conditions on those surfaces by using the T0y/b term. Now you have to satisfy the boundary
conditions on x = 0 and x = a because the total temperature there must be zero. That
in turn means that the sum over all the rest of the separated terms must add to −T0y/b
at x = 0 and x = a. When you analyze this solution in the same spirit as the analysis of
Eq. (26), compare the convergence properties of that solution to your new one. In particular,
look at a� b and a� b to see which version converges better in each case.
Ans: T0y/b+ (2T0/π)

∑∞
1

[
(−1)n/n

]
sin(nπy/b) cosh

(
nπ(x− a/2)/b

)/
cosh(nπa/2b)

10.10 Finish the reanalysis of the electrostatic boundary value problem Eq. (45) starting
from Eq. (46). This will get the potential for z 6= 0 with perhaps less work than before.

10.11 Examine the solution Eq. (42) at z = 0 in the light of problem 5.11.

10.12 A thick slab of material is alternately heated and cooled at its surface so the its
surface temperature oscillates as

T (0, t) =

{
T1 (0 < t < t0)
−T1 (t0 < t < 2t0)

T (0, t+ 2t0) = T (0, t)

That is, the period of the oscillation is 2t0. Find the temperature inside the material, for
x > 0. How does this behavior differ from the solution in Eq. (20)?
Ans: 4T1

π

∑∞
k=0

(
1/(2k + 1)

)
e−βkx sin

(
(2k + 1)ωt− βkx)

)
10.13 Fill in the missing steps in finding the solution, Eq. (34).

10.14 A variation on the problem of the alternating potential strips in section 10.6. Place a
grounded conducting sheet parallel to the x-y plane at a height z = d above it. The potential
there is then V (x, y, z = d) = 0. Solve for the potential in the gap between z = 0 and z = d.
A suggestion: you may find it easier to turn the coordinate system over so that the grounded
sheet is at z = 0 and the alternating strips are at z = d. This switch of coordinates is in no
way essential, but it is a bit easier. Also, I want to point out that you will need to consider
the case for which the separation constant in Eq. (37) is zero.

10.15 Starting from Eq. (52), but assuming that the conducting wire is in an external
electric field E0ŷ instead of E0x̂, repeat the calculation for the potential and for the electric
field, filling in the details of the missing steps.
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10.16 A very long conducting cylindrical shell of radius R is split in two along lines parallel
to its axis. The two halves are wired to a circuit that places one half at potential V0 and the
other half at potential −V0. What is the potential everywhere inside the cylinder? Use the
results of the preceding problem and assume a solution of the form

V (r, θ) =
∞∑
0

rn
(
an cosnθ + bn sinnθ

)
V0

−V0

Match the boundary condition that

V (R, θ) =

{
V0 (0 < θ < π)
−V0 (π < θ < 2π)

I picked the axis for θ = 0 pointing toward the split between the cylinders. No particular
reason, but you have to make a choice. I make the approximation that the cylinder is
infinitely long so that z dependence doesn’t enter. Also, the two halves of the cylinder
almost touch so I’m neglecting the distance between them.
(b) What is the electric field, −∇V on the central axis? Is this answer more or less what
you would estimate before solving the problem? Ans: (b) E = 4V0/πR.

10.17 Solve the preceding problem outside the cylinder. The integer n can be either positive
or negative, and this time you’ll need the negative values. (And why must n be an integer?)
Ans: (4V0/π)

∑
n odd(1/n)(R/r)n sinnθ

10.18 In the split cylinder of problem 16, insert a coaxial wire of radius R0 < R. It is at
zero potential. Now what is the potential in the domain R0 < r < R? You will need both
the positive and negative n values,

∑
(Anr

n +Bnr
−n) sinnθ

Ans: (4V0/π)
∑

m odd sinmθ[−R−m
1 rm +Rm

1 r
−m]

/
m[R−mRm

1 −R
−m
1 Rm]

10.19 Fill in the missing steps in deriving Eq. (48).

10.20 Analyze how rapidly the solution Eq. (48) approaches a constant as z increases from
zero. Compare Eq. (44).

10.21 A broad class of second order linear homogeneous differential equations can, with
some manipulation, be put into the form (Sturm-Liouville)

(p(x)u′ )′ + q(x)u = λw(x)u

Assume that the functions p, q, and w are real, and use manipulations much like those
that led to the identity Eq. (5.12). Derive the analogous identity for this new differential
equation. When you use separation of variables on equations involving the Laplacian you
will typically come to an ordinary differential equation of exactly this form. The precise
details will depend on the coordinate system you are using as well as other aspects of the
PDE.
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10.22 Carry on from Eq. (31) and deduce the separated solution that satisfies these bound-
ary condition. Show that it is equivalent to Eq. (32).

10.23 The Laplacian in cylindrical coordinates is Eq. (49). Separate variables for the equa-
tion ∇2V = 0 and you will see that the equations in z and θ are familiar. The equation
in the r variable is less so, but you’ve seen it (almost) in Eqs. (4.18) and (4.22). Make a
change of variables in the r-differential equation, r = kr′, and turn it into exactly the form
described there.

10.24 In the preceding problem suppose that there’s no z-dependence. Look at the case
where the separation constant is zero for both the r and θ functions, finally assembling the
product of the two for another solution of the whole equation.
These results provide four different solutions, a constant, a function of r alone, a function
of θ alone, and a function of both. In each of these cases, assume that these functions are
potentials V and that ~E = −∇V is the electric field from each potential. Sketch equipoten-
tials for each case, then sketch the corresponding vector fields that they produce (a lot of
arrows).

10.25 Do problem 8.23 and now solve it, finding all solutions to the wave equation.
Ans: f(x− vt) + g(x+ vt)

10.26 Use the results of problem 24 to find the potential in the corner between two
very large metal plates set at right angles. One at potential zero, the other at po-
tential V0. Compute the electric field, −∇V and draw the results. Ans: −2V0θ̂/πr

10.27 A thin metal sheet has a straight edge for one of its boundaries. Another thin metal
sheet is cut the same way. The two straight boundaries are placed in the same plane and
almost, but not quite touching. Now apply a potential difference between them, putting
one at a voltage V0 and the other at −V0. In the region of space near to the almost touching
boundary, what is the electric potential? From that, compute and draw the electric field.

10.28 A slab of heat conducting material lies between coordinates x = −L and x = +L,
which are at temperatures T1 and T2 respectively. In the steady state (∂T/∂t ≡ 0), what
is the temperature distribution inside? Now express the result in cylindrical coordinates
around the z-axis and show how it matches the sum of cylindrical coordinate solutions of
∇2T = 0 from problem 15. What if the surfaces of the slab had been specified at y = −L
and y = +L instead?

10.29 The result of problem 16 has a series of terms that look like (xn/n) sinnθ (odd n).
You can use complex exponentials, do a little rearranging and factoring, and sum this series.
Along the way you will have to figure out what the sum z + z3/3 + z5/5 + · · · is. Refer to
section 2.7. Finally of course, the answer is real, and if you look hard you may find a simple
interpretation for the result. Be sure you’ve done problem 24 before trying this last step.
Ans: 2V0(θ1 + θ2)/π. You still have to decipher what θ1 and θ2 are.

10.30 Sum the series Eq. (27) to get a closed-form analytic expression for the temperature
distribution. You may find the techniques of section 5.6 useful.
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10.31 A generalization of the problem specified in Eq. (22). Now the four sides have tem-
peratures given respectively to be the constants T1, T2, T3, T4. Note: with a little bit of
foresight, you won’t have to work very hard at all to solve this.

10.32 Use the electrostatic equations from problem 9.21 and assume that the electric charge
density is given by ρ = ρ0a/r, where this is in cylindrical coordinates. What cylindrically

symmetric electric field comes from this charge distribution? (b) From ~E = −∇V what
potential function V do you get?

10.33 Repeat the preceding problem, but now interpret r as referring to spherical coordi-
nates. What is ∇2V ?

10.34 The Laplacian in spherical coordinates is Eq. (9.43). The electrostatic potential
equation is ∇2V = 0 just as before, but now take the special case of azimuthal symmetry so
the the potential function is independent of φ. Apply the method of separation of variables
to find solutions of the form f(r)g(θ). You will get two ordinary differential equations for f
and g. The second of these equations is much simpler if you make the change of independent
variable x = cos θ. Use the chain rule a couple of times to do so, showing that the two
differential equations are

(1− x2)
d2g

dx2
− 2x

dg

dx
+ Cg = 0 and r2

d2f

dr2
+ 2r

df

dr
− Cf = 0

10.35 For the preceding equations show that there are solutions of the form f(r) = Arn,
and recall the analysis in section 4.9 for the solutions for g. What values of the separation
constant C will allow solutions that are finite as x → ±1 (θ → 0, π)? What are the
corresponding functions of r? Don’t forget that there are two solutions to the second order
differential equation for f — two roots to a quadratic equation.

10.36 Write out the separated solutions to the preceding problem (the ones that are are
finite as θ approaches 0 or π) for the two smallest allowed values of the separation constant
C: 0 and 2. In each of the four cases, interpret and sketch the potential and its corresponding
electric field, −∇V . How do you sketch a potential? Draw equipotentials.

10.37 From the preceding problem you can have a potential, a solution of Laplace’s equation,
in the form

(
Ar +B/r2

)
cos θ. Show that by an appropriate choice of A and B, this has an

electric field that for large distances from the origin looks like E0ẑ, and that on the sphere
r = R the total potential is zero — a grounded, conducting sphere. What does the total
electric field look like for r > R; sketch some field lines. Start by asking what the electric
field is as r → R.

10.38 Similar to problem 16, but the potential on the cylinder is

V (R, θ) =

{
V0 (0 < θ < π/2 and π < θ < 3π/2)
−V0 (π/2 < θ < π and 3π/2 < θ < 2π)

Draw the electric field in the region near r = 0.

10.39 What is the area charge density on the surface of the cylinder where the potential is
given by Eq. (53)?



Numerical Analysis

You could say that some of the equations that you encounter in describing physical systems
can’t be solved in terms of familiar functions and that they require numerical calculations to
solve. It would be misleading to say this however, because the reality is quite the opposite.
Most of the equations that describe the real world are sufficiently complex that your only
hope of solving them is to use numerical methods. The simple equations that you find in
introductory texts are there because they can be solved in terms of elementary calculations.
When you start to add reality, you quickly reach a point at which no amount of clever
analytical ability will get you a solution. That becomes the subject of this chapter. In all of
the examples that I present I’m just showing you a taste of the subject, but I hope that you
will see the essential ideas of how to extend the concepts.

11.1 Interpolation
Given equally spaced tabulated data, the problem is to find a value between the tabulated
points, and to estimate the error in doing so. As a first example, to find a value midway
between given points use a linear interpolation:

f(x0 + h/2) ≈ 1

2

[
f(x0) + f(x0 + h)

]
.

This gives no hint of the error. To compute an error estimate, it is convenient to transform
the variables so that this equation reads

f(0) ≈ 1

2

[
f(k) + f(−k)

]
,

where the interval between data points is now 2k. Use a power series expansion of f to find
the error.

f(k) = f(0) + kf ′(0) +
1

2
k2f ′′(0) + · · ·

f(−k) = f(0)− kf ′(0) +
1

2
k2f ′′(0) + · · ·

Then
1

2

[
f(k) + f(−k)

]
≈ f(0) +

[1
2
k2f ′′(0)

]
, (1)

where the last term gives an estimate of the error:

error = estimate − exact = +k2f ′′(0)/2 = +h2f ′′(0)/8

As an example, interpolate the function f(x) = 2x between 0 and 1. Here h = 1.

21/2 ≈ 1

2

[
20 + 21

]
= 1.5

The error term is
error ≈ (ln 2)22x/8 for x = .5

= (.693)2(1.5)/8 = .090,

259
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and of course the true error is 1.5− 1.414 = .086
You can write a more general interpolation method for an arbitrary point between x0

and x0 + h. The solution is a simple extension of the above result.
The line passing through the two points of the graph is

y − f0 = (x− x0)(f1 − f0)/h,

x0 x1

f0 = f(x0), f1 = f(x0 + h).

At the point x = x0 + ph you have

y = f0 + (ph)(f1 − f0)/h = f0(1− p) + f1p.

As before, this approach doesn’t suggest the error, but again, the Taylor series allows you
to work it out to be

[
h2p(1− p)f ′′(x0 + ph)/2

]
.

The use of only two points to do an interpolation ignores the data available in the rest
of the table. By using more points, you can greatly improve the accuracy. The simplest
example of this method is the 4-point interpolation to find the function halfway between the
data points. Again, the independent variable has an increment h = 2k, so the problem can
be stated as one of finding the value of f(0) given f(±k) and f(±3k).

−3k −k 0 k 3k

f(k) = f(0) + kf ′(0) +
1

2
k2f ′′(0) +

1

6
k3f ′′′(0) + · · · . (2)

I want to isolate f(0) from this, so take

f(k) + f(−k) = 2f(0) + k2f ′′(0) +
1

12
k4f ′′′′(0) + · · ·

f(3k) + f(−3k) = 2f(0) + 9k2f ′′(0) +
81

12
k4f ′′′′(0) + · · · .

The biggest term after the f(0) is in k2f ′′(0), so I’ll eliminate this.

[
f(3k) + f(−3k)

]
− 9
[
f(k)− f(−k)

]
≈ −16f(0) +

[
81

12
− 9

12

]
k4f ′′′′(0)

f(0) ≈ 1

16

[
− f(−3k) + 9f(−k) + 9f(k)− f(3k)

]
−
[
− 3

8
k4f ′′′′(0)

]
. (3)

The error estimate is then −3h4f ′′′′(0)/128.
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To apply this, take the same example as before, f(x) = 2x at x = .5

21/2 ≈ 1

16

[
−2−1 + 9 . 20 + 9 . 21 − 22

]
=

45

32
= 1.40625,

and the error is 1.40625−1.41421 = −.008, a tenfold improvement over the previous interpo-
lation despite the fact that the function changes markedly in this interval and you shouldn’t
expect interpolation to work very well here.

11.2 Solving equations
Example: sinx− x/2 = 0

From the first graph, the equation clearly has three real solutions, but finding them is
the problem. The first method for solving f(x) = 0 is Newton’s method. The basic idea is
that over a small enough region, everything is more or less linear. This isn’t true of course,
so don’t be surprised that this method doesn’t always work.

x1

x0

From the second graph, observe that if x0 is taken as a first approximation to the root of
f , the straight line tangent to the curve can be used to calculate an improved approximation.
The equation of this line is

y − f(x0) = f ′(x0)(x− x0).

The root of this line is y = 0, with solution

x = x0 − f(x0)/f
′(x0).

Call this solution x1. You can use this in an iterative procedure to find

x2 = x1 − f(x1)/f
′(x1), (4)

and in turn x3 is defined in terms of x2 etc.
Example: Solve sin x−x/2 = 0. From the graph, a plausible guess for a root is x0 = 2.

x1 = x0 − (sinx0 − x0/2)/(cosx0 − 1/2)

= 1.900995594 f(x1) = .00452

x2 = x1 − (sinx1 − x1/2)/(cosx1 − 1/2)

= 1.895511645 f(x2) = −.000014

x3 = x2 − (sinx2 − x2/2)/(cosx2 − 1/2)

= 1.895494267 f(x3) = 2× 10−10

Such iterative procedures are ideal for use on a computer, but use them with caution,
as a simple example shows:

f(x) = x1/3.
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Instead of the root x = 0, the iterations in this first graph carry the supposed solution
infinitely far away. This happens here because the higher derivatives neglected in the straight
line approximation are large near the root.

A milder form of non-convergence can occur if at the root the curvature changes sign
and is large, as in the second graph. This can lead to a limit cycle where the iteration simply
oscillates from one side of the root to the other without going anywhere. As I said earlier
this doesn’t always work.

A non-graphical derivation of this method starts from a Taylor series: If z0 is an
approximate root and z0 + ε is a presumed exact root, then

f(z0 + ε) = 0 = f(z0) + εf ′(z0) + · · · .

Neglecting higher terms then,

ε = −f(z0)/f
′(z0), and z1 = z0 + ε = z0 − f(z0)/f

′(z0), (5)

as before. I use z instead of x this time to remind you that this method is just as valid for
complex functions as for real ones (and has as many pitfalls).

There is a simple variation on Newton’s method that can be used to speed convergence
where it is poor or to bring about convergence where the technique would otherwise break
down.

x1 = x0 − wf(x0)/f
′(x0). (6)

W is a factor that can be chosen greater than one to increase the correction or less than
one to decrease it. Which one to do is more an art than a science (1.5 and 0.5 are common
choices). You can easily verify that any choice of w between 0 and 2/3 will cause convergence
for the solution of x1/3 = 0. You can also try this method on the solution of f(x) = x2 = 0.
A straight-forward Newton method will certainly converge, but with painful slowness. The
choice of w > 1 improves this considerably.

When Newton’s method works well, it will typically double the number of significant
figures at each iteration.

A drawback to Newton’s method is that it requires knowledge of f ′(x), and that may
not be simple. An alternate approach that avoids this starts from the picture in which a
secant through the curve is used in place of a tangent at a point.
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Given f(x1) and f(x2), construct a straight line

y − f(x2) =

[
f(x2)− f(x1)

x2 − x1

]
(x− x2).

x1 x2

This has its root at y = 0, or

x = x2 − f(x2)
x2 − x1

f(x2)− f(x1)
. (7)

This root is taken as x3 and the method is iterated, substituting x2 and x3 for x1 and x2.
As with Newton’s method, when it works, it works very well, but you must look out for the
same type of non-convergence problems. This is called the secant method.

11.3 Differentiation
Given tabular or experimental data, how can you compute its derivative?

Approximating the tangent by a secant, a good estimate for the derivative of f at the
midpoint of the (x1, x2) interval is

[
f(x2)− f(x1)

]
/(x2 − x1)

As usual, the geometric approach doesn’t indicate the size of the error, so it’s back to Taylor’s
series.

Given data at points x = 0, ±h, ±2h, . . . . I want the derivative f ′(0).

f(h) = f(0) + hf ′(0) +
1

2
h2f ′′(0) +

1

6
h3f ′′′(0) + · · ·

f(−h) = f(0)− hf ′(0) +
1

2
h2f ′′(0)− 1

6
h3f ′′′(0) + · · ·

In order to isolate the term in f ′(0), it’s necessary to eliminate the larger term f(0), so
subtract:

f(h)− f(−h) = 2hf ′(0) +
1

3
h3f ′′′(0) + · · · ,

giving
1

2h

[
f(h)− f(−h)

]
≈ f ′(0) +

[1
6
h2f ′′′(0)

] (8)

and the last term, in brackets, estimates the error in the straight line approximation.
The most obvious point about this error term is that it varies as h2, and so indicates

by how much the error should decrease as you decrease the size of the interval. (How to
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estimate the factor f ′′′(0) I’ll come to presently.) This method evaluates the derivative at
one of the data points; you can make it more accurate if you evaluate it between the points,
so that the distance from where the derivative is being taken to where the data is available
is smaller. As before, let h = 2k, then

1

2k

[
f(k)− f(−k)

]
= f ′(0) +

1

6
k2f ′′′(0) + · · · ,

or, in terms of h with a shifted origin,

1

h

[
f(h)− f(0)

]
≈ f ′(h/2) +

1

24
h2f ′′′

(h
2

)
, (9)

and the error is only 1/4 as big.
As with interpolation methods, you can gain accuracy by going to higher order in the

Taylor series,

f(h)− f(−h) = 2hf ′(0) +
1

3
h3f ′′′(0) +

1

60
h5fv(0) + · · ·

f(2h)− f(−2h) = 4hf ′(0) +
8

3
h3f ′′′(0) +

32

60
h5fv(0) + · · · .

To eliminate the largest source of error, the h3 term, multiply the first equation by 8 and
subtract the second.

8
[
f(h)− f(−h)

]
−
[
f(2h)− f(−2h)

]
= 12hf ′(0)− 24

60
h5fv(0) + · · · ,

or

f ′(0) ≈ 1

12h

[
f(−2h)− 8f(−h) + 8f(h)− f(2h)

]
−
[
− 1

30
h4fv(0)

]
. (10)

with an error term of order h4.
As an example of this method, let f(x) = sinx and evaluate the derivative at x = 0.2

by the 2-point formula and the 4-point formula with h=0.1:

2-point:
1

0.2
[0.2955202− 0.0998334] = 0.9784340

4-point:
1

1.2
[0.0− 8× 0.0998334 + 8× 0.2955202− 0.3894183]

= 0.9800633

cos 0.2 = 0.9800666

Again, you have a more accurate formula by evaluating the derivative between the
data points: h = 2k

f(k)− f(−k) = 2kf ′(0) +
1

3
k3f ′′′(0) +

1

60
k5fv(0)

f(3k)− f(−3k) = 6kf ′(0) +
27

3
k3f ′′′(0) +

243

60
k5fv(0)

27
[
f(k)− f(−k)

]
−
[
f(3k)− f(−3k)

]
= 48kf ′(0)− 216

60
k5fv(0).
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Changing k to h/2 and translating the origin gives

1

24h

[
f(−h)− 27f(0) + 27f(h)− f(2h)

]
= f ′(h/2)− 3

640
h4fv(h/2), (11)

and the coefficient of the error term is much smaller.
The previous example of the derivative of sinx at x = 0.2 with h = 0.1 gives, using

this formula:

1

2.4
[0.0499792− 27× 0.1494381 + 27× 0.2474040− 0.3428978] = 0.9800661,

and the error is less by a factor of about 7.
You can find higher derivatives the same way.

f(h) = f(0) + hf ′(0) +
1

2
h2f ′′(0) +

1

6
h3f ′′′(0) +

1

24
h4f ′′′′(0)

f(h) + f(−h) = 2f(0) + h2f ′′(0) +
1

12
h4f ′′′′(0) + · · ·

f ′′(0) =
f(−h)− 2f(0) + f(h)

h2
− 1

12
h2f ′′′′(0) + · · · (12)

Notice that the numerical approximation for f ′′(0) is even in h because the second derivative
is unchanged if x is changed to −x.

You can get any of these expressions for higher derivatives recursively, though finding
the error estimates requires the series method. The above expression for f ′′(0) can be viewed
as a combination of first derivative formulas:

f ′′(0) ≈
[
f ′(h/2)− f ′(−h/2)

]
/h

≈ 1

h

[
f(h)− f(0)

h
− f(0)− f(−h)

h

]
=
[
f(h)− 2f(0) + f(−h)

]
/h2. (13)

Similarly, the third and higher derivatives can be computed. The numbers that appear in
these numerical derivatives are simply the binomial coefficients, Eq. (2.16).

11.4 Integration
The basic definition of an integral is a limit of the sum,

ξ1 ξ2 ξ3 ξ4 ξ5

∑
f(ξi)(xi+1 − xi) (xi ≤ ξi ≤ xi+1), (14)

and this is the basis for the numerical evaluation of any integral, as in section 1.6.
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The simplest choices to evaluate the integral of f(x) over the domain x0 to x0 + h
would be to take the position of ξ at one of the endpoints or maybe in the middle (here I
assume h is small).∫ x0+h

x0

f(x) dx ≈f(x0)h (a)

or f(x0 + h)h (b)

or f(x0 + h/2)h (midpoint rule) (c)

or
[
f(x0) + f(x0 + h)

]
h/2 (trapezoidal rule) (d)

(15)

The last expression is the average of the first two.
I can now compare the errors in all of these approximations. Set x0 = 0.∫ h

0
dx f(x) =

∫ h

0
dx
[
f(0) + xf ′(0) +

1

2
x2f ′′(0) +

1

6
x3f ′′′(0) + · · ·

]
= hf(0) +

1

2
h2f ′(0) +

1

6
h3f ′′(0) +

1

24
h4f ′′′(0) + · · · .

This immediately gives the error in formula (a):

error (a) = hf(0)−
∫ h

0
dx f(x) ≈ −1

2
h2f ′(0). (16)

The error for expression (b) requires another expansion,

error (b) = hf(h)−
∫ h

0
dx f(x)

= h
[
f(0) + hf ′(0) + · · ·

]
−
[
hf(0) +

1

2
h2f ′(0) + · · ·

]
≈ 1

2
h2f ′(0). (17)

Since this is the opposite sign from the previous error, it is immediately clear that the error
in (d) will be less, because (d) is the average of (a) and (b).

error (d) =
[
f(0) + f(0) + hf ′(0) +

1

2
h2f ′′(0) + · · ·

]h
2

−
[
hf(0) +

1

2
h2f ′(0) +

1

6
h3f ′′(0) + · · ·

]
≈
(

1

4
− 1

6

)
h3f ′′(0) =

1

12
h3f ′′(0). (18)

Similarly, the error in (c) is

error (c) = h
[
f(0) +

1

2
hf ′(0) +

1

8
h2f ′′(0) + · · ·

]
−
[
hf(0) +

1

2
h2f ′(0) +

1

6
h2f ′′(0) + · · ·

]
≈ − 1

24
h3f ′′(0). (19)
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The errors in the (c) and (d) formulas are both therefore the order of h3.
Notice that just as the errors in formulas (a) and (b) canceled to highest order when

you averaged them, the same thing can happen between formulas (c) and (d). Here however
you need a weighted average, with twice as much of (c) as of (d). [1/12− 2/24 = 0]

1

3
(d) +

2

3
(c) =

[
f(x0) + f(x0 + h)

]h
6

+ f
(
x0 + h/2

)4
6
h. (20)

This is known as Simpson’s rule.

Simpson’s Rule
Before applying this last result, I’ll go back and derive it in a more systematic way, putting
it into the form you’ll see most often.

Integrate Taylor’s expansion over a symmetric domain to simplify the algebra:∫ h

−h
dx f(x) = 2hf(0) +

2

6
h3f ′′(0) +

2

120
h5f ′′′′(0) + · · · . (21)

I’ll try to approximate this by a three point formula αf(−h)+βf(0)+γf(h) where α, β, and
γ, are unknown. Because of the symmetry of the problem, you can anticipate that α = γ,
but let that go for now and it will come out of the algebra.

αf(−h) + βf(0) + γf(h) =

α
[
f(0)− hf ′(0) +

1

2
h2f ′′(0)− 1

6
h3f ′′′(0) +

1

24
h4f ′′′′(0) + · · ·

]
+βf(0)

+γ
[
f(0) + hf ′(0) +

1

2
h2f ′′(0) +

1

6
h3f ′′′(0) +

1

24
h4f ′′′′(0) + · · ·

]
You now determine the three constants by requiring that the two series for the same

integral agree to as high an order as is possible for any f.

2h = α+ β + γ

0 = −αh+ γh

1

3
h3 =

1

2
(α+ γ)h2

=⇒ α = γ = h/3, β = 4h/3

and so,

∫ h

−h
dx f(x) ≈ h

3

[
f(−h) + 4f(0) + f(h)

]
. (22)

The error term (the “truncation error”) is

h

3

[
f(−h)+4f(0)+f(−h)

]
−
∫ h

−h
dx f(x) ≈ 1

12
. 1

3
h5f ′′′′(0)− 1

60
h5f ′′′′(0) =

1

90
h5f ′′′′(0). (23)

Simpson’s rule is exact up through cubics, because the fourth and higher derivatives
vanishes in that case. It’s worth noting that there is also an elementary derivation of Simp-
son’s rule: Given three points, there is a unique quadratic in x that passes through all of
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them. Take the three points to be
(
−h, f(−h)

)
,
(
0, f(0)

)
, and

(
h, f(h)

)
, then integrate the

resulting polynomial. Express your answer for the integral in terms of the values of f at the
three points, and you get the above Simpson’s rule. This has the drawback that it gives no
estimate of the error.

To apply Simpson’s rule, it’s necessary to divide the region of integration into an even
number of pieces and apply the above formula to each pair.∫ b

a
dx f(x) ≈ h

3

[
f(x0) + 4f(x1) + f(x2)

]
+
h

3

[
f(x2) + 4f(x3) + f(x4)

]
+ · · ·

+
h

3

[
f(xN−2) + 4f(xN−1) + f(xN )

]
=
h

3

[
f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 4f(xN−1) + f(xN )

]
(24)

Example: ∫ 1

0

4

1 + x2
dx = 4 tan−1 x

∣∣∣∣1
0

= π

Divide the interval 0 to 1 into four pieces, then∫ 1

0

4

1 + x2
dx ≈ 4

12

[
1 + 4

1

1 + (1/4)2
+ 2

1

1 + (1/2)2
+ 4

1

1 + (3/4)2
+

1

1 + 1

]
= 3.1415686

as compared to π = 3.1415927 . . ..
When the function to be integrated is smooth, this gives very accurate results.

Gaussian Integration
If the integrand is known at all points of the interval and not just at discrete locations as
for tabulated or experimental data, there is more freedom that you can use to gain higher
accuracy even is you use only a two point formula:∫ h

−h
f(x) dx ≈ α

[
f(β) + f(−β)

]
.

I could try picking two arbitrary points, not symmetrically placed, in the interval, but the
previous experience with Simpson’s rule indicates that the result will come out as indicated.
(Though it’s easy to check what happens if you pick two general points in the interval.)

2hf(0) +
1

3
h3f ′′(0) +

1

60
h5f ′′′′(0) + · · · = α

[
2f(0) + β2f ′′(0) +

1

12
β4f ′′′′(0) + · · ·

]
To make this an equality through the low orders implies

or
2h = 2α

α = h

1

3
h3 = αβ2

β = h/
√

3.
(25)

with an error term

1

12
. 1

9
h5f ′′′′(0)− 1

60
h5f ′′′′(0) = − 1

135
h5f ′′′′(0),
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and ∫ h

−h
f(x) dx ≈ h

[
f
(
h
/√

3
)

+ f
(
−h
/√

3
)]
−
[
− 1

135
h5f ′′′′(0)

]
(26)

With only two points, this expression yields an accuracy equal to the three point Simpson
formula.

Notice that the two points found in this way are roots of a certain quadratic(
x− 1√

3

)(
x+

1√
3

)
= x2 − 1/3,

which is proportional to
3

2
x2 − 1

2
= P2(x), (27)

the Legendre polynomial of second order.
This approach to integration, known as Gaussian integration, or Gaussian quadrature,

can be extended to more points, as for example∫ h

−h
f(x) dx ≈ αf(−β) + γf(0) + αf(β).

The same expansion procedure leads to the result

h

9

[
5f

(
−h
√

3

5

)
+ 8f(0) + f

(
h

√
3

5

)]
, (28)

with an error proportional to h7f (6)(0). The polynomial with roots 0,±
√

3/5 is

5

2
x3 − 3

2
x = P3(x), (29)

the third order Legendre polynomial.

For an integral
∫ b
a f(x) dx, let x = [(a + b)/2] + z[(b − a)/2]. Then for the domain

−1 < z < 1, x covers the whole integration interval.∫ b

a
f(x) dx =

b− a
2

∫ 1

−1
dz f(x)

When you use an integration scheme such as Gauss’s, it is in the form of a weighted sum
over points. The weights and the points are defined by equations such as (26) or (28).∫ 1

−1
dz f(z) →

∑
k

wkf(zk) (30)

or

∫ b

a
f(x) dx =

b− a
2

∑
k

wkf(xk), xk = [(a+ b)/2] + zk[(b− a)/2]



270 11—Numerical Analysis

Many other properties of Gaussian integration are discussed in the two books by
C. Lanczos, “Linear Differential Operators,” “Applied Analysis,” both available in Dover
reprints. The general expressions for the integration points as roots of Legendre polynomials
and expressions for the coefficients are there. The important technical distinction he points
out between the Gaussian method and generalizations of Simpson’s rule involving more
points is in the divergences for large numbers of points. Gauss’s method does not suffer from
this defect. In practice, there is rarely any problem with using the ordinary Simpson rule as
indicated above, though it will require more points than the more elegant Gauss’s method.
When problems do arise with either of these methods, they often occur because the function
is ill-behaved, and the high derivatives are very large. In this case it can be more accurate
to use a method with a lower order derivative for the truncation error.

11.5 Differential Equations
To solve the first order differential equation

y′ = f(x, y) y(x0) = y0, (31)

the simplest algorithm is Euler’s method. The initial conditions are y(x0) = y0, and y′(x0) =
f(x0, y0), and a straight line extrapolation is

y(x0 + h) = y0 + hf(x0, y0). (32)

You can now iterate this procedure using this newly found value of y as a new starting
condition to go from x0 + h to x0 + 2h.

Runge-Kutta
Euler’s method is not very accurate. For an improvement, change from a straight line
extrapolation to a parabolic one. Take x0 = 0 to keep the algebra down, and try a solution
near 0 in the form y(x) = α+βx+γx2; evaluate α, β, and γ so that the differential equation
is satisfied near x = 0,

y′ = β + 2γx = f(x, α+ βx+ γx2).

Recall the Taylor series expansion for a function of two variables, section 2.5:

f(x, y) = f(x0, y0) + (x− x0)D1f(x0, y0)+(y − y0)D2f(x0, y0) +
1

2
(x− x0)

2D1D1f(x0, y0)

+
1

2
(y − y0)2D2D2f(x0, y0) + (x− x0)(y − y0)D1D2f(x0, y0) + · · · (33)

=⇒ β + 2γx = f(0, α) + xD1f(0, α) + (βx+ γx2)D2f(0, α) + · · · . (34)

The initial condition is at x = 0, y = y0, so α = y0. Equate coefficients of powers of x as
high as is possible (here through x1).

β = f(0, α) 2γ = D1f(0, α) + βD2f(0, α).

(If you set γ = 0, this is Euler’s method.)

y(h) = y0 + hf(0, y0) +
h2

2

[
D1f(0, y0) + f(0, y0)D2f(0, y0)

]
. (35)
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The next problem is to evaluate these derivatives. If you can easily do them analyti-
cally, you can choose to do that. Otherwise, since they appear in a term that is multiplied
by h2, it is enough to use the simplest approximation for the numerical derivative,

D1f(0, y0) =
[
f(h, y0)− f(0, y0)

]
/h. (36)

You cannot expect to use the same interval, h, for the y variable — it might not even have
the same dimensions,

D2f(0, y0) =
[
f(j, y0 + k)− f(j, y0)

]
/k. (37)

where j and k are the order of h. Note that because this term appears in an expression
multiplied by h2, it doesn’t matter what j is. You can choose it for convenience. Possible
values for these are

(1) j = 0 k = hf(0, y0)

(2) j = 0 k = hf(h, y0)

(3) j = h k = hf(0, y0)

(4) j = h k = hf(h, y0).

The third of these choices for example gives

y = y0 + hf(0, y0) +
h2

2

[
1

h

[
f(h, y0)− f(0, y0)

]
+ f(0, y0)

f(h, y0 + k)− f(h, y0)

hf(0, y0)

]
= y0 +

h

2
f(0, y0) +

h

2
f
(
h, y0 + hf(0, y0)

)
. (38)

This procedure, a second order Runge-Kutta method, is a moderately accurate method for
advancing from one point to the next in the solution of a differential equation. It requires
evaluating the function twice for each step of the iteration.
Example: y′ = 1 + y2 y(0) = 0. Let h=0.1

x y(Euler) y(RK2) tan x
0. 0. 0. 0.
0.1 0.10 0.10050 0.10053
0.2 0.20100 0.20304 0.20271
0.3 0.30504 0.30981 0.30934
0.4 0.41435 0.42341 0.42279
0.5 0.53151 0.54702 0.54630 (39)

The error at x = 0.5 with RK2 is 0.13% and with Euler it is 2.7%. A commonly used version
of this is the fourth order Runge-Kutta method:

y = y0 +
1

6

[
k1 + 2k2 + 2k3 + k4

]
(40)

k1 = hf
(
0, y0

)
k3 = hf

(
h/2, y0 + k2/2

) k2 = hf
(
h/2, y0 + k1/2

)
k4 = hf

(
h, y0 + k3

)
.
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You can look up a fancier version of this called the Runge-Kutta-Fehlberg method. It’s one
of the better techniques around.

Higher Order Equations
How can you use either the Euler or the Runge-Kutta method to solve a second order
differential equation? Answer: Turn it into a pair of first order equations.

y′′ = f(x, y, y′) −→ y′ = v, and v′ = f(x, y, v) (41)

The Euler method, Eq. (32) becomes

y(x0 + h) = y(x0) + hv(x0), and v(x0 + h) = v(x0) + hf
(
x0, y(x0), v(x0)

)
The construction for Runge-Kutta is essentially the same.

Adams Methods
The Runge-Kutta algorithm has the advantage that it is self-starting; it requires only the
initial condition to go on to the next step. It has the disadvantage that it is inefficient. In
going from one step to the next, it ignores all the information available from any previous
steps. The opposite approach leads to the Adams methods, though these are not as com-
monly used any more. I’m going to develop a little of the subject mostly to show that the
methods that I’ve used so far can lead to disaster if you’re not careful.

Shift the origin to be the point at which you want the new value of y. Assume that
you already know y at −h, −2h, . . . , −Nh. Because of the differential equation y′ = f(x, y),
you also know y′ at these points.

Assume

y(0) =
N∑
1

αky(−kh) +
N∑
1

βky
′(−kh). (42)

With 2N parameters, you can get this accurate to order h2N−1,

y(−kh) =
∞∑
0

(−kh)ny
(n)(0)

n!
.

Substitute this into the equation for y(0):

y(0) =
N∑

k=1

αk

∞∑
n=0

(−kh)ny
(n)(0)

n!
+ h

N∑
k=1

βk

∞∑
n=0

(−kh)ny
(n+1)(0)

n!
.

This should be an identity to as high an order as possible. The coefficient of h0 gives

1 =
N∑

k=1

αk. (43)
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The next orders are

0 =
∑

k

αk(−kh) + h
∑

k

βk

0 =
∑

k

1

2
αk(−kh)2 + h

∑
k

βk(−kh)

... (44)

N = 1 is Euler’s method again.
N = 2 gives

α1 + α2 = 1

α1 + 4α2 = 2(β1 + 2β2)

α1 + 2α2 = β1 + β2

α1 + 8α2 = 3(β1 + 4β2).

The solution of these equations is

α1 = −4 α2 = +5 β1 = +4 β2 = +2

y(0) = −4y(−h) + 5y(−2h) + h
[
4y′(−h) + 2y′(−2h)

]
. (45)

To start this algorithm off, two pieces of information are needed: the values of y at −h and
at −2h. This is in contrast to Runge-Kutta, which needs only one point.

Example: Solve y′ = y y(0) = 1 (h = 0.1)
I could use Runge-Kutta to start and then switch to Adams as soon as possible. For the
purpose of this example, I’ll just take the exact value of y at x = 0.1.

e.1 = 1.105170918

y(.2) = −4y(.1) + 5y(0) + .1
[
4f
(
.1, y(.1)

)
+ 2f

(
0, y(0)

)]
= −4y(.1) + 5y(0) + .4y(.1) + .2y(0)

= −3.6y(.1) + 5.2y(0)

= 1.221384695

The exact value is e.2 = 1.221402758; the first error is in the underlined term. Continuing
the calculation to higher values of x,

x y
.3 1.3499038
.4 1.491547
.5 1.648931
.6 1.81988
.7 2.0228
.8 2.1812
.9 2.666

1.0 1.74
1.1 7.59
1.2 −18.26
1.3 105.22 0. .5 1.
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Everything is going very smoothly for a while, though the error is creeping up. At
around x = 1, the numerical solution goes into wild oscillation and is completely unstable.
The reason for this is in the coefficients −4 and +5 of y(−h) and y(−2h). Small errors are
magnified by these large factors. (The coefficients of y′ are not any trouble because of the
factor h in front.)

Instability
You can compute the growth of this error explicitly in this simple example. The equation
(45) together with y′ = y is

y(0) = −3.6y(−h) + 5.2y(−2h),

or in terms of an index notation

yn = −3.6yn−1 + 5.2yn−2.

This is a linear, constant coefficient, difference equation, and the method for solving it is
essentially the same as for a linear differential equation — assume an exponential form
yn = kn.

kn = −3.6kn−1 + 5.2kn−2

k2 + 3.6k − 5.2 = 0

k = 1.11 and − 4.71

Just as with the differential equation, the general solution is a linear combination of these
two functions of n:

yn = A(1.11)n +B(−4.71)n,

where A and B are determined by two conditions, typically specifying y1 and y2. If B = 0,
then yn is proportional to 1.11n and it is the well behaved exponential solution that you
expect. If, however, there is even a little bit of B present (perhaps because of roundoff
errors), that term will eventually dominate and cause the large oscillations. If B is as small
as 10−6, then when n = 9 the unwanted term is greater than 1.

When I worked out the coefficients in Eq. (45) the manipulations didn’t look all that
different from those leading to numerical derivatives or integrals, but the result was useless.
This is a caution. You’re in treacherous territory here; tread cautiously.

Are Adams-type methods useless? No, but you have to modify the development in
order to get a stable algorithm. The difficulty in assuming the form

y(0) =
N∑
1

αky(−kh) +
N∑
1

βky
′(−kh)

is that the coefficients αk are too large. To cure this, you can give up some of the 2N degrees
of freedom that the method started with, and pick the αk a priori to avoid instability. There
are two common ways to do this, consistent with the constraint that must be kept on the
α’s,

N∑
k=1

αk = 1.
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One way is to pick all the αk to equal 1/N . Another way is to pick α1 = 1 and all the
others = 0, and both of these methods are numerically stable. The book by Lanczos in
the bibliography goes into these techniques, and there are tabulations of these and other
methods in Abramowitz and Stegun.

Backwards Iteration
Before leaving the subject, there is one more kind of instability that you can encounter. If
you try to solve y′′ = +y with y(0) = 1 and y′(0) = −1, the solution is e−x. If you use any
stable numerical algorithm to solve this problem, it will soon deviate arbitrarily far from the
desired one. The reason is that the general solution of this equation is y = Aex + Be−x.
Any numerical method will, through rounding errors, generate a little bit of the undesired
solution, e+x. Eventually, this must overwhelm the correct solution. No algorithm, no matter
how stable, can get around this.

There is a clever trick that sometimes works in cases like this: backwards iteration.
Instead of going from zero up, start at some large value of x and iterate downward. In this
direction it is the desired solution, e−x, that is unstable, and the e+x is damped out. Pick
an arbitrary value, say x = 10, and assign an arbitrary value to y(10), say 0. Next, pick
an arbitrary value for y′(10), say 1. Use these as initial conditions (terminal conditions?)
and solve the differential equation moving left; necessarily the dominant term will be the
unstable one, e−x, and independent of the choice of initial conditions, it will be the solution.
At the end it is only necessary to multiply all the terms by a scale factor to reduce the value
at x = 0 to the desired one; automatically, the value of y′(0) will be correct. What you are
really doing by this method is to replace the initial value problem by a two point boundary
value problem. You require that the function approach zero for large x.

11.6 Fitting of Data
If you have a set of data in the form of independent and dependent variables {xi, yi} (i =
1, . . . , N), and you have proposed a model that this data is to be represented by a linear
combination of some set of functions, fµ(x)

y =
M∑

µ=1

αµfµ(x), (46)

what values of αµ will represent the observations in the “best” way? There are several
answers to this question depending on the meaning of the word “best.” The most commonly
used one, largely because of its simplicity, is Gauss’s method of least squares.

Here there areN data and there areM functions that I will use to fit the data. You have
to pick the functions for yourself. You can choose them because they are the implications of
a theoretical calculation; you can choose them because they are simple; you can choose them
because your daily horoscope suggested them. The sum of functions,

∑
αµfµ, now depends

only on the M parameters αµ. The fs are fixed. The difference between this sum and the
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data points yi is what you want to be as small as possible. You can’t use the differences
themselves because they will as likely be negative as positive. The least squares method uses
the sum of the squares of the differences between your sum of functions and the data. This
criterion for best fit is that the sum

N∑
i=1

yi −
M∑

µ=1

αµfµ(xi)

2

= Nσ2 (47)

be a minimum. The mean square deviation of the theory from the experiment is to be least.
This quantity σ2 is called the variance.

Some observations to make here: N ≥M , for otherwise there are more free parameters
than data to fit them, and almost any theory with enough parameters can be forced to fit
any data. Also, the functions fµ must be linearly independent; if not, then you can throw
away some and not alter the result — the solution is not unique. A further point: there is
no requirement that all of the xi are different; you may have repeated the measurements at
some points.

Minimizing this is now a problem in ordinary calculus with M variables.

∂

∂αν

N∑
i=1

yi −
M∑

µ=1

αµfµ(xi)

2

= −2
∑

i

[
yi −

∑
µ

αµfµ(xi)

]
fν(xi) = 0

rearrange:
∑
µ

[∑
i

fν(xi)fµ(xi)

]
αµ =

∑
i

yifν(xi). (48)

These linear equations are easily expressed in terms of matrices.

Ca = b,

where

Cνµ =
N∑

i=1

fν(xi)fµ(xi). (49)

a is the column matrix with components αµ and b has components
∑

i yifν(xi).
The solution for a is

a = C−1b. (50)

If C turned out singular, so this inversion is impossible, the functions fµ were not indepen-
dent.

Example: Fit to a straight line

f1(x) = 1 f2(x) = x.

Then Ca = b is (
N

∑
xi∑

xi
∑
x2

i

)(
α1

α2

)
=

( ∑
yi∑
yixi.

)
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The inverse is(
α1

α2

)
=

1[
N
∑
x2

i −
(∑

xi

)2] ( ∑
x2

i −
∑
xi

−
∑
xi N

)( ∑
yi∑
xiyi.

)
(51)

and the best fit line is
y = α1 + α2x

11.7 Euclidean Fit
In fitting data to a combination of functions, the least squares method used Eq. (47) as a
measure of how far the proposed function is from the data. If you’re fitting data to a straight
line (or plane if you have more variables) there’s another way to picture the distance. Instead
of measuring the distance from a point to the curve vertically using only y, measure it as the
perpendicular distance to the line. Why should this be any better? It’s not, but it does have
different uses, and a primary one is data compression.

y

x

Do this in two dimensions, fitting the given data to a straight line, and to describe the
line I’ll use vector notation, where the line is ~u + α~v and the parameter α varies over the
reals. First I need to answer the simple question: what is the distance from a point to a
line? The perpendicular distance from ~w to this line requires that

d2 =
(
~w − ~u− α~v

)2
be a minimum. Differentiate this with respect to α and you have

(~w − ~u− α~v
)
.
(
− ~v

)
= 0 implying αv2 =

(
~w − ~u

)
.~v

For this value of α what is d2?

d2 =
(
~w − ~u

)2
+ α2v2 − 2α~v .

(
~w − ~u

)
=
(
~w − ~u

)2 − 1

v2

[
(~w − ~u ) .~v

]2 (52)

Is this plausible? (1) It’s independent of the size of ~v, depending on its direction only. (2) It
depends on only the difference vector between ~w and ~u, not on any other aspect of the
vectors. (3) If I add any multiple of ~v to ~u, the result is unchanged. See problem 37. Also,
can you find an easier way to get the result? Perhaps one that simply requires some geometric
insight?
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The data that I’m trying to fit will be described by a set of vectors ~wi, and the sum
of the distances squared to the line is

D2 =
N∑
1

(
~wi − ~u

)2 − N∑
1

1

v2

[
(~wi − ~u ) .~v

]2
Now to minimize this among all ~u and ~v I’ll first take advantage of some of the observations
that I made in the preceding paragraph. Because the magnitude of ~v does not matter, I’ll
make it a unit vector.

D2 =
∑(

~wi − ~u
)2 −∑[

(~wi − ~u ) . v̂
]2

(53)

Now to figure out ~u, I note that I expect the best fit line to go somewhere through the middle
of the set of data points, so move the origin to the “center of mass” of the points.

~wmean =
∑

~wi/N and let ~w ′
i = ~wi − ~wmean and ~u ′ = ~u− ~wmean

then the sum
∑

~w ′
i = 0 and

D2 =
∑

w′2i +Nu′2 −
∑

(~w ′
i
. v̂)2 −N(~u ′ . v̂)2 (54)

This depends on four variables, u′x, u′y, vx and vy. If I have to do derivatives with respect to
all of them, so be it, but maybe I can use some geometric insight to simplify the calculation.
I can still add any multiple of v̂ to ~u without changing this expression. That means that for
a given ~v the derivative of D2 as I change ~u ′ in that particular direction is zero. It’s only as I
change ~u ′ perpendicular to the direction of ~v that D2 changes. The second and fourth term
involve u′2 − (~u ′ . v̂ )2 = u′2(1− cos2 θ) = u′2 sin2 θ, where this angle θ is the angle between
~u ′ and ~v. This is the perpendicular distance to the line (squared). Call it u′⊥ = u′ sin θ.

D2 =
∑

w′2i −
∑

(~w ′
i
. v̂)2 +Nu′2 −N(~u ′ . v̂)2 =

∑
w′2i −

∑
(~w ′

i
. v̂)2 +Nu′2⊥

The minimum of this obviously occurs for ~u′⊥ = 0. Also, because the component of ~u′ along
the direction of ~v is arbitrary, I may as well take it to be zero. That makes ~u′ = 0. Remember
now that this is for the shifted ~w ′ data. For the original ~wi data, ~u is shifted to ~u = ~wmean.

D2 =
∑

w′2i −
∑

(~w ′
i
. v̂)2 (55)

I’m not done. I still have to find the direction of v̂. That is, I have to find the minimum
of D2 subject to the constraint that |v̂| = 1. Use Lagrange multipliers (section 8.12).

Minimize D2 =
∑

w′2i −
∑

(~w ′
i
.~v )2 subject to φ = v2

x + v2
y − 1 = 0

The independent variables are vx and vy, and the problem becomes

∇
(
D2 + λφ

)
= 0, with φ = 0
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Differentiate with respect to the independent variables and you have linear equations for vx

and vy,

− ∂

∂vx

∑(
w′xivx + w′yivy

)2
+ λ2vx = 0 or

−
∑

2
(
w′xivx + w′yivy

)
wxi + λ2vx = 0

−
∑

2
(
w′xivx + w′yivy

)
wyi + λ2vy = 0

(56)

Correlation, Principal Components
The correlation matrix of this data is

(C) =
1

N

( ∑
w′2xi

∑
wxiw

′
yi∑

w′yiw
′
xi

∑
w′2yi

)
The equations (56) are (

Cxx Cxy

Cyx Cyy

)(
vx

vy

)
= λ′

(
vx

vy

)
(57)

where λ′ = λ/N . This is a traditional eigenvector equation, and there is a non-zero solution
only if the determinant of the coefficients equals zero. Which eigenvalue do I pick? There are
two of them, and one will give the best fit while the other gives the worst fit. Just because
the first derivative is zero doesn’t mean you have a minimum of D2; it could be a maximum
or a saddle. Here the answer is that you pick the largest eigenvalue. You can see why this
is plausible by looking at the special case for which all the data lie along the x-axis, then
Cxx > 0 and all the other components of the matrix = 0. The eigenvalues are Cxx and zero,
and the corresponding eigenvectors are x̂ and ŷ respectively. Clearly the best fit corresponds
to the former, and the best fit line is the x-axis. The general form of the best fit line is (now
using the original coordinate system for the data)

αv̂ +
1

N

∑
~wi = αv̂ + ~wmean

and this v̂ is the eigenvector having the largest eigenvalue. More generally, look at Eq. (55)
and you see that that lone negative term is biggest if the ~w s are in the same direction (or
opposite) as v̂.

x

y

This establishes the best fit to the line in the Euclidean sense. What good is it? It
leads into the subject of Principal Component Analysis and of Data Reduction. The basic
idea of this scheme is that if this fit is a good one, and the original points lie fairly close to
the line that I’ve found, I can replace the original data with the points on this line. The
nine points in this figure require 9 × 2 = 18 coordinates to describe their positions. The
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nine points that approximate the data, but that lie on the line and are closest to the original
points require 9 × 1 = 9 coordinates along this line. Of course you have some overhead in
the data storage because you need to know the line. That takes three more data (~u and the
angle of v̂), so the total data storage is 12 numbers. See problem 38

This doesn’t look like much of a saving, but if you have 106 points you go from 2 000 000
numbers to 1 000 003 numbers, and that starts to be significant. Remember too that this
is only a two dimensional problem, with only two numbers for each point. With more
coordinates you will sometimes achieve far greater savings. You can easily establish the
equation to solve for the values of α for each point, problem 38. The result is

αi =
(
~wi − ~u

)
. v̂

11.8 Differentiating noisy data
Differentiation involves dividing a small number by another small number. Any errors in the
numerator will be magnified by this process. If you have to differentiate experimental data
this will always happen. If it is data from the output of a Monte Carlo calculation the same
problem will arise.

Here is a method for differentiation that minimizes the sensitivity of the result to
the errors in the input. Assume equally spaced data where each value of the dependent
variable f(x) is a random variable with mean

〈
f(x)

〉
and variance σ2. Follow the procedure

for differentiating smooth data and expand in a power series. Let h = 2k and obtain the
derivative between data points.

f(k) = f(0) + kf ′(0) +
1

2
k2f ′′(0) +

1

6
k3f ′′′(0) + · · ·

f(k)− f(−k) = 2kf ′(0) +
1

3
k3f ′′′(0) + · · ·

f(3k)− f(−3k) = 6kf ′(0) +
27

3
k3f ′′′(0) + · · ·

I’ll seek a formula of the form

f ′(0) = α
[
f(k)− f(−k)

]
+ β

[
f(3k)− f(−3k)

]
. (58)

I am assuming that the variance of f at each point is the same, σ2, and that the fluctuations
in f at different points are uncorrelated. The last statement is, for random variables f1 and
f2, 〈(

f1 −
〈
f1

〉)(
f2 −

〈
f2

〉)〉
= 0 which expands to

〈
f1f2

〉
=
〈
f1

〉〈
f2

〉
. (59)

Insert the preceding series expansions into Eq. (58) and match the coefficients of f ′(0).
This gives an equation for α and β:

2kα+ 6kβ = 1. (60)

One way to obtain another equation for α and β is to require that the k3f ′′′(0) term vanish;
this leads back to the old formulas for differentiation, Eq. (11). Instead, require that the
variance of f ′(0) be a minimum.〈(

f ′(0)−
〈
f ′(0)

〉)2〉
=
〈[
α
(
f(k)−

〈
f(k)

〉)
+ α

(
f(−k)−

〈
f(−k)

〉)
+ · · ·

]2〉
= 2σ2α2 + 2σ2β2 (61)
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This comes from the fact that the correlation between say f(k) and f(−3k) vanishes, and
that all the individual variances are σ2. That is,〈(

f(k)−
〈
f(k)

〉)(
f(−k)−

〈
f(−k)

〉)〉
= 0

along with all the other cross terms. Problem: minimize 2σ2(α2 + β2) subject to the con-
straint 2kα + 6kβ = 1. It’s hardly necessary to resort to Lagrange multipliers for this
problem.

Eliminate α:

d

dβ

[(
1

2k
− 3β

)2

+ β2

]
= 0 =⇒ −6

(
1

2k
− 3β

)
+ 2β = 0

=⇒ β = 3/20k, α = 1/20k

f ′(.5h) ≈ −3f(−h)− f(0) + f(h) + 3f(2h)

10h
, (62)

and the variance is 2σ2(α2 + β2) = σ2/5h2. In contrast, the formula for the variance in the
standard four point differentiation formula Eq. (10), where the truncation error is least, is
65σ2/72h2, which is 4.5 times larger.

When the data is noisy, and most data is, this expression will give much better results
for this derivative. Can you do even better? Of course. You can for example go to higher
order and both decrease the truncation error and minimize the statistical error.

11.9 Partial Differential Equations
I’ll illustrate the ideas involved here and the difficulties that occur in only the simplest
example of a PDE, a first order constant coefficient equation in one space dimension

∂u/∂t+ c ∂u/∂x = ut + cux = 0, (63)

where the subscript denotes differentiation with respect to the respective variables. This is a
very simple sort of wave equation. Given the initial condition that at t = 0, u(0, x) = f(x),
you can easily check that the solution is

u(t, x) = f(x− ct). (64)

The simplest scheme to carry data forward in time from the initial values is a gener-
alization of Euler’s method for ordinary differential equations

u(t+ ∆t, x) = u(t, x) + ut(t, x)∆t

= u(t, x)− ux(t, x)c∆t

= u(t, x)− c∆t

2∆x

[
u(t, x+ ∆x)− u(t, x−∆x)

]
, (65)

where to evaluate the derivative, I’ve used the two point differentiation formula.
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In this equation, the value of u at point (∆t, 4∆x) depends on the values at (0, 3∆x),
(0, 4∆x), and (0, 5∆x). This diagram shows the scheme as a picture, with the horizontal
axis being x and the vertical axis t. You march the values of u at the grid points forward in
time (or backward) by a set of simple equations.

The difficulties in this method are the usual errors, and more importantly, the instabil-
ities that can occur. The errors due to the approximations involved can be classified in this
case by how they manifest themselves on wavelike solutions. They can lead to dispersion or
dissipation.

I’ll analyze the dispersion first. Take as initial data u(t, x) = A cos kx (or if you prefer,
eikx). The exact solution will be A cos(kx − ωt) where ω = ck. Now analyze the effect of
the numerical scheme. If ∆x is very small, using the discrete values of ∆x in the iteration
give an approximate equation

ut = − c

2∆x

[
u(t, x+ ∆x)− u(t, x−∆x)

]
.

A power series expansion in ∆x gives, for the first two non-vanishing terms

ut = −c
[
ux +

1

6
(∆x)2uxxx

]
. (66)

So, though I started off solving one equation, the numerical method more nearly represents
quite a different equation. Try a solution of the form A cos(kx − ωt) in this equation and
you get

ω = c

[
k − 1

6
(∆x)2k3

]
, (67)

and you have dispersion of the wave. The velocity of the wave, ω/k, depends on k and so it
depends on its wavelength or frequency.

The problem of instabilities is more conveniently analyzed by the use of an initial
condition u(0, x) = eikx, then Eq. (65) is

u(∆t, x) = eikx − c∆t

2∆x

[
eik(x+∆x) − eik(x−∆x)

]
= eikx

[
1− ic∆t

∆x
sin k∆x

]
. (68)

The n-fold iteration of this, therefore involves only the nth power of the bracketed expression;
that’s why the exponential form is easier to use in this case. If k∆x is small, the first term
in the expansion of the sine says that this is approximately

eikx
[
1− ikc∆t

]n
,

and with small ∆t and n = t/∆t a large number, this is

eikx

[
1− ikct

n

]n

≈ eik(x−ct).
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Looking more closely though, the object in brackets in Eq. (68) has magnitude

r =

[
1 +

c2(∆t)2

(∆x)2
sin2 k∆x

]1/2

> 1. (69)

so the magnitude of the solution grows exponentially. This instability can be pictured as a
kind of negative dissipation. This growth is reduced by requiring kc∆t� 1.

Given a finite fixed time interval, is it possible to get there with arbitrary accuracy by
making ∆t small enough? With n steps = t/∆t, rn is

r =

[
1 +

c2(∆t)2

(∆x)2
sin2 k∆x

]t/2∆t

= [1 + α]β

=
[
[1 + α]1/α

]αβ
≈ eαβ

= exp

[
c2t∆t

2(∆x)2
sin2 k∆x

]
,

so by shrinking ∆t sufficiently, this is arbitrarily close to one.
There are several methods to avoid some of these difficulties. One is the Lax-Friedrichs

method:

u(t+ ∆t, x) =
1

2

[
u(t, x+ ∆x) + u(t, x−∆x)

]
− c∆t

2∆x

[
u(t, x+ ∆x)− u(t, x−∆x)

]
. (70)

By appropriate choice of ∆t and ∆x, this will have r ≤ 1, causing a dissipation of the wave.
Another scheme is the Lax-Wendroff method.

u(t+ ∆t, x) = u(t, x)− c∆t

2∆x

[
u(t, x+ ∆x)− u(t, x−∆x)

]
+
c2(∆t)2

2(∆x)2
[
u(t, x+ ∆x)− 2u(t, x) + u(t, x−∆x)

]
. (71)

This keeps one more term in the power series expansion.



284 11—Numerical Analysis

Problems

11.1 Show that a two point extrapolation formula is

f(0) ≈ 2f(−h)− f(−2h) + h2f ′′(0).

11.2 Show that a three point extrapolation formula is

f(0) ≈ 3f(−h)− 3f(−2h) + f(−3h) + h3f ′′′(0).

11.3 Solve x2 − a = 0 by Newton’s method, showing graphically that in this case, no
matter what the initial guess is (positive or negative), the sequence will always converge.
Draw graphs. Find

√
2. (This is the basis for the library square root algorithm on some

computers.)

11.4 Find all real roots of e−x = sinx to ±10−4.

11.5 The first root r1 of e−ax = sinx is a function of the variable a > 0. Find dr1/da at a = 1
by two means. First find r1 for some values of a near 1 and use a four-point differentiation
formula. Second, use analytical techniques on the equation to solve for dr1/da and evaluate
the derivative in terms of the known value of the root from the previous problem.

11.6 Evaluate erf(1) = 2√
π

∫ 1
0 dt e

−t2

11.7 The principal value of an integral is (a < x0 < b)

P

∫ b

a

f(x)

x− x0
dx = lim

ε→0

[∫ x0−ε

a

f(x)

x− x0
dx+

∫ b

x0+ε

f(x)

x− x0
dx

]
.

Show that an equal spaced integration scheme to evaluate such an integral is (using points
0,±h)

P

∫ +h

−h

f(x)

x
dx = f(h)− f(−h)− 2

9
h3f ′′′(0).

Also, an integration scheme of the Gaussian type is

√
3
[
f(h
/√

3)− f(−h
/√

3)
]
+

h5

675
fv(0).

11.8 Devise a two point Gaussian integration with errors for the class of integrals∫ +∞

−∞
dx e−x2

f(x).

Find what standard polynomial has roots at the points where f is to be evaluated.
Ans: 1

2

√
π
[
f(−h/

√
2) + f(h/

√
2)
]
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11.9 Same as the previous problem, but make it a three point method.

11.10 Find two and three point Gauss methods for∫ ∞

0
dx e−xf(x).

What polynomials are involved here? Look up Laguerre.

11.11 In numerical differentiation it is possible to choose the interval too small. Every
computation is done to a finite precision. (a) Do the simplest numerical differentiation of
some specific function and take smaller and smaller intervals. What happens when the
interval gets very small? (b) To analyze the reason for this behavior, assume that every
number in the two point differentiation formula is kept to a fixed number of significant
figures (perhaps 7 or 8). How does the error vary with the interval? What interval gives the
most accurate answer? Compare this theoretical answer with the experimental value found
in the first part of the problem.

11.12 The same phenomenon caused by roundoff errors occurs in integration. For any of
the integration schemes discussed here, analyze the dependence on the number of significant
figures kept and determine the most accurate interval. (Surprise?)

11.13 Compute the solution of y′ = 1 + y2 and check the numbers in the table where that
example was given, (39).

11.14 If in the least square fit to a linear combination of functions, the result is constrained
to pass through one point, so that

∑
αµfµ(x0) = K is a requirement on the α’s, show that

the result becomes
a = C−1

[
b+ λf0

]
,

where f0 is the vector fµ(x0) and λ satisfies

λ
〈
f0, C

−1f0

〉
= K −

〈
f0, C

−1b
〉
.

11.15 Find the variances in the formulas (8) and (10) for f ′, assuming noisy data.
Ans: σ2/2h2, 65σ2/72h2

11.16 Derive Eqs. (59), (60), and (61).

11.17 The Van der Pol equation arises in (among other places) nonlinear circuits and leads
to self-exciting oscillations as in multi-vibrators

d2x

dt2
− ε(1− x2)

dx

dt
+ x = 0.

Take ε = .3 and solve subject to any non-zero initial conditions. Solve over many periods to
demonstrate the development of the oscillations.
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11.18 Find a formula for the numerical third derivative. Cf. (2.16)

11.19 The equation resulting from the secant method, Eq. (7), can be simplified by placing
everything over a common denominator,

(
f(x2) − f(x1)

)
. Explain why this is a bad thing

to do, how it can lead to inaccuracies.

11.20 Rederive the first Gauss integration formula Eq. (25) without assuming the symmetry
of the result ∫ +h

−h
f(x) dx ≈ αf(β) + γf(δ).

11.21 Derive the coefficients for the stable two-point Adams method.

11.22 By putting in one more parameter in the differentiation algorithm for noisy data, it
is possible both to minimize the variance in f ′ and to eliminate the error terms in h2f ′′′.
Find such a 6-point formula for the derivatives halfway between data points OR one for the
derivatives at the data points (with errors and variance).

11.23 In the same spirit as the method for differentiating noisy data, how do you interpolate
noisy data? That is, use some extra points to stabilize the interpolation against random
variations in the data. To be specific, do a midpoint interpolation for equally spaced points.
Compare the variance here to that in Eq. (3). Ans: f(0) ≈ [f(−3k)+f(−k)+f(k)+f(3k)]/4,
σ2 is 4.8 times smaller

11.24 Find the dispersion resulting from the use of a four point formula for ux in the
numerical solution of the PDE ut + cux = 0.

11.25 Find the exact dispersion resulting from the equation

ut = −c
[
u(t, x+ ∆x)− u(t, x−∆x)

]
/2∆x.

That is, don’t do the series expansion on ∆x.

11.26 Compute the dispersion and the dissipation in the Lax-Friedrichs and in the Lax-
Wendroff methods.

11.27 In the simple iteration method of Eq. (69), if the grid points are denoted x = m∆x,
t = n∆t, where n and m are integers (−∞ < n,m < +∞), the result is a linear, constant-
coefficient, partial difference equation. Solve subject to the initial condition

u(0,m) = eikm∆x.

11.28 Lobatto integration is like Gaussian integration, except that you require the end-
points of the interval to be included in the sum. The interior points are left free. Three
point Lobatto is the same as Simpson; find the four point Lobatto formula. The points found
are roots of P ′n−1.
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11.29 From the equation y′ = f(x, y), one derives y′′ = fx +ffy. Derive a two point Adams
type formula using the first and second derivatives, with error of order h5 as for the standard
four-point expression. This is useful when the analytic derivatives are easy. The form is

y(0) = y(−h) + β1y
′(−h) + β2y

′(−2h) + γ1y
′′(−h) + γ2y

′′(−2h)

Ans: β1 = −h/2, β2 = 3h/2, γ1 = 17h2/12, γ2 = 7h2/12

11.30 Using the same idea as in the previous problem, find a differential equation solver in
the spirit of the original Euler method, (32), but doing a parabolic extrapolation instead of a
linear one. That is, start from (x0, y0) and fit the initial data to y = α+β(x−x0)+γ(x−x0)

2

in order to take a step. Ans: y(h) = y0 + hf(0, y0) +
(
h2/2

)[
fx(0, y0) + fy(0, y0)f(0, y0)

]
11.31 Show that the root finding algorithm of Eq. (7) is valid for analytic functions of a
complex variable with complex roots.

11.32 In the Runge-Kutta method, pick one of the other choices for the value of D2f(0, y0)
in Eq. (37). How many function evaluations will it require at each step?

11.33 Sometimes you want an integral where the data is known outside the domain of

integration. Find an integration scheme for
∫ h
0 f(x) dx in terms of f(h), f(0), and f(−h).

Ans: [−f(−h) + 8f(0) + 5f(h)]h/12, error ∝ h4

11.34 When you must subtract two quantities that are almost the same size, you can find
yourself trying to carry ridiculously many significant figures in intermediate steps. If a and
b are very close and you want to evaluate

√
a −
√
b, devise an algorithm that does not

necessitate carrying square roots out to many more places than you want in the final answer.
Write a = b+ ε.

11.35 Repeat the previous problem but in a more symmetric fashion. Write a = x+ ε and
b = x− ε. Compare the sizes of the truncation errors. Ans: ε/

√
x, −ε3/8x5/2

11.36 The value of π was found in the notes by integrating 4/(1+x2) from zero to one using
Simpson’s rule and five points. Do the same calculation using Gaussian integration and two
points. Ans: 3.14754

11.37 Derive Eq. (52).
(b) Explain why the plausibility arguments that follow it actually say something.

11.38 After you’ve done the Euclidean fit of data to a straight line and you want to do the
data reduction described after Eq. (57), you have to find the coordinate along the line of the
best fit to each point. This is essentially the problem: Given the line (~u and v̂) and a point
(~w), the new reduced coordinate is the α in ~u+ αv̂ so that this point is closest to ~w. What
is it? You can do this the hard way, with a lot of calculus and algebra, or you can draw a
picture and write the answer down.
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11.39 Data is given as (xi, yi) = {(1, 1), (2, 2), (3, 2)}. Compute the Euclidean best fit line.
Also find the coordinates, αi, along this line and representing the reduced data set.
Ans: ~u = (2, 5/3) v̂ = (0.88167, 0.47186) α1 = −1.1962 α2 = 0.1573 α3 = 1.0390
The approximate points are (0.945, 1.102), (2.139, 1.741), (2.916, 2.157)
[It may not warrant this many significant figures, but it should make it easier to check your
work.]

11.40 In the paragraph immediately following Eq. (23) there’s mention of an alternate way
to derive Simpson’s rule. Carry in out, though you already know the answer.



Tensors

You can’t walk across a room without using a tensor (the pressure tensor). You can’t
balance the wheels on your car without using a tensor (the inertia tensor). You definitely
can’t understand Einstein’s theory of gravity without using tensors (many of them).

Some of this material overlaps that of chapter 7, but I will extend it in a different
direction. The first examples will then be familiar.

12.1 Examples
A tensor is a particular type of function. Before presenting the definition, some examples will
clarify what I mean. Start with a rotating rigid body, and compute its angular momentum.
Pick an origin and assume that the body is made up of N point masses mi at positions
described by the vectors ~ri (i = 1, 2, . . . , N). The angular velocity vector is ~ω. For each
mass the angular momentum is ~ri × ~pi = ~ri × (mi~vi). The velocity ~vi is given by ~ω × ~ri and
so the angular momentum of the ith particle is mi~ri×(~ω×~ri). The total angular momentum
is therefore

m1

m2

m3

~ω

~L =
N∑

i=1

mi~ri × (~ω × ~ri). (1)

The angular momentum, ~L, will depend on the distribution of mass within the body and
upon the angular velocity. Write this as

~L = I(~ω ),

where the function I is called the tensor of inertia.
For a second example, take a system consisting of a mass suspended by six springs. At

equilibrium the springs are perpendicular to each other. If now a (small) force ~F is applied

to the mass it will undergo a displacement ~d. Clearly, if ~F is along the direction of any of the
springs (call these the x, y, and z axes), then the displacement ~d will be in the same direction

as ~F . Suppose however that ~F is halfway between the k1 and k2 springs, and further that
the spring k2 was taken from a railroad locomotive while k1 is a watch spring. Obviously
in this case ~d will be mostly in the x direction (k1) and is not aligned with ~F . In any case

there is a relation between ~d and ~F ,

~d = f
(
~F
)
. (2)

The function f is a tensor.
In both of these examples, the functions involved were vector valued functions of vector

variables. They have the further property that they are linear functions, i.e. if α and β are
real numbers,

I(α~ω1 + β~ω2) = αI(~ω1) + βI(~ω2), f
(
α~F1 + β ~F2

)
= αf

(
~F1

)
+ βf

(
~F2

)
,

289
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These two properties are the first definition of a tensor. (A generalization will come
later.) There’s a point here that will probably cause some confusion. Notice that in the

equation ~L = I(~ω), the tensor is the function I. I didn’t refer to “the function I(~ω)” as you

commonly hear in casual discussions. The reason is that I(~ω), which equals ~L, is a vector,
not a tensor. It is the output of the function I after the independent variable ~ω has been
fed into it. For an analogy, retreat to the case of a real valued function of a real variable. In
common language, you would look at the equation y = f(x) and say that f(x) is a function,
but it’s better to say that f is a function, and that f(x) is the single number obtained by
feeding the number x to f in order to obtain the number f(x). In this language, f is regarded
as containing a vast amount of information, all the relations between x and y. f(x) however
is just a single number. Think of f as the whole graph of the function and f(x) as telling
you one point on the graph. This apparently trivial distinction will often make no difference,
but there are a number of cases (particularly here) where a misunderstanding of this point
will cause confusion.

Definition of “Function”
An abstract definition of a function is useful: X and Y are sets (possibly the same set) and
x and y are elements of these sets (x ∈ X, y ∈ Y). A new set F is formed consisting of some
collection of ordered pairs of elements, one from X and one from Y. That is, a typical element
of the set F would be (x1, y1) where x1 ∈ X and y1 ∈ Y. Such a set is called a “relation”
between X and Y.

This relation is not yet a function. One additional item is needed. We now require of
F that if (x, y1) ∈ F and (x, y2) ∈ F then y1 = y2. This is the statement that the function is
single-valued. The ordinary notation for a function is y = F (x); in the language of sets we
say (x, y) ∈ F. The set F is the function. You can picture it as a graph, containing all the
information about the function; it is by definition single-valued.

x2 + y2 = R2 is a relation between X and Y, but y =
√
R2 − x2 is a function. The

domain of a function is the set of elements x such that there is a y with (x, y) ∈ F. The range
is the set of y such that there is an x with (x, y) ∈ F.

Another physical example of a tensor is the dielectric tensor relating the electric dis-
placement vector ~D to the electric field vector ~E:

~D = ε( ~E ).

For the vacuum, or more generally for an isotropic linear medium, this function is nothing
more than multiplication by a scalar,

~D = ε ~E.

In a crystal however the two fields ~D and ~E are not in the same direction, though the
relation between them is still linear for small fields. This is analogous to the case above with
a particle attached to a set of springs. The electric field polarizes the crystal more easily in
some directions than in others.

The stress-strain relation in a crystal is a more complex situation that can also be
described in terms of tensors. When a stress is applied, the crystal will distort slightly and
this relation of strain to stress is, for small stress, a linear one. You will be able to use the
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notion of a tensor to describe what happens. In order to do this however it will be necessary
to expand the notion of “tensor” to include a larger class of functions. This generalization
will require some preliminary mathematics.

Functional
Terminology: A functional is a real (scalar) valued function of one or more vector variables.
In particular, a linear functional is a function of one vector variable satisfying the linearity
requirement.

f(α~v1 + β~v2) = αf(~v1) + βf(~v2). (3)

A simple example of such a functional is

f(~v ) = ~A .~v, (4)

where ~A is a fixed vector. In fact, because of the existence of a scalar product, all linear func-
tionals are of this form, a result that is embodied in the following theorem, the representation
theorem for linear functionals.

Let f be a linear functional: that is, f is a scalar valued function of one vector
variable and is linear in that variable, f(~v ) is a real number and

f(α~v1 + β~v2) = αf(~v1) + βf(~v2) then, (5)

there is a unique vector, ~A, such that f(~v ) = ~A .~v for all ~v.

Now obviously the function defined by ~A .~v, where ~A is a fixed vector, is a linear
functional. The burden of this theorem is that all linear functionals are of precisely this
form.

Proof: Case I: It’s possible that f(~v ) equals zero for all ~v. This is the trivial case

where ~A = 0.
Case II: f is not identically zero. Even here however there will generally be some

vectors around where f(~v ) = 0. Denote by M the set of all vectors where f(~v ) = 0. M is
itself a vector space. This follows because the function f is linear. I.e., if ~v1 and ~v2 are in
M [f(~v1) = f(~v2) = 0], then

f(α~v1 + β~v2) = αf(~v1) + βf(~v2) = 0.

Denote by M⊥ the set of vectors that are perpendicular to every vector in M . A picture of
what’s happening is this:

M

M⊥

or maybe

M

M⊥

In three dimensions M could form a plane (two dimensional) and then M⊥ is the one
dimensional line perpendicular to this plane. Alternatively, M could be one dimensional
and then M⊥ is the plane perpendicular to this line. (In fact, the first case will turn out
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to be correct.) Not only is M a vector space, but M⊥ is too, because if both ~v1 and ~v2 are
perpendicular to some given vector (in M) then so is α~v1 + β~v2.

Since by assumption f(~v ) is not zero for all vectors, there is at least one vector in M⊥.
Call it ~ω 6= 0. Consequently all scalar multiples of ~ω are in M too; f(c~ω) = cf(~ω)

Let ~A =
~ωf(~ω )

|~ω |2
. (6)

Claim: This does the job as suggested in the statement of the theorem: f(~v ) = ~A .~v
for all ~v. To show this, first demonstrate that M⊥ is one dimensional. Let ~ω1 and ~ω2 be any
two vectors in M⊥ (that is, f is non-zero for each). Consider

f(α~ω1 + β~ω2) = αf(~ω1) + βf(~ω2).

Let β =
−αf(~ω1)

f(~ω2)
.

With this choice then, f(α~ω1 + β~ω2) = 0, meaning that the combination is in M . But if a
vector is in M , and at the same time it perpendicular to every vector in M , then it must be
the zero vector.

α~ω1 + β~ω2 = 0,

or, ~ω2 is a constant times ~ω1. This is just the statement that M⊥ is one dimensional.
Any vector in M⊥ is then of the form α~ω, and

~A .
(
α~ω
)

=
(
α~ω
)
. ~ωf(~ω )

|~ω|2
=
α~ω . ~ωf(~ω )

|~ω|2
= αf(~ω) = f(α~ω),

so the theorem is true for these vectors.
Let ~v be any vector in M . By the definition of M , f(~v ) = 0. Also ~ω is perpendicular

to M , so ~ω .~v = 0 = ~A .~v, and you have agreement here too.
Finally, any vector can be written as the unique sum of a vector in M and one in M⊥.

This is just a matter finding the projection of ~v1 along M⊥ and subtracting it from ~v to get
the vector in M .

~v = ~v1 + ~v2

f(~v ) = f(~v1 + ~v2) =f(~v1) + f(~v2)

= ~A . v1 + 0

= ~A . v. 2

v

v

v

⊥M

1

For an easier proof, see problem 3.

Multilinear Functionals
Functionals can be generalized to more than one variable. A bilinear functional is a scalar
valued function of two vector variables, linear in each

T (~v1, ~v2) = a scalar

T (α~v1 + β~v2, ~v3) = αT (~v1, ~v3) + βT (~v2, ~v3)

T (~v1, α~v2 + β~v3) = αT (~v1, ~v2) + βT (~v1, ~v3).

(7)
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Similarly for multilinear functionals, with as many arguments as you want.
Now apply the representation theorem for functionals to the subject of tensors. Start

with a bilinear functional: 0
2T (~v1, ~v2) is a scalar. This function of two variables can be looked

on as a function of one variable by holding the other one temporarily fixed. Say ~v2 is held
fixed, then 0

2T (~v1, ~v2) defines a linear functional on the variable ~v1. Apply the representation
theorem now and the result is

0
2T (~v1, ~v2) = ~A .~v1.

The vector ~A however will depend (linearly) on the choice of ~v2. It defines a new function
that I’ll call 1

1T
~A = 1

1T (~v2). (8)

This defines a tensor 1
1T , a vector valued function of a vector. The above paragraph

shows that from a bilinear functional you can construct a linear vector function and vice
versa. With this close association between the two concepts it is natural to extend the
definition of a tensor to include bilinear functionals. To be precise, I used a different name
for the vector-valued function of one vector variable (11T ) and for the scalar-valued function
of two vector variables (02T ). This may be overly fussy, and it’s common practice to use the
same symbol (T ) for both, with the hope that the context will make clear which one you
actually mean.

Until I get tired of doing so however, I’ll follow this (unconventional) notation and
indicate the number of arguments by a preceding subscript, and the nature of the output by
a preceding superscript. Eventually, I’ll drop these indices, hoping that it will be clear from
context which one I mean. The rank of the tensor is the sum of these two indices.

The next extension of the definition follows naturally from the previous reformulation.
A tensor of nth rank is an n-linear functional, or any one of the several types of functions
that can be constructed from it by the preceding argument. The meaning and significance
of the last statement should become clear a little later. In order to clarify the meaning of
this terminology, some physical examples are in order. The tensor of inertia was mentioned
before:

~L = 1
1I
(
~ω
)
.

The dielectric tensor related ~D and ~E:

~D = 1
1ε
(
~E
)
.

The conductivity tensor relates current to the electric field:

~ = 1
1σ
(
~E
)
.

In general this is not just a scalar factor, and for the a.c. case σ is a function of frequency.

∆

∆ F

cut

A

The stress tensor in matter is defined as follows: If a body has forces
on it (compression or twisting or the like) or even internal defects arising
from its formation, one part of the body will exert a force on another part.
This can be made precise by the following device: Imagine making a cut in
the material, then because of the internal forces, the two parts will tend to
move with respect to each other. Apply enough force to prevent this motion.
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Call it ∆~F . Typically for small cuts ∆~F will be proportional to the area of the cut. The
area vector is perpendicular to the cut and of magnitude equal to the area. For small areas
you have differential relation d~F = 1

1S
(
d ~A
)
. This function S is called the stress tensor or

pressure tensor.
There is another second rank tensor called the strain tensor. I described it qualitatively

in section 9.2 and I’ll simply add here that it is a second rank tensor. When you apply stress
to a solid body it will develop strain. This defines a function with a second rank tensor as
input and a second rank tensor as output. It is the elasticity tensor and it has rank four
(22E).

So far, the physically defined tensors have been vector-valued functions of vector vari-
ables, and I haven’t used the n-linear functional idea directly. However there is a very simple
example of such a tensor:

work = ~F . ~d.

This is a scalar valued function of the two vectors ~F and ~d. This is of course true for the
scalar product of any two vectors ~a and ~b

0
2g
(
~a,~b

)
= ~a .~b. (9)

0
2g is a bilinear functional called the metric tensor. There are many other physically defined
tensors that you will encounter later. In addition I would like to emphasize that although the
examples given here will be in three dimensions, the formalism developed will be applicable
to any number of dimensions.

12.2 Components
Up to this point, all that I’ve done is to make some rather general statements about tensors
and I’ve given no techniques for computing with them. That’s the next step. I’ll eventually
develop the complete apparatus for computation in an arbitrary basis, but for the moment
it’s a little simpler to start out with the more common orthonormal basis vectors. (Recall
that an orthonormal basis is an independent set of orthogonal unit vectors, such as x̂, ŷ, ẑ.)
Some of this material was developed in chapter seven, but I’ll duplicate some of it. Start off
by examining a second rank tensor, viewed as a vector valued function

~u = 1
1T (~v ).

The vector ~v can be written in terms of the three basis vectors line x̂, ŷ, ẑ. Or, as I shall
denote them ê1, ê2, ê3 where

|ê1| = |ê2| = |ê3| = 1, and ê1 . ê2 = 0 etc. (10)

In terms of these independent vectors, ~v has components v1, v2, v3:

~v = v1ê1 + v2ê2 + v3ê3. (11)

The vector ~u = 1
1T (~v ) can also be expanded in the same way:

~u = u1ê1 + u2ê2 + u3ê3. (12)
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Look at 1
1T (~v ) more closely in terms of the components

1
1T (~v ) = 1

1T (v1ê1 + v2ê2 + v3ê3)

= v1
1
1T (ê1) + v2

1
1T (ê2) + v3

1
1T (ê3)

(by linearity). Each of the three objects 1
1T (ê1),

1
1T (ê2),

1
1T
(
ê3
)

is a vector, which means
that you can expand each one in terms of the original unit vectors

1
1T (ê1) = T11ê1 + T21ê2 + T31ê3
1
1T (ê2) = T12ê1 + T22ê2 + T32ê3
1
1T (ê3) = T13ê1 + T23ê2 + T33ê3

or more compactly, 1
1T (êi) =

∑
j

Tjiêj . (13)

The numbers Tij (i, j = 1, 2, 3) are called the components of the tensor in the given basis.
These numbers will depend on the basis chosen, just as do the numbers vi, the components
of the vector ~v. The ordering of the indices has been chosen for later convenience, with
the sum on the first index of the Tji. This equation is the fundamental equation from which
everything else is derived. (It will be modified when non-orthonormal bases are introduced
later.)

Now, take these expressions for 1
1T (êi) and plug them back into the equation ~u = 1

1T (~v ):

u1ê1 + u2ê2 + u3ê3 = 1
1T (~v ) = v1

[
T11ê1 + T21ê2 + T31ê3

]
+v2

[
T12ê1 + T22ê2 + T32ê3

]
+v3

[
T13ê1 + T23ê2 + T33ê3

]
=

[
T11v1 + T12v2 + T13v3

]
ê1

+
[
T21v1 + T22v2 + T23v3

]
ê2

+
[
T31v1 + T32v2 + T33v3

]
ê3.

Comparing the coefficients of the unit vectors, you get the relations among the components

u1 = T11v1 + T12v2 + T13v3

u2 = T21v1 + T22v2 + T23v3

u3 = T31v1 + T32v2 + T33v3.

(14)

More compactly:

ui =
3∑

j=1

Tijvj or

u1

u2

u3

 =

T11 T12 T13

T21 T22 T23

T31 T32 T33

 v1
v2
v3

 . (15)

At this point it is convenient to use the summation convention (first* version). This
convention says that if a given term contains a repeated index, then a summation over all

* See section 12.4 for the later modification and generalization.
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the possible values of that index is understood. With this convention, the previous equation
is

ui = Tijvj . (16)

Notice how the previous choice of indices has led to the conventional result, with the first
index denoting the row and the second the column of a matrix.

Now to take an example and tear it apart. Define a tensor by the equations

1
1T (x̂) = x̂+ ŷ, T (ŷ) = ŷ, (17)

where x̂ and ŷ are given orthogonal unit vectors. These two expressions, combined with
linearity, suffice to determine the effect of the tensor on all linear combinations of x̂ and ŷ.
(This is a two dimensional problem.)

To compute the components of the tensor pick a set of basis vectors. The obvious ones
in this instance are

ê1 = x̂, and ê2 = ŷ.

By comparison with Eq. (13), you can read off the components of T .

T11 = 1 T21 = 1

T12 = 0 T22 = 1.

Write these in the form of a matrix as in Eq. (15)(
Trow, column

)
=

(
T11 T12

T21 T22

)
=

(
1 0
1 1

)
,

and writing the vector components in the same way, the components of the vectors x̂ and ŷ
are respectively (

1
0

)
and

(
0
1

)
.

The original equations (17), that defined the tensor become the components(
1 0
1 1

)(
1
0

)
=

(
1
1

)
and

(
1 0
1 1

)(
0
1

)
=

(
0
1

)
.

Change of Basis
The above exercise is fairly trivial because the definition of the tensor lent itself to a par-
ticular basis. For practice, take the same tensor and compute its components in a different
basis. Note: The method I’ll describe here is rather clumsy and inefficient. It is however
conceptually simple. For an efficient way to do this you can skip to the development following
equation (22).

ê′2

ê2

ê′1

ê1

ê′1 =
x̂+ ŷ√

2
=
ê1 + ê2√

2

ê′2 =
ŷ − x̂√

2
=
ê2 − ê1√

2

(18)
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In order to illustrate what is happening, I’ll carry out this computation by two methods,
first: the hard way, and second: the easy way.

You already have the components Tij in one basis. They come from the defining
equations (13),

1
1T (êi) = Tjiêj .

The analogous equation using ê′j defines the components of T in the other basis.

1
1T
(
ê′i
)

= T ′jiê
′
j .

To relate one set of components to the other, the key is, as usual, linearity. The left side of
this last equation is (i = 1)

1
1T
(
ê′1
)

= 1
1T

(
ê1 + ê2√

2

)
=

1√
2

[
1
1T (ê1) + 1

1T (ê2)
]

=
1√
2

[
T11ê1 + T21ê2 + T12ê1 + T22ê2

]
. (19)

The left side is (still i = 1)

T ′11ê
′
1 + T ′21ê

′
2 =

1√
2

[
T ′11(ê1 + ê2) + T ′21(ê2 − ê1)

]
. (20)

The two expressions (19) and (20) represent the same thing, so equate the coefficients of ê1
and of ê2:

T11 + T12 = T ′11 − T ′21

T21 + T22 = T ′11 + T ′21.

Solve these simultaneous equations for T ′11 and T ′21 get

T ′11 =
1

2

[
T11 + T12 + T21 + T22

]
=

3

2
, T ′21 =

1

2

[
T21 + T22 − T11 − T12

]
=

1

2
. (21)

Repeat the process for 1
1T (ê′2):

1
1T (ê′2) = 1

1T

(
ê2 − ê1√

2

)
=

1√
2

[
1
1T (ê2)− 1

1T (ê1)
]

=
1√
2

[
T12ê1 + T22ê2 − T11ê1 − T21ê2

]
.

The left side of this is

T ′12ê
′
1 + T ′22ê

′
2 =

1√
2

[
T ′12(ê1 + ê2) + T ′22(ê2 − ê1)

]
.

Comparing coefficients, you have

T12 − T11 = T ′12 − T ′22, T22 − T21 = T ′12 + T ′22.
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Solve for T ′12 and T ′22:

T ′12 =
1

2

[
T12 − T11 + T22 − T21

]
= −1

2
, T ′22 =

1

2

[
T22 − T + 21− T12 + T11

]
= +

1

2
.

So, the matrix of components in the primed basis is(
T ′11 T ′12
T ′21 T ′22

)
=

(
3/2 −1/2
1/2 1/2

)
.

As a check to be sure nothing has gone wrong, it’s easy to compute the effect of 1
1T on

the original vectors x̂ and ŷ in this basis. Refer to the diagram accompanying equation (18),

x̂ =
ê′1 − ê′2√

2
, and ŷ =

ê′1 + ê′2√
2

.

or in component form, respectively

1√
2

(
1
−1

)
, and

1√
2

(
1
1

)
.

Operate on these column matrices with the above matrix.(
3/2 −1/2
1/2 1/2

)
1√
2

(
1
−1

)
=

1√
2

(
2
0

)
=

1√
2

(
1
−1

)
+

1√
2

(
1
1

)
and

(
3/2 −1/2
1/2 1/2

)
1√
2

(
1
1

)
=

1√
2

(
1
1

)
,

so that both of these agree with the starting point, Eq. (17)

Change of Basis (more efficient)
Next, in order to illustrate the second (and much easier) method for changing bases it’s
necessary to note some further relationships between vector valued functions and bilinear
functionals. Namely, I shall prove that the Tij defined by Eq. (13) satisfies

Tij = 0
2T (êi, êj), (22)

where this bilinear functional is the one associated with the vector valued function by

0
2T (~u,~v ) = ~u . 1

1T (~v ).

In order to prove this relationship, just write ~u and ~v in terms of their components:

~u = uiêi, ~v = viêi, and 1
1T (~v ) = vi

1
1T (êi)

then 0
2T (~u, ~v ) = 0

2T (uiêi, vj êj) = uivj
0
2T (êi, êj)

But,
~u . 1

1T (~v ) = u iêi . vj
1
1T (~ei)

= uivj êi .(Tkj êk)

= uivjTij .
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The last step comes from the orthonormality of the ê’s. Because ui and vj are arbitrary, this
shows that

Tij = 0
2T (êi, êj) (23)

This is the equation that makes the transformation of bases simple. If you want to
compute T ′ij this is

T ′ij = 0
2T (ê′i, ê

′
j)

Each of the ê′i is expressible In terms of the êi. For example

T ′11 = 0
2T (ê′1, ê

′
1) = 0

2T

(
ê1 + ê2√

2
,
ê1 + ê2√

2

)
Use linearity in each of the variables, and you get

T ′11 =
1

2

[
0
2T (ê1, ê1) + 0

2T (ê1, ê2) + 0
2T (ê2, ê1) + 0

2T (ê2, ê2)
]

=
1

2

[
T11 + T12 + T21 + T22

]
This is the same result as in Eq. (21), and it equals 3/2. Another case would be T ′12

T ′12 = 0
2T (ê′1, ê

′
2) = 0

2T

(
ê1 + ê2√

2
,
ê2 − ê1√

2

)
=

1

2

[
T12 − T11 + T22 − T21

]
,

with the same results as before.

The generalization of this statement to an arbitrary rotation should now be obvious.
If the components of the tensor are Tij in the basis êi, and if the components are desired in
another basis ê′i, you need only to solve the geometrical problem of expressing the vectors ê′i
in terms of the vectors êi

Say ê′i = αjiêj ,

where the α’s are a set of numbers. Then,

T ′ij = 0
2T (ê′i, ê

′
j) = 0

2T (αkiêk, α`j ê`) = αkiα`j Tk` (24)

and you have the solution.

Don’t worry about properties of the α’s for the moment. In most problems you real-
istically encounter, it’s simpler to use the definitions of the relationships and some plane or
solid geometry.
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12.3 Relations between Tensors
Drop the clumsy extra indices on the tensors. You should be able to tell from context
whether you’re dealing with 1

1T or 0
2T , and I will simply call it T .

Go back to the fundamental representation theorem for linear functionals and see what
it looks like in component form. Evaluate f(~v ), where ~v = viêi. (The linear functional has
one vector argument and a scalar output.)

f(~v ) = f(viêi) = vi f(êi). (25)

Denote the set of numbers f(êi) (i = 1, 2, 3) by Ai = f(êi), in which case,

f(v̂ ) = Aivi = A1v1 + A2v2 + A3v3.

Now it is clear that the vector ~A of the theorem is just

~A = A1ê1 + A2ê2 + A3ê3. (26)

Again, examine the problem of starting from a bilinear functional and splitting off one
of the two arguments in order to obtain a vector valued function of a vector. I want to say

T (~u, ~v ) = ~u .T (~v )

for all vectors ~u and ~v. You should see that using the same symbol, T , for both functions
doesn’t cause any trouble. Given the bilinear functional, what is the explicit form for T (~v )?
The answer is most readily found by a bit of trial and error until you reach the following
result:

T (~v ) = êi T (êi, ~v ). (27)

(Remember the summation convention.) To verify this relation, multiply by an arbitrary
vector, ~u = uj êj :

~u .T (~v ) = (uj êj) . êi T (êi, ~v ),

which is, by the orthonormality of the ê’s,

uj δji T (êi, ~v ) = ui T (êi, ~v ) = T (~u, ~v ).

This says that the above expression is in fact the correct one. Notice also the similarity
between this construction and the one in equation (26) for ~A.

Now take T (~v ) from Eq. (27) and express ~v in terms of its components

~v = vj êj , then T (~v ) = êi T (êi, vj êj) = êi T (êi, êj)vj .

The i component of this expression is

T (êi, êj)vj = Tijvj ,

a result already obtained in Eq. (16).
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There’s a curiosity involved here; why should the left hand entry in T ( , ) be singled
out to construct

êi T (êi, ~v )?

Why not use the right hand one instead? Answer: No reason at all. It’s easy enough to find
out what happens when you do this. Examine

êi T (~v, êi) ≡ T̃ (~v ). (28)

Put ~v = vj êj , and you get
êi T (vj êj , êi) = êi T (êj , êi)vj .

The ith component of which is
Tjivj

If you write this as a square matrix times a column matrix, the only difference between this
result and that of Eq. (16) is that the matrix is transposed. This vector valued function T̃
is called the transpose of the tensor T . The nomenclature comes from the fact that in the
matrix representation, the matrix of one equals the transpose of the other’s matrix.

By an extension of the language, this applies to the other form of the tensor, T :

T̃ (~u, ~v ) = T (~v, ~u )

Symmetries
Two of the common and important classifications of matrices, symmetric and antisymmetric,
have their reflections in tensors. A symmetric tensor is one that equals its transpose and
an antisymmetric tensor is one that is the negative of its transpose. It is easiest to see the
significance of this when the tensor is written in the bilinear functional form:

Tij = T (êi, êj).

This matrix will equal its transpose if and only if

T (~u, ~v ) = T (~v, ~u )

for all ~u and ~v. Similarly, if for all ~u and ~v

T (~u, ~v ) = −T (~v, ~u )

then T = −T̃ . Notice that it doesn’t matter whether I speak of T as a scalar-valued function
of two variables or as a vector-valued function of one; the symmetry properties are the same.

From these definitions, it is possible to take an arbitrary tensor and break it up into
its symmetric part and its antisymmetric part:

T =
1

2

(
T + T̃

)
+

1

2

(
T − T̃

)
= TS + TA (29)

TS(~u, ~v ) =
1

2

[
T (~u, ~v ) + T (~v, ~u )

]
TA(~u, ~v ) =

1

2

[
T (~u, ~v )− T (~v, ~u )

]
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Many of the common tensors such as the tensor of inertia and the dielectric tensor
are symmetric. The magnetic field tensor in contrast, is antisymmetric. The basis of this
symmetry in the case of the dielectric tensor is in the relation for the energy density in an
electric field,

∫
~E . d ~D.* Apply an electric field in the x direction, then follow it by adding

a field in the y direction; undo the field in the x direction and then undo the field in the y
direction. The condition that the energy density returns to zero is the condition that the
dielectric tensor is symmetric.

All of the above discussions concerning the symmetry properties of tensors were phrased
in terms of second rank tensors. The extensions to tensors of higher rank are quite easy. For
example in the case of a third rank tensor viewed as a 3-linear functional, it would be called
completely symmetric if

T (~u, ~v, ~w ) = T (~v, ~u, ~w ) = T (~u, ~w, ~v ) = etc.

for all permutations of ~u, ~v, ~w, and for all values of these vectors. Similarly, if any interchange
of two arguments changed the value by a sign,

T (~u, ~v, ~w ) = −T (~v, ~u, ~w ) = +T (~v, ~w, ~u ) = etc.

then the T is completely antisymmetric. It is possible to have a mixed symmetry, where
there is for example symmetry on interchange of the arguments in the first and second place
and antisymmetry between the second and third.

Alternating Tensor
A curious (and very useful) result about antisymmetric tensors is that in three dimensions
there is, up to a factor, only one totally antisymmetric third rank tensor; it is called the
“alternating tensor.” So, if you take any two such tensors, 0

3Λ and 0
3Λ

′, then one must be a
multiple of the other. (The same holds true for the nth rank totally antisymmetric tensor in
n dimensions.)

Proof: Consider the function Λ−αΛ′ where α is a scalar. Pick any three independent
vectors ~v10, ~v20, ~v30 as long as Λ′ on this set is non-zero. Let

α =
Λ(~v10, ~v20, ~v30)

Λ′(~v10, ~v20, ~v30)
(30)

(If Λ′ gives zero for every set of ~v s then it’s a trivial tensor, zero.) This guarantees that
Λ − αΛ′ will vanish for at least one set of values of the arguments. Now take a general set
of three vectors ~v1, ~v2, and ~v3 and ask for the effect of Λ− αΛ′ on them. ~v1, ~v2, and ~v3 can
be expressed as linear combinations of the original ~v10, ~v20, and ~v30. Do so. Substitute into
Λ− αΛ′, use linearity and notice that all possible terms give zero.

* This can be proved by considering the energy in a plane parallel plate capacitor, which
is, by definition of potential,

∫
V dq. The Potential difference V is the magnitude of the ~E

field times the distance between the the capacitor plates. [V = Ed.] ( ~E is perpendicular

to the plates by ∇ × ~E = 0.) The normal component of ~D related to q by ∇ . ~D = ρ.

[A ~D . n̂ = q.] Combining these, and dividing by the volume gives the energy density as∫
~E . d ~D.



12—Tensors 303

The above argument is unchanged in a higher number of dimensions. It is also easy to
see that you cannot have a totally antisymmetric tensor of rank n + 1 in n dimensions. In
this case, one of the n + 1 variables would have to be a linear combination of the other n.
Use linearity, and note that when any two variables equal each other, antisymmetry forces
the result to be zero. These observations imply that the function must vanish identically.
See also problem 19. If this sounds familiar, look back at section 7.6.

12.4 Non-Orthogonal Bases
The next topic is the introduction of more general computational techniques. These will lift
the restriction on the type of basis that can be used for computing components of various
tensors. Until now, the basis vectors have formed an orthonormal set

|êi| = 1, êi . êj = 0 if i 6= j

Consider instead a more general set of vectors ~ei. These must be independent. That is, in
three dimensions they are not coplanar. Other than this there is no restriction. Since by
assumption the vectors ~ei span the space you can write

~v = viêi.

with the numbers vi being as before the components of the vector ~v.

NOTE: Here is a change in notation. Before, every index
was a subscript. (It could as easily have been a super-
script.) Now, I want to make a careful distinction between
sub- and superscripts. They will have different meanings.

Reciprocal Basis
Immediately, when you do the basic scalar product you find complications. If ~u = uj~ej , then

~u .~v = (uj~ej) .(vi~ei) = ujvi~ej .~ej .

But since the ~ei aren’t orthonormal, this is a much more complicated result than the usual
scalar product such as

uxvy + uyvy + uzvz.

You can’t assume that ~e1 .~e2 = 0 any more. In order to obtain a result that looks as simple
as this familiar form, introduce an auxiliary basis: the reciprocal basis. (This trick will not
really simplify the answer; it will be the same as ever. It will however be in a neater form
and hence easier to manipulate.) The reciprocal basis is defined by the equation

~ei .~e
j = δji =

{
1 if i = j
0 if i 6= j

(31)

The ~e j ’s are vectors. The index is written as a superscript to distinguish it from the original
basis, ~ej .



304 12—Tensors

e

1

2
1

e

e

e

2

To elaborate on the meaning of this equation, ~e 1 is perpendicular to the plane defined
by ~e2 and ~e3 and is therefore more or less in the direction of ~e1. Its magnitude is adjusted
so that the scalar product

~e 1 .~e1 = 1.

The “direct basis” and “reciprocal basis” are used in solid state physics and especially
in describing X-ray diffraction in crystallography. In that instance, the direct basis is the
fundamental lattice of the crystal and the reciprocal basis would be defined from it. The
reciprocal basis is used to describe the wave number vectors of scattered X-rays.

The basis reciprocal to the reciprocal basis is the direct basis.
Now to use these things: Expand the vector ~u in terms of the direct basis and ~v in

terms of the reciprocal basis.

~u = ui~ei and ~v = vj~e
j . Then ~u .~v = (ui~ei) .(vj~e

j)

= uivjδ
j
i

= uivi = u1v1 + u2v2 + u3v3.

Notation: The superscript on the components (ui) will refer to the components in the direct
basis (~ei); the subscripts (vj) will come from the reciprocal basis (~e j). You could also have
expanded ~u in terms of the reciprocal basis and ~v in the direct basis, then

~u .~v = uiv
i = uivi (32)

Summation Convention
At this point I modify the previously established summation convention: Like indices in a
given term are to be summed when one is a subscript and one is a superscript. Furthermore
the notation is designed so that this is the only kind of sum that should occur. If you find
a term such as uivi then this means that you made a mistake.

The scalar product now has a simple form in terms of components (at the cost of
introducing an auxiliary basis set). Now for further applications to vectors and tensors.

Terminology: The components of a vector in the direct basis are called the contravari-
ant components of the vector: vi. The components in the reciprocal basis are called* the
covariant components: vi.

Examine the component form of the basic representation theorem for linear functionals,
as in Eqs. (25) and (26).

f(~v ) = ~A .~v for all ~v.

* These terms are of more historical than mathematical interest.
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Claim: ~A = ~e if(~ei) = ~eif(~e i) (33)

The proof of this is as before: write ~v in terms of components and compute the scalar product
~A .~v.

~v = vi~ei. Then ~A .~v =
(
~e jf(~ej)

)
.
(
vi~ei
)

= vif(~ej)δ
j
i

= vif(~ei) = f(vi~ei) = f(~v ).

Analogous results hold for the expression of ~A in terms of the direct basis.
You can see how the notation forced you into considering this expression for ~A. The

summation convention requires one upper index and one lower index, so there is practically
no other form that you could even consider in order to represent ~A.

The same sort of computations will hold for tensors. Start off with one of second
rank. Just as there were covariant and contravariant components of a vector, there will be
covariant and contravariant components of a tensor. T (~u, ~v ) is a scalar. Express ~u and ~v in
contravariant component form:

~u = ui~ei and ~v = vj~ej . Then T (~u, ~v ) = T (ui~ei, v
j~ej)

= uivj T (~ei, ~ej)

= uivj Tij (34)

The numbers Tij are called the covariant components of the tensor T .
Similarly, write ~u and ~v in terms of covariant components:

~u = ui~e
i and ~v = vj~e

j . Then T (~u, ~v ) = T (ui~e
i, vj~e

j)

= uivj T (~e i, ~e j)

= uivj T
ij (35)

And T ij are the contravariant components of T . It is also possible to have mixed components:

T (~u, ~v ) = T (ui~e
i, vj~ej)

= uiv
j T (~e i, ~ej)

= uiv
j T i

j

As before, from the bilinear functional, a linear vector valued function can be formed
such that

T (~u,~v ) = ~u .T (~v ) and T (~v ) = ~e iT (~ei, ~v )

= ~eiT (~e i, ~v )

For the proof of the last two lines, simply write ~u in terms of its contravariant or covariant
components respectively.

All previous statements concerning the symmetry properties of tensors are unchanged
because they were made in a way independent of basis, though it’s easy to see that the
symmetry properties of the tensor are reflected in the symmetry of the covariant or the
contravariant components (but not in the mixed components usually).
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Metric Tensor
Take as an example the metric tensor:

g(~u,~v ) = ~u .~v. (36)

The linear function found by pulling off the ~u from this is the identity operator.

g(~v ) = ~v

This tensor is symmetric, so this must be reflected in its covariant and contravariant com-
ponents. Take as a basis the vectors

e

2e

e

2

1e

1

Let |~e2| = 1 and |e1| = 2; the angle between them being 45◦. A little geometry shows
that

|~e 1| = 1√
2

and |~e 2| =
√

2

Assume this problem is two dimensional in order to simplify things.
Compute the covariant components:

g11 = g(~e1, ~e1) = 4

g12 = g(~e1, ~e2) =
√

2

g21 = g(~e2, ~e1) =
√

2

g22 = g(~e2, ~e2) = 1

(
grc
)

=

(
4
√

2√
2 1

)

Similarly

g11 = g(~e 1, ~e 1) = 1/2

g12 = g(~e 1, ~e 2) = −1/
√

2

g21 = g(~e 2, ~e 1) = −1/
√

2

g22 = g(~e 2, ~e 2) = 2

(
grc
)

=

(
1/2 −1/

√
2

−1/
√

2 2

)

The mixed components are

g1
1 = g(~e 1, ~e1) = 1

g1
2 = g(~e 1, ~e2) = 0

g2
1 = g(~e 2, ~e1) = 0

g2
2 = g(~e 2, ~e2) = 1

(
gr

c

)
=
(
δrc
)

=

(
1 0
0 1

)
(37)

I used r and c for the indices to remind you that these are the row and column variables.
Multiply the first two matrices together and you obtain the third one — the unit matrix.
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The matrix
(
gij
)

is therefore the inverse of the matrix
(
gij
)
. This last result is not general,

but is due to the special nature of the tensor g.
The question arises as before: how do you compute the components of a tensor in one

basis when the components are given in another basis. The question is answered as before:
It is a problem in geometry to express the new basis vectors in terms of the old one.

~e ′i = aj
i~ej (38)

The covariant components in the new system are (say for a second rank tensor)

T ′ij = T (~e ′i, ~e
′
j) = T (ak

i~ek, a
`
j~e`) = ak

ia
`
j Tk` (39)

Analogous equations will hold for the contravariant indices provided that you can
find the reciprocal basis vectors in the transformed system. That is, you need the vectors
reciprocal to the ~e ′i in terms of the vectors reciprocal to ~ei. Assume a relation:

~e ′i = b i
j ~e

j

You must find the b’s in terms of the a’s. The relationship must come from reciprocity
relationships. Required:

~e ′i .~e ′j = δij =
(
b i
k ~e

k
)
.
(
~e`
)

= b i
k a

`
j ~e

k .~e` = b i
k a

`
j δ

k
` = b i

k a
k
j (40)

In short, the matrix (b i
k ) is the inverse transpose of the matrix (ak

j). Recall, I’m using the
convention that the first index represents the row of the matrix and the second index the
column, whether the index is up or down.

If you were to make the restriction to orthonormal bases then not only would the
reciprocal and direct bases be the same, the distinction between upper and lower indices
would vanish, and necessarily all changes of basis would be orthogonal transformations
(rotations or reflections). In this case the above matrices (a) and (b) are equal since an
orthogonal matrix is equal to its inverse transpose.

Raising and Lowering
There is a particular basis change of general use. This is the change from direct to reciprocal
basis or vice-versa. It’s perfectly legitimate to look on this as a change of basis because these
two sets of basis vectors both span the space and so one must be expressible in terms of
the other. The transformation is accomplished by means of the components of the metric
tensor:

~e i = gji~ej

You can prove this relation by multiplying both sides by ~e k.

~e k .~e i = ~e k . gji~ej = gjiδkj = gki

but this is just the definition of the components of g. Similarly,

~ei = gji~e
j
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and the proof is the same, multiply by ~ek to get

~ek .~e i = ~ek . gji~e j = gjiδjk = gki

This operation also changes covariant components to contravariant and the reverse. It
isn’t restricted to vector components, but works for any rank tensor.

vi = gijvj , T ij = gikgj` Tk`, Tij = gik T
k
j , etc. (41)

These operations are called raising and lowering as you might expect, and one is the inverse
of the other (consistent with the matrix properties found in the special case of Eq. (37)).
The sort of manipulation that it represents is one of the more common tools in manipulating
tensors.

12.5 Manifolds and Fields
Until now, all definitions and computations were done in one vector space. This is the same
state of affairs as when you once learned vector algebra; the only things to do then were
addition, scalar products, and cross products. Eventually however vector calculus came up
and you learned about vector fields and gradients and the like. You have now set up enough
apparatus to make the corresponding step here. First I would like to clarify just what is
meant by a vector field, because I am sure there will be some confusion on this point no
matter how clearly you think you understand the concept. Take a typical vector field such
as the electrostatic field ~E. ~E will be some function of position (presumably satisfying
Maxwell’s equations) as indicated at the six different points.

E
E E E E4 E

5
61 2 3

Does it make any sense to take the vector ~E3 and add it to the vector ~E5? These
are after all, vectors; can’t you always add one vector to another vector? Suppose there is
also a magnetic field present, say with vectors ~B1, ~B2 etc. , at the same points. Take the
magnetic vector at the point #3 and add it to the electric vector there. The reasoning would
be exactly the same as the previous case; these are vectors, therefore they can be added.
The second case is palpable nonsense, as should be the first. The electric vector is defined
as the force per charge at a point. If you take two vectors at two different points, then the
forces are on two different objects, so the sum of the forces is not a force on anything — it
isn’t even defined.

You can’t add an electric vector at one point to an electric
vector at another point. These two vectors occupy different vector
spaces. At a single point in space there are many possible vectors; at
this one point, the set of all possible electric vectors forms a vector
space because they can be added to each other and multiplied by
scalars while remaining at the same point. By the same reasoning
the magnetic vectors at a point form a vector space. Also the velocity
vectors. You could not add a velocity vector to an electric field vector even at the same point
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however. These too are in different vector spaces. You can picture all these vector spaces as
attached to the points in the manifold and somehow sitting over them.

From the above discussion you can see that even to discuss one type of vector field,
a vector space must be attached to each point of space. If you wish to make a drawing
of such a system, It is at best difficult. In three dimensional space you could have a three
dimensional vector space at each point. A crude way of picturing this is to restrict to two
dimensions and draw a line attached to each point, representing the vector space attached
to that point. This pictorial representation won’t be used in anything to follow however, so
you needn’t worry about it.

The term “vector field” that I’ve been throwing around is just a prescription for se-
lecting one vector out of each of the vector spaces. Or, in other words, it is a function that
assigns to each point a vector in the vector space at that same point.

There is a minor confusion of terminology here in the use of the word “space.” This
could be space in the sense of the three dimensional Euclidean space in which we are sitting
and doing computations. Each point of the latter will have a vector space associated with
it. To reduce confusion (I hope) I shall use the word “manifold” for the space over which
all the vector spaces are built. Thus: To each point of the manifold there is associated a
vector space. A vector field is a choice of one vector from each of the vector spaces over
the manifold. This is a vector field on the manifold. In short: The word “manifold” is
substituted here for the phrase “three dimensional Euclidean space.”

(A comment on generalizations. While using the word manifold as above, everything
said about it will in fact be more general. For example it will still be acceptable in special
relativity with four dimensions of space-time. It will also be correct in other contexts where
the structure of the manifold is non-Euclidean.)

The point that I wish to emphasize here is that most of the work on tensors is already
done and that the application to fields of vectors and fields of tensors is in a sense a special
case. At each point of the manifold there is a vector space to which all previous results
apply.

In the examples of vector fields mentioned above (electric field, magnetic field, velocity
field) keep your eye on the velocity. It will play a key role in the considerations to come,
even in considerations of other fields.

A word of warning about the distinction between a manifold and the vector spaces at
each point of the manifold. You are accustomed to thinking of three dimensional Euclidean
space (the manifold) as a vector space itself. That is, the displacement vector between two
points is defined, and you can treat these as vectors just like the electric vectors at a point.
Don’t! Treating the manifold as a vector space will cause great confusion. Granted, it
happens to be correct in this instance, but in attempting to understand these new concepts
about vector fields (and tensor fields later), this additional knowledge will be a hindrance. For
our purposes therefore the manifold will not be a vector space. The concept of a displacement
vector is therefore not defined.

Just as vector fields were defined by picking a single vector from each vector space at
various points of the manifold, a scalar field is similarly an assignment of a number (scalar)
to each point. In short then, a scalar field is a function that gives a scalar (the dependent
variable) for each point of the manifold (the independent variable).
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For each vector space, you can discuss the tensors that act on that space and so, by
picking one such tensor for each point of the manifold a tensor field is defined.

A physical example of a tensor field (of second rank) is stress in a solid. This will
typically vary from point to point. But at each point a second rank tensor is given by the
relation between infinitesimal area vectors and internal force vectors at that point. Similarly,
the dielectric tensor in an inhomogeneous medium will vary with position and will therefore
be expressed as a tensor field. Of course even in a homogeneous medium the dielectric tensor
would be a tensor field relating ~D and ~E at the same point. It would however be a constant
tensor field. Like a uniform electric field, the tensors at different points could be thought of
as “parallel” to each other (whatever that means).

12.6 Coordinate Systems
In order to obtain a handle on this subject and in order to be able to do computations, it
is necessary to put a coordinate system on the manifold. From this coordinate system there
will come a natural way to define the basis vectors at each point (and so reciprocal basis
vectors too).

There is no need to restrict the discussion to rectangular or even to orthogonal coordi-
nate systems. A coordinate system is a means of identifying different points of the manifold
by different sets of numbers. This is done by specifying a set of functions: x1, x2, x3, which
are the coordinates. (There will be more in more dimensions of course.) These functions are
real valued functions of points in the manifold. The coordinate axes are defined as in the
drawing by

2

x

x

x   = constant

x   = constant
x   = constant

x   = constant2
3

3
1

1

Specify the equations x2 =constant and x3 =constant for the x1 coordinate axis. For
example in rectangular coordinates x1 = x, x2 = y, x3 = z, and the x-axis is the line y = 0,
and z = 0.

In spherical coordinates

x1 = r, x2 = θ, x3 = φ

and the radial coordinate axis is defined by the equations θ =,constant and φ =constant.
The use of x1, x2, and x3 (xi) for the coordinate system is a matter of convenience. It

will make the notation somewhat more uniform. Despite the use of superscripts, these are
not the components of any vectors.

Coordinate Basis
In order to discuss components of vectors, I’ll need basis vectors. These are defined by the
following considerations: Imagine a particle moving around in the manifold. At each instant
of time the particle will have a definite position. It will also have a definite velocity. So



12—Tensors 311

far no coordinate system is needed. The position of the particle is typically described by
specifying its coordinates as functions of time, xi(t). The basis vectors at a point are defined
so that the following equation holds:

~v = ~ei
dxi

dt
(42)

The summation convention still holds. This is called a coordinate basis, and it will not
necessarily be a set of unit vectors that you are accustomed to such as (x̂, ŷ, ẑ) or (r̂, θ̂, φ̂).

Look at some special cases. First, rectangular coordinates. If a particle is moving
along the x1-axis (= the x-axis) then dx2/dt = 0 = dx3/dt. Also, the velocity will be in the
x direction and of size dx1/dt. This gives

~e1 = x̂

as you would expect. Similarly
~e2 = ŷ, ~e3 = ẑ.

Second, examine plane polar coordinates, so there are only x1 and x2. Let x1 = r, and
x2 = θ. A particle moving on a straight line away from the origin will have a velocity

r̂
dr

dt
, which gives ~e1 = r̂.

If the particle is moving around a circle of radius r instead, then its velocity is

θ̂ r
dθ

dt
, which gives ~e2 = rθ̂ (43)

this is no longer just a unit vector. Not only does it have dimensions of length but its
magnitude varies from point to point. Note that θ̂ is not one of the basis vectors in this
notation.

Third example: a coordinate system again in a plane, but where the axes are not
orthogonal to each other, but are rectilinear anyway.

α
x

x

1

2

0 1 2

0

1

2

Still keep the definition

~v = ~ei
dxi

dt
= ~e1

dx1

dt
+ ~e2

dx2

dt
. (44)

If the particle moves along the x1-axis (or parallel to it) then by the definition of the
axes, x2 is a constant and dx2/dt = 0. Suppose that the coordinates measure centimeters,
so that the perpendicular distance between the lines is one centimeter. The distance between
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the points (0, 0) and (1, 0) is then 1 cm/ sinα = cscα cm. If in ∆t = one second, particle
moves from the first to the second of these points, ∆x1 = one cm, so dx1/dt = 1 cm/sec.
The speed however, is cscα cm/sec because the distance moved is greater by that factor.
This means that

|~e1| = cscα

and this is greater than one; it is not a unit vector. The magnitudes of ~e2 is the same. The
dot product of these two vectors is ~e1 .~e2 = cosα/ sin2 α.

Reciprocal Coordinate Basis
The reciprocal basis vectors are constructed from the direct basis by the equation

~e i .~ej = δij

In rectangular coordinates the direct and reciprocal bases coincide because the basis is or-
thonormal. For the tilted basis of Eq. (44),

~e2 .~e 2 = 1 = |~e2| |~e 2| cos
(
90◦ − α

)
= (cscα)|~e 2| sinα = |~e 2|

The reciprocal basis vectors in this case are unit vectors.
In plane polar coordinates, it’s easy to verify that

~e 1 = r̂ and ~e 2 =
1

r
θ̂ (45)

The direct basis is defined so that the components of velocity are as simple as possible.
In contrast, the components of the gradient of a scalar field are equally simple provided that
they are expressed in the reciprocal basis. If you try to use the same basis for both you can,
but the resulting equations are a mess.

In order to compute the components of gradφ (where φ is a scalar field) start with
its definition, and an appropriate definition should not depend on the coordinate system.
It ought to be some sort of geometric statement that you can translate into any particular
coordinate system that you want. One way to define gradφ is that it is that vector pointing
in the direction of maximum increase of φ and equal in magnitude to dφ/ds where s is the
distance measured in that direction. This is the first statement in section 8.5. While correct,
this definition does not easily lend itself to computations.

Instead, think of the particle moving through the manifold. As a function of time it
sees changing values of φ. The time rate of change of φ as felt by this particle is given by a
scalar product of the particle’s velocity and the gradient of φ. This is essentially the same
as Eq. (8.12), though phrased in a rather different way. Write this statement in terms of
coordinates

d

dt
φ
(
x1(t), x2(t), x3(t)

)
= ~v . gradφ

The left hand side is (by the chain rule)

∂φ

∂x1

∣∣∣∣
x2,x3

dx1

dt
+

∂φ

∂x2

∣∣∣∣
x1,x3

dx2

dt
+

∂φ

∂x3

∣∣∣∣
x1,x2

dx3

dt
=

∂φ

∂x1

dx1

dt
+

∂φ

∂x2

dx2

dt
+

∂φ

∂x3

dx3

dt
(46)



12—Tensors 313

~v is expressed in terms of the direct basis by

~v = ~ei
dxi

dt
,

now express gradφ in the reciprocal basis

gradφ = ~e i
(
gradφ

)
i

(47)

The way that the scalar product looks in terms of these bases, Eq. (32) is

~v . gradφ = ~ei
dxi

dt
.~e j
(
gradφ

)
j

= vi
(
gradφ

)
i

(48)

Compare the two equations (46) and (48) and you see

gradφ = ~e i ∂φ

∂xi
(49)

For a formal proof of this statement consider three cases. When the particle is moving along
the x1 direction (x2 & x3 constant) only one term appears on each side of (46) and (48) and
you can divide by v1 = dx1/dt. Similarly for x2 and x3. As usual with partial derivatives,
the symbol ∂φ

/
∂xi assumes that the other coordinates x2 and x3 are constant.

In the case of polar coordinates this equation for the gradient reads, using Eq. (45),

gradφ = ~e 1 ∂φ

∂x1
+ ~e 2 ∂φ

∂x2
=
(
r̂
)∂φ
∂r

+
(1

r
θ̂
)∂φ
∂θ

which is the standard result, Eq. (8.22). Notice again that the basis vectors are not dimen-
sionless. They can’t be because ∂φ/∂r doesn’t have the same dimensions as ∂φ/∂θ.
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x

x

1

2

e 1

e 2

0 1 2

0

1

Example
I want an example to show that all this formalism actually gives the
correct answer in a special case for which you can also compute all
the results in the traditional way. Draw parallel lines a distance 1 cm
apart and another set of parallel lines also a distance 1 cm apart inter-
secting at an angle α between them. These will be the constant values
of the functions defining the coordinates, and will form a coordinate
system labeled x1 and x2. The horizontal lines are the equations x2 = 0, x2 = 1 cm, etc.

Take the case of the non-orthogonal rectilinear coordinates again. The components of
gradφ in the ~e 1 direction is ∂φ/∂x1, which is the derivative of φ with respect to x1 holding
x2 constant, and this derivative is not in the direction along ~e 1, but in the direction where
x2 = a constant and that is along the x1-axis, along ~e1. As a specific example to show that
this makes sense, take a particular φ defined by

φ(x1, x2) = x1

For this function gradφ = ~e 1 ∂φ

∂x1
+ ~e 2 ∂φ

∂x2
= ~e 1
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~e 1 is perpendicular to the x2-axis, the line x1 =constant, (as it should be). Its magnitude is
the magnitude of ~e 1, which is one.

To verify that this magnitude is correct, calculate it directly from the definition. The
magnitude of the gradient is the magnitude of dφ/ds where s is measured in the direction of
the gradient, that is, in the direction ~e 1.

dφ

ds
=

∂φ

∂x1

dx1

ds
= 1 . 1 = 1

Why 1 for dx1/ds? The coordinate lines in the picture are x1 = 0, 1, 2, . . .. When you move
on the straight line perpendicular to x2 = constant (~e 1 ), and go from x1 = 1 to x2 = 2,
then both ∆x1 and ∆s are one.

Metric Tensor
The simplest tensor field beyond the gradient vector above would be the metric tensor, which
I’ve been implicitly using all along whenever a scalar product arose. It is defined at each
point by

g(~a,~b ) = ~a .~b (50)

Compute the components of g in plane polar coordinates. The contravariant components of
g are from Eq. (43) and (45)

gij = ~e i .~e j =

(
1 0
0 1/r2

)
Covariant:

gij = ~ei .~ej =

(
1 0
0 r2

)
Mixed:

gi
j = ~e i .~ej =

(
1 0
0 1

)
12.7 Basis Change
If you have two different sets of basis vectors you can compute the transformation on the
components in going from one basis to the other, Eq. (38). In dealing with fields, a different
set of basis vectors necessarily arises from a different set of coordinates on the manifold.
It is convenient to compute the transformation matrices directly in terms of the different
coordinate functions. Call the two sets of coordinates xi and yi. Each of them defines a set
of basis vectors such that a given velocity is expressed as

~v = ~ei
dxi

dt
= ~e ′j

dyi

dt
(51)

What you need is an expression for ~e ′j in terms of ~ei at each point. To do this, take a

particular path for the particle — along the y1-direction (y2 & y3 constant). The right hand
side is then

~e ′1
dy1

dt
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Divide by dy1/dt to obtain

~e ′1 = ~ei
dxi

dt

/
dy1

dt

But this quotient is just

~e ′1 = ~ei
∂xi

∂y1

∣∣∣∣
y2,y3

And in general

~e ′j = ~ei
∂xi

∂yj
(52)

Do a similar calculation for the reciprocal vectors

gradφ = ~e i ∂φ

∂xi
= ~e ′j

∂φ

∂yj

Take the case for which φ = yk, then

∂φ

∂yj
=
∂yk

∂yj
= δkj

which gives

~e ′k = ~e i∂y
k

∂xi
(53)

As in Eq. (40), the transformation matrices for the direct and the reciprocal basis are
inverses of each other, In the present context, this becomes

e ′k .~e ′j = δkj = ~e `∂y
k

∂x`
.~ei

∂xi

∂yj

= δ`i
∂yk

∂x`

∂xi

∂yj

=
∂yk

∂xi

∂xi

∂yj
=
∂yk

∂yj

The matrices ∂xi
/
∂yj and its inverse matrix, ∂yk

/
∂xi are called Jacobian matrices.

When you do multiple integrals and have to change coordinates, the determinant of one or
the other of these matrices will appear as a factor in the integral.

As an example, compute the change from rectangular to polar coordinates

x1 = x y1 = r x2 = y y2 = θ

x = r cos θ r =
√
x2 + y2 y = r sin θ θ = tan−1 y/x

~e ′j = ~ei
∂xi

∂yj

~e ′1 = ~e1
∂x1

∂y1
+ ~e2

∂x2

∂y1
= x̂

∂x

∂r
+ ŷ

∂y

∂r

= x̂ cos θ + ŷ sin θ = r̂

~e ′2 = ~e1
∂x1

∂y2
+ ~e2

∂x2

∂y2
= x̂

∂x

∂θ
+ ŷ

∂y

∂θ

= x̂(−r sin θ) + ŷ(r cos θ) = rθ̂
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Knowing the change in the basis vectors, the change of the components of any tensor
follows as before as it did after Eq. (38).

A realistic example using non-orthonormal bases appears in special relativity. Here the
manifold is four dimensional instead of three and the coordinate changes of interest represent
Lorentz transformations. Points in space-time (”events”) can be described by rectangular
coordinates (ct, x, y, z), which are concisely denoted by xi

i = (0, 1, 2, 3) where x0 = ct, x1 = x, x2 = y, x3 = z

The introduction of the factor c into x0 is merely a question of scaling. It also makes the
units the same on all axes.

The basis vectors associated with this coordinate system point along the directions of
the axes.

This manifold is not Euclidean however so that these vectors are not unit vectors in
the usual sense. We have

~e0 .~e0 = −1 ~e1 .~e1 = 1 ~e2 .~e2 = 1 ~e3 .~e3 = 1

and they are orthogonal pairwise. The reciprocal basis vectors are defined in the usual way,

~e i .~ej = δij

so that
~e 0 = −~e0 ~e 1 = ~e1 ~e 1 = ~e1 ~e 1 = ~e1

The contravariant (also covariant) components of the metric tensor are

gij =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = gij (54)

An observer moving in the +x direction with speed v will have his own coordinate
system with which to describe the events of space-time. The coordinate transformation is

x′0 = ct′ =
x0 − v

cx
1√

1− v2/c2
=

ct− v
cx√

1− v2/c2

x′1 = x′ =
x1 − v

cx
0√

1− v2/c2
=

x− vt√
1− v2/c2

x′2 = y′ = x2 = y x′3 = z′ = x3 = z

(55)

You can check that these equations represent the transformation to an observer moving in
the +x direction by asking where the moving observer’s origin is as a function of time: It is
at x′1 = 0 or x− vt = 0, giving x = vt as the locus of the moving observer’s origin.

The graph of the coordinates is as usual defined by the equations (say for the x′0-axis)
that x′1, x′2, x′3 are constants such as zero. Similarly for the other axes.
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x0 = ct
x′ 0 = ct′

x′ 1 = x′

x1 = x

~e 0

~e ′ 0

~e ′ 1

~e 1

Find the basis vectors in the transformed system by using equation (52).

~e ′j = ~ei
∂xi

∂yj

In the present case the yj are x′j and we need the inverse of the equations (55). They are
found by changing v to −v and interchanging primed and unprimed variables.

x0 =
x′0 + v

cx
′1√

1− v2/c2
x1 =

x′1 + v
cx

′0√
1− v2/c2

~e ′0 = ~ei
∂xi

∂x′0
= ~e0

1√
1− v2/c2

+ ~e1
v/c√

1− v2/c2

~e ′1 = ~ei
∂xi

∂x′1
= ~e0

v/c√
1− v2/c2

+ ~e1
1√

1− v2/c2

(56)

It is easy to verify that these new vectors point along the primed axes as they should.
They also have the property that they are normalized to plus or minus one respectively as
are the original untransformed vectors. (How about the reciprocal vectors?)

As an example applying all this apparatus, do the transformation of the components
of a second rank tensor, the electromagnetic field tensor. This tensor is the function that
acts on the current density (four dimensional vector) and gives the force density (also a
four-vector). Its covariant components are

(
Fij

)
= F

(
~ei, ~ej

)
=


0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

 (57)

where the E’s and B’s are the conventional electric and magnetic field components. Compute
a sample component of this tensor in the primed coordinate system.

F ′20 = F (~e ′2, ~e
′
0) = F

(
~e2, ~e0

1√
1− v2/c2

+ ~e1
v/c√

1− v2/c2

)

=
1√

1− v2/c2
F20 +

v/c√
1− v2/c2

F21
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or in terms of the E and B notation,

E′y =
1√

1− v2/c2

[
Ey −

v

c
Bz

]
Since v is a velocity in the +x direction this in turn is

E′y =
1√

1− v2/c2

[
Ey +

1

c

(
~v × ~B

)
y

]
(58)

Except possibly for the factor in front of the brackets. this is a familiar, physically correct
equation of elementary electromagnetic theory. A charge is always at rest in its own reference
system. In its own system, the only force it feels is the electric force because its velocity with
respect to itself is zero. The electric field that it experiences is ~E ′, not the ~E of the outside
world. This calculation tells you that this force q ~E ′ is the same thing that I would expect if
I knew the Lorentz force law, ~F = q

[
~E+~v× ~B

]
. The factor of

√
1− v2/c2 appears because

force itself has some transformation laws that are not as simple as you would expect.
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Problems

12.1 Does the function T defined by T (v) = v+ c with c a constant satisfy the definition of
linearity?

12.2 Let the set X be the positive integers. Let the set Y be all real numbers. Consider the
following sets and determine if they are relations between X and Y and if they are functions.

{(0, 0), (1, 2.0), (3,−π), (0, 1.0), (−1, e)}
{(0, 0), (1, 2.0), (3,−π), (0, 1.0), (2, e)}
{(0, 0), (1, 2.0), (3,−π), (4, 1.0), (2, e)}
{(0, 0), (5, 5.5), (5., π) (3,−2.0) (7, 8)}

12.3 Instead of the coordinate-free proof of the representation theorem for linear functionals,
Eq. (5), give a proof in terms of the usual orthonormal basis x̂, ŷ, ẑ by letting f act on them

and constructing ~A in terms of its components. Perhaps guess an answer and show that it
works.

12.4 Starting from the definition of the tensor of inertia in Eq. (1) and using the defining
equation for components of a tensor, compute the components of I.

12.5 Find the components of the tensor relating ~d and ~F in the example of Eq. (2)

12.6 The product of tensors is defined to be just the composition of functions for the second
rank tensor viewed as a vector variable. If S and T are such tensors, then (ST )(v) = S(T (v))
(by definition) Compute the components of ST in terms of the components of S and of T .
Express the result both in terms of index notation and matrices.

12.7 The two tensors 1
1T and 1

1T̃ are derived from the same bilinear functional 0
2T . Prove

that for arbitrary ~u and ~v,
~u . 1

1T (~v ) = 1
1T̃ (~u ) .~v

(If it’s less confusing to remove all the sub- and superscripts, do so.)
(b) If you did this by writing everything in terms of components, do it again without com-
ponents and just using the nature of these as functions. (If you did in without components,
do it again using components.)

12.8 What is the significance of a tensor satisfying the relation T̃ [T (~v )] = T [T̃ (~v )] = ~v for
all ~v?

12.9 Carry out the construction indicated in section 12.3 to show the dielectric tensor is
symmetric.

12.10 Fill in the details of the proof that the alternating tensor is unique up to a factor.
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12.11 Compute the components of such an alternating tensor in two dimensions.

12.12 Take an alternating tensor in three dimensions, pull off one of the arguments in order
to obtain a vector valued function of two vector variables. See what the result looks like,
and in particular, write it out in component form.

12.13 Take a basis ~e1 = 2x̂, ~e2 = x̂+2ŷ. Compute the reciprocal basis. Find the components
of the vectors ~A = x̂ − ŷ and ~B = ŷ in in each basis and compute ~A . ~B several different
ways.

O A C

B

D

v

12.14 Show that if the direct basis vectors have unit length along
the directions of

−→
OA and

−−→
OB then the components of ~v in the direct

basis are the lengths OA and OB. What are the components in the
reciprocal basis?

12.15 Derive the equations (41).

12.16 What happens to the components of the alternating tensor when a change of basis is
made? Show that the only thing that can happen is that all the components are multiplied
by the same number (defined to be the determinant of the transformation). Compute this
explicitly in two dimensions. Ans: The determinant

12.17 If a tensor (viewed as a function of two vector variables) has the property that it
equals zero whenever the two arguments are the same, T (~v,~v ) = 0, then it is antisymmetric.
This is also true if it is a function of more than two variables and the above equation holds
on some pair of arguments. Consider ~v = α~u+ β ~w

12.18 If the components of the alternating tensor are (in three dimensions) eijk where

e123 = 1, Compute eijk. Compute

eijke`mk, eijke`jk, eijkeijk

12.19 In three dimensions three non-collinear vectors from a point define a volume, that
of the parallelepiped included between them. This defines a number as a function of three
vectors. Show that if the volume is allowed to be negative when one of the vectors reverses
that this defines a trilinear functional and that it is completely antisymmetric, an alternating
tensor. (Note problem 17.) If the units of volume are chosen to correspond to the units of
length of the basis vectors so that three one inch long perpendicular vectors enclose one
cubic inch as opposed to 16.387 cm3 then the functional is called ”the” alternating tensor.
Find all its components.

12.20 Find the direct coordinate basis in spherical coordinates, also the reciprocal basis.
Ans: r̂, θ̂/r, φ̂/r sin θ (now which is it?)

12.21 Draw examples of the direct and reciprocal bases (to scale) for the example in Eq. (44).
Do this for a wide range of angles between the axes.
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12.22 Show that the angle between two surfaces φ = constant and ψ = constant is

cos θ = gij∂iφ∂jψ
/
[gmn∂mφ∂nφg

pq∂pψ∂qψ
]1/2

where ∂i = ∂/∂xi. In particular, what is the angle between two coordinate surfaces x1 =
constant and x2 = constant?

12.23 Show that the area in two dimensions enclosed by the infinitesimal parallelogram
between x1 and x1 + dx1 and x2 and x2 + dx2 is

√
gdx1 dx2 where g is the determinant of

(gij).

12.24 Same as the preceding problem, but in three dimensions.

12.25 The divergence of a vector field is the limit of a surface integral divided by the enclosed
volume, Eqs. (9.5) and (9.9), and the result is that when you use a coordinate basis,

div ~F = lim
V→0

1

V

∮
~F . d ~A =

1
√
g

∂

∂xk

(√
gF k

)
Verify this result explicitly in cylindrical coordinates.

12.26 Compute the transformation laws for the other components of the electromagnetic
field tensor.

12.27 The divergence of a tensor field is defined as above for a vector field. T is a tensor
viewed as a vector valued function of a vector variable

div T = lim
V→0

1

V

∮
T
(
d ~A
)

It is a vector. Note: As defined here it requires the addition of vectors at two different points
of the manifold, so it must be assumed that you can move a vector over parallel to itself and
add it to a vector at another point. Had I not made the point in the text about not doing
this, perhaps you wouldn’t have noticed the assumption involved, but now do it anyway.
Compute div T in rectangular coordinates.

12.28 Compute div T in cylindrical coordinates using both the coordinate basis and the
usual unit vector (r̂, θ̂, ẑ) basis.

12.29 Show that gijgj` = δi`.

12.30 If you know what it means for vectors at two different points to be parallel, give a
definition for what it means for two tensors to be parallel.

12.31 Fill in the missing steps in the derivation following Eq. (30), and show that the
alternating tensor is unique up to a factor.



Vector Calculus 2

There’s more to the subject of vector calculus than the material in chapter nine. There are
a couple of types of line integrals and there are some basic theorems that relate the integrals
to the derivatives, sort of like the fundamental theorem of calculus that relates the integral
to the anti-derivative in one dimension.

13.1 Integrals
Recall the definition of the Riemann integral from section 1.6.∫ b

a
dx f(x) = lim

∆xk→0

N∑
k=1

f(ξk)∆xk (1)

This refers to a function of a single variable, integrated along that one dimension.
The basic idea is that you divide a complicated thing into little pieces to get an

approximate answer. Then you refine the pieces into still smaller ones to improve the answer
and finally take the limit as the approximation becomes perfect.

∆xk

∆yk

What is the length of a curve in the plane? Divide the curve into
a lot of small pieces, then if the pieces are small enough you can use the
Pythagorean Theorem to estimate the length of each piece.

∆sk =
√

(∆xk)2 + (∆yk)2

The whole curve then has a length that you estimate to be the sum of all these intervals.
Finally take the limit to get the exact answer.∑

k

∆sk =
∑√

(∆xk)2 + (∆yk)2 −→
∫
ds =

∫ √
dx2 + dy2 (2)

How do you actually do this? That will depend on the way that you use to describe the curve
itself. Start with the simplest method and assume that you have a parametric representation
of the curve:

x = f(t) and y = g(t)

Then dx = ḟ(t)dt and dy = ġ(t)dt, so

ds =

√(
ḟ(t)dt

)2
+
(
ġ(t)dt

)2
=

√
ḟ(t)2 + ġ(t)2 dt (3)

and the integral for the length is∫
ds =

∫ b

a
dt

√
ḟ(t)2 + ġ(t)2

where a and b are the limits on the parameter t. Think of this as
∫
ds =

∫
v dt, where v is

the speed.

322
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Do the simplest example first. What is the circumference of a circle? Use the
parametrization

x = R cos θ, y = R sin θ then ds =
√

(−R sin θ)2 + (R cos θ)2 dθ = Rdθ (4)

The circumference is then
∫
ds =

∫ 2π
0 Rdθ = 2πR. An ellipse is a bit more of a challenge;

see problem 3.

rk∆θk

∆rk

If the curve is expressed in polar coordinates you may find an-
other formulation preferable, though in essence it is the same. The
Pythagorean Theorem is still applicable, but you have to see what it
says in these coordinates.

∆sk =
√

(∆rk)2 + (rk∆θk)2

If this picture doesn’t seem to show much of a right triangle, remember
there’s a limit involved, as ∆rk and ∆θk approach zero this becomes more of a triangle. The
integral for the length of a curve is then∫

ds =

∫ √
dr2 + r2 dθ2

To actually do this integral you will pick a parameter to represent the curve, and that
parameter may even be θ itself. For an example, examine one loop of a logarithmic spiral:
r = r0 e

kθ.

ds =
√
dr2 + r2 dθ2 =

√(
dr/dθ

)2
+ r2 dθ

The length of the arc from θ = 0 to θ = 2π is∫ √(
r0k ekθ

)2
+
(
r0 ekθ

)2
dθ =

∫ 2π

0
dθ r0 e

kθ
√
k2 + 1 = r0

√
k2 + 1

1

k

[
e2kπ − 1

]
If k → 0 you can easily check that this give the correct answer. In the other extreme, for
large k, you can also check that it is a plausible result, but it’s a little harder to see.

Weighted Integrals
The time for a particle to travel along a short segment of a path is dt = ds/v where v is the
speed. The total time along a path is of course the integral of dt.

T =

∫
dt =

∫
ds

v
(5)

How much time does it take a particle to slide down a curve under the influence of gravity?
If the speed is determined by gravity without friction, you can use conservation of energy to
compute the speed. I’ll use the coordinate y measured downward from the top point of the
curve, then

x

y mv2/2−mgy = E, so v =
√

(2E/m) + 2gy (6)
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Suppose that this particle starts at rest from y = 0, then E = 0 and v =
√

2gy. Does the
total time to reach a specific point depend on which path you take to get there? Very much
so. This will lead to a classic problem called the “brachistochrone.” See chapter 16 for that.
1 Take the straight-line path from (0, 0) to (x0, y0). The path is x = y .x0/y0.

ds =
√
dx2 + dy2 = dy

√
1 + x2

0/y
2
0, so

T =

∫
ds

v
=

∫ y0

0

dy
√

1 + x2
0/y

2
0√

2gy
=
√

1 + x2
0/y

2
0

1√
2g

1

2

√
y0 =

1

2

√
x2

0 + y2
0√

2gy0
(7)

x

y

2 There are an infinite number of possible paths, and another choice of
path can give a smaller or a larger time. Take another path for which
it’s easy to compute the total time. Drop straight down in order to pick
up speed, then turn a sharp corner and coast horizontally. Compute
the time along this path and it is the sum of two pieces.∫ y0

0

dy√
2gy

+

∫ x0

0

dx√
2gy0

=
1√
2g

[
1

2

√
y0 +

x0√
y0

]
=

1√
2gy0

[
x0 + y0/2

]
(8)

Which one takes a shorter time? See problem 9.
3 What if the path is a parabola, x = y2 .x0/y

2
0? It drops rapidly at first, picking up speed,

but then takes a more direct route to the end. Use y as the coordinate, then

dx = 2y .x0/y
2
0, and ds =

√(
4y2x2

0/y
4
0

)
+ 1dy

T =

∫
dx

v
=

∫ y0

0

√(
4y2x2

0/y
4
0

)
+ 1

√
2gy

dy

This is not an integral that you’re likely to have encountered yet. I’ll refer you to a large
table of integrals, where you can perhaps find it under the heading of elliptic integrals.

In more advanced treatments of optics, the time it takes light to travel along a path is
of central importance because it is related to the phase of the light wave along that path. In
that context however, you usually see it written with an extra factor of the speed of light.

cT =

∫
c ds

v
=

∫
n ds (9)

This last form, written in terms of the index of refraction, is called the optical path. Compare
problems 2.37 and 2.39.

13.2 Line Integrals
Work, done on a point mass in one dimension is an integral. If the system is moving in three
dimensions, but the force happens to be a constant, then work is a dot product:

W =

∫ xf

xi

Fx(x) dx or W = ~F .∆~r
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The general case for work on a particle moving along a trajectory in space is a line integral.
It combines these two equations into a single expression for the work along an arbitrary path
for an arbitrary force. There is not then any restriction to the elementary case of constant
force.

The basic idea is a combination of Eqs. (1) and (2). Divide the specified curve into
a number of pieces, at the points {~rk}. Between points k − 1 and k you had the estimate
of the arc length as

√
(∆xk)2 + (∆yk)2, but here you need the whole vector from ~rk−1 to

~rk in order to evaluate the work done as the mass moves from one point to the next. Let
∆~rk = ~rk − ~rk−1, then

lim
|∆~rk|→0

N∑
k=1

~F (~rk) .∆~rk =

∫
~F (~r ) . d~r

~r0
~r1

~r2 ~r3 ~r4 ~r5
~r6 (10)

This is the definition of a line integral.
How do you evaluate these integrals? To repeat what I did with Eq. (2), that will

depend on the way that you use to describe the curve itself. Start with the simplest method
and assume that you have a parametric representation of the curve: ~r(t), then d~r = ~̇r dt and
the integral is ∫

~F (~r ) . d~r =

∫
~F
(
~r (t)

)
. ~̇r dt

This is now an ordinary integral with respect to t. In many specific examples, you may find
an easier way to represent the curve, but this is something that you can always fall back on.

In order to see exactly where this is used, start with ~F = m~a, Take the dot product
with d~r and manipulate the expression.

~F = m
d~v

dt
, so ~F . d~r = m

d~v

dt
. d~r = m

d~v

dt
. d~r

dt
dt = md~v . d~r

dt
= m~v . d~v

or ~F . d~r =
m

2
d
(
~v .~v

) (11)

The integral of this from an initial point of the motion to a final point is∫ ~rf

~ri

~F . d~r =

∫
m

2
d
(
~v .~v

)
=
m

2

[
v2
f − v2

i

]
(12)

This is a standard form of the work-energy theorem in mechanics. In most cases you have
to specify the whole path, not just the endpoints, so this way of writing the theorem is
somewhat misleading.

Example: If ~F = Axyx̂+ B(x2 + L2)ŷ, what is the work done going from point (0, 0)
to (L,L) along the three different paths indicated.?∫

C1

~F . d~r =

∫
[Fxdx+ Fydy] =

∫ L

0
dx 0 +

∫ L

0
dy B2L2 = 2BL3

∫
C2

~F . d~r =

∫ L

0
dxAx2 +

∫ L

0
dy B(y2 + L2) = AL3/3 + 4BL3/3∫

C3

~F . d~r =

∫ L

0
dy B(0 + L2) +

∫ L

0
dxAxL = BL3 + AL3/2

3

12
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Gradient
What is the line integral of a gradient? Recall from section 8.5 and Eq. (8.12) that df =
grad f . d~r. The integral of the gradient is then∫ 2

1
grad f . d~r =

∫
df = f2 − f1 (13)

where the indices represent the initial and final points. When you integrate a gradient, you
need the function only at its endpoints. The path doesn’t matter. See problem 19 for a
caution.

13.3 Gauss’s Theorem
The original definition of the divergence of a vector field is Eq. (9.9),

div~v = lim
V→0

1

V

dV

dt
= lim

V→0

1

V

∮
~v . d ~A

Fix a surface and evaluate the surface integral of ~v over the surface.

∮
S
~v . d ~A

d ~A

k
k′

n̂k′
n̂k

Now divide this volume into a lot of little volumes, ∆Vk with individual bounding surfaces
Sk. If you do the surface integrals of ~v . d ~A over each of these pieces and add all of them,
the result is the original surface integral.∑

k

∮
Sk

~v . d ~A =

∮
S
~v . d ~A (14)

The reason for this is that each interior face of volume Vk is matched with the face of an
adjoining volume Vk′ . The latter face will have d ~A pointing in the opposite direction, so
when you add all the interior surface integrals they cancel. All that’s left is the surface on
the outside and the sum over all those faces is the original surface integral.

In the equation (14) multiply and divide every term in the sum by the volume ∆Vk.∑
k

[
1

∆Vk

∮
Sk

~v . d ~A

]
∆Vk =

∮
S
~v . d ~A

Now increase the number of subdivisions, finally taking the limit as all the ∆Vk approach
zero. The quantity inside the brackets becomes the definition of the divergence of ~v and you
then get

Gauss’s Theorem:

∫
V

div~v dV =

∮
S
~v . d ~A (15)
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This* is Gauss’s theorem, the divergence theorem.

13.4 Stokes’ Theorem
The expression for the curl in terms of integrals is Eq. (9.17),

curl~v = lim
V→0

1

V

∮
d ~A × ~v (16)

Use exactly the same reasoning that leads from the definition of the divergence to Eqs. (14)
and (15) (see problem 6), and this leads to the analog of Gauss’s theorem, but with cross
products. ∮

S
d ~A× ~v =

∫
V

curl~v dV (17)

This isn’t yet in a form that is all that convenient, and a special case is both easier to
interpret and more useful in applications. First apply it to a particular volume, one that is
very thin and small. Take a tiny disk of height ∆h, with top and bottom area ∆A1. Let n̂1

be the unit normal vector out of the top area. For small enough values of these dimensions,
the right side of Eq. (16) is simply the value of the vector curl~v inside the volume times the
volume ∆A1∆h itself.

∮
S
d ~A× ~v =

∫
V

curl~v dV = curl~v ∆A1∆h
n̂1

Take the dot product of both sides with n̂1, and the parts of the surface integral from the top
and the bottom faces disappear. That’s just the statement that on the top and the bottom,
d ~A is in the direction of ±n̂1, so the cross product makes d ~A× ~v perpendicular to n̂1.

I’m using the subscript 1 for the top surface and I’ll use 2 for the surface around the
edge. Otherwise it’s too easy to get the notation mixed up.

Now look at d ~A × ~v around the thin edge. The element of area has height ∆h and
length ∆` along the arc. Call n̂2 the unit normal out of the edge.

∆ ~A2 = ∆h∆` n̂2

n̂2
d~̀

The product n̂1 .∆ ~A2 × ~v = n̂1 . n̂2 × ~v∆h∆` = n̂1 × n̂2 .~v∆h∆`, using the property of the
triple scalar product. The product n̂1 × n̂2 is in the direction along the arc of the edge, so

n̂1 × n̂2 ∆` = ∆~̀ (18)

* You will sometimes see the notation ∂V instead of S for the boundary surface sur-
rounding the volume V . Also ∂A instead of C for the boundary curve surrounding the area
A. It’s probably a better and more consistent notation, but it isn’t yet as common in physics
books.
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Put all these pieces together and you have

n̂1 .
∮

S
d ~A× ~v =

∮
C
~v . d~̀∆h = n̂1 . curl~v ∆A1∆h

Divide by ∆A1∆h and take the limit as ∆A1 → 0. Recall that all the manipulations above
work only under the assumption that you take this limit.

n̂1 . curl~v = lim
∆A→0

1

∆A

∮
C
~v . d~̀ (19)

You will sometimes see this equation (19) taken as the definition of the curl, and it does
have an intuitive appeal. The only drawback to doing this is that it isn’t at all obvious that
the thing on the right-hand side is the dot product of n̂1 with anything. It is, but if you
start from this point you have some proving to do.

This form is easier to interpret than was the starting point with a volume integral. The
line integral of ~v . d~̀ is called the circulation of ~v around the loop. Divide this by the area
of the loop and take the limit as the area goes to zero and you then have the “circulation
density” of the vector field. The component of the curl along some direction is then the
circulation density around that direction. Notice that the equation (18) dictates the right-
hand rule that the direction of integration around the loop is related to the direction of the
normal n̂1.

Stokes’ theorem follows in a few lines from Eq. (19). Pick a surface A with a boundary
C (or ∂A in the other notation). The surface doesn’t have to be flat, but you have to be able
to tell one side from the other.* From here on I’ll imitate the procedure of Eq. (14). Divide

the surface into a lot of little pieces Ak, and do the line integral of ~v . d~̀ around each piece.
Add all these pieces and the result is the whole line integral around the outside curve.

∑
k

∮
Ck

~v . d~̀=

∮
C
~v . d~̀ k k′ (20)

As before, on each interior boundary between area Ak and the adjoining Ak′ , the parts of
the line integrals on the common boundary cancel because the directions of integration are
opposite to each other. All that’s left is the curve on the outside of the whole loop, and the
sum over those intervals is the original line integral.

Multiply and divide each term in the sum (20) by ∆Ak and you have∑
k

[
1

∆Ak

∮
Ck

~v . d~̀
]

∆Ak =

∮
C
~v . d~̀ (21)

Now increase the number of subdivisions of the surface, finally taking the limit as all the
∆Ak → 0, and the quantity inside the brackets becomes the normal component of the curl
of ~v by Eq. (19). The limit of the sum is the definition of an integral, so

Stokes’ Theorem:

∫
A

curl~v . d ~A =

∮
C
~v . d~̀ (22)

* That means no Klein bottles or Möbius strips.
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What happens if the vector field ~v is the gradient of a function, ~v = ∇f? By Eq. (13)
the line integral in (22) depends on only the endpoints of the path, but in this integral the
initial and final points are the same. That makes the integral zero: f1−f1. That implies that
the surface integral on the left is zero no matter what the surface spanning the contour is,
and that can happen only if the thing being integrated is itself zero. curl grad f = 0. That’s
one of the common vector identities in problem 9.36. Of course this statement requires the
usual assumption that there are no singularities of ~v within the area.

θ0

n̂Example
Verify Stokes’ theorem for that part of a spherical surface r = R,
0 ≤ θ ≤ θ0, 0 ≤ φ < 2π. Use for this example the vector field

~F = r̂Ar2 sin θ + θ̂Brθ2 cosφ+ φ̂Cr sin θ cos2 φ (23)

To compute the curl of ~F , use Eq. (9.33), getting

∇× ~F = r̂
1

r sin θ

(
∂

∂θ

(
sin θ Cr sin θ cos2 φ

)
− ∂

∂φ

(
Brθ2 cosφ

))
+ · · ·

= r̂
1

r sin θ

(
Cr cos2 φ 2 sin θ cos θ +Brθ2 sinφ

)
+ · · · (24)

I need only the r̂ component of the curl because the surface integral uses only the normal
(r̂) component. The surface integral of this has the area element dA = r2 sin θ dθ dφ.∫

curl ~F . d ~A =

∫ θ0

0
R2 sin θ dθ

∫ 2π

0
dφ

1

R sin θ

(
CR cos2 φ 2 sin θ cos θ +BRθ2 sinφ

)
= R2

∫ θ0

0
dθ

∫ 2π

0
dφ 2C cos2 φ sin θ cos θ

= R22Cπ sin2 θ0/2 = CR2π sin2 θ0

The other side of Stokes’ theorem is the line integral around the circle at angle θ0.∮
~F . d~̀=

∫ 2π

0
r sin θ0 dφCr sin θ cos2 φ

=

∫ 2π

0
dφCR2 sin2 θ0 cos2 φ

= CR2 sin2 θ0 π (25)

and the two sides of the theorem agree. Check! Did I get the overall signs right? The
direction of integration around the loop matters. A further check: If θ0 = π, the length of
the loop is zero and both integrals give zero as they should.

Conservative Fields
An immediate corollary of Stokes’ theorem is that if the curl of a vector field is zero through-
out a region then line integrals are independent of path in that region. To state it a bit more
precisely, in a volume for which any closed path can be shrunk to a point without leaving
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the region, if the curl of ~v equals zero, then
∫ b
a
~F . d~r depends on the endpoints of the path,

and not on how you get there.
To see why this follows, take two integrals from point a to point b.

∫
1
~v . d~r and

∫
2
~v . d~r

a b

1

2

The difference of these two integrals is∫
1
~v . d~r −

∫
2
~v . d~r =

∮
~v . d~r

This equations happens because the minus sign is the same thing that you get by integrating
in the reverse direction. For a field with ∇ × ~v = 0, Stokes’ theorem says that this closed
path integral is zero, and the statement is proved.

What was that fussy-sounding statement “for which any closed path can be shrunk to
a point without leaving the region” anyway? Consider the vector field in three dimensions

~v = A(xŷ − yx̂)/(x2 + y2) = Aθ̂/r (26)

You can verify (in either coordinate system) that its curl is zero — except for the z-axis,
where it is singular. A closed loop line integral that doesn’t encircle the z-axis will be zero,
but if it does go around the axis then it is not. See problem 18. If you have a loop that
encloses the singular line, then you can’t shrink the loop without its getting hung up on the
axis.

The converse of this theorem is also true. If every closed-path line integral of ~v is zero,
and if the derivatives of ~v are continuous, then its curl is zero. Stokes’ theorem tells you
that every surface integral of ∇× ~v is zero, so you can pick a point and a small ∆ ~A at this
point. For small enough area whatever the curl is, it won’t change much. The integral over
this small area is then ∇× ~v .∆ ~A, and by assumption this is zero. It’s zero for all values of
the area vector. The only vector whose dot product with all vectors is zero is itself the zero
vector.

Potentials
The relation between the vanishing curl and the fact that the line integral is independent of
path leads to the existence of potential functions.

If curl ~F = 0 in a simply-connected domain (that’s one for which any closed loop can be

shrunk to a point), then I can write ~F as a gradient, − gradφ. The minus sign is conventional.
I’ve already constructed the answer (almost). That line integrals are independent of path in
such a domain means that the integral ∫ ~r

~r0

~F . d~r (27)



13—Vector Calculus 2 331

is a function of the two endpoints alone. Fix ~r0 and treat this as a function of the upper
limit ~r. Call it −φ(~r ). The defining equation for the gradient is Eq. (8.12),

df = grad f . d~r

How does the integral (27) change when you change ~r a bit?∫ ~r+d~r

~r0

~F . d~r −
∫ ~r

~r0

~F . d~r =

∫ ~r+d~r

~r

~F . d~r = F . d~r

This is −dφ because I called this integral −φ(~r ). Compare the last two equations and
because d~r is arbitrary you immediately get

~F = − gradφ (28)

I used this equation in section 9.9, stating that the existence of the gravitational potential
energy followed from the fact that ∇× ~g = 0.

Vector Potentials
This is not strictly under the subject of conservative fields, but it’s a convenient place to
discuss it anyway. When a vector field has zero curl then it’s a gradient. When a vector field
has zero divergence then it’s a curl. In both cases the converse is simple, and it’s what you
see first: ∇×∇φ = 0 and ∇ .∇× ~A = 0 (problem 9.36). In Eqs. (27) and (28) I was able

to construct the function φ because ∇× ~F = 0. It is also possible, if ∇ . ~F = 0, to construct
the function ~A such that ~F = ∇× ~A.

In both cases, there are extra conditions needed for the statements to be completely
true. To conclude that a conservative field (∇× ~F = 0) is a gradient requires that the domain
be simply-connected, allowing the line integral to be completely independent of path. To
conclude that a field satisfying ∇ . ~F = 0 can be written as ~F = ∇× ~A requires something
similar: that all closed surfaces can be shrunk to a point. This statement is not so easy to
prove, and the explicit construction of ~A from ~F is not very enlightening.

You can easily verify that ~A = ~B × ~r/2 is a vector potential for the uniform field
~B. Neither the scalar potential nor the vector potential are unique. You can always add a
constant to a scalar potential because the gradient of a scalar is zero and it doesn’t change
the result. For the vector potential you can add the gradient of an arbitrary function because
that doesn’t change the curl.

~F = −∇(φ+ C) = −∇φ, and ~B = ∇× ( ~A+∇f) = ∇× ~A (29)

13.5 Reynolds’ Transport Theorem
When an integral has limits that are functions of time, how do you differentiate it? That’s
pretty easy for one-dimensional integrals.

d

dt

∫ f2(t)

f1(t)
dx g(x, t) =

∫ f2(t)

f1(t)
dx

∂g(x, t)

∂t
+ g(f2(t), t)

df2(t)

dt
− g(f1(t), t)

df1(t)

dt
(30)
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One of Maxwell’s equations for electromagnetism is

∇× ~E = −∂
~B

∂t
(31)

Integrate this equation over the surface S.∫
S
∇× ~E . d ~A =

∫
C

~E . d~̀=

∫
S
−∂

~B

∂t
. d ~A (32)

This used Stokes’ theorem, and I would like to be able to pull the time derivative out of
the integral, but can I? If the surface is itself time independent then the answer is yes, but
what if it isn’t? What if the surface integral has a surface that is moving? Can this happen?
That’s how generators works, and you wouldn’t be reading this now without the power they
provide. The copper wire loops are rotating at high speed, and it is this motion that provides
the EMF.

I’ll work backwards and compute the time derivative of a surface integral, allowing
the surface itself to move. To do this, I’ll return to the definition of a derivative. The time
variable appears in two places, so use the standard trick of adding and subtracting a term.
It’s rather like deriving the product formula for ordinary derivatives. Call Φ the flux integral,∫
~B . d ~A.

∆Φ =

∫
S(t+∆t)

~B(t+ ∆t) . d ~A−
∫

S(t)

~B(t) . d ~A

=

∫
S(t+∆t)

~B(t+ ∆t) . d ~A−
∫

S(t+∆t)

~B(t) . d ~A

+

∫
S(t+∆t)

~B(t) . d ~A−
∫

S(t)

~B(t) . d ~A

(33)

~B is a function of ~r too, but I won’t write it. The first two terms have the same surface, so
they combine to give ∫

S(t+∆t)
∆ ~B . d ~A

and when you divide by ∆t and let it approach zero, you get∫
S(t)

∂ ~B

∂t
. d ~A

Now for the next two terms, which require some manipulation. Add and subtract the surface
that forms the edge between the boundaries C(t) and C(t+ ∆t).

= _

∫
S(t+∆t)

~B(t) . d ~A−
∫

S(t)

~B(t) . d ~A =

∮
~B(t) . d ~A−

∫
edge

~B . d ~A (34)
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The strip around the edge between the two surfaces make the surface integral closed, but I
then have to subtract it as a separate term.

You can convert the surface integral to a volume integral with Gauss’s theorem, but
it’s still necessary to figure out how to write the volume element. [Yes, ∇ . ~B = 0, but this
result can be applied in other cases too, so I won’t use that fact here.] The surface is moving

at velocity ~v, so an area element ∆ ~A will in time ∆t sweep out a volume ∆ ~A .~v∆t. Note: ~v
isn’t necessarily a constant in space and these surfaces aren’t necessarily flat.

∆V = ∆ ~A .~v∆t =⇒
∮

~B(t) . d ~A =

∫
d3r∇ . ~B =

∫
S(t)
∇ . ~B d ~A .~v∆t (35)

To do the surface integral around the edge, use the same method as in deriving Stokes’
theorem, Eq. (18).

∆ ~A = ∆~̀× ~v∆t∫
edge

~B . d ~A =

∫
C

~B . d~̀× ~v∆t =

∫
C
~v × ~B . d~̀∆t (36)

Put Eqs. (35) and (36) into Eq. (34) and then into Eq. (33).

d

dt

∫
S(t)

~B . d ~A =

∫
S(t)

∂ ~B

∂t
. d ~A+

∫
S(t)
∇ . ~B ~v . d ~A−

∫
C(t)

~v × ~B . d~̀ (37)

This transport theorem is the analog of Eq. (30) for a surface integral.

Faraday’s Law
If you now apply the transport theorem (37) to Maxwell’s equation (32), and use the fact

that ∇ . ~B = 0 you get ∫
C(t)

(
~E + ~v × ~B

)
. d~̀= − d

dt

∫
S(t)

~B . d ~A (38)

This is Faraday’s law, saying that the force per charge integrated around a closed loop (called
the EMF) is the negative time derivative of the magnetic flux through the loop.

Occasionally you will find an introductory physics text that writes Faraday’s law with-
out the ~v × ~B term. That’s o.k. as long as the integrals involve only stationary curves and
surfaces, but some will try to apply it to generators, with moving conductors. This results
in amazing contortions to try to explain the results. For another of Maxwell’s equations, see
problem 30.

The electromagnetic force on a charge is ~F = q
(
~E + ~v × ~B

)
. This means that if a

charge inside a conductor is free to move, the force on it comes from both the electric and
the magnetic fields in this equation. (The Lorentz force law.) The integral of this force . d~̀

is the work done on a charge along some specified path. If this integral is independent of
path: ∇× ~E = 0 and ~v = 0, then this work divided by the charge is the potential difference,
the voltage, between the initial and final points. In the more general case, where one or the
other of these requirements is false, then it’s given the somewhat antiquated name EMF,
for “electromotive force.” (It is often called “voltage” anyway, even though it’s a minor
technical mistake.)
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13.6 Fields as Vector Spaces
It’s sometimes useful to look back at the general idea of a vector space and to rephrase
some common ideas in that language. Vector fields, such as ~E(x, y, z) can be added and
multiplied by scalars. They form vector spaces, infinite dimensional of course. They even
have a natural scalar product 〈

~E1, ~E2

〉
=

∫
d3r ~E1(~r ) . ~E2(~r ) (39)

Here I’m assuming that the scalars are real numbers, though you can change that if you like.
For this to make sense, you have to assume that the fields are square integrable, but for the
case of electric or magnetic fields that just means that the total energy in the field is finite.
Because these are supposed to satisfy some differential equations (Maxwell’s), the derivative
must also be square integrable, and I’ll require that they go to zero at infinity faster than
1/r3 or so.

The curl is an operator on this space, taking a vector field into another vector field.
Recall the definitions of symmetric and hermitian operators from section 7.13. The curl
satisfies the identity 〈

~E1,∇× ~E2

〉
=
〈
∇× ~E1, ~E2

〉
(40)

For a proof, just write it out and then find the vector identity that will allow you to integrate
by parts.

∇ .
(
~A× ~B

)
= ~B .∇× ~A− ~A .∇× ~B (41)

Equation (40) is∫
d3r ~E1(~r ) .∇× ~E2(~r ) =

∫
d3r
(
∇× ~E1(~r )

)
. ~E2(~r )−

∫
d3r∇ .

(
~E1 × ~E2

)
The last integral becomes a surface integral by Gauss’s theorem,

∮
d ~A .

(
~E1 × ~E2

)
, and you

can now let the volume (and so the surface) go to infinity. The fields go to zero sufficiently
fast, so this is zero and the result is proved: Curl is a symmetric operator. Its eigenvalues
are real and its eigenvectors are orthogonal. This is not a result you will use often, but the
next one is important.

Helmholtz Decomposition
There are subspaces in this vector space of fields: (1) The set of all fields that are gradients.
(2) The set of all fields that are curls. These subspaces are orthogonal to each other; every
vector in the first is orthogonal to every vector in the second. To prove this, just use the
same vector identity (41) and let ~A = ∇f . I am going to present first a restricted version of
this theorem because it’s simpler. I’ll assume that the domain is all space and that the fields
and their derivatives all go to zero infinitely far away. A generalization to finite boundaries
will come at the end.

∇f .∇× ~B = ~B .∇×∇f −∇ .
(
∇f × ~B

)
Calculate the scalar product of one vector field with the other.〈

∇f,∇×B
〉

=

∫
d3r∇f .∇×B =

∫
d3r
[
~B .∇×∇f −∇ .

(
∇f × ~B

)]
= 0−

∮ (
∇f × ~B

)
. d ~A = 0 (42)
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As usual, the boundary condition that the fields and their derivatives go to zero rapidly at
infinity kills the surface term. This proves the result, that the two subspaces are mutually
orthogonal.

Do these two cases exhaust all possible vector fields? In this restricted case with
no boundaries short of infinity, the answer is yes. The general case later will add other
possibilities. You have two orthogonal subspaces, and to show that these two fill out the
whole vector space, I will ask the question: what are all the vector fields orthogonal to both
of them? I will show first that whatever they are will satisfy Laplace’s equation, and then
the fact that the fields go to zero at infinity will be enough to show that this third case is
identically zero. This statement is the Helmholtz theorem: Such vector fields can be written
as the sum of two orthogonal fields: a gradient, and a curl.

To prove it my plan of attack is to show that if a field ~F is orthogonal to all gradients
and to all curls, then ∇2 ~F is orthogonal to all square-integrable vector fields. The only
vector that is orthogonal to everything is the zero vector, so ~F satisfies Laplace’s equation.
The assumption now is that for general f and ~v,∫

d3r ~F .∇f = 0 and

∫
d3r ~F .∇× ~v = 0

I want to show that for a general vector field ~u,

∫
d3r ~u .∇2 ~F = 0

gradients
curls

~F

The method is essentially two partial integrals, moving two derivatives from ~F over to ~u.
Start with the ∂2/∂z2 term in the Laplacian and hold off on the dx and dy integrals. Re-
member that all these functions go to zero at infinity. Pick the i-component of ~u and the
j-component of ~F .∫ ∞

−∞
dz ui

∂2

∂z2
Fj = ui∂zFj

∣∣∣∣∞
−∞
−
∫
dz
(
∂zui

)(
∂zFj

)
= 0−

(
∂zui

)
Fj

∣∣∣∣∞
−∞

+

∫
dz
(
∂2

zui

)
Fj =

∫ ∞

−∞
dz
(
∂2

zui

)
Fj

Now reinsert the dx and dy integrals. Repeat this for the other two terms in the Laplacian,
∂2

xFj and ∂2
yFj . The result is∫

d3r ~u .∇2 ~F =

∫
d3r
(
∇2~u

)
. ~F (43)

If this looks familiar it is just the three dimensional version of the manipulations that led to
Eq. (5.12).

Now use the identity

∇× (∇× ~u ) = ∇(∇ . ~u )−∇2~u
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in the right side of (43) to get∫
d3r ~u .∇2 ~F =

∫
d3r
[(
∇(∇ . ~u )

)
. ~F −

(
∇× (∇× ~u )

)
. ~F
]

(44)

The first term on the right is the scalar product of the vector field ~F with a gradient. The
second term is the scalar product with a curl. Both are zero by the hypotheses of the
theorem, thereby demonstrating that the Laplacian of ~F is orthogonal to everything, and so
∇2 ~F = 0.

When you do this in all of space, with the boundary conditions that the fields all go
to zero at infinity, the only solutions to Laplace’s equation are identically zero. In other
words, the two vector spaces (the gradients and the curls) exhaust all the possibilities. How
to prove this? Just pick a component, say Fx, treat it as simply a scalar function — call it
f — and apply a vector identity, problem 9.36.

∇ .(φ ~A ) = (∇φ) . ~A+ φ(∇ . ~A )

Let φ = f and ~A = ∇f, then ∇ .(f∇f) = ∇f .∇f + f∇2f

Integrate this over all space and apply Gauss’s theorem. (I.e. integrate by parts.)∫
d3r∇ .(f∇f) =

∮
f∇f . d ~A =

∫
d3r
[
∇f .∇f + f∇2f

]
(45)

If f and its derivative go to zero fast enough at infinity (a modest requirement), the surface

term,
∮
d ~A, goes to zero. The Laplacian term, ∇2f = 0, and all that’s left is∫

d3r∇f .∇f = 0

This is the integral of a quantity that can never be negative. The only way that the integral
can be zero is that the integrand is zero. If ∇f = 0, then f is a constant, and if it must also
go to zero far away then that constant is zero.

This combination of results, the Helmholtz theorem, describes a field as the sum of a
gradient and a curl, but is there a way to find these two components explicitly? Yes.

~F = ∇f+∇×B, so ∇ . ~F = ∇2f, and ∇× ~F = ∇×∇×B = ∇(∇ . ~B )−∇2 ~B

Solutions of these equations are

f(~r ) =
−1

4π

∫
d3r′
∇ . ~F (~r ′)∣∣~r − ~r ′∣∣ and ~B(~r ) =

1

4π

∫
d3r′
∇× ~F (~r ′)∣∣~r − ~r ′∣∣ (46)

Generalization
In all this derivation, I assumed that the domain is all of three-dimensional space, and this
made the calculations easier. A more general result lets you specify boundary conditions
on some finite boundary and then a general vector field is the sum of as many as five
classes of vector functions. This is the Helmholtz-Hodge decomposition theorem, and it
has applications in the more complicated aspects of fluid flow (as if there are any simple
ones), even in setting up techniques of numerical analysis for such problems. The details are
involved, and I will simply refer you to a good review article* on the subject.

* Cantarella, DeTurck, and Gluck: The American Mathematical Monthly, May 2002.
The paper is an unusual mix of abstract topological methods and very concrete examples.
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Problems

13.1 In the equation (4) what happens if you start with a different parametrization for x
and y, perhaps x = R cos(φ/2) and y = R sin(φ/2) for 0 < φ < 4π. Do you get the same
answer?

13.2 What is the length of the arc of the parabola y = (a2 − x2)/b, (−a < x < a)?
But First draw a sketch and make a rough estimate of what the result ought to be. Then
do the calculation and compare the answers. What limiting cases allow you to check your
result?
Ans: (b/2)

[
sinh−1 c+ c

√
1 + c2

]
where c = 2a/b

13.3 You can describe an ellipse as x = a cosφ, y = b sinφ. (Prove this.)
Warm up by computing the area of the ellipse.
What is the circumference of this ellipse?

To put this integral into a standard form, note that it is 4
∫ π/2
0 . Then use cos2 φ = 1−sin2 φ.

Finally, look up chapter 17 of Abramowitz and Stegun. You will find the reference to this
at the end of section 1.4. Notice in this integral that when you integrate, it will not matter
whether you have a sin2 or a cos2. Ans: 4aE(m)

13.4 For another derivation of the work-energy theorem, one that doesn’t use the manipu-
lations of calculus as in Eq. (11), go back to basics.

(a) For a constant force, start from ~F = m~a and derive by elementary manipulations that

~F .∆~r =
m

2

[
v2
f − v2

i

]
All that you need to do is to note that the acceleration is a constant so you can get ~v and ~r
as functions of time. Then eliminate t
(b) Along a specified curve Divide the curve at points

~ri = ~r0, ~r1, ~r2, . . . ~rN = ~rf

In each of these intervals apply the preceding equation. This makes sense in that if the
interval is small the force won’t change much in the interval.
(c) Add all these N equations and watch the kinetic energy terms telescope. This limit as
all the ∆~rk → 0 is Eq. (12).

13.5 The manipulation in the final step of Eq. (12) seems almost too obvious. Is it? Well
yes, but write out the definition of this integral as the limit of a sum to verify that it really
is easy.

It thereby gives you a fighting chance at the subject.

http://jove.prohosting.com/~skripty/
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13.6 In the same spirit as the derivation of Gauss’s theorem, Eq. (15), derive the identities∮
S
d ~A× ~v =

∫
V

curl~v dV, and

∮
S
φd ~A =

∫
V

gradφdV

13.7 The force by a magnetic field on a small piece of wire carrying a current I is d~F =
I d~̀× ~B. The total force on a wire carrying this current in a complete circuit is the integral
of this. Let ~B = x̂Ay − ŷAx. The wire consists of the line segments around the rectangle
0 < x < a, 0 < y < b. The direction of the current is in the +ŷ direction on the x = 0 line.
What is the total force on the loop?

13.8 Verify Stokes’ theorem for the field ~F = Axyx̂+B(1 + x2y2)ŷ and for the rectangular
loop a < x < b, c < y < d.

13.9 Which of the two times in Eqs. (7) and (8) is shorter. (Compare their squares.)

13.10 Write the equations (9.36) in an integral form.

13.11 Start with Stokes’ theorem and shrink the boundary curve to a point. That doesn’t
mean there’s no surface left; it’s not flat, remember. The surface is pinched off like a balloon.
It’s now a closed surface, and what is the value of this integral? Now apply Gauss’s theorem
to it and what do you get?

13.12 Use the same surface as in the example, Eq. (23), and verify Stokes’ theorem for the
vector field

~F = r̂Ar−1 cos2 θ sinφ+Bθ̂r2 sin θ cos2 φ+ φ̂Cr−2 cos2 θ sin2 φ

13.13 Use the same surface as in the example, Eq. (23), and examine Stokes’ theorem for
the vector field

~F = r̂f(r, θ, φ) + θ̂g(r, θ, φ) + φ̂h(r, θ, φ)

Show from the line integral part that the answer can depend only on the function h, not f
or g. Now examine the surface integral over this cap and show the same thing.

13.14 For the vector field in the x-y plane: ~F =
(
xŷ−yx̂

)
/2, use Stokes’ theorem to compute

the line integral of ~F . d~r around an arbitrary closed curve. What is the significance of the
sign of the result?

13.15 What is the (closed) surface integral of ~F = ~r/3 over an arbitrary closed surface?
Ans: V .

13.16 What is the (closed) surface integral of ~F = ~r/3 over an arbitrary closed surface?

This time however, the surface integral uses the cross product:
∮
d ~A × ~F . If in doubt, try

drawing the picture for a special case first.
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13.17 Refer to Eq. (25) and check it for small θ0. Notice what the combination π(Rθ0)
2 is.

13.18 For the vector field Eq. (26) explicitly show that
∮
~v . d~r is zero for a curve

such as that in the picture and that it is not zero for a circle going around the
singularity.

13.19 For the same vector field, Eq. (26), use Eq. (27) to try to construct a potential
function. Because within a certain domain the integral is independent of path, you can pick
the most convenient possible path, the one that makes the integration easiest. What goes
wrong?

13.20 Refer to problem 9.33 and construct the solutions by integration, using the methods
of this chapter.

13.21 Evaluate
∮
~F . d~r for ~F = Ax̂ xy+Bŷ x around the circle of radius R centered at the

origin. (b) Do it again, using Stokes’ theorem this time.

13.22 Same as the preceding problem, but
∮
d~r × ~F instead.

13.23 Use the same field as the preceding two problems and evaluate the surface integral of
~F . d ~A over the hemispherical surface x2 + y2 + z2 = R2, z > 0.

13.24 The same field and surface as the preceding problem, but now the surface integral
d ~A× ~F . Ans: ẑ2πBr3/3

13.25 Prove the identity ∇ .
(
~A× ~B

)
= ~B .∇× ~A− ~A .∇× ~B. (index mechanics?)

(b) Apply Gauss’s theorem to ∇ .
(
~A× ~B

)
and take the special case that ~B is a constant to

derive Eq. (17).

13.26 Prove the identity ∇ .(f ~F ) = f∇ . ~F + ~F .∇f .

(b) Apply Gauss’s theorem to ∇ .(f ~F ) for a constant ~F to derive a result found in another
problem.

13.27 The vector potential is not unique, as you can add an arbitrary gradient to it without
affecting its curl. Suppose that ~B = ∇× ~A with

~A = αx̂ xyz + βŷ x2z + γẑ xyz2

Find a function f(x, y, z) such that ~A′ = ~A+∇f has the z-component identically zero. Do

you get the same ~B by taking the curl of ~A and of ~A′?
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13.28 Take the vector field

~B = αx̂ xy + βŷ xy + γẑ (xz + yz)

Write out the equation ~B = ∇× ~A in rectangular components and figure out what functions
Ax(x, y, z), Ay(x, y, z), and Az(x, y, z) will work. Note: From the preceding problem you

see that you may if you wish pick any one of the components of ~A to be zero — that will
cut down on the labor. Also, you should expect that this problem is impossible unless ~B
has zero divergence. That fact should come out of your calculations, so don’t put it in yet.
Determine the conditions on α, β, and γ that make this problem solvable, and show that
this is equivalent to ∇ . ~B = 0.

13.29 A magnetic monopole, if it exists, will have a magnetic field µ0qmr̂/4πr
2. The di-

vergence of this magnetic field is zero except at the origin, but that means that not every
closed surface can be shrunk to a point without running into the singularity. The necessary
condition for having a vector potential is not satisfied. Try to construct such a potential
anyway. Assume a solution in spherical coordinates of the form ~A = φ̂f(r)g(θ) and figure

out what f and g will have this ~B for a curl. Sketch the resulting ~A. You will run into a
singularity (or two, depending). Ans: ~A = φ̂µ0qm(1− cos θ)/

(
4πr2 sin θ

)
(not unique)

13.30 Apply Reynolds’ transport theorem to the other of Maxwell’s equations.

∇× ~B = µ0
~j + µ0ε0

∂ ~E

∂t

Don’t simply leave the result in the first form that you find. Manipulate it into what seems
to be the best form. Use µ0ε0 = 1/c2. Ans:

∫ (
~B − ~v × ~E/c2

)
. d~̀ = µo

∫ (
~j − ρ~v

)
. d ~A +

µ0ε0(d/dt)
∫
~E . d ~A

13.31 Derive the analog of Reynolds’ transport theorem, Eq. (37), for a line integral around
a closed loop.

(a)
d

dt

∮
C(t)

~F (~r, t) . d~̀=

∮
C(t)

∂ ~F

∂t
. d~̀−

∮
C(t)

~v × (∇× ~F ) . d~̀

and for the surface integral of a scalar. You will need problem 6.

(b)
d

dt

∫
S(t)

φ(~r, t)d ~A =

∫
S(t)

∂φ

∂t
d ~A+

∫
S(t)

(∇φ) d ~A .~v −
∮

C(t)
φd~̀× ~v

Make up examples that test the validity of individual terms in the equations. I recommend
cylindrical coordinates for your examples.

13.32 Another transport theorem is more difficult to derive.

d

dt

∮
C(t)

d~̀× ~F (~r, t) =

∮
C(t)

d~̀× ∂ ~F

∂t
+

∮
C(t)

(∇ . ~F )d~̀× ~v −
∫

C(t)
(∇~F ) . d~̀× ~v
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I had to look up some vector identities, including one for ∇× ( ~A× ~B ). A trick that I found

helpful: At a certain point take the dot product with a fixed vector ~B and manipulate the
resulting product, finally factoring out the ~B . at the end. Make up examples that test the
validity of individual terms in the equations. I recommend cylindrical coordinates for your
examples.

13.33 Apply Eq. (37) to the velocity field itself. Suppose further the the fluid is incom-
pressible with ∇ .~v = 0 and that the flow is stationary (no time dependence). Explain the
results.

13.34 Assume that the Earth’s atmosphere obeys the density equation ρ = ρ0e
−z/h for a

height z above the surface. (a) Through what amount of air does sunlight have to travel
when coming from straight overhead? Take the measure of this to be

∫
ρ ds (called the “air

mass”). (b) Through what amount of air does sunlight have to travel when coming from just
on the horizon at sunset? Neglect the fact that light will refract in the atmosphere and that
the path in the second case won’t really be a straight line. Take h = 10 km and the radius of
the Earth to be 6400 km. The integral you get for the second case is probably not familiar.
You may evaluate it numerically for the numbers that I stated, or you may look it up in
a big table of integrals such as Gradshteyn and Ryzhik, or you may use an approximation,
h � R. (I recommend the last.) What is the numerical value of the ratio of these two air
mass integrals? This goes far in explaining why you can look at the setting sun.
(c) If refraction in the atmosphere is included, the light will bend and pass through a still
larger air mass. The overall refraction comes to about 0.5◦, and calculating the path that
light takes is hard, but you can find a bound on the answer by assuming a path that follows
the surface of the Earth through this angle and then takes off on a straight line. What is
the air mass ratio in this case? The real answer is somewhere between the two calculations.
Ans: ≈ 32, 37.

V

P13.35 Work in a thermodynamic system is calculated from dW = P dV . As-
sume an ideal gas, so that PV = nRT . What is the total work,

∮
dW , done

around this cycle as the pressure increases at constant volume, then decreases
at constant temperature, finally the volume decreases at constant pressure.
(b) In the special case for which the changes in volume and pressure are very
small, estimate from the graph approximately what to expect for the answer.
Now do an expansion of the result of part (a) to see if it agrees with what you expect.
Ans: ≈ ∆P ∆V/2

13.36 Verify the divergence theorem for the vector field

~F = αx̂ xyz + βŷ x2z(1 + y) + γẑ xyz2

and for the volume (0 < x < a), (0 < y < b), (0 < z < c).

13.37 Evaluate
∫
~F . d ~A over the curved surface of the hemisphere x2 + y2 + z2 = R2 and

z > 0. The vector field is given by ~F = ∇×
(
αyx̂+ βxŷ + γxyẑ

)
. Ans: (β − α)πR2
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13.38 A vector field is specified in cylindrical coordinates to be ~F = αr̂r2z sin2 θ + βθ̂rz +
γẑzr cos2 θ. Verify the divergence theorem for this field for the region (0 < r < R), (0 < θ <
2π), (0 < z < h).

13.39 For the function F (r, θ) = rn(A+B cos θ+C cos2 θ), compute the gradient and then
the divergence of this gradient. For what values of the constants A, B, C, and (positive or
negative) integer n is this last expression zero? These coordinates are spherical. Ans: In
part, n = 2, C = −3A, B = 0.

13.40 Repeat the preceding problem, but now interpret the coordinates as cylindrical. And
don’t leave your answers in the first form that you find them.

13.41 Evaluate the integral
∫
~F . d ~A over the surface of the hemisphere x2 + y2 + z2 = 1

with z > 0. The vector field is ~F = A(1+x+ y)x̂+B(1+ y+ z)ŷ+C(1+ z+x)ẑ. You may
choose to do this problem the hard way or the easy way. Or both. Ans: π(2A+ 2B+ 5C)/3

13.42 An electric field is known in cylindrical coordinates to be ~E = f(r)r̂, and the electric

charge density is a function of r alone, ρ(r). They satisfy the Maxwell equation ∇ . ~E = ρ/ε0.

If the charge density is given as ρ(r) = ρ0 e
−r/r0 . Compute ~E. Demonstrate the behavior of

~E is for large r and for small r.

13.43 Repeat the preceding problem, but now r is a spherical coordinate.

13.44 Find a vector field ~F such that ∇ . ~F = αx+ βy + γ and ∇× ~F = ẑ.

13.45 Gauss’s law says that the total charge contained inside a surface is ε0
∮
~E . d ~A. For

the electric field of problem 10.37, evaluate this integral over a sphere of radius R1 > R and
centered at the origin.

13.46 In cylindrical coordinates, for what n does the vector field ~v = rnθ̂ have curl equal
to zero? Draw it.
Also, for the same closed path as in problem 18 and for all n, compute

∮
~v . d~r.

13.47 Prove the identity Eq. (41). Write it out in index notation first.

13.48 There an analog of Stokes’ theorem for
∮
d~̀× ~B. This sort of integral comes up

in computing the total force on the current in a circuit. Try multiplying the integral by a
constant vector ~C. Then manipulate the result by standard methods and hope that in the
end you have the same constant ~C . something.
Ans: =

∫ [
(∇ ~B) . d ~A− (∇ . ~B) . d ~A

]
and the second term vanishes for magnetic fields.
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In the calculus of functions of a complex variable there are three fundamental tools, the same
fundamental tools as for real variables. Differentiation, Integration, and Power Series. I’ll
first introduce all three in the context of complex variables, then show the relations between
them. The applications of the subject will form the major part of the chapter.

14.1 Differentiation
When you try to differentiate a continuous function is it always differentiable? If it’s differ-
entiable once is it differentiable again? The answer to both is no. Take the simple absolute
value function of the real variable x.

f(x) = |x| =
{

x (x ≥ 0)
−x (x < 0)

This has a derivative for all x except zero. In that case the limit

f(x+ ∆x)− f(x)

∆x
−→

 1 (x > 0)
−1 (x < 0)

? (x = 0)
(1)

has a different result depending on whether ∆x → 0 through positive or through negative
values.

If you integrate this function,

∫ x

0
|x′| dx′ =

{
x2/2 (x ≥ 0)
−x2/2 (x < 0)

the result has a derivative everywhere, including the origin, but you can’t differentiate it
twice. A few more integrations and you can produce a function that you can differentiate
42 times but not 43.

There are functions that are continuous but with no derivative anywhere. They’re
harder* to construct, but if you grant their existence then you can repeat the preceding
manipulation and create a function with any number of derivatives everywhere, but no more
than that number.

For a derivative to exist at a point, the limit Eq. (1) must have the same value whether
you take the limit from the right or from the left.

* Weierstrass surprised the world of mathematics with
∑∞

0 ak cos(bkx). If a < 1 while
ab > 1 this is continuous but has no derivative anywhere. This statement is much more
difficult to prove than it looks.

343



344 14—Complex Variables

Extend the idea of differentiation to complex-valued functions of complex variables.
Just change the letter x to the letter z = x + iy. Examine a function such as f(z) = z2 =
x2 − y2 + 2ixy or cos z = cos x cosh y + i sin x sinh y. Can you differentiate these (yes) and
what does that mean?

f ′(z) = lim
∆z→0

f(z + ∆z)− f(z)

∆z
=
df

dz
(2)

is the appropriate definition, but for it to exist there are even more restrictions than in the
real case. For real functions you have to get the same limit as ∆x → 0 whether you take
the limit from the right or from the left. In the complex case there are an infinite number
of directions through which ∆z can approach zero and you must get the same answer from
all directions. This is such a strong restriction that it isn’t obvious that any function has a
derivative. To reassure you that I’m not talking about an empty set, differentiate z2.

(z + ∆z)2 − z2

∆z
=

2z∆z + (∆z)2

∆z
= 2z + ∆z −→ 2z

It doesn’t matter whether ∆z = ∆x or = i∆y or = (1 + i)∆t. As long as it goes to zero you
get the same answer.

For a contrast take the complex conjugation function, f(z) = z* = x − iy. Try to
differentiate that.

(z + ∆z)* − z*
∆z

=
(∆z)*

∆z
=

∆r e−iθ

∆r eiθ
= e−2iθ

The polar form of the complex number is more convenient here, and you see that as the
distance ∆r goes to zero, this difference quotient depends on the direction through which
you take the limit. From the right and the left you get +1. From above and below (θ = ±π/2)
you get −1. The limits aren’t the same, so this function has no derivative anywhere. Roughly
speaking, the functions that you’re familiar with or are important enough to have names
(sin, cos, tanh, Bessel, elliptic, . . . ) will be differentiable as long as you don’t have an explicit
complex conjugation in them. Something such as |z| =

√
z*z does not have a derivative for

any z.

For functions of a real variable, having one or fifty-one derivatives doesn’t guarantee
you that it has two or fifty-two. The amazing property of functions of a complex variable is
that if a function has a single derivative everywhere in the neighborhood of a point then you
are guaranteed that it has a infinite number of derivatives. You will also be assured that you
can do a power series expansions about that point and that the series will always converge
to the function. There are important and useful integration methods that will apply to all
these functions, and for a relatively small effort they will open impressively large vistas of
mathematics.

For an example of the insights that you gain using complex variables, consider the
function f(x) = 1/

(
1 + x2

)
. This is a perfectly smooth function of x, starting at f(0) = 1

and slowing dropping to zero as x→ ±∞. Look at the power series expansion about x = 0
however. This is just a geometric series in (−x2), so(

1 + x2
)−1

= 1− x2 + x4 − x6 + · · ·
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This converges only if −1 < x < +1. Why such a limitation? The function is infinitely
differentiable for all x and is completely smooth throughout its domain. This remains mys-
terious as long as you think of x as a real number. If you expand your view and consider the
function of the complex variable z = x+ iy, then the mystery disappears. 1/(1 + z2) blows
up when z → ±i. The reason that the series fails to converge for values of |x| > 1 lies in the
complex plane, in the fact that at the distance = 1 in the i-direction there is a singularity.

Definition: A function is said to be analytic at the point z0
if it is differentiable for every point z in the disk |z−z0| < ε.
Here the positive number ε may be small, but it is not zero.

εNecessarily if f is analytic at z0 it will also be analytic at every point within
the disk |z− z0| < ε. This follows because at any point z1 within the original disk
you have a disk centered at z1 and of radius (ε−|z1−z0|)/2 on which the function
is differentiable.

The common formulas for differentiation are exactly the same for complex
variables as they are for real variables, and their proofs are exactly the same. For
example, the product formula:

f(z + ∆z)g(z + ∆z)− f(z)g(z)

∆z

=
f(z + ∆z)g(z + ∆z)− f(z)g(z + ∆z) + f(z)g(z + ∆z)− f(z)g(z)

∆z

=
f(z + ∆z)− f(z)

∆z
g(z + ∆z) + f(z)

g(z + ∆z)− g(z)
∆z

As ∆z → 0, this becomes the familiar f ′g + fg′. That the numbers are complex made no
difference.

For integer powers you can use induction, just as in the real case: dz/dz = 1 and

If
dzn

dz
= nzn−1, then use the product rule

dzn+1

dz
=
d(zn . z)

dz
= nzn−1 . z + zn . 1 = (n+ 1)zn

The other differentiation techniques are in the same spirit. They follow very closely
from the definition. For example, how do you handle negative powers? Simply note that
znz−n = 1 and use the product formula. The chain rule, the derivative of the inverse of a
function, all the rest, are close to the surface.

14.2 Integration
The standard Riemann integral of section 1.6 is

∫ b

a
f(x) dx = lim

∆xk→0

N∑
k=1

f(ξk)∆xk
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The extension of this to complex functions is direct. Instead of partitioning the interval
a < x < b into N pieces, you have to specify a curve in the complex plane and partition it
into N pieces. The interval is the complex number ∆zk = zk − zk−1.

∫
C
f(z) dz = lim

∆zk→0

N∑
k=1

f(ζk)∆zk

z0 z1
z2 z3 z4 z5

z6

ζ1
ζ2 ζ3 ζ4 ζ5 ζ6

Just as ξk is a point in the kth interval, so is ζk a point in the kth interval along the curve C.

How do you evaluate these integrals? Pretty much the same way that you evaluate
line integrals in vector calculus. You can write this as∫

C
f(z) dz =

∫ (
u(x, y) + iv(x, y)

)(
dx+ idy

)
=

∫ [
(u dx− v dy) + i(u dy + v dx)

]
If you have a parametric representation for the values of x(t) and y(t) along the curve this is∫ t2

t1

[
(u ẋ− v ẏ) + i(u ẏ + v ẋ)

]
dt

For example take the function f(z) = z and integrate it around a circle centered at the
origin. x = R cos θ, y = R sin θ.∫

z dz =

∫ [
(x dx− y dy) + i(x dy + y dx)

]
=

∫ 2π

0
dθR2

[
(− cos θ sin θ − sin θ cos θ) + i(cos2 θ − sin2 θ)

]
= 0

Wouldn’t it be easier to do this in polar coordinates? z = reiθ.∫
z dz =

∫
reiθ

[
eiθdr + ireiθdθ

]
=

∫ 2π

0
ReiθiReiθdθ = iR2

∫ 2π

0
e2iθdθ = 0 (3)

Do the same thing for the function 1/z. Use polar coordinates.∮
1

z
dz =

∫ 2π

0

1

Reiθ
iReiθdθ =

∫ 2π

0
i dθ = 2πi (4)

This is an important result! Do the same thing for zn where n is any positive or negative
integer, problem 1.

Rather than spending time on more examples of integrals, I’ll jump to a different
subject. The main results about integrals will follow after that (the residue theorem).
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14.3 Power (Laurent) Series
The series that concern us here are an extension of the common Taylor or power series, and
they are of the form

+∞∑
−∞

ak(z − z0)k (5)

The powers can extend through all positive and negative integer values. This is sort of like
the Frobenius series that appear in the solution of differential equations, except that here
the powers are all integers and they can either have a finite number of negative powers or
the powers can go all the way to minus infinity.

The common examples of Taylor series simply represent the case for which no negative
powers appear.

sin z =
∞∑
0

(−1)k
z2k+1

(2k + 1)!
or J0(z) =

∞∑
0

(−1)k
z2k

22k(k!)2
or

1

1− z
=

∞∑
0

zk

If a function has a Laurent series expansion that has a finite number of negative powers, it
is said to have a pole.

cos z

z
=

∞∑
0

(−1)k
z2k−1

(2k)!
or

sin z

z3
=

∞∑
0

(−1)k
z2k−2

(2k + 1)!

The order of the pole is the size of the largest negative power. These have respectively first
order and second order poles.

If the function has an infinite number of negative powers, and the series converges
all the way down to (but of course not at) the singularity, it is said to have an essential
singularity.

e1/z =
∞∑
0

1

k! zk
or sin

[
t

(
z +

1

z

)]
= · · · or

1

1− z
=

1

z

−1

1− 1
z

= −
∞∑
1

z−k

The first two have essential singularities; the third does not.
It’s worth examining some examples of these series and especially in seeing what kinds

of singularities they have. In analyzing these I’ll use the fact that the familiar power series
derived for real variables apply here too. The binomial series, the trigonometric functions,
the exponential, many more.

1/z(z − 1) has a zero in the denominator for both z = 0 and z = 1. What is the full
behavior near these two points?

1

z(z − 1)
=

−1

z(1− z)
=
−1

z
(1− z)−1 =

−1

z

[
1 + z + z2 + z3 + · · ·

]
=
−1

z
− 1− z − z2 − · · ·

1

z(z − 1)
=

1

(z − 1)(1 + z − 1)
=

1

z − 1

[
1 + (z − 1)

]−1

=
1

z − 1

[
1 + (z − 1) + (z − 1)2 + (z − 1)3 + · · ·

]
=

1

z − 1
+ 1 + (z − 1) + · · ·
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This shows the full Laurent series expansions near these points. Keep your eye on the
coefficient of the inverse first power. That term alone plays a crucial role in what will follow.

csc3 z near z = 0:

1

sin3 z
=

1[
z − z3

6 + z5

120 − · · ·
]3 =

1

z3
[
1− z2

6 + z4

120 − · · ·
]3

=
1

z3

[
1 + x

]−3
=

1

z3

[
1− 3x+ 6x2 − 10x3 + · · ·

]
=

1

z3

[
1− 3

(
−z

2

6
+

z4

120
− · · ·

)
+ 6

(
−z

2

6
+

z4

120
− · · ·

)2

− · · ·

]

=
1

z3

[
1 +

z2

2
+ z4

(
1

6
− 3

120

)
+ · · ·

]
=

1

z3

[
1 +

1

2
z2 +

17

120
z4 + · · ·

]
(6)

This has a third order pole, and the coefficient of 1/z is 1/2. Are there any other singularities
for this function? Yes, every place that the sine vanishes you have a pole, at nπ. (What is
the order of these other poles?) As I commented above, you’ll soon see that the coefficient
of the 1/z term plays a special role, and if that’s all that you’re looking for you don’t have
to work this hard. Now that you’ve seen what various terms do in this expansion, you can
stop carrying along so many terms and still get the 1/2z term. See problem 17

The structure of a Laurent series is such that it will converge in an annulus. Examine
the absolute convergence of such a series.

∞∑
−∞

∣∣akz
k
∣∣ =

−1∑
−∞

∣∣akz
k
∣∣+ ∞∑

0

∣∣akz
k
∣∣

The ratio test on the second sum is

if for large enough k,
|ak+1||z|k+1

|ak||z|k
=
|ak+1|
|ak|

|z| ≤ x < 1 then the series converges. (7)

This defines the largest value of |z| for which the sum of positive powers converges.

If |ak+1|/|ak| has a limit then |z|max = lim
|ak|
|ak+1|

Do the same analysis for the series of negative powers, applying the ratio test.

if for large enough negative k,
|ak−1||z|k−1

|ak||z|k
=
|ak−1|
|ak|

1

|z|
≤ x < 1 then the series converges.

(8)
This defines the smallest value of |z| for which the sum of negative powers converges.

If |ak−1|/|ak| has a limit as k → −∞ then |z|min = lim
|ak−1|
|ak|
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If |z|min < |z|max then there is a range of z for which the series converges absolutely (and so
of course it converges).

|z|min < |z| < |z|max an annulus

|z|min

|z|max

If either of these series of positive or negative powers is finite, terminating in a polynomial,
then respectively |z|max =∞ or |z|min = 0.

A major result is that when a function is analytic at a point (and so automatically in
a neighborhood of that point) then it will have a Taylor series expansion there. The series
will converge, and the series will converge to the given function. Is it possible for the Taylor
series for a function to converge but not to converge to the expected function? Yes, for
functions of a real variable it is. See problem 3. The important result is that for analytic
functions of a complex variable this cannot happen.

14.4 Core Properties
There are four closely intertwined facts about analytic functions. Each one implies the other
three. For the term “neighborhood” of z0, take it to mean all points satisfying |z − z0| < r
for some positive r.

1. The function has a single derivative in a neighborhood of z0.

2. The function has an infinite number of derivatives in a neighborhood
of z0.

3. The function has a power series (positive exponents) expansion about
z0 and the series converges to the specified function in a disk centered
at z0 and extending to the nearest singularity. You can compute the
derivative of the function by differentiating the series term-by-term.

4. All contour integrals of the function around closed paths in a neigh-
borhood of z0 are zero.

Item 3 is a special case of the result about Laurent series. There are no negative powers
when the function is analytic at the expansion point.

The second part of the statement, that it’s the presence of a singularity that stops the
series from converging, requires some computation to prove. The key step in the proof is to
show that when the series converges in the neighborhood of a point then you can differentiate
term-by-term and get the right answer. Since you won’t have a derivative at a singularity,
the series can’t converge there. That key step in the proof is the one that I’ll leave to every
book on complex variables ever written. E.g. Schaum’s outline on Complex Variables by
Spiegel, mentioned in the bibliography.

Instead of a direct approach to all these ideas, I’ll spend some time showing how they’re
related to each other. The proofs that these are valid are not all that difficult, but I’m going
to spend time on their applications instead.
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14.5 Branch Points
The function f(z) =

√
z has a peculiar behavior. You’re so accustomed to it that you may

not think of it as peculiar, but only an annoyance that you have to watch out for. It’s double
valued. The very definition of a function however says that a function is single valued, so
what is this? I’ll leave the answer to this until later, section 14.7, but for now I’ll say that
when you encounter this problem you have to be careful of the path along which you move,
in order to avoid going all the way around such a point.

14.6 Cauchy’s Residue Theorem
This is the fundamental result for applications in physics. If a function has a Laurent series
expansion about the point z0, the coefficient of the term 1/(z − z0) is called the residue of
f at z0. The residue theorem tells you the value of a contour integral around a closed loop
in terms of the residues of the function inside the loop.∮

f(z) dz = 2πi
∑

k

Res(f)|zk
(9)

To make sense of this result I have to specify the hypotheses. The direction of integration is
counter-clockwise. Inside and on the simple closed curve defining the path of integration, f
is analytic except at isolated points of singularity, where there is a Laurent series expansion.
There are no branch points inside the curve. It says that at each singularity zk inside the
contour, find the residue; add them; the result (times 2πi) is the value of the integral on the
left. The term “simple” closed curve means that it doesn’t cross itself.

Example 1
The integral of 1/z around a circle of radius R centered at the origin is 2πi. The Laurent
series expansion of this function is trivial — it has only one term. This reproduces Eq. (4).
It also says that the integral around the same path of e1/z is 2πi. Write out the series
expansion of e1/z to determine the coefficient of 1/z.

Example 2
Another example. The integral of 1/(z2 − a2) around a circle centered
at the origin and of radius 2a. You can do this integral two ways.
First increase the radius of the circle, pushing it out toward infinity.
As there are no singularities along the way, the value of the integral
is unchanged. The magnitude of the function goes as 1/R2 on a large
(R � a) circle, and the circumference is 2πR. the product of these
goes to zero as 1/R, so the value of the original integral (unchanged, remember) is zero.

Another way to do the integral is to use the residue theorem. There are two poles
inside the contour, at ±a. Look at the behavior of the integrand near these two points.

1

z2 − a2
=

1

(z − a)(z + a)
=

1

(z − a)(2a+ z − a)
≈ [near +a]

1

2a(z − a)

=
1

(z + a)(z + a− 2a)
≈ [near −a] 1

−2a(z + a)

The integral is 2πi times the sum of the two residues.

2πi

[
1

2a
+

1

−2a

]
= 0
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For another example, with a more interesting integral, what is∫ +∞

−∞

eikxdx

a4 + x4
(10)

If these were squares instead of fourth powers, and it didn’t have the exponential in it,
you could easily find a trigonometric substitution to evaluate it. This integral would be
formidable though. To illustrate the method, I’ll start with that easier example,

∫
dx/(a2 +

x2).

Example 3
The function 1/(a2 + z2) is singular when the denominator vanishes, when z = ±ia. The
integral that I want is the contour integral along the x-axis.

∫
C1

dz

a2 + z2

C1
(11)

The figure shows the two places at which the function has poles, ±ia. The method is to
move the contour around and to take advantage of the theorems about contour integrals.
First remember that as long as it doesn’t move across a singularity, you can distort a contour
at will. I will push the contour C1 up, but I have to leave the endpoints where they are and
I can’t let it cross the pole at ia. Those are my only constraints.

C2 C3 C4 C5

As I push the contour from C1 up to C2, nothing has changed, and the same applies
to C3. The next two steps however, requires some comment. In C3 the two straight-line
segments that parallel the y-axis are going in opposite directions, and as they are squeezed
together, they cancel each other; they are integrals of the same function in reverse directions.
In the final step, to C5, I pushed the contour all the way to +i∞ and eliminated it. How
does that happen? On a big circle of radius R, the function 1/(a2 + z2) has a magnitude
approximately 1/R2. As you push the top curve in C4 out, forming a big circle, its length
is πR. The product of these is π/R, and that approaches zero as R→∞. All that is left is
the single closed loop in C5, and I evaluate that with the residue theorem.∫

C1

=

∫
C5

= 2πi Res
z=ia

1

a2 + z2

Compute this residue by examining the behavior near the pole at ia.

1

a2 + z2
=

1

(z − ia)(z + ia)
≈ 1

(z − ia)(2ia)
Near the point z = ia the value of z + ia is nearly 2ia, so the coefficient of 1/(z − ia) is
1/(2ia), and that is the residue. The integral is 2πi times this residue, so∫ ∞

−∞
dx

1

a2 + x2
= 2πi .

1

2ia
=
π

a
(12)
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The most obvious check on this result is that it has the correct dimensions. [dz/z2] = L/L2 =
1/L, a reciprocal length (assuming a is a length). What happens if you push the contour
down instead of up? See problem 10

Example 4
How about the more complicated integral, Eq. (10)? There are more poles, so that’s where
to start. The denominator vanishes where z4 = −a4, or at

z = a
(
eiπ+2inπ

)1/4
= aeiπ/4einπ/2

∫
C1

eikz dz

a4 + z4

C1

I’m going to use the same method as before, pushing the contour past some poles, but I have
to be a bit more careful this time. The exponential, not the 1/z4, will play the dominant role

in the behavior at infinity. If k is positive then if z = iy, the exponential ei
2ky = e−ky → 0

as y → +∞. It will blow up in the −i∞ direction. Of course if k is negative the reverse
holds.

Assume k > 0, then in order to push the contour into a region where I can determine
that it’s zero, I have to push it toward +i∞. That’s where the exponential drops rapidly
to zero. It goes to zero faster than any inverse power of y, so even with the length of the
contour going as πR, the combination vanishes.

C2 C3 C4

As before, when you push C1 up to C2 and to C3, nothing has changed, because the
contour has crossed no singularities. The transition to C4 happens because the pairs of
straight line segments cancel when they are pushed together and made to coincide. The
large contour is pushed to +i∞ where the negative exponential kills it. All that’s left is the
sum over the two residues at aeiπ/4 and ae3iπ/4.∫

C1

=

∫
C4

= 2πi
∑

Res
eikz

a4 + z4

The denominator factors as

a4 + z4 = (z − aeiπ/4)(z − ae3iπ/4)(z − ae5iπ/4)(z − ae7iπ/4)

The residue at aeiπ/4 = a(1 + i)/
√

2 is the coefficient of 1/(z − aeiπ/4), so it is

eika(1+i)/
√

2

(aeiπ/4 − ae3iπ/4)(aeiπ/4 − ae5iπ/4)(aeiπ/4 − ae7iπ/4)

1

2 3



14—Complex Variables 353

Do you have to do a lot of algebra to evaluate this denominator? Maybe you will prefer
that to the alternative: draw a picture. The distance from the center to a corner of the
square is a, so each side has length a

√
2. The first factor in the denominator of the residue

is the line labelled “1” in the figure, so it is a
√

2. Similarly the second and third factors are
2a(1 + i)/

√
2 and ia

√
2. This residue is then

Res
eiπ/4

=
eika(1+i)/

√
2(

a
√

2
)
(2a(1 + i)/

√
2)(ia

√
2)

=
eika(1+i)/

√
2

a32
√

2(−1 + i)
(13)

For the other pole, at e3iπ/4, the result is

Res
e3iπ/4

=
eika(−1+i)/

√
2

(−a
√

2)(2a(−1 + i)/
√

2)(ia
√

2)
=
eika(−1+i)/

√
2

a32
√

2(1 + i)
(14)

The final result for the integral Eq. (10) is then∫ +∞

−∞

eikxdx

a4 + x4
= 2πi

[
(13) + (14)

]
=
πe−ka/

√
2

a3
cos[(ka/

√
2)− π/4] (15)

This would be a challenge to do by other means, without using contour integration. I’m sure
it can be done, but I’d rather not. Does it make any sense? The dimensions work, because
the [dz/z4] is the same as 1/a3. What happens in the original integral if k changes to −k?
It’s even in k of course. (Really? Why?) This result doesn’t look even in k but then it
doesn’t have to because it applies only for the case that k > 0. If you have a negative k you
simply reverse its sign.

Example 5
Another example for which it’s not immediately obvious how to use the residue theorem:

∫ ∞

−∞
dx

sin ax

x

C1 C2
(16)

This function has no singularities. The sine doesn’t, and the only place the integrand could
have one is at zero. Near that point, the sine itself is linear in x, so (sin ax)/x is finite at
the origin. The trick in using the residue theorem here is to create a singularity where there
is none. Write the sine as a combination of exponentials, then the contour integral along C1

is the same as along C2, and∫
C1

eiaz − e−iaz

2iz
=

∫
C2

eiaz − e−iaz

2iz
=

∫
C2

eiaz

2iz
−
∫

C2

e−iaz

2iz

I had to move the contour away from the origin in anticipation of this splitting of the
integrand because I don’t want to try integrating through this singularity that appears in
the last two integrals. In the first form it doesn’t matter because there is no singularity at
the origin and I can move the contour anywhere I want as long as the two points at ±∞
stay put. In the final two separated integrals it matters very much.
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C3 C4

Assume that a > 0. In this case, eiaz → 0 as z → +i∞. For the other exponential, it
vanishes toward −i∞. This implies that I can push the contour in the first integral toward
+i∞ and the integral over the contour at infinity will vanish. As there are no singularities
in the way, that means that the first integral is zero. For the second integral you have to
push the contour toward −i∞, and that hangs up on the pole at the origin. That integral
is then

−
∫

C2

e−iaz

2iz
= −

∫
C4

e−iaz

2iz
= −(−2πi) Res

e−iaz

2iz
= π

The factor −2πi in front of the residue occurs because the integral is over a clockwise contour,
thereby changing its sign. Compare the result of problem 5.29(b).

Notice that the result is independent of a > 0. You can check this fact by going to the
original integral, Eq. (16), and making a change of variables. See problem 16.

Example 6
What is

∫∞
0 dx/(a2 + x2)2? The first observation I’ll make is that by dimensional analysis

alone, I expect the result to vary as 1/a3. Next: the integrand is even, so I can use the same
methods as for the previous examples if I extend the integration limits to the whole axis
(times 1/2).

1

2

∫
C1

dz

(a2 + z2)2
C1

As with Eq. (11), push the contour up and it is caught on the pole at z = ia. That’s curve
C5 following that equation. This time however, the pole is second order, so it take a (little)
more work to evaluate the residue.

1

2

1

(a2 + z2)2
=

1

2

1

(z − ia)2(z + ia)2
=

1

2

1

(z − ia)2(z − ia+ 2ia)2

=
1

2

1

(z − ia)2(2ia)2
[
1 + (z − ia)/2ia

]2
=

1

2

1

(z − ia)2(2ia)2

[
1− 2

(z − ia)
2ia

+ · · ·
]

=
1

2

1

(z − ia)2(2ia)2
+

1

2
(−2)

1

(z − ia)(2ia)3
+ · · ·

The residue is the coefficient of the 1/(z − ia) term, so the integral is∫ ∞

0
dx/(a2 + x2)2 = 2πi .(−1) . 1

(2ia)3
=

π

4a3

Is this plausible? The dimensions came out as I expected, and to estimate the size of the
coefficient, π/4, look back at the result Eq. (12). Set a = 1 and compare the π there to
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the π/4 here. The range of integration is half as big, so that accounts for a factor of two.
The integrands are always less than one, so in the second case, where the denominator is
squared, the integrand is always less than that of Eq. (12). The integral must be less, and
it is. Why less by a factor of two? Dunno, but plot a few points and sketch a graph to see
if you believe it.

Example 7

A trigonometric integral:
∫ 2π
0 dθ

/
(a + b cos θ). The first observation is that unless |a| > |b|

then this denominator will go to zero somewhere in the range of integration (assuming that
a and b are real). Next, the result can’t depend on the relative sign of a and b, because the
change of variables θ′ = θ + π changes the coefficient of b while the periodicity of the cosine
means that you can leave the limits alone. I may as well assume that a and b are positive.
The trick now is to use Euler’s formula and express the cosine in terms of exponentials.

Let z = eiθ, then cos θ =
1

2

[
z +

1

z

]
and dz = i eiθdθ = iz dθ

As θ goes from 0 to 2π, the complex variable z goes around the unit circle. The integral is
then ∫ 2π

0
dθ

1

(a+ b cos θ)
=

∫
C

dz

iz

1

a+ b
(
z + 1

z

)
/2

The integrand obviously has some poles, so I have to locate them.

2az + bz2 + b = 0 has roots z =
−2a±

√
(2a)2 − 4b2

2b
= z±

Because a > b, the roots are real. The important question is: Are they inside or outside the
unit circle? The roots depend on the ratio a/b = λ.

z± =
[
−λ±

√
λ2 − 1

]
(17)

As λ varies from 1 to∞, the two roots travel from −1→ −∞ and from −1→ 0, so z+ stays
inside the unit circle (problem 19). The integral is then

−2i

b

∫
C

dz

z2 + 2λz + 1
= −2i

b

∫
C

dz

(z − z+)(z − z−)
= −2i

b
2πi Res

z=z+

= −2i

b
2πi

1

z+ − z−
=

2π

b
√
λ2 − 1

=
2π√
a2 − b2
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14.7 Branch Points
Before looking at any more uses of the residue theorem, I have to return the the subject of
branch points. They are another type of singularity that an analytic function can have after
poles and essential singularities.

√
z provides the prototype.

The definition of the word function, as in section 12.1, requires that it be single-valued.
The function

√
z stubbornly refuses to conform to this. You can get around this in several

ways: First, ignore it. Second, change the definition of “function” to allow it to be multiple-
valued. Third, change the domain of the function.

You know I’m not going to ignore it. Changing the definition is not very fruitful. The
third way was pioneered by Riemann and is the right way to go.

The complex plane provides a geometric picture of complex numbers, but when you
try to handle square roots it becomes a hindrance. It isn’t adequate for the task. There are
several ways to develop the proper extension, and I’ll show a couple of them. The first is a
sort of algebraic way, and the second is a geometric interpretation of the first way. There are
other, even more general methods, leading into the theory of Riemann Surfaces and their
topological structure, but I won’t go into those.

Pick a base point, say z0 = 1, from which to start. This will be a kind of fiduciary
point near which I know the values of the function. Every other point needs to be referred
to this base point. If I state that the square root of z0 is one, then I haven’t run into trouble
yet. Take another point z = reiθ and try to figure out the square root there.

√
z =
√
reiθ =

√
r eiθ/2 or

√
z =

√
rei(θ+2π) =

√
r eiθ/2eiπ

The key question: How did I get from z0 to z? What was the path from the starting point to
z?

0 1 2 −3

z z
z z

In the picture, z appears to be at about 1.5e0.6i or so.
On the path labelled 0, the angle θ starts at zero at z0 and increases to 0.6 radians, so√
r eiθ/2 varies continuously from 1 to about 1.25e0.3i.

On path labeled 1, angle θ again starts at zero and increases to 0.6 + 2π, so
√
r eiθ/2 varies

continuously from 1 to about 1.25e(π+0.3)i, which is minus the result along path #0.
On the path labelled 2, angle θ goes from zero to 0.6 + 4π, and

√
r eiθ/2 varies from 1 to

1.25e(2π+0.3)i and that is back to the same value as path #0.
For the path labeled −3, the angle is 0.6− 6π, resulting in the same value as path #1.

1

zThere are two classes of paths from z0 to z, those that go around
the origin an even number of times and those that go around an odd
number of times. The “winding number” w is the name given to the
number of times that a closed loop goes counterclockwise around a point
(positive or negative), and if I take the path #1 and move it slightly so
that it passes through z0, you can more easily see that the only difference
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between paths 0 and 1 is the single loop around the origin. The value for the square root
depends on two variables, z and the winding number of the path. Actually less than this,
because it depends only on whether the winding number is even or odd:

√
z →

√
(z, w).

In this notation then z0 → (z0, 0) is the base point, and the square root of that is one.
The square root of (z0, 1) is then minus one. Because the only relevant question about the
winding number is whether it is even or odd, it’s convenient simply to say that the second
argument can take on the values either 0 or 1 and be done with it.

Geometry of Branch Points
How do you picture such a structure? There’s a convenient artifice that lets you picture and
manipulate functions with branch points. In this square root example, picture two sheets
and slice both along some curve starting at the origin and going to infinity. As it’s a matter
of convenience how you draw the cut I may as well make it a straight line along the x-axis,
but any other line (or simple curve) from the origin will do. As these are mathematical
planes I’ll use mathematical scissors, which have the elegant property that as I cut starting
from infinity on the right and proceeding down to the origin, the points that are actually on
the x-axis are placed on the right side of the cut and the left side of the cut is left open. I
indicate this with solid and dashed lines in the figure. (This is not an important point; don’t
worry about it.)

0 1

a

b a

b

Now I sew the sheets together along these cuts. But, I sew the top edge from sheet
#0 to the bottom edge from sheet #1. I then sew the bottom edge of sheet #0 to the top
edge of sheet #1. This sort of structure is called a Riemann surface. How can I do this?
I do it the same way that I read a map in an atlas of maps. If page 38 of the atlas shows
a map with the outline of Brazil and page 27 shows a map with the outline of Bolivia, you
can flip back and forth between the two pages and understand that the two maps* represent
countries that are touching each other along their common border.

* www.worldatlas.com

http://www.worldatlas.com/
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You can see where they fit even though the two countries are not drawn to the same
scale! Brazil is a whole lot larger than Bolivia, but where the images fit along the Western
border of Brazil and the Eastern border of Bolivia is clear. You are accustomed to doing
this with maps, understanding that the right edge of the map on page 27 is the same as the
left edge of the map on page 38; you probably take it for granted. Now you get to do it with
Riemann surfaces.

You have two cut planes (two maps), and certain edges are understood to be identified
as identical, just as two borders of a geographic map are understood to represent the same
line on the surface of the Earth. Unlike the maps above, you will usually draw both to the
same scale, but you won’t make the cut ragged (no pinking shears) so you need to use some
notation to indicate what is attached to what. That’s what the letters a and b are. Side a
is the same as side a. The same for b. When you have more complicated surfaces, arising
from more complicated functions of the complex variable with many branch points, you will
have a fine time sorting out the shape of the surface.

0
1

(z0, 1)

(z0, 0)

(z0, 0)

(z0, 1)

b

a

a

b

I drew three large disks on this Riemann surface. One is entirely within the first sheet
(the first map); a second is entirely within the second sheet. The third disk straddles the
two, but is is nonetheless a disk. On a political map this might be disputed territory. Going
back to the original square root example, I also indicated the initial point at which I defined
the value of the square root, (z0, 0), and because a single dot would really be invisible I made
it a little disk, which necessarily extends across both sheets.

Here is a picture of a closed loop on this surface. I’ll probably not ask you to do
contour integrals along such curves though.

0 1

a

b

b

a

Other Functions
Cube Root Take the next simple step. What about the cube root? Answer: Do exactly
the same thing, except that you need three sheets to describe the whole Riemann surface.
Again, I’ll draw a closed loop. As long as you have only a single branch point it’s no more
complicated than this.
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0 1 2

a

b

b
c

c

a

Logarithm How about a logarithm? ln z = ln
(
reiθ

)
= ln r + iθ. There’s a branch point at

the origin, but this time, as the angle keeps increasing you never come back to a previous

value. This requires an infinite number of sheets. That number isn’t any more difficult to

handle — it’s just like two, only bigger. In this case the whole winding number around the

origin comes into play because every loop around the origin, taking you to the next sheet of

the surface, adds another 2πiw, and w is any integer from −∞ to +∞. The picture of the

surface is like that for the cube root, but with infinitely many sheets instead of three. The

complications start to come when you have several branch points.

Two Square Roots Take
√
z2 − 1 for an example. Many other functions will do just as

well. Pick a base point z0; I’ll take 2. (Not two base points, the number 2.) f(z0, 0) =
√

3.

Now follow the function around some loops. This repeats the development as for the single

branch, but the number of possible paths will be larger. Draw a closed loop starting at z0.

a

b

c

d

a
b

c

d

z0

Despite the two square roots, you still need only two sheets to map out this surface. I

drew the ab and cd cuts below to keep them out of the way, but they’re very flexible. Start

the base point and follow the path around the point +1; that takes you to the second sheet.

You already know that if you go around +1 again it takes you back to where you started, so

explore a different path: go around −1. Now observe that this function is the product of two

square roots. Going around the first one introduced a factor of −1 into the function and going

around the second branch point will introduce a second identical factor. As (−1)2 = +1,

then when you you return to z0 the function is back at
√

3, you have returned to the base

point and this whole loop is closed. If this were the sum of two square roots instead of their

product, this wouldn’t work. You’ll need four sheets to map that surface. See problem 22.

These cuts are rather awkward, and now that I know the general shape of the surface

it’s possible to arrange the maps into a more orderly atlas. Here are two better ways to draw

the maps. They’re much easier to work with.
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0

1

a
b

b
a

c
d

d
c

or

0

1

e

f

f
e

I used the dash-dot line to indicate the cuts. In the right pair, the base point is on the
right-hand solid line of sheet #0. In the left pair, the base point is on the c part of sheet
#0. See problem 20.

14.8 Other Integrals
There are many more integrals that you can do using the residue theorem, and some of these
involve branch points. In some cases, the integrand you’re trying to integrate has a branch
point already built into it. In other cases you can pull some tricks and artificially introduce
a branch point to facilitate the integration. That doesn’t sound likely, but it can happen.

Example 8
The integral

∫∞
0 dxx/(a+x)3. You can do this by elementary methods (very easily in fact),

but I’ll use it to demonstrate a contour method. This integral is from zero to infinity and it
isn’t even, so the previous tricks don’t seem to apply. Instead, consider the integral (a > 0)∫ ∞

0
dx lnx

x

(a+ x)3

and you see that right away, I’m creating a branch point where there wasn’t one before.

2

C1

C

The fact that the logarithm goes to infinity at the ori-
gin doesn’t matter because it is such a weak singularity that
any positive power, even x0.0001 times the logarithm, gives a
finite limit as x → 0. Take advantage of the branch point
that this integrand provides.∫

C1

dz ln z
z

(a+ z)3
=

∫
C2

dz ln z
z

(a+ z)3

On C1 the logarithm is real. After the contour is pushed into
position C2, there are several distinct pieces. A part of C2 is
a large arc that I can take to be a circle of radius R if I want. The size of the integrand is
only as big as (lnR)/R2, and when I multiply this by 2πR, the circumference of the arc, it
will go to zero as R→∞.
The next pieces of C2 to examine are the two straight lines between the origin and −a. The
integrals along here are in opposite directions, and there’s no branch point intervening, so
these two segments simply cancel each other.
What’s left is C3.∫ ∞

0
dx lnx

x

(a+ x)3
=

∫
C1

=

∫
C3

= 2πi Res
z=−a

+

∫ ∞

0
dx
(
lnx+ 2πi

) x

(a+ x)3

C3
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Below the positive real axis, that is, below the cut that I made, the logarithm differs from its
original value by the constant 2πi. Among all these integrals, the integral with the logarithm
on the left side of the equation appears on the right side too. These terms cancel and you’re
left with

0 = 2πi Res
z=−a

+

∫ ∞

0
dx 2πi

x

(a+ x)3
or

∫ ∞

0
dx

x

(a+ x)3
= − Res

z=−a
ln z

z

(a+ z)3

This is a third-order pole, so it takes a bit of work. First expand the log around −a. Here
it’s probably easiest to plug into Taylor’s formula for the power series and compute the
derivatives of ln z at −a.

ln z = ln(−a) + (z + a)
1

−a
+

(z + a)2

2!

−1

(−a)2
+ · · ·

Which value of ln(−a) do I take? That answer is dictated by how I arrived at the point −a
when I pushed the contour from C1 to C2. That is, ln a+ iπ.

− ln z
z

(a+ z)3
= −

[
ln a+ iπ − 1

a
(z + a)− 1

a2

(z + a)2

2
+ · · ·

] [
(z + a)− a

] 1

(z + a)3

I’m interested only in the residue, so I want only the coefficient of the power 1/(z+a). That
is

−
[
−1

a
− 1

2a2
(−a)

]
=

1

2a

Did I have to do all this work to get this answer? Absolutely not. This falls under the classic
heading of using a sledgehammer as a fly swatter. It does show the technique though, and in
the process I had an excuse to show that third-order poles needn’t be all that intimidating.

14.9 Other Results
Polynomials: There are some other consequences of looking in the complex plane that are
very different from any of the preceding. If you did problem 3.11, you realize that the
function ez = 0 has no solutions, even in the complex plane. You’re used to finding roots of
equations such as quadratics and maybe you’ve encountered the cubic formula too. How do
you know that every polynomial even has a root? Maybe there’s an order-137 polynomial
that has none. No, it doesn’t happen. That every polynomial has a root (n of them in fact)
is the Fundamental Theorem of Algebra. Gauss proved it, but after the advent of complex
variable theory it becomes an elementary exercise.

A polynomial is f(z) = anz
n + an−1z

n−1 + · · ·+ a0. Consider the integral∫
C
dz
f ′(z)

f(z)

around a large circle. f ′(z) = nanz
n−1 + · · ·, so this is∫

C
dz
nanz

n−1 + (n− 1)an−1z
n−2 + · · ·

anzn + an−1zn−1 + · · ·+ a0
=

∫
C
dz
n

z

1 + (n−1)an−1
nanz + · · ·

1 + an−1
anz + · · ·
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Take the radius of the circle large enough that only the first term in the numerator and the
first term in the denominator are important. That makes the integral∫

C
dz
n

z
= 2πin

It’s certainly not zero, so that means that there is a pole inside the loop, and so a root of
the denominator.
Function Determined by its Boundary Values: If a function is analytic throughout a
simply connected domain and C is a simple closed curve in this domain, then the values of
f inside C are determined by the values of f on C. Let z be a point inside the contour then
I will show

1

2πi

∫
C
dz

f(z′)

z′ − z
= f(z) (18)

Because f is analytic in this domain I can shrink the contour to be an arbitrarily small
curve C1 around z. Because f is continuous, I can make the curve close enough to z that
f(z′) = f(z) to any accuracy that I want. That implies that the above integral is the same
as

1

2πi
f(z)

∫
C1

dz′
1

z′ − z
= f(z)

Eq. (18) is Cauchy’s integral formula, giving the analytic function in terms of its boundary
values.
Derivatives: You can differentiate Cauchy’s formula any number of times.

dnf(z)

dzn
=

n!

2πi

∫
C
dz

f(z′)

(z′ − z)n+1
(19)

Entire Functions: An entire function is one that has no singularities anywhere. ez, poly-
nomials, sines, cosines are such. There’s a curious and sometimes useful result about such
functions. A bounded entire function is necessarily a constant. For a proof, take two points,
z1 and z2 and apply Cauchy’s integral theorem.

f(z1)− f(z2) =
1

2πi

∫
C
dz f(z′)

[
1

z′ − z1
− 1

z′ − z2

]
=

1

2πi

∫
C
dz f(z′)

z1 − z2
(z′ − z1)(z′ − z2)

By assumption, f is bounded, |f(z)| ≤ M . A basic property of complex numbers is that
|u + v| ≤ |u| + |v| for any complex numbers u and v. This means that in the defining sum
for an integral,∣∣∣∣∣∑

k

f(ζk)∆zk

∣∣∣∣∣ ≤∑
k

∣∣f(ζk)
∣∣∣∣∆zk∣∣, so

∣∣∣∣∫ f(z)dz

∣∣∣∣ ≤ ∫ |f(z)||dz| (20)

Apply this.

|f(z1)− f(z2)| ≤
∫
|dz||f(z′)|

∣∣∣∣ z1 − z2
(z′ − z1)(z′ − z2)

∣∣∣∣ ≤M |z1 − z2|
∫
|dz|

∣∣∣∣ 1

(z′ − z1)(z′ − z2)

∣∣∣∣
On a big enough circle of radius R, this becomes

|f(z1)− f(z2)| ≤M |z1 − z2|2πR
1

R2
−→ 0 as R→∞

The left side doesn’t depend on R, so f(z1) = f(z2).
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Problems

14.1 Explicitly integrate zn dz around the circle of radius R centered at the origin. The
number n is any positive, negative, or zero integer.

14.2 Repeat the analysis of Eq. (3) but change it to the integral of z*dz.

14.3 For the real-valued function of a real variable,

f(x) =

{
e−1/x2

(x 6= 0)
0 (x = 0)

Work out all the derivatives at x = 0 and so find the Taylor series expansion about zero.
Does it converge? Does it converge to f? You did draw a careful graph didn’t you? Perhaps
even put in some numbers for moderately small x.

14.4 The function 1/(z − a) has a singularity (pole) at z = a. Assume that |z| < |a|, and
write its series expansion in powers of z/a. Next assume that |z| > |a| and write the series
expansion in powers of a/z.
In both cases, determine the set of z for which the series is absolutely convergent, replacing
each term by its absolute value. Also sketch these sets.
Does your series expansion in a/z imply that this function has an essential singularity at
z = 0? Since you know that it doesn’t, what happened?

14.5 The function 1/(1 + z2) has a singularity at z = i. Write a Laurent series expansion
about that point. To do so, note that 1 + z2 = (z − i)(z + i) = (z − i)(2i + z − i) and
use the binomial expansion to produce the desired series. (Or you can find another, more
difficult method.) Use the ratio test to determine the domain of convergence of this series.
Specifically, look for (and sketch) the set of z for which the absolute values of the terms form
a convergent series.
Ans: |z − i| < 2 OR |z − i| > 2 depending on which way you did the expansion. If you
did one, find the other. If you expanded in powers of (z − i), try expanding in powers of
1/(z − i).

14.6 What is
∫ i
0 dz/(1− z

2)? Ans: iπ/2

14.7 What is a Laurent series expansion about z = 0 to at least four terms for

sin z/z4 ez/z2(1− z)

What is the residue at z = 0 for each function? Assume |z| < 1. Then assume |z| > 1 and
find the series.
Ans: |z| > 1:

∑+∞
−∞ znf(n), where f(n) = −e if n < −3 and f(n) = −

∑∞
n+3 1/k! if n ≥ −3.
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14.8 By explicit integration, evaluate the integrals around the counterclockwise loops:

∫
C1

z2 dz

∫
C2

z3 dz
C1

1 + i

1

C2

ib
a + ib

a

14.9 Evaluate the integral along the straight line from a to a + i∞:
∫
eizdz. Take a to be

real. Ans: ieia

14.10 (a) Repeat the contour integral Eq. (11), but this time push the contour down, not
up.
(b) What happens to the same integral if a is negative? And be sure to explain your answer
in terms of the contour integrals, even if you see an easier way to do it.

14.11 Carry out all the missing steps starting with Eq. (10) and leading to Eq. (15).

14.12 Sketch a graph of Eq. (15) and for k < 0 too. What is the behavior of this function
in the neighborhood of k = 0? (Careful!)

14.13 In the integration of Eq. (16) the contour C2 had a bump into the upper half-plane.
What happens if the bump is into the lower half-plane?

14.14 For the function in problem 7, ez/z2(1 − z), do the Laurent series expansion about
z = 0, but this time assume |z| > 1. What is the coefficient of 1/z now? You should have
no trouble summing the series that you get for this. Now explain why this result is as it is.
Perhaps review problem 1.

C?
14.15 In the integration of Eq. (16) the contour C2 had a bump
into the upper half-plane, but the original function had no sin-
gularity at the origin, so you can start with this curve and carry
out the analysis. What answer do you get?

14.16 Use contour integration to evaluate Eq. (16) for the case that a < 0.
(b) Independently of this, make a change of variables in the original integral Eq. (16) in
order to see if the answer is independent of a. In this part, consider two cases, a > 0 and
a < 0.

14.17 Recalculate the residue done in Eq. (6), but economize your labor. If all that all you
really want is the coefficient of 1/z, keep only the terms that you need in order to get it.

14.18 What is the order of all the other poles of the function csc3 z, and what is the residue
at each pole?

14.19 Verify the location of the roots of Eq. (17).
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14.20 Verify that the Riemann surfaces work as defined for the function
√
z2 − 1 using the

alternative maps in section 14.7.

14.21 Map out the Riemann surface for
√
z(z − 1)(z − 2). You will need four sheets.

14.22 Map out the Riemann surface for
√
z +
√
z − 1. You will need four sheets.

14.23 Evaluate ∫
C
dz e−zz−n

where C is a circle of radius R about the origin.

14.24 Evaluate ∫
C
dz tan z

where C is a circle of radius πn about the origin. Ans: −4πin

14.25 Evaluate the residues of these functions at their singularities. a, b, and c are distinct.
Six answers: you should be able to do five of them in your head.

(a)
1

(z − a)(z − b)(z − c)
(b)

1

(z − a)(z − b)2
(c)

1

(z − a)3

14.26 Evaluate the residue at the origin for the function

1

z
ez+ 1

z

The result will be an infinite series, though if you want to express the answer in terms of a
standard function you will have to hunt. Ans: I0(2), a modified Bessel function.

14.27 Evaluate
∫∞
0 dz/(a4 + x4), and as a check, compare it to the result of example 4,

Eq. (15).

14.28 Evaluate ∫ ∞

0
dx

cos bx

a2 + x2

14.29 Evaluate (a real) ∫ ∞

−∞
dx

sin2 ax

x2

Ans: |a|π
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14.30 Evaluate ∫ ∞

−∞
dx

sin2 bx

x(a2 + x2)

14.31 Evaluate the integral
∫∞
0 dx

√
x /(a + x)2. Use the ideas of example 8, but without

the logarithm. (a > 0) Ans: π/2
√
a

14.32 Evaluate ∫ ∞

0
dx

lnx

a2 + x2

(What happens if you consider (ln x)2?) Ans: (π ln a)/2a

14.33 Evaluate (λ > 1) by contour integration∫ 2π

0

dθ(
λ+ sin θ

)2
Ans: 2πλ/(λ2 − 1)3/2

14.34 Evaluate ∫ π

0
dθ sin2n θ

Recall Eq. (2.17). Ans: π 2nCn

/
22n−1 = π(2n− 1)!!/(2n)!!

14.35 Evaluate the integral of problem 33 another way. Assume λ is large and expand the
integrand in a power series in 1/λ. Use the result of the preceding problem to evaluate the
individual terms and then sum the resulting infinite series. Will section 1.2 save you any
work? Ans: Still 2πλ/(λ2 − 1)3/2

14.36 Evaluate∫ ∞

0
dx cosαx2 and

∫ ∞

0
dx sinαx2 by considering

∫ ∞

0
dx eiαx2

Push the contour of integration toward the 45◦ line. Ans: 1
2

√
π/2α

14.37

f(z) =
1

z(z − 1)(z − 2)
− 1

z2(z − 1)2(z − 2)2

What is
∫
C dz f(z) about the circle x2 + y2 = 9?

14.38 Evaluate ∫ ∞

0
dx

1

a3 + x3

Ans: 2π
√

3/9a2
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14.39 Go back to problem 3.45 and find the branch points of the inverse sine function.

14.40 What is the Laurent series expansion of 1/(1+ z2) for small |z|? Again, for large |z|?
What is the domain of convergence in each case?

14.41 Examine the power series
∑∞

0 zn!. What is its radius of convergence? What is its
behavior as you move out from the origin along a radius at a rational angle? That is,
z = reiπp/q for p and q integers. This result is called a natural boundary.

14.42 Evaluate the integral Eq. (10) for the case k < 0. Combine this with the result in
Eq. (15) and determine if the overall function is even or odd in k (or neither).

14.43 At the end of section 14.1 several differentiation formulas are mentioned. Derive
them.

14.44 Look at the criteria for the annulus of convergence of a Laurent series, Eqs. (7) and
(8), and write down a Laurent series that converges nowhere.



Fourier Analysis

Fourier series allow you to expand a function on a finite interval as an infinite series of
trigonometric functions. What if the interval is infinite? That’s the subject of this chapter.
Instead of a sum over frequencies, you will have an integral.

15.1 Fourier Transform
For the finite interval you have to specify the boundary conditions in order to determine the
particular basis that you’re going to use. On the infinite interval you don’t have this large
set of choices. After all, if the boundary is infinitely far away, how can it affect what you’re
doing over a finite distance? But see section 15.6.

In section 5.3 you have several boundary condition listed that you can use on the
differential equation u′′ = λu and that will lead to orthogonal functions on your interval.
For the purposes here the easiest approach is to assume periodic boundary conditions on the
finite interval and then to take the limit as the length of the interval approaches infinity.
On −L < x < +L, the conditions on the solutions of u′′ = λu are then u(−L) = u(+L)
and u′(−L) = u′(+L). The solution to this is most conveniently expressed as a complex
exponential, Eq. (5.16)

u(x) = eikx, where u(−L) = e−ikL = u(L) = eikL

This implies e2ikL = 1, or 2kL = 2nπ, for integer n = 0, ±1, ±2, . . .. With these solutions,
the other condition, u′(−L) = u′(+L) is already satisfied. The basis functions are then

un(x) = eiknx = enπix/L, for n = 0, ±1, ±2, etc. (1)

On this interval you have the Fourier series expansion

f(x) =
∞∑
−∞

an un(x), and
〈
um, f

〉
=
〈
um,

∞∑
−∞

an un

〉
= am

〈
um, um

〉
(2)

In the basis of Eq. (1) this normalization is
〈
um, um

〉
= 2L.

Insert this into the series for f .

f(x) =
∞∑

n=−∞

〈
un, f

〉〈
un, un

〉un(x) =
1

2L

∞∑
n=−∞

〈
un, f

〉
un(x)

Now I have to express this in terms of the explicit basis functions in order to manipulate it.
When you use the explicit form you have to be careful not to use the same symbol (x) for
two different things in the same expression. Inside the

〈
un, f

〉
there is no “x” left over — it’s

the dummy variable of integration and it is not the same x that is in the un(x) at the end.
Denote kn = πn/L.

f(x) =
1

2L

∞∑
n=−∞

∫ L

−L
dx′un(x′)*f(x′)un(x) =

1

2L

∞∑
n=−∞

∫ L

−L
dx′e−iknx′f(x′) eiknx

368
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Now for some manipulation: As n changes by 1, kn changes by ∆kn = π/L.

f(x) =
1

2π

∞∑
n=−∞

π

L

∫ L

−L
dx′ e−iknx′f(x′) eiknx

=
1

2π

∞∑
n=−∞

eiknx ∆kn

∫ L

−L
dx′ e−iknx′f(x′) (3)

For a given value of k, define the integral

gL(k) =

∫ L

−L
dx′e−ikx′f(x′)

If the function f vanishes sufficiently fast as x′ → ∞, this integral will have a limit as
L → ∞. Call that limit g(k). Look back at Eq. (3) and you see that for large L the last
factor will be approximately g(kn), where the approximation becomes exact as L → ∞.
Rewrite that expression as

f(x) ≈ 1

2π

∞∑
n=−∞

eiknx ∆kn g(kn) (4)

As L→∞, you have ∆kn → 0, and that turns Eq. (4) into an integral.

f(x) =

∫ ∞

−∞

dk

2π
eikxg(k), where g(k) =

∫ ∞

−∞
dx e−ikxf(x) (5)

The function g is called* the Fourier transform of f , and f is the inverse Fourier transform
of g.

Examples
For an example, take the function

f(x) =

{
1 (−a < x < a)
0 (elsewhere)

then

g(k) =

∫ a

−a
dx e−ikx 1 =

1

−ik

[
e−ika − e+ika

]
=

2 sin ka

k

(6)

The first observation is of course that the dimensions check: If dx is a length then so is
1/k. After that, there is only one parameter that you can vary, and that’s a. As a increases,
obviously the width of the function f increases, but now look at g. The first place where

* Another common notation is to define g with an integral dx/
√

2π. That will require
a corresponding dk/

√
2π in the inverse relation. It’s more symmetric that way, but I prefer

not to do it.
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g(k) = 0 is at ka = π. This value, π/a decreases as a increases. As f gets broader, g gets
narrower (and taller). This is a general property of these Fourier transform pairs.

Can you invert this Fourier transform, evaluating the integral of g to get back to f?
Yes, using the method of contour integration this is very easy. Without contour integration
it would be extremely difficult. That is typically the case with these transforms; complex
variable methods are essential to get anywhere with them. The same statement holds with
many other transforms (Laplace, Radon, Mellin, Hilbert, etc. )
www.math.niu.edu/˜rusin/known-math/index/44-XX.html

The inverse transform is

∫ ∞

−∞

dk

2π
eikx2 sin ka

k
=

∫
C1

dk

2π
eikx e

ika − e−ika

ik

= −i
∫

C2

dk

2π

1

k

[
eik(x+a) − eik(x−a)

]
C1

C2

1. If x > +a then both x + a and x − a are positive, which implies that both exponentials
vanish rapidly as k → +i∞. Push the contour C2 in this direction and the integrand vanishes
exponentially, making the integral zero.
2. If −a < x < +a, then only x + a is positive. The integral of the first term is then zero
by exactly the preceding reasoning, but the other term has an exponential that vanishes as
k → −i∞ instead, implying that I have to push the contour down toward −i∞.

= i

∫
C3

dk

2π

1

k
eik(x−a) =

∫
C4

= +i
1

2π
(−1)2πiRes

k=0

eik(x−a)

k
= −i 1

2π
. 2πi = 1

C3

C4

The extra (−1) factor comes because the contour is clockwise.
3. In the third domain, x < −a, both exponentials have the form e−ik, requiring you to push
the contour toward −i∞. The integrand now has both exponentials, so it is analytic at zero
and there is zero residue. The integral vanishes and the whole analysis takes you back to
the original function, Eq. (6).

Another example of a Fourier transform, one that shows up often in quantum mechanics

f(x) = e−x2/σ2

, so g(k) =

∫ ∞

−∞
dx e−ikxe−x2/σ2

=

∫ ∞

−∞
dx e−ikx−x2/σ2

The trick to doing this integral is to complete the square inside the exponent.

−ikx− x2/σ2 =
−1

σ2

[
x2 + σ2ikx− σ4k2/4 + σ4k2/4

]
=
−1

σ2

[
(x+ ikσ2/2)2 + σ4k2/4

]

http://www.math.niu.edu/~rusin/known-math/index/44-XX.html
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The integral of f is now

g(k) = e−σ2k2/4

∫ ∞

−∞
dx′e−x′2/σ2

where x′ = x+ ikσ/2

The change of variables makes this a standard integral, Eq. (1.10), and the other factor, with
the exponential of k2, comes outside the integral. The result is

g(k) = σ
√
π e−σ2k2/4 (7)

This has the curious result that the Fourier transform of a Gaussian is* a Gaussian.

15.2 Convolution Theorem
What is the Fourier transform of the product of two functions? It is a convolution of the
individual transforms. What that means will come out of the computation. Take two
functions f1 and f2 with Fourier transforms g1 and g2.∫ ∞

−∞
dx f1(x)f2(x)e

−ikx =

∫
dx

∫
dk′

2π
g1(k

′ )eik
′xf2(x)e

−ikx

=

∫
dk′

2π
g1(k

′ )

∫
dx eik

′xf2(x)e
−ikx

=

∫
dk′

2π
g1(k

′ )

∫
dx f2(x)e

−i(k−k′)x

=

∫ ∞

−∞

dk′

2π
g1(k

′ )g2(k − k′) (8)

The last expression (except for the 2π) is called the convolution of g1 and g2.∫ ∞

−∞
dx f1(x)f2(x)e

−ikx =
1

2π
(g1 ∗ g2)(k) (9)

The last line shows a common notation for the convolution of g1 and g2.
What is the integral of |f |2 over the whole line?∫ ∞

−∞
dx f*(x)f(x) =

∫
dx f*(x)

∫
dk

2π
g(k)eikx

=

∫
dk

2π
g(k)

∫
dx f*(x)eikx

=

∫
dk

2π
g(k)

[∫
dx f(x)e−ikx

]
*

=

∫ ∞

−∞

dk

2π
g(k)g*(k) (10)

This is Parseval’s identity for Fourier transforms. There is an extension to it in problem 10.

* Another function has this property: the hyperbolic secant. Look up the quantum
mechanical harmonic oscillator solution for an infinite number of others.
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15.3 Time-Series Analysis
Fourier analysis isn’t restricted to functions of x, sort of implying position. They’re probably
more often used in analyzing functions of time. If you’re presented with a complicated
function of time, how do you analyze it? What information is present in it? If that function
of time is a sound wave you may choose to analyze it with your ears, and if it’s music the
frequency content is just what you will be listening for. That’s Fourier analysis. The Fourier
transform of the signal tells you its frequency content, and sometimes subtle periodicities
will show up in the transformed function even though they aren’t apparent in the original
signal. (Fourier analyzing the stock market hasn’t helped though.)

A function of time is f(t) and its Fourier transform is

g(ω) =

∫ ∞

−∞
dt f(t) eiωt with f(t) =

∫ ∞

−∞

dω

2π
g(ω) e−iωt

The sign convention in these equations appear backwards from the one in Eq. (5), and it is.
One convention is as good as the other, but in the physics literature you’ll find this pairing
the more common because of the importance of waves. A function ei(kx−ωt) represents a
wave with (phase) velocity ω/k, and so moving to the right. You form a general wave by
taking linear combinations of these waves, usually an integral.

Example
When you hear a musical note you will perceive it as having a particular frequency. It
doesn’t, and if the note has a very short duration it becomes hard to tell its* pitch. Only if
its duration is long enough do you have a real chance to discern what note you’re hearing.
This is a reflection of the facts of Fourier transforms.

If you hear what you think of as a single note, it will not last forever. It starts and it
ends. Say it lasts from t = −T to t = +T , and in that interval it maintains the frequency
ω0.

f(t) = Ae−iω0t (−T < t < T ) (11)

The frequency analysis comes from the Fourier transform.

g(ω) =

∫ ∞

−∞
dt f(t)eiωt =

∫ T

−T
dtAei(ω−ω0)t = A

ei(ω−ω0)T − e−i(ω−ω0)T

i(ω − ω0)
= 2A

sin(ω − ω0)T

(ω − ω0)

This is like the function of Eq. (6) except that its center is shifted. It has a peak at ω = ω0

instead of at the origin as in that case. The width of the function g is determined by the
time interval T . As T is large, g is narrow and high, with a sharp localization near ω0. In
the reverse case of a short pulse, the range of frequencies that constitute the note is spread
over a wide range of frequencies, and you will find it difficult to tell by listening to it just
what the main pitch is supposed to be. This figure shows the frequency spectrum for two
notes having the same nominal pitch, but one of them lasts three times as long as the other

* Think of a hemisemidemiquaver played at tempo prestissimo.
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before being cut off. It therefore has a narrower spread of frequencies.

Example
Though you can do these integrals numerically, and when you’re dealing with real data you
will have to, it’s nice to have some analytic examples to play with. I’ve already shown,
Eq. (7), how the Fourier transform of a Gaussian is simple, so start from there.

If g(ω) = e−(ω−ω0)
2/σ2

then f(t) =
σ

2
√
π
e−iω0te−σ2t2/4

If there are several frequencies, the result is a sum.

g(ω) =
∑
n

An e
−(ω−ωn)2/σ2

n ⇐⇒ f(t) =
∑
n

An
σn

2
√
π
e−iωnte−σ2

nt2/4

In a more common circumstance you will have the time series, f(t), and will want to obtain
the frequency decomposition, g(ω), though for this example I worked backwards. The func-
tion of time is real, but the transformed function g is complex. Because f is real, it follows
that g satisfies g(−ω) = g*(ω). See problem 13.

f

Real
Imag

g

This example has four main peaks in the frequency spectrum. The real part of g is an
even function and the imaginary part is odd.

f

Real

Imagg

This is another example with four main peaks.
In either case, if you simply look at the function of time on the left it isn’t obvious

what sort of frequencies are present. That’s why there are standard, well-developed computer
programs to do the Fourier analysis.
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15.4 Derivatives
There are a few simple, but important relations involving differentiation. What is the Fourier
transform of the derivative of a function? Do some partial integration.

F(ḟ) =

∫
dt eiωt df

dt
= eiωtf(t)

∣∣∣∞
−∞
− iω

∫
dt eiωtf(t) = −iωF(f) (12)

Here I’ve introduced the occasionally useful notation that F(f) is the Fourier transform of
f . The boundary terms in the partial integration will go to zero if you assume that the
function f approaches zero at infinity.

The nth time derivative simply give you more factors: (−iω)n on the transformed
function.

15.5 Green’s Functions
This technique showed up in the chapter on ordinary differential equations, section 4.5, as
a method to solve the forced harmonic oscillator. In that instance I said that you can look
at a force as a succession of impulses, as if you’re looking at the atomic level and visualizing
a force as many tiny collisions by atoms. Here I’ll get to the same sort of result as an
application of transform methods. The basic technique is to Fourier transform everything in
sight.

The damped, forced harmonic oscillator differential equation is

m
d2x

dt2
+ b

dx

dt
+ kx = F0(t) (13)

Multiply by eiωt and integrate over all time. You do the transforms of the derivatives by
partial integration as in Eq. (12).∫ ∞

−∞
dt eiωt [Eq. (13)] = −mω2x̃− ibωx̃+ kx̃ = F̃0, where x̃(ω) =

∫ ∞

−∞
dt eiωtx(t)

This is an algebraic equation that I can solve for the function x̃(ω).

x̃(ω) =
F̃0(ω)

−mω2 − ibω + k

Now use the inverse transform to recover the function x(t).

x(t) =

∫ ∞

−∞

dω

2π
e−iωtx̃(ω) =

∫
dω

2π
e−iωt F̃0(ω)

−mω2 − ibω + k

=

∫
dω

2π

e−iωt

−mω2 − ibω + k

∫
dt′ F0(t

′ )eiωt′

=

∫
dt′ F0(t

′ )

∫
dω

2π

e−iωt

−mω2 − ibω + k
eiωt′ (14)

In the last line I interchanged the order of integration, and in the preceding line I had to use
another symbol t′ in the second integral, not t. Now do the ω integral.
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∫ ∞

−∞

dω

2π

e−iωt

−mω2 − ibω + k
eiωt′ =

∫ ∞

−∞

dω

2π

e−iω(t−t′)

−mω2 − ibω + k
(15)

To do this, use contour integration. The singularities of the integrand are at the roots of the
denominator, −mω2 − ibω + k = 0. They are

ω =
−ib±

√
−b2 + 4km

2m
= ω±

C1

C2

Both of these poles are in the lower half complex plane. The contour integral C1 is along
the real axis, and now I have to decide where to push the contour in order to use the residue

theorem. This will be governed by the exponential, e−iω(t−t′).

First take the case t < t′, then e−iω(t−t′) is of the form e+iω, so in the complex ω-plane
its behavior in the ±i directions is as a decaying exponential toward +i (∝ e−|ω|). It is a
rising exponential toward −i (∝ e+|ω|). This means that if I push the contour C1 up toward
C2 and beyond, then this integral will go to zero. I’ve crossed no singularities, so that means
that Eq. (15) is zero for t < t′.

Next, the case that t > t′. Now e−iω(t−t′) is of the form e−iω, so its behavior is
reversed from that of the preceding paragraph. It dies off rapidly toward −i∞ and rises in
the opposite direction. That means that I can push the contour in the opposite direction,
down to C3 and to C4. Because of the decaying exponential, the large arc of the contour
that I pushed down to −i∞ gives zero for its integral; the two lines that parallel the i-axis
cancel each other; only the two residues remain.

∫ ∞

−∞

dω

2π

e−iω(t−t′)

−mω2 − ibω + k
= −2πi

∑
ω±

Res

C3

C4

(16)

The denominator in Eq. (15) is −m(ω−ω+)(ω−ω−). Use this form to compute the residues.
Leave the 1/2π aside for the moment and you have

e−iω(t−t′)

−mω2 − ibω + k
=

e−iω(t−t′)

−m(ω − ω+)(ω − ω−)



376 15—Fourier Analysis

The residues of this at ω± are the coefficients of these first order poles.

at ω+:
e−iω+(t−t′)

−m(ω+ − ω−)
and at ω−:

e−iω−(t−t′)

−m(ω− − ω+)

equa The explicit values of ω± are

ω+ =
−ib+

√
−b2 + 4km

2m
and ω− =

−ib−
√
−b2 + 4km

2m

Let ω′ =

√
−b2 + 4km

2m
and γ =

b

2m

The difference that appears in the preceding equation is then

ω+ − ω− = (ω′ − iγ)− (−ω′ − iγ) = 2ω′

Eq. (16) is then∫ ∞

−∞

dω

2π
. e−iω(t−t′)

−mω2 − ibω + k
= −i

[
e−i(ω′−iγ)(t−t′)

−2mω′
+
e−i(−ω′−iγ)(t−t′)

+2mω′

]
=
−i

2mω′
e−γ(t−t′)[− e−iω′(t−t′) + e+iω′(t−t′)]

=
1

mω′
e−γ(t−t′) sin

(
ω′(t− t′)

)
Put this back into Eq. (14) and you have

x(t) =

∫ t

−∞
dt′ F0(t

′)G(t− t′), where G(t− t′) =
1

mω′
e−γ(t−t′) sin

(
ω′(t− t′)

)
(17)

If you eliminate the damping term, setting b = 0, this is exactly the same as Eq. (4.30). The
integral stops at t′ = t because the Green’s function vanishes beyond there. The motion at
time t is determined by the force that was applied in the past, not the future.

15.6 Sine and Cosine Transforms
Return to the first section of this chapter and look again at the derivation of the Fourier
transform. It started with the Fourier series on the interval −L < x < L and used periodic
boundary conditions to define which series to use. Then the limit as L → ∞ led to the
transform.

What if you know the function only for positive values of its argument? If I want to
write f(x) as a series when I know it only for 0 < x < L it doesn’t make much sense to
start the way I did in section 15.1. Instead I have to pick the boundary condition at x = 0
carefully because this time the boundary won’t go away in the limit that L→∞. The two
common choices to define the basis are

u(0) = 0 = u(L), and u′(0) = 0 = u′(L) (18)
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Start with the first, then un(x) = sin(nπx/L) for positive n. The equation (2) is unchanged,
save for the limits.

f(x) =
∞∑
1

an un(x), and
〈
um, f

〉
=
〈
um,

∞∑
n=1

an un

〉
= am

〈
um, um

〉
In this basis,

〈
um, um

〉
= L/2, so

f(x) =
∞∑

n=1

〈
un, f

〉〈
un, un

〉un(x) =
2

L

∞∑
n=1

〈
un, f

〉
un(x)

Now explicitly use the sine functions to finish the manipulation, and as in the work leading
up to Eq. (3), denote kn = πn/L, and the difference ∆kn = π/L.

f(x) =
2

L

∞∑
1

∫ L

0
dx′f(x′) sin

nπx′

L
sin

nπx

L

=
2

π

∞∑
1

sin
nπx

L
∆kn

∫ L

0
dx′f(x′) sinnπx′/L (19)

For a given value of k, define the integral

gL(k) =

∫ L

0
dx′ sin(kx′)f(x′)

If the function f vanishes sufficiently fast as x′ → ∞, this integral will have a limit as
L → ∞. Call that limit g(k). Look back at Eq. (19) and you see that for large L the
last factor will be approximately g(kn), where the approximation becomes exact as L→∞.
Rewrite that expression as

f(x) ≈ 2

π

∞∑
1

sin(knx)∆kn g(kn) (20)

As L→∞, you have ∆kn → 0, and that turns Eq. (20) into an integral.

f(x) =
2

π

∫ ∞

0
dk sin kx g(k), where g(k) =

∫ ∞

0
dx sin kx f(x) (21)

This is the Fourier Sine transform. For a parallel calculation leading to the Cosine transform,
see problem 22, where you will find that the equations are the same except for changing sine
to cosine.

f(x) =
2

π

∫ ∞

0
dk cos kx g(k), where g(k) =

∫ ∞

0
dx cos kx f(x) (22)

What is the sine transform of a derivative? Integrate by parts, remembering that f
has to approach zero at infinity for any of this to make sense.∫ ∞

0
dx sin kx f ′(x) = sin kxf(x)

∣∣∣∣∞
0

− k
∫ ∞

0
dx cos kx f(x) = −k

∫ ∞

0
dx cos kx f(x)

For the second derivative, repeat the process.∫ ∞

0
dx sin kx f ′′(x) = kf(0)− k2

∫ ∞

0
dx sin kx f(x) (23)
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15.7 Weiner-Khinchine Theorem
If a function of time represents the pressure amplitude of a sound wave or the electric field
of an electromagnetic wave the power received is proportional to the amplitude squared. By
Parseval’s identity, the absolute square of the Fourier transform has an integral proportional
to the integral of this power. This leads to the interpretation of the transform squared as
some sort of power density in frequency. |g(ω)|2dω is then a power received in this frequency
interval. When this energy interpretation isn’t appropriate, |g(ω)|2 is called the “spectral
density.” A useful result appears by looking at the Fourier transform of this function.∫

dω

2π
|g(ω)|2e−iωt =

∫
dω

2π
g*(ω)e−iωt

∫
dt′ f(t′)eiωt′

=

∫
dt′ f(t′)

∫
dω

2π
g*(ω)eiωt′e−iωt

=

∫
dt′ f(t′)

[∫
dω

2π
g(ω)e−iω(t′−t)

]
*

=

∫
dt′ f(t′)f(t′ − t)* (24)

When you’re dealing with a real f , this last integral is called the autocorrelation function.
It tells you in some average way how closely related a signal is to the same signal at some
other time. If the signal that you are examining is just noise then what happens now will be
unrelated to what happened a few milliseconds ago and this autocorrelation function will be
close to zero. If there is structure in the signal then this function gives a lot of information
about it.
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Problems

15.1 Invert the Fourier transform, g, in Eq. (7).

15.2 What is the Fourier transform of eik0x−x2/σ2
? Ans: A translation of the k0 = 0 case

15.3 What is the Fourier transform of xe−x2/σ2
?

15.4 What is the square of the Fourier transform operator? That is, what is the Fourier
transform of the Fourier transform?

15.5 A function is defined to be

f(x) =

{
1 (−a < x < a)
0 (elsewhere)

What is the convolution of f with itself? (f ∗ f)(x) And graph it of course.
Ans: (2a− |x|) for (−a < x < +a), and zero elsewhere.

15.6 Two functions are

f1(x) =

{
1 (a < x < b)
0 (elsewhere)

and f2(x) =

{
1 (A < x < B)
0 (elsewhere)

What is the convolution of f1 with f2? And graph it.

15.7 Derive these properties of the convolution:
(a) f ∗ g = g ∗ f (b) f ∗ (g ∗ h) = (f ∗ g) ∗ h (c) δ(f ∗ g) = f ∗ δg + g ∗ δf where
δf(t) = tf(t), δg(t) = tg(t), etc. (d) What are δ2(f ∗ g) and δ3(f ∗ g)?

15.8 Show that you can rewrite Eq. (9) as

F(f ∗ g) = F(f) .F(g)

where I am using the shorthand notation of F(f) for the Fourier transform of f .

15.9 Derive Eq. (10) from Eq. (9).

15.10 What is the analog of Eq. (10) for two different functions? That is, relate the scalar
product of two functions, 〈

f1, f2

〉
=

∫ ∞

−∞
f*
1 (x)f2(x)

to their Fourier transforms.

15.11 In the derivation of the harmonic oscillator Green’s function starting with Eq. (15),
I assumed that the oscillator is underdamped: that b2 < 4km. Now assume the reverse, the
overdamped case, and repeat the calculation.
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15.12 Repeat the preceding problem, but now do the critically damped case, for which
b2 = 4km. Compare your result to the result that you get by taking the limit of critical
damping in the preceding problem and in Eq. (17).

15.13 Show that if f(t) is real then the Fourier transform satisfies g(−ω) = g*(ω).
What are the properties of g if f is respectively even or odd?

15.14 Evaluate the Fourier transform of

f(x) =

{
A
(
a− |x|

)
(−a < x < a)

0 (otherwise)

How do the properties of the transform very as the parameter a varies?

15.15 Evaluate the Fourier transform of Ae−α|x|. Invert the transform to verify that it takes
you back to the original function. Ans: 2α/(α2 + k2)

15.16 Given that the Fourier transform of f(x) is g(k), what is the Fourier transform of the
the function translated a distance a to the right, f1(x) = f(x− a)?

15.17 Schroedinger’s equation is

−ih̄∂ψ
∂t

= − h̄2

2m

∂2ψ

∂x2
+ V (x)ψ

Fourier transform the whole equation with respect to x, and find the equation for Φ(k, t),
the Fourier transform of ψ(x, t). The result will not be a differential equation.
Ans: −ih̄∂Φ(k, t)/∂t = (h̄2k2/2m)Φ + (v ∗ Φ)/2π

15.18 Take the Green’s function solution to Eq. (13) as found in Eq. (17) and take the limit
as both k and b go to zero. Verify that the resulting single integral satisfies the original
second order differential equation.

15.19 In problem 18 you have the result that a double integral (undoing two derivatives)
can be written as a single integral. Now solve the equation

d3x

dt3
= F (t)

C

directly, using the same method as for Eq. (13). You will get a pole at the origin and how do
you handle this, where the contour of integration goes straight through the origin? Answer:
Push the contour up as in the figure. Why? This is what’s called the “retarded solution”
for which the value of x(t) depends on only those values of F (t′) in the past. If you try any
other contour to define the integral you will not get this property. (And sometimes there’s
a reason to make another choice.)

Pick a fairly simple F and verify that this gives the right answer. Ans: 1
2

∫ t
−∞ dt′ F (t′)(t−t′)2
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15.20 Repeat the preceding problem for the fourth derivative. Would you care to conjecture
what 31/2 integrals might be? Then perhaps an arbitrary non-integer order?

Ans: 1
6

∫ t
−∞ dt′ F (t′)(t− t′)3

15.21 What is the Fourier transform of xf(x)? Ans: ig′(k)

15.22 Repeat the calculations leading to Eq. (21), but for the boundary conditions u′(0) =
0 = u′(L), leading to the Fourier cosine transform.

15.23 For both the sine and cosine transforms, the original function f(x) was defined for
positive x only. Each of these transforms define an extension of f to negative x. This
happens because you compute g(k) and from it get an inverse transform. Nothing stops you
from putting a negative value of x into the answer. What are the results?

15.24 What are the sine and cosine transforms of e−αx. In each case evaluate the inverse
transform.

15.25 What is the sine transform of f(x) = 1 for 0 < x < L and f(x) = 0 otherwise.
Evaluate the inverse transform.

15.26 Repeat the preceding calculation for the cosine transform. Graph the two transforms
and compare them, including their dependence on L.

15.27 Choose any different way around the pole in problem 19, and compute the difference
between the result with your new contour and the result with the old one. Note: Plan ahead
before you start computing.



Calculus of Variations

The biggest step from derivatives with one variable to derivatives with many variables
is from one to two. After that, going from two to three was just more algebra and more
complicated pictures. Now the step will be from a finite number of variables to an infinite
number. That will require a new set of tools, yet in many ways the techniques are not very
different from those you know.

16.1 Examples
What line provides the shortest distance between two points? A straight line of course, no
surprise there. But not so fast, with a few twists on the question the result won’t be nearly
as obvious. How do I measure the length of a curved (or even straight) line? Typically with
a ruler. For the curved line I have to do successive approximations, breaking the curve into
small pieces and adding the finite number of lengths, eventually taking a limit to express
the answer as an integral. Even with a straight line I will do the same thing if my ruler isn’t
long enough.

Put this in terms of how you do the measurement: Go to a local store and purchase a
ruler. It’s made out of some real material, say brass. The curve you’re measuring has been
laid out on the ground, and you move along it, counting the number of times that you use
the ruler to go from one point on the curve to another. If the ruler measures in decimeters
and you lay it down 100 times along the curve, you have your first estimate for the length,
10.0 meters. Do it again, but use a centimeter length and you need 1008 such lengths: 10.08
meters.

That’s tedious, but easy. Now do it again for another curve and compare their lengths.
Here comes the twist: The ground is not at a uniform temperature. Perhaps you’re making
these measurements over a not-fully-cooled lava flow in Hawaii. Brass will expand when you
heat it. If the curve whose length you’re measuring passes over a hot spot, then the ruler
will expand when you place it down, and you will need to place it down fewer times to get
to the end of the curve. You will measure the curve as shorter. Now it’s not so clear which
curve will have the shortest (measured) length. If you take the straight line and push it over
so that it passes through a hotter region, then you may get a smaller result.

Let the coefficient of expansion of the ruler be α, assumed constant. For modest
temperature changes, the length of the ruler is `′ = (1 + α∆T )`. The length of a curve as
measured with this ruler is ∫

ds

1 + αT
(1)

Here I’m taking T = 0 as the base temperature for the ruler and ds is the length you would
use if everything stayed at this temperature. With this measure for length, it becomes an
interesting problem to discover which path has the shortest “length.” The formal term for
the path of shortest length is geodesic.

In section 13.1 you saw integrals that looked very much like this, though applied to a
different problem. There I looked at the time it takes a particle to slide down a curve under
gravity. That time is the integral of dt = ds/v, where v is the particle’s speed, a function of

382
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position along the path. Using conservation of energy, the expression for the time to slide
down a curve was Eq. (13.6).

x

y

∫
dt =

∫
ds√

(2E/m) + 2gy
(2)

In that chapter I didn’t attempt to answer the question about which curve provides the
quickest route to the end, but in this chapter I will. Even qualitatively you can see a parallel
between these two problems. You get a shorter length by pushing the curve into a region
of higher temperature. You get a shorter time by pushing the curve lower, (larger y). In
the latter case, this means that you drop fast to pick up speed quickly. In both cases the
denominator in the integral is larger. You can overdo it of course. Push the curve too far
and the value of

∫
ds itself can become too big. It’s a balance.

In problems 2.37 and 2.39 you looked at the amount of time it takes light to travel
from one point to another along various paths. Is the time a minimum, a maximum, or
neither? In these special cases, you saw that this is related to the focus of the lens or of the
mirror. This is a very general property of optical systems, and is an extension of some of
the ideas in the first two examples above.

These questions are sometimes pretty and elegant, but are they related to anything
else? Yes. Newton’s classical mechanics can be reformulated in this language and it leads
to powerful methods to set up the equations of motion in complicated problems. The same
ideas lead to useful approximation techniques in electromagnetism, allowing you to obtain
high-accuracy solutions to problems for which there is no solution by other means.

16.2 Functional Derivatives
It’s time to get specific and to implement* these concepts. All the preceding examples can
be expressed in the same general form. In a standard x-y rectangular coordinate system,

ds =
√
dx2 + dy2 = dx

√
1 +

(
dy

dx

)2

= dx
√

1 + y′2

Then Eq. (1) is ∫ b

a
dx

√
1 + y′2

1 + αT (x, y)
(3)

This measured length depends on the path, and I’ve assumed that I can express the path
with y as a function of x. No loops. You can allow more general paths by using another
parametrization: x(t) and y(t). Then the same integral becomes∫ t2

t1

dt

√
ẋ2 + ẏ2

1 + αT
(
x(t), y(t)

) (4)

* If you find the methods used in this section confusing, you may prefer to look at an
alternate approach to the subject as described in section 16.6. Then return here.
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The equation (2) has the same form∫ b

a
dx

√
1 + y′2√

(2E/m) + 2gy

And the travel time for light through an optical system is∫
dt =

∫
ds

v
=

∫ b

a
dx

√
1 + y′2

v(x, y)

where the speed of light is some known function of the position.
In all of these cases the output of the integral depends on the path taken. It is a

functional of the path, a scalar-valued function of a function variable. Denote the argument
by square brackets.

I[y] =

∫ b

a
dxF

(
x, y(x), y′(x)

)
(5)

The specific F varies from problem to problem, but the preceding examples all have this
general form, even when expressed in the parametrized variables of Eq. (4).

The idea of differential calculus is that you can get information about a function if you
try changing the independent variable by a small amount. Do the same thing here. Now
however the independent variable is the whole path, so I’ll change that path by some small
amount and see what happens to the value of the integral I. This approach to the subject
is due to Lagrange. The development in section 16.6 comes from Euler.

δy

y

y + δy

∆I = I[y + δy]− I[y]

=

∫ b+∆b

a+∆a
dxF

(
x, y(x) + δy(x), y′(x) + δy′(x)

)
−
∫ b

a
dxF

(
x, y(x), y′(x)

) (6)

The (small) function δy(x) is the vertical displacement of the path in this coordinate
system. To keep life simple for the first attack on this problem, I’ll take the special case for
which the endpoints of the path are fixed. That is,

∆a = 0, ∆b = 0, δy(a) = 0, δy(b) = 0

δy

y

y + δy

To compute the value of Eq. (6) use the power series expansion of F , section 2.5.

F (x+ ∆x, y + ∆y, z + ∆z) =
∂F

∂x
∆x+

∂F

∂y
∆y +

∂F

∂z
∆z +

∂2F

∂x2

(∆x)2

2
+

∂2F

∂x∂y
∆x∆y + · · ·
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For now look at only the lowest order terms, linear in the changes, so ignore the second order
terms. In this application, there is no ∆x.

F (x, y + δy, y′ + δy′) = F (x, y, y′) +
∂F

∂y
δy +

∂F

∂y′
δy′

plus terms of higher order in δy and δy′.
Put this into Eq. (6), and

δI =

∫ b

a
dx

[
∂F

∂y
δy +

∂F

∂y′
δy′
]

(7)

For example, Let F = x2 + y2 + y′ 2 on the interval 0 ≤ x ≤ 1. Take a base path to be a
straight line from (0, 0) to (1, 1). Choose for the change in the path δy(x) = εx(1− x). This
is simple and it satisfies the boundary conditions.

I[y] =

∫ 1

0
dx
[
x2 + y2 + y′2

]
=

∫ 1

0
dx
[
x2 + x2 + 12

]
=

5

3

I[y + δy] =

∫ 1

0

[
x2 +

(
x+ εx(1− x)

)2
+
(
1 + ε(1− 2x)

)2]
=

5

3
+

1

6
ε+

11

30
ε2

(8)

The value of Eq. (7) is

δI =

∫ 1

0
dx
[
2yδy + 2y′δy′

]
=

∫ 1

0
dx [2xεx(1− x) + 2ε(1− 2x)] =

1

6
ε

Return to the general case of Eq. (7) and you will see that I’ve explicitly used only
part of the assumption that the endpoint of the path hasn’t moved, ∆a = ∆b = 0. There’s
nothing in the body of the integral itself that constrains the change in the y-direction, and
I had to choose the function δy by hand so that this constraint held. In order to use the
equations δy(a) = δy(b) = 0 more generally, there is a standard trick: integrate by parts.
You’ll always integrate by parts in these calculations.∫ b

a
dx

∂F

∂y′
δy′ =

∫ b

a
dx

∂F

∂y′
d δy

dx
=
∂F

∂y′
δy

∣∣∣∣b
a

−
∫ b

a
dx

d

dx

(
∂F

∂y′

)
δy(x)

This expression allows you to use the information that the path hasn’t moved at its endpoints
in the y direction either. The boundary term from this partial integration is

∂F

∂y′
δy

∣∣∣∣b
a

=
∂F

∂y′
(
b, y(b)

)
δy(b)− ∂F

∂y′
(
a, y(a)

)
δy(a) = 0

Put the last two equations back into the expression for δI, Eq. (7) and the result is

δI =

∫ b

a
dx

[
∂F

∂y
− d

dx

(
∂F

∂y′

)]
δy (9)
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Use this expression for the same example F = x2 + y2 + y′ 2 with y(x) = x and you have

δI =

∫ 1

0
dx

[
2y − d

dx
2y′
]
δy =

∫ 1

0
dx [2x− 0] εx(1− x) =

1

6
ε

This is sort of like Eq. (8.12),

df = ~G . d~r = grad f . d~r = ∇f . d~r =
∂f

∂xk
dxk =

∂f

∂x1
dx1 +

∂f

∂x2
dx2 + · · ·

The differential change in the function depends linearly on the change d~r in the coordinates.
It is a sum over the terms with dx1, dx2, . . . . This is a precise parallel to Eq. (9), only the
sum over discrete index k is now an integral over the continuous index x. The change in
I is a linear functional of the change δy in the independent variable y; this δy corresponds
to the change d~r in the independent variable ~r in the other case. The coefficient of the
change, instead of being called the gradient, is called the “functional derivative” though it’s
essentially the same thing.

δI

δy
=
∂F

∂y
− d

dx

(
∂F

∂y′

)
, δI[y, δy] =

∫
dx

δI

δy
(x) δy(x) (10)

and for a change, I’ve indicated explicitly the dependence of δI on the two functions y and
δy. This parallels the equation (8.5). The statement that this functional derivative vanishes
is called the Euler-Lagrange equation.

Return to the example F = x2 + y2 + y′2, then

δI

δy
=

δ

δy

∫ 1

0
dx
[
x2 + y2 + y′2

]
= 2y − d

dx
2y′ = 2y − 2y′′

What is the minimum value of I? Set this derivative to zero.

y′′ − y = 0 =⇒ y(x) = A coshx+B sinh x

The boundary conditions y(0) = 0 and y(1) = 1 imply y = B sinh x where B = 1/ sinh 1.
The value of I at this point is

I[B sinh x] =

∫ 1

0
dx
[
x2 +B2 sinh2 x+B2 cosh2 x

]
=

1

3
+ coth 1 (11)

Is it a minimum? Yes, but just as with the ordinary derivative, you have to look at the next
order terms to determine that. Compare this value of I[y] = 1.64637 to the value 5/3 found
for the nearby function y(x) = x, evaluated in Eq. (8).

Return to one of the examples in the introduction. What is the shortest distance
between two points, but for now assume that there’s no temperature variation. Write the
length of a path for a function y between fixed endpoints, take the derivative, and set that
equal to zero.

L[y] =

∫ b

a
dx
√

1 + y′2, so

δL

δy
= − d

dx

y′√
1 + y′2

= − y′′√
1 + y′2

+
y′2 y′′(

1 + y′2
)3/2

=
−y′′(

1 + y′2
)3/2

= 0
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For a minimum length then, y′′ = 0, and that’s a straight line. Surprise!
Do you really have to work through this mildly messy manipulation? Sometimes, but

not here. Just notice that the derivative is in the form

δL

δy
= − d

dx
f(y′) = 0 (12)

so doesn’t matter what the particular f is and you get a straight line. f(y′) is a constant so
y′ must be constant too. Not so fast! See section 16.9 for another opinion.

16.3 Brachistochrone
Now for a tougher example, again from the introduction. In Eq. (2), which of all the paths
between fixed initial and final points provides the path of least time for a particle sliding
along it under gravity. Such a path is called a brachistochrone. This problem was first
proposed by Bernoulli (one of them), and was solved by several people including Newton,
though it’s unlikely that he used the methods developed here, as the general structure we
now call the calculus of variations was decades in the future.

Assume that the particle starts from rest so that E = 0, then

T [y] =

∫ x0

0
dx

√
1 + y′2√
2gy

(13)

For the minimum time, compute the derivative and set it to zero.√
2g
δT

δy
= −

√
1 + y′2

2y3/2
− d

dx

y′

2
√
y
√

1 + y′2
= 0

This is starting to look intimidating, leading to an impossibly* messy differential equation.
Is there another way? Yes. Why must x be the independent variable? What about using y?
In the general setup leading to Eq. (10) nothing changes except the symbols, and you have

I[x] =

∫
dy F (y, x, x′) −→ δI

δx
=
∂F

∂x
− d

dy

(
∂F

∂x′

)
(14)

Equation (13) becomes

T [x] =

∫ y0

0
dy

√
1 + x′2√

2gy
(15)

The function x does not appear explicitly in this integral, only its derivative x′ = dx/dy.
This simplifies the functional derivative. The minimum time now comes from the equation

δI

δx
= 0− d

dy

(
∂F

∂x′

)
= 0 (16)

This is much easier. d()/dy = 0 means that the object in parentheses is a constant.

∂F

∂x′
= C =

1√
2gy

x′√
1 + x′2

* Only improbably. See problem 12.
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Solve this for x′ and you get (let K = C
√

2g)

x′ =
dx

dy
=

√
K2y

1−K2y
, so x(y) =

∫
dy

√
K2y

1−K2y

This is an elementary integral. Let 2a = 1/K2

∫
dy

√
K2y

1−K2y
=

∫
dy

y√
2ay − y2

=

∫
dy

y√
a2 − a2 + 2ay − y2

=

∫
dy

(y − a) + a√
a2 − (y − a)2

Make the substitution (y − a)2 = z in the first half of the integral and (y − a) = a sin θ in
the second half.

=
1

2

∫
dz

1√
a2 − z

+

∫
a2 cos θdθ√
a2 − a2 sin2 θ

= −
√
a2 − z + aθ = −

√
a2 − (y − a)2 + a sin−1

(
y − a
a

)
+ C ′

The boundary condition that x(0) = 0 determines C ′ = aπ/2, and the other end of the curve
determines a: x(y0) = x0. You can rewrite this as

x(y) = −
√

2ay − y2 + a cos−1

(
a− y
a

)
(17)

This is a cycloid. What’s a cycloid and why does this equation describe one? See problem 2.

x-independent
In Eqs. (15) and (16) there was a special case for which the dependent variable was missing
from F . That made the equation much simpler. What if the independent variable is missing?
Does that provide a comparable simplification? Yes, but it’s tricker to find.

I[y] =

∫
dxF (x, y, y′) −→ δI

δy
=
∂F

∂y
− d

dx

(
∂F

∂y′

)
= 0 (18)

Use the chain rule to differentiate F with respect to x.

dF

dx
=
∂F

∂x
+
dy

dx

∂F

∂y
+
dy′

dx

∂F

∂y′
(19)

Multiply the Lagrange equation (18) by y′ to get

y′
∂F

∂y
− y′ d

dx

∂F

∂y′
= 0

Now substitute the term y′(∂F/∂y) from the preceding equation (19).

dF

dx
− ∂F

∂x
− dy′

dx

∂F

∂y′
− y′ d

dx

∂F

∂y′
= 0
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The last two terms are the derivative of a product.

dF

dx
− ∂F

∂x
− d

dx

[
y′
∂F

∂y′

]
= 0 (20)

If the function F has no explicit x in it, the second term is zero, and the equation is a
derivative

d

dx

[
F − y′∂F

∂y′

]
= 0 and y′

∂F

∂y′
− F = C (21)

This is already down to a first order differential equation. The combination y′Fy′ − F that
appears on the left of the second equation is important. It’s called the Hamiltonian.

16.4 Fermat’s Principle
Fermat’s principle of least time provides a formulation of geometrical optics. When you
don’t know about the wave nature of light, or if you ignore that aspect of the subject, it
seems that light travels in straight lines — at least until it hits something. Of course this
isn’t fully correct, because when light hits a piece of glass it refracts and its path bends
and follows Snell’s equation. All of these properties of light can be described by Fermat’s
statement that the path light follows will be that path that takes the least* time.

T =

∫
dt =

∫
ds

v
=

1

c

∫
n ds (22)

The total travel time is the integral of the distance ds over the speed (itself a function of
position). The index of refraction is n = c/v, where c is the speed of light in vacuum, so
I can rewrite the travel time in the above form using n. The integral

∫
n ds is called the

optical path.
From this idea it is very easy to derive the rule for reflection at a surface: angle of

incidence equals angle of reflection. It is equally easy to derive Snell’s law. (See problem
5.) I’ll look at an example that would be difficult to do by any means other than Fermat’s
principle: Do you remember what an asphalt road looks like on a very hot day? If you are
driving a car on a black colored road you may see the road in the distance appear to be
covered by what looks like water. It has a sort of mirror-like sheen that is always receding
from you. You can never catch up to it. This happens because the road is very hot and it
heats the air next to it, causing a strong temperature gradient near the surface. The density
of the air decreases with rising temperature because the pressure is constant. That in turn
means that the index of refraction will decrease with the rising temperature near the surface.
The index will then be an increasing function of the distance above ground level, n = f(y),
and the travel time of light will depend on the path taken.∫

n ds =

∫
f(y) ds =

∫
f(y)

√
1 + x′2 dy =

∫
f(y)

√
1 + y′2 dx (23)

* Not always least. This only requires the first derivative to be zero. The second deriva-
tive is addressed in section 16.10. “Fermat’s principle of stationary time” may be more
accurate, but “Fermat’s principle of least time” is entrenched in the literature.
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What is f(y)? I’ll leave that for a moment and then after carrying the calculation through
for a while I can pick an f that is both plausible and easy to manipulate.

x

y

road

Do I pick x as an independent variable, or y? Either should work, and I chose y because
I thought it would be easier. (See problem 6 however.) The integrand then does not contain
the dependent variable x.∫

n ds =

∫
f(y)

√
1 + x′2 dy ⇒ d

dy

∂

∂x′
[
f(y)

√
1 + x′2

]
= 0

f(y)
x′√

1 + x′2
= C

Solve for x′ to get

f(y)2x′2 = C2
(
1 + x′2

)
so x′ =

dx

dy
=

C√
f(y)2 − C2

(24)

At this point pick a form for the index of refraction that will make the integral easy and
will still plausible represent reality. The index increases gradually above the road surface,
and the simplest function works: f(y) = n0(1 + αy). The index increases linearly above the
surface.

x(y) =

∫
C√

n2
0(1 + αy)2 − C2

dy =
C

αn0

∫
dy

1√
(y + 1/α)2 − C2/α2n2

0

This is an elementary integral. Let u = y + 1/α, then u = (C/αn0) cosh θ.

x =
C

αn0

∫
dθ ⇒ θ =

αn0

C
(x− x0) ⇒ y = − 1

α
+

C

αn0
cosh

(
(αn0/C)(x− x0)

)
C and x0 are arbitrary constants, and x0 is obviously the center of symmetry of the path.
You can relate the other constant to the y-coordinate at that same point: C = n0(αy0 + 1).

Because the value of α is small for any real roadway, look at the series expansion of
this hyperbolic function to the lowest order in α.

y ≈ y0 + α(x− x0)
2/2 (25)

When you look down at the road you can be looking at an image of the sky. The light comes
from the sky near the horizon down toward the road at an angle of only a degree or two. It
then curves up so that it can enter your eye as you look along the road. The shimmering
surface is a reflection of the distant sky — a mirage.

*

* en.wikipedia.org/wiki/Mirage

http://en.wikipedia.org/wiki/Mirage
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16.5 Electric Fields
The energy density in an electric field is ε0E

2/2. For the static case, this electric field is the

gradient of a potential, ~E = −∇φ. Its total energy in a volume is then

W =
ε0
2

∫
dV (∇φ)2 (26)

What is the minimum value of this energy? Zero of course, if φ is a constant. That question
is too loosely stated to be much use, but keep with it for a while and it will be possible to
turn it into something more precise and more useful. As with any other derivative taken to
find a minimum, change the independent variable by a small amount. This time the variable
is the function φ, so really this quantity W can more fully be written as a functional W [φ]
to indicate its dependence on the potential function.

W [φ+δφ]−W [φ] =
ε0
2

∫
dV
(
∇(φ+δφ)

)2−ε0
2

∫
dV (∇φ)2 =

ε0
2

∫
dV
(
2∇φ .∇δφ+(∇δφ)2

)
Now pull out a vector identity from problem 9.36,

∇ .
(
f~g
)

= ∇f .~g + f∇ .~g

and apply it to the previous line with f = δφ and ~g = ∇φ.

W [φ+ δφ]−W [φ] = ε0

∫
dV

[
∇ .(δφ∇φ)− δφ∇2φ

]
+
ε0
2

∫
dV (∇δφ)2

The divergence term is set up to use Gauss’s theorem; this is the vector version of integration
by parts.

W [φ+ δφ]−W [φ] = ε0

∮
d ~A .(∇φ)δφ− ε0

∫
dV δφ∇2φ+

ε0
2

∫
dV (∇δφ)2 (27)

If I specify the values of the potential φ on the boundary, I’m then not allowed to change it
in the process of finding the change in W . That means that δφ vanishes on the boundary.
That makes the boundary term, the d ~A integral, vanish. Its integrand is zero everywhere on
the surface of integration.

If I am looking for a minimum energy I want to set the first derivative to zero, and
that’s the coefficient of the term linear in δφ.

δW

δφ
= −ε0∇2φ = 0

The function that produces the minimum value of the total energy (with these fixed boundary
conditions) is the one that satisfies Laplace’s equation. Is it really a minimum? Yes. In this
instance it’s very easy to see that. The extra term in the change of W is

∫
dV (∇δφ)2. That

is positive no matter what δφ is.
That the correct potential function is the one having the minimum energy allows for

an efficient approximate method to solve electrostatic problems. I’ll illustrate this using
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an example borrowed from the Feynman Lectures in Physics and that you can also solve
exactly: What is the capacitance of a length of coaxial cable? (Neglect the edge effects at
the ends of the cable of course.) Let the inner and outer radii be a and b, and the length L.
A charge density λ is on the inner conductor (and therefore −λ on the inside of the outer
conductor). It creates a radial electric field of size λ/2πε0r. The potential difference between
the conductors is

∆V =

∫ b

a
dr

λ

2πε0r
=
λ ln(b/a)

2πε0
(28)

The charge on the inner conductor is λL, so C = Q/∆V = 2πε0L
/

ln(b/a), where ∆V =
Vb − Va.

The total energy satisfies W = C∆V 2/2, so for the given potential difference, knowing
the energy is the same as knowing the capacitance.

This exact solution provides a laboratory to test the efficacy of a variational approx-
imation for the same problem. The idea behind this method is that you assume a form for
the solution φ(r). This assumed form must satisfy the boundary conditions, but it need not
satisfy Laplace’s equation. It should also have one or more free parameters, the more the
better up to the limits of your patience. Now compute the total energy that this trial function
implies and then use the free parameters to minimize it. This function with minimum energy
is the best approximation to the correct potential among all those with your assumed trial
function.

Let the potential at r = a be Va and at r = b it is Vb. An example function that
satisfies these conditions is

φ(r) = Va + (Vb − Va)
r − a
b− a

(29)

The electric field implied by this is ~E = −∇φ = r̂(Va − Vb)/(b − a), a constant radial
component. From (26), the energy is

ε0
2

∫ b

a
L 2πr dr

(
dφ

dr

)2

=
ε0
2

∫ b

a
L 2πr dr

(
Vb − Va

b− a

)2

=
1

2
πLε0

b+ a

b− a
∆V 2

Set this to C∆V 2/2 to get C and you have

Capprox = πLε0
b+ a

b− a

How does this compare to the exact answer, 2πε0L/ ln(b/a)? Let x = b/a.

Capprox

C
=

1

2

b+ a

b− a
ln(b/a) =

1

2

x+ 1

x− 1
lnx

x: 1.1 1.2 1.5 2.0 3.0 10.0
ratio: 1.0007 1.003 1.014 1.04 1.10 1.41
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Assuming a constant magnitude electric field in the region between the two cylinders
is clearly not correct, but this estimate of the capacitance gives a remarkable good result
even when the ratio of the radii is two or three. This is true even though I didn’t even put
in a parameter with which to minimize the energy. How much better will the result be if I
do?

Instead of a linear approximation for the potential, use a quadratic.

φ(r) = Va + α(r − a) + β(r − a)2, with φ(b) = Vb

Solve for α in terms of β and you have, after a little manipulation,

φ(r) = Va + ∆V
r − a
b− a

+ β(r − a)(r − b) (30)

Compute the energy from this.

W =
ε0
2

∫ b

a
L 2πr dr

[
∆V

b− a
+ β(2r − a− b)

]2

Rearrange this for easier manipulation by defining 2β = γ∆V/(b−a) and c = (a+ b)/2 then

W =
ε0
2

2Lπ

(
∆V

b− a

)2 ∫ (
(r − c) + c

)
dr
[
1 + γ(r − c)

]2
=
ε0
2

2Lπ

(
∆V

b− a

)2 [
c(b− a) + γ(b− a)3/6 + cγ2(b− a)3/12

]
γ is a free parameter in this calculation, replacing the original β. To minimize this energy,
set the derivative dW/dγ = 0, resulting in the value γ = −1/c. At this value of γ the energy
is

W =
ε0
2

2Lπ

(
∆V

b− a

)2 [
1

2

(
b2 − a2

)
− (b− a)3

6(b+ a)

]
(31)

Except for the factor of ∆V 2/2 this is the new estimate of the capacitance, and to see how
good it is, again take the ratio of this estimate to the exact value and let x = b/a.

C ′approx

C
= ln x

1

2

x+ 1

x− 1

[
1− (x− 1)2

3(x+ 1)2

]
(32)

x: 1.1 1.2 1.5 2.0 3.0 10.0
ratio: 1.00000046 1.000006 1.00015 1.0012 1.0071 1.093

For only a one parameter adjustment, this provides very high accuracy. This sort of technique
is the basis for many similar procedures in this and other contexts, especially in quantum
mechanics.
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16.6 Discrete Version
There is another way to find the functional derivative, one that more closely parallels the
ordinary partial derivative. It is due to Euler, and he found it first, before Lagrange’s
discovery of the treatment that I’ve spent all this time on. This alternate method starts by
noting that an integral is the limit of a sum. Go back to the sum and perform the derivative
on it, finally taking a limit to get an integral. This turns the problem into a finite-dimensional
one with ordinary partial derivatives. You have to decide which form of numerical integration
to use, and I’ll pick the trapezoidal rule, Eq. (11.15), with a constant interval. Other choices
work too, but I think this entails less fuss. You don’t see this approach as often as Lagrange’s
because it is harder to manipulate the equations with Euler’s method, and the notation can
become quite cumbersome. It is however more intuitive when you’re starting the subject.
The trapezoidal rule for an integral is just this picture, and all that you have to handle with
any care is the endpoints of the integral.

xk xk+1

yk
yk+1

xk = a+ k∆, 0 ≤ k ≤ N where
b− a
N

= ∆∫ b

a
dx f(x) = lim

[
1

2
f(a) +

N−1∑
1

f(xk) +
1

2
f(b)

]
∆

The integral Eq. (5) involves y′, so in the same spirit, approximate this by the centered
difference.

y′k = y′(xk) ≈
(
y(xk+1)− y(xk−1)

)
/2∆

This evaluates the derivative at each of the coordinates {xk} instead of in between them.
The discrete form of (5) is now

Idiscrete =
∆

2
F
(
a, y(a), y′(a)

)
+

N−1∑
1

F
(
xk, y(xk), (y(xk+1)− y(xk−1))/2∆

)
∆ +

∆

2
F
(
b, y(b), y′(b)

)
Not quite yet. What about y′(a) and y′(b)? The endpoints y(a) and y(b) aren’t changing,
but that doesn’t mean that the slope there is fixed. At these two points, I can’t use the
centered difference scheme for the derivative, I’ll have to use an asymmetric form to give

Idiscrete =
∆

2
F
(
a, y(a), (y(x1)− y(x0))/∆

)
+

∆

2
F
(
b, y(b), (y(xN )− y(xN−1))/∆

)
+

N−1∑
1

F
(
xk, y(xk), (y(xk+1)− y(xk−1))/2∆

)
∆

(33)

When you keep the endpoints fixed, this is a function of N − 1 variables, {yk = y(xk)}
for 1 ≤ k ≤ N − 1, and to find the minimum or maximum you simply take the partial
derivative with respect to each of them. It is not a function of any of the {xk} because those
are defined and fixed by the partition xk = a + k∆. The only clumsy part is keeping track
of the notation. When I differentiate with respect to a particular y`, most of the terms in
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the sum (33) don’t contain it. There are only three terms in the sum that contribute: ` and
` ± 1. In the figure N = 5, and the ` = 2 coordinate (y2) is being changed. For all the
indices ` except the two next to the endpoints (1 and N − 1), this is

∂

∂y`
Idiscrete =

∂

∂y`

[
F
(
x`−1, y`−1, (y` − y`−2)/2∆

)
+

F
(
x`, y`, (y`+1 − y`−1)/2∆

)
+

F
(
x`+1, y`+1, (y`+2 − y`)/2∆

)]
∆

50 1 2 3 4

An alternate standard notation for partial derivatives will help to keep track of the manip-
ulations:

D1F is the derivative with respect to the first argument

The above derivative is then[
D2F

(
x`, y`, (y`+1 − y`−1)/2∆

)
+

1

2∆

[
D3F

(
x`−1, y`−1, (y` − y`−2)/2∆

)
−D3F

(
x`+1, y`+1, (y`+2 − y`)/2∆

)]]
∆

(34)

There is no D1F because the x` is essentially an index.
If you now take the limit ∆ → 0, the third argument in each function returns to the

derivative y′ evaluated at various xks:[
D2F

(
x`, y`, y

′
`

)
+

1

2∆

[
D3F

(
x`−1, y`−1, y

′
`−1

)
−D3F

(
x`+1, y`+1, y

′
`+1

)]]
∆

=
[
D2F

(
x`,y(x`), y

′(x`)
)

+
1

2∆

[
D3F

(
x`−1, y(x`−1), y

′(x`−1)
)
−D3F

(
x`+1, y(x`+1), y

′(x`+1)
)]]

∆
(35)

Now take the limit that ∆ → 0, and the last part is precisely the definition of (minus) the
derivative with respect to x. This then becomes

1

∆

∂

∂y`
Idisc → D2F

(
x`, y`, y

′
`

)
− d

dx
D3F

(
x`, y`, y

′
`

)
(36)

Translate this into the notation that I’ve been using and you have Eq. (10). Why did I
divide by ∆ in the final step? That’s the equivalent of looking for the coefficient of both the
dx and the δy in Eq. (10). It can be useful to retain the discrete approximation of Eq. (34)
or (35) to the end of the calculation. This allows you to do numerical calculations in cases
where the analytic equations are too hard to manipulate.

Again, not quite yet. The two cases ` = 1 and ` = N−1 have to be handled separately.
You have to go back to Eq. (33) to see how they work out. The factors show up in different
places, but the final answer is the same. See problem 15.

It’s curious that when I formulate the problem this way, you don’t seem to need a
partial integration. The result came out automatically. Would that be true if I take some
integration method other other than the trapezoidal rule? See problem 16.
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16.7 Classical Mechanics
The calculus of variations provides a way to reformulate Newton’s equations of mechanics.
The results produce efficient techniques to set up complex problems and they give insights
into the symmetries of the systems. They also provide alternate directions in which to
generalize the original equations.

Start with one particle subject to a force, and the force has a potential energy func-
tion U . Following the traditions of the subject, denote the particle’s kinetic energy by T .
Picture this first in rectangular coordinates, where T = m~v 2/2 and the potential energy is
U(x1, x2, x3). The functional S depends on the path [x1(t), x2(t), x3(t)] from the initial to
the final point. The integrand is the Lagrangian, L = T − U .

S[~r ] =

∫ t2

t1

L
(
~r, ~̇r
)
dt, where L = T − U =

m

2

(
ẋ2

1 + ẋ2
2 + ẋ2

3

)
− U(x1, x2, x3) (37)

The statement that the functional derivative is zero is

δS

δxk
=

∂L

∂xk
− d

dt

(
∂L

∂ẋk

)
= − ∂U

∂xk
− d

dt

(
mẋk

)
Set this to zero and you have

mẍk = − ∂U
∂xk

, or m
d2~r

dt2
= ~F (38)

That this integral of Ldt has a zero derivative is ~F = m~a. Now what? This may be elegant,
but does it accomplish anything? The first observation is that when you state the problem
in terms of this integral it is independent of the coordinate system. If you specify a path in
space, giving the velocity at each point along the path, the kinetic energy and the potential
energy are well-defined at each point on the path and the integral S is too. You can now
pick whatever bizarre coordinate system that you want in order to do the computation of the
functional derivative. Can’t you do this with ~F = m~a ? Yes, but computing an acceleration in
an odd coordinate system is a lot more work than computing a velocity. A second advantage
will be that it’s easier to handle constraints by this method. The technique of Lagrange
multipliers from section 8.12 will apply here too.

Do the simplest example: plane polar coordinates. The kinetic energy is

T =
m

2

(
ṙ2 + r2θ̇2

)
The potential energy is a function U of r and θ. With the of the Lagrangian defined as
T − U , the variational derivative determines the equations of motion to be

S[r, θ] =

∫ t2

t1

L
(
r(t), θ(t)

)
dt→

δS

δr
=
∂L

∂r
− d

dt

∂L

∂ṙ
= mrθ̇2 − ∂U

∂r
−mr̈ = 0

δS

δθ
=
∂L

∂θ
− d

dt

∂L

∂θ̇
= −∂U

∂θ
−m d

dt

(
r2θ̇
)

= 0
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These are the components of ~F = m~a in polar coordinates. If the potential energy is
independent of θ, the second equation says that angular momentum is conserved: mr2θ̇.

What do the discrete approximate equations (34) or (35) look like in this context?
Look at the case of one-dimensional motion to understand an example. The Lagrangian is

L =
m

2
ẋ2 − U(x)

Take the expression in Eq. (34) and set it to zero.

−dU
dx

(x`) +
1

2∆
[m(x` − x`−2)/2∆−m(x`+2 − x`)/2∆] = 0

or m
x`+2 − 2x` + x`−2

(2∆)2
= −dU

dx
(x`) (39)

This is the discrete approximation to the second derivative, as in Eq. (11.12).

16.8 Endpoint Variation
Following Eq. (6) I restricted the variation of the path so that the endpoints are kept fixed.
What if you don’t? As before, keep terms only to the first order, so that for example ∆tb δy
is out. Because the most common application of this method involves integrals with respect
to time, I’ll use that integration variable

∆S =

∫ tb+∆tb

ta+∆ta

dtL
(
t, y(t) + δy(t), ẏ(t) + δẏ(t)

)
−
∫ tb

ta

dtL
(
t, y(t), ẏ(t)

)
=

∫ tb+∆tb

ta+∆ta

dt

[
L(t, y, ẏ) +

∂L

∂y
δy +

∂L

∂ẏ
δẏ

]
−
∫ tb

ta

dtL
(
t, y(t), ẏ(x)

)
=

[∫ tb+∆tb

tb

−
∫ ta+∆ta

ta

]
dtL(t, y, ẏ) +

∫ tb

ta

dt

[
∂L

∂y
δy +

∂L

∂ẏ
δẏ

]
Drop quadratic terms in the second line: anything involving (δy)2 or δyδẏ or (δẏ)2. Similarly,
drop terms such as ∆ta δy in going to the third line. Do a partial integration on the last
term ∫ tb

ta

dt
∂L

∂ẏ

d δy

dt
=
∂L

∂ẏ
δy

∣∣∣∣tb
ta

−
∫ tb

ta

dt
d

dt

(
∂L

∂ẏ

)
δy(t) (40)

The first two terms, with the ∆ta and ∆tb, are to first order[∫ tb+∆tb

tb

−
∫ ta+∆ta

ta

]
dtL(t, y, ẏ) = L

(
(tb, y(tb), ẏ(tb)

)
∆tb − L

(
(ta, y(ta), ẏ(ta)

)
∆ta

This produces an expression for ∆S

∆S =L
(
(tb, y(tb), ẏ(tb)

)
∆tb − L

(
(ta, y(ta), ẏ(ta)

)
∆ta

+
∂L

∂ẏ
(tb)δy(tb)−

∂L

∂ẏ
(ta)δy(ta) +

∫ tb

ta

dt

[
∂L

∂y
− d

dt

(
∂L

∂ẏ

)]
δy

(41)
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Up to this point the manipulation was straight-forward, though you had to keep all
the algebra in good order. Now there are some rearrangements needed that are not all that
easy to anticipate. I will add and subtract some terms.

Start by looking only at the two terms involving ∆tb and δy(tb) — the first and
third terms. The change in the position of this endpoint is not simply δy(tb). Even if δy
is identically zero the endpoint will change in both the t-direction and in the y-direction
because of the slope of the curve (ẏ) and the change in the value of t at the endpoint (∆tb).

The total movement of the endpoint at tb is horizontal by the amount ∆tb, and it is
vertical by the amount

(
δy+ ẏ∆tb

)
. To incorporate this, add and subtract this second term,

ẏ∆t, in order to produce this combination as a coefficient.

y

t
a b

y(t)

y + δy δy

ẏ∆tb

∆tb

L
(
(tb, y(tb), ẏ(tb)

)
∆tb +

∂L

∂ẏ
(tb)δy(tb)

=

[
L(tb)∆tb −

∂L

∂ẏ
(tb)ẏ(tb)∆tb

]
+

[
∂L

∂ẏ
(tb)ẏ(tb)∆tb +

∂L

∂ẏ
(tb)δy(tb)

]
=

[
L− ∂L

∂ẏ
ẏ

]
∆tb +

∂L

∂ẏ

[
ẏ∆tb + δy

]
(42)

Do the same thing at ta, keeping the appropriate signs. Then denote

p =
∂L

∂ẏ
, H = pẏ − L, ∆y = δy + ẏ∆t

H is the Hamiltonian and Eq. (41) becomes Noether’s theorem.

∆S =

[
p∆y −H∆t

]tb

ta

+

∫ tb

ta

dt

[
∂L

∂y
− d

dt

(
∂L

∂ẏ

)]
δy (43)

If the equations of motion are satisfied, the argument of the last integral is zero. The
change in S then comes only from the translation of the endpoint in either the time or space
direction. If ∆t is zero, and ∆y is the same at the two ends, you are translating the curve
in space — vertically in the graph. Then

∆S = p∆y

∣∣∣∣tb
ta

=
[
p(tb)− p(ta)

]
∆y = 0
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If the physical phenomenon described by this equation is invariant under spacial translation,
then momentum is conserved.

If you do a translation in time instead of space and S is invariant, then ∆t is the same
at the start and finish, and

∆S =
[
−H(tb) +H(ta)

]
∆t = 0

This is conservation of energy. Write out what H is for the case of Eq. (37).
If you write this theorem in three dimensions and require that the system is invariant

under rotations, you get conservation of angular momentum. In more complicated system,
especially in field theory, there are other symmetries, and they in turn lead to conservation
laws. For example conservation of charge is associated with a symmetry called “gauge
symmetry” in quantum mechanical systems.

16.9 Kinks
In all the preceding analysis of minimizing solutions to variational problems, I sort of assumed
that everything is differentiable and that all the derivatives are continuous. That’s not
always so. It is quite possible for a solution to one of these problems to have a discontinuous
derivative somewhere in the middle. These are more complicated to handle, but only because
of some extra algebra. An integral such as Eq. (5) is perfectly well defined if the integrand has
a few discontinuities, but the partial integrations leading to the Euler-Lagrange equations
are not. You can apply the Euler-Lagrange equations only in the intervals between any kinks.

If you’re dealing with a problem of the standard form I[x] =
∫ b
a dtL(t, x, ẋ) and you

want to determine whether there is a kink along the path, there are some internal boundary
conditions that have to hold. Roughly speaking they are conservation of momentum and
conservation of energy, and you can show this using the results of the preceding section on
endpoint variations.

S =

∫ tb

ta

dtL(t, x, ẋ) =

∫ tm

ta

dtL+

∫ tb

tm

dtL

ta tm tb
What if there is a discontinuity in the derivative ẋ at a point in the middle, tm? The equation
to solve is still δS/δx = 0, and for variations of the path that leave the endpoints and the
middle point alone you have to satisfy the standard Euler-Lagrange differential equations
on the two segments. Now however you also have to set the variation to zero for paths that
leave the endpoints alone but move the middle point.

ta tm tb

∆t

ta tm tb

∆x

Apply Eq. (43) to each of the two segments, and assume that the differential equations
are already satisfied in the two halves. For the sort of variation described in the last two
figures, look at the endpoint variations of the two segments. They produce

δS =
[
p∆x−H∆t

]tm
ta

+
[
p∆x−H∆t

]tb
tm

=
[
p∆x−H∆t

]
(t−m)−

[
p∆x−H∆t

]
(t+m) = 0
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These represent the contributions to the variation just above tm and just below it. This has
to vanish for arbitrary ∆t and ∆x, so it says

p(t−m) = p(t+m) and H(t−m) = H(t+m) (44)

These equations, called the Weierstrass-Erdmann conditions, are two equations for the values
of the derivative ẋ on the two side of tm. The two equations for the two unknowns may tell
you that there is no discontinuity in the derivative, or if not, then it will dictate the algebraic
equations that the two values of ẋ must satisfy. More dimensions means more equations of
course.

There is a class of problems in geometry coming under the general heading of Plateau’s
Problem. What is the minimal surface that spans a given curve? Here the functional is

∫
dA,

giving the area as a function of the function describing the surface. If the curve is a circle
in the plane, then the minimum surface is the spanning disk. What if you twist the circle
so that it does not quite lie in a plane? Now it’s a tough problem. What if you have two
parallel circles? Is the appropriate surface a cylinder? (No.) This subject is nothing more
than the mathematical question of trying to describe soap bubbles. They’re not all spheres.

Do kinks happen often? They are rare in problems that
usually come up in physics, and it seems to be of more concern
to those who apply these techniques in engineering. For an
example that you can verify for yourself however, construct a
wire frame in the shape of a cube. You can bend wire or you
can make it out of solder as that’s much easier to manipulate.
Attach a handle to one corner so that you can hold it. Now
make a soap solution that you can use to blow bubbles. (A
trick to make it work better is to add some glycerine.) Now dip
the wire cube into the soap and see what sort of soap film will result, filling in the surfaces
among the wires. It is not what you expect, and has several faces that meet at surprising
angles. There is a square in the middle. This surface has minimum area among surfaces that
span the cube.

Example
In Eq. (12), looking at the shortest distance between two points in a plane and equations like

it, I jumped to a conclusion. If I want to minimize the integral
∫ b
a f(y′)dx, the Euler-Lagrange

differential equation is
∂f

∂y
− d

dx

∂f

∂y′
= f ′(y′)y′′ = 0

This seems to say that f(y′) is a constant or that y′′ = 0, implying either way that y = Ax+B,
a straight line. Now that you know that solutions can have kinks, you have to look more
closely. Take the particular example

f(y′) = αy′4 − βy′2, with y(0) = 0, and y(a) = b

One solution corresponds to y′′ = 0 and y(x) = bx/a. Can there be others?
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Apply the conditions of Eq. (44) at some point between 0 and a. Call it xm, and
assume that the derivative is not continuous. Call the derivatives on the left and right (y′−)
and (y′+). The first equation is

p =
∂L

∂y′
= 4αy′3 − 2βy′, and p(x−m) = p(x+

m)

4α(y′−)3 − 2β(y′−) = 4α(y′+)3 − 2β(y′+)[
(y′−)− (y′+)

][
(y′+)2 + (y′+)(y′−) + (y′−)2 − β/2α

]
= 0

If the slope is not continuous, the second factor must vanish.

(y′+)2 + (y′+)(y′−) + (y′−)2 − β/2α = 0

This is one equation for the two unknown slopes. For the second equation, use the second
condition, the one on H.

H = y′
∂f

∂y′
− f, and H(x−m) = H(x+

m)

H = y′
[
4αy′3 − 2βy′

]
−
[
αy′4 − βy′2

]
= 3αy′4 − βy′2[

(y′−)− (y′+)
][

(y′+)3 + (y′+)2(y′−) + (y′+)(y′−)2 + (y′−)3 − β
(
(y′+) + (y′−)

)
/3α

]
= 0

Again, if the slope is not continuous this is

(y′+)3 + (y′+)2(y′−) + (y′+)(y′−)2 + (y′−)3 − β
(
(y′+) + (y′−)

)
/3α = 0

These are two equations in the two unknown slopes. It looks messy, but look back at H itself
first. It’s even. That means that its continuity will always hold if the slope simply changes
sign.

(y′+) = −(y′−)

Can this work in the other (momentum) equation?

(y′+)2 + (y′+)(y′−) + (y′−)2 − β/2α = 0 is now (y′+)2 = β/2α

As long as α and β have the same sign, this has the solution

(y′+) = ±
√
β/2α, (y′−) = ∓

√
β/2α (45)

The boundary conditions on the original problem were y(0) = 0 and y(a) = b. Denote
γ = ±

√
β/2α, and x1 = a/2 + b/2γ, then

y =

{
γx (0 < x < x1)
b− γ(x− a) (x1 < x < b)

y

x

b

a

0

1

2

(46)
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The paths labeled 0, 1, and 2 are three solutions that make the variational functional deriva-
tive vanish. Which is smallest? Does that answer depend on the choice of the parameters?
See problem 19.

Are there any other solutions? After all, once you’ve found
three, you should wonder if it stops there. Yes, there are many —
infinitely many in this example. They are characterized by the same
slopes, ±γ, only they switch back and forth several times before
coming to the endpoint. The same internal boundary conditions (p
and H) apply at each corner, and there’s nothing in their solutions
saying that there is only one such kink.

Do you encounter such weird behavior often, with an infinite number of solutions? No,
but you see from this example that it doesn’t take a very complicated integrand to produce
such a pathology.

16.10 Second Order
Except for a couple of problems in optics in chapter two, I’ve mostly ignored the question
about minimum versus maximum.
• Does it matter in classical mechanics whether the integral,

∫
Ldt is minimum or not in

determining the equations of motion? No.
• In geometric optics, does it matter whether Fermat’s principle of least time for the path
of the light ray is really minimum? Yes, in this case it does, because it provides information
about the focus.
• In the calculation of minimum energy electric potentials in a capacitor does it matter? No,
but only because it’s always a minimum.
• In problems in quantum mechanics similar to the electric potential problem, the fact that
you’re dealing sometimes with a minimum and sometimes not leads to some serious technical
difficulties.

How do you address this question? The same way you do in ordinary calculus: See
what happens to the second order terms in your expansions. Take the same general form as
before and keep terms through second order. Assume that the endpoints are fixed.

I[y] =

∫ b

a
dxF

(
x, y(x), y′(x)

)
∆I = I[y + δy]− I[y]

=

∫ b

a
dxF

(
x, y(x) + δy(x), y′(x) + δy′(x)

)
−
∫ b

a
dxF

(
x, y(x), y′(x)

)
=

∫ b

a
dx

[
∂F

∂y
δy +

∂F

∂y′
δy′ +

∂2F

∂y2

(
δy
)2

+ 2
∂2F

∂y∂y′
δyδy′ +

∂2F

∂y′2
(
δy′
)2]

(47)

If the first two terms combine to zero, this says the first derivative is zero. Now for the next
terms.

Recall the similar question that arose in section 8.11. How can you tell if a function of
two variables has a minimum, a maximum, or neither? The answer required looking at the
matrix of all the second derivatives of the function — the Hessian. Now, instead of a 2× 2
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matrix as in Eq. (8.26) you have an integral.

〈
d~r,H d~r

〉
= ( dx dy )

(
fxx fxy

fyx fyy

)(
dx
dy

)
−→

∫ b

a
dx ( δy δy′ )

(
Fyy Fyy′

Fy′y Fy′y′

)(
δy
δy′

)
In the two dimensional case ∇f = 0 defines a minimum if the product

〈
d~r,H d~r

〉
is positive

for all possible directions d~r. For this new case the “directions” are the possible functions
δy and its derivative δy′.

The direction to look first is where δy′ is big. The reason is that I can have a very
small δy that has a very big δy′: 10−3 sin

(
106x

)
. If ∆I is to be positive in every direction,

it has to be positive in this one. That requires Fy′y′ > 0.

δy

y + δy
y

Is it really that simple? No. First the δy terms can be important too, and second y can
itself have several components. Look at the latter first. The final term in Eq. (47) should be∫ b

a
dx

∂2F

∂y′m∂y
′
n
δy′mδy

′
n

This set of partial derivatives of F is at each point along the curve a Hessian. At each point
it has a set of eigenvalues and eigenvectors, and if all along the path all the eigenvalues are
always positive, it meets the first, necessary conditions for the original functional to be a
minimum. If you look at an example from mechanics, for which the independent variable
is time, these y′n terms are then ẋn instead. Terms such as these typically represent kinetic
energy and you expect that to be positive.

An example:

S[~r ] =

∫ T

0
dtL(x, y, ẋ, ẏ, t) =

∫ T

0
dt

1

2

[
ẋ2 + ẏ2 + 2γtẋẏ − x2 − y2

]
This is the action for a particle moving in two dimensions (x, y) with the specified Lagrangian.
The equation of motion are

δS

δx
= −x− ẍ− γ(tÿ + ẏ) = 0

δS

δy
= −y − ÿ − γ(tẍ+ ẋ) = 0

If γ = 0 you have two independent harmonic oscillators.
The matrix of derivatives of L with respect to ẋ and ẏ is

∂2L

∂ym∂yn
=

(
1 γt
γt 1

)
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The eigenvalues of this matrix are 1±γt, with corresponding eigenvectors

(
1
1

)
and

(
1
−1

)
.

This Hessian then says that S should be a minimum up to the time t = 1/γ, but not after
that. This is also a singular point of the differential equations for x and y.

Focus
When the Hessian made from the δy′2 terms has only positive eigenvalues everywhere, the
preceding analysis might lead you to believe that the functional is always a minimum. Not
so. That condition is necessary; it is not sufficient. It says that the functional is a minimum
with respect to rapidly oscillating δy. It does not say what happens if δy only gradually
changes over the course of the integral. If this happens, and if the length of the interval
of integration is long enough, the δy′ terms may be the small ones and the (δy)2 may then
dominate over the whole length of the integral. This is exactly what happens in the problems
2.37, 2.39, and 17.

When this happens in an optical system, where the functional T =
∫
ds/v is the travel

time along the path, it signals something important. You have a focus. An ordinary light
ray obeys Fermat’s principle that T is stationary with respect to small changes in the path.
It is a minimum if the path is short enough. A focus occurs when light can go from one
point to another by many different paths.

In the integral for T , where the starting point and the ending point are the source and image
points, the second order variation will be zero for these long, gradual changes in the path.
The straight-line path through the center of the lens takes least time if its starting point and
ending point are closer than this source and image. The same path will be a saddle (neither
maximum nor minimum) if the points are farther apart than this. This sort of observation
led to the development of the mathematical subject called “Morse Theory.”

Thin Lens
This provides a simple way to understand the basic equation for a thin lens. Let its thickness
be t and its radius r.

p q

t

r
n

Light that passes through this lens along the straight line through the center moves more
slowly in as it passes through the thickness of the lens, and takes a time

T1 =
1

c
(p+ q − t) +

n

c
t
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Light that take a longer path through the edge of the lens encounters no glass along the way,
and it takes a time

T2 =
1

c

[√
p2 + r2 +

√
q2 + r2

]
If p and q represent the positions of a source and the position of its image at a focus, these
two times should be equal. At least they should be equal in the approximation that the lens
is thin and when you keep terms only to the second order in the variation of the path.

T2 =
1

c

[
p
√

1 + r2/p2 + q
√

1 + r2/q2
]

=
1

c

[
p
(
1 + r2/2p2

)
+ q
(
1 + r2/2q2

)]
Equate T1 and T2.

(p+ q − t) + nt =
[
p
(
1 + r2/2p2

)
+ q
(
1 + r2/2q2

)]
(n− 1)t =

r2

2p
+
r2

2q

1

p
+

1

q
=

2(n− 1)t

r2
=

1

f
(48)

This is the standard equation describing the focusing properties of thin lenses as described
in every elementary physics text that even mentions lenses. The focal length of the lens is
then f = r2/2(n − 1)t. That is not the expression you usually see, but it is the same. See
problem 21.
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Problems

16.1 You are near the edge of a lake and see someone in the water needing help. What path
do you take to get there in the shortest time? You can run at a speed v1 on the shore and
swim at a probably slower speed v2 in the water. Assume that the edge of the water forms
a straight line, and express your result in a way that’s easy to interpret, not as the solution
to some quartic equation.

16.2 The cycloid is the locus of a point that is on the edge of a circle that is itself rolling
along a straight line — a pebble caught in the tread of a tire. Use the angle of rotation as a
parameter and find the parametric equations for x(θ) and y(θ) describing this curve. Show
that it is Eq. (17).

16.3 In Eq. (17), describing the shortest-time slide of a particle, what is the behavior of the
function for y � a? In figuring out the series expansion of w = cos−1(1− t), you may find it
useful to take the cosine of both sides. Then you should be able to find that the two lowest
order terms in this expansion are w =

√
2t− t3/2/12

√
2. You will need both terms.

16.4 The dimensions of an ordinary derivative such as dx/dt is the quotient of the dimensions
of the numerator and the denominator (here L/T). Does the same statement apply to the
functional derivative?

16.5 Use Fermat’s principle to derive both Snell’s law and the law of reflection at a plane
surface. Assume two straight line segments from the starting point to the ending point and
minimize the total travel time of the light.

16.6 Analyze the path of light over a roadway starting from Eq. (23) but using x as the
independent variable instead of y.

16.7 Fill in the steps leading to Eq. (31). And do you understand the point of the rear-
rangements that I did just preceding it? Also, can you explain why the form of the function
Eq. (30) should have been obvious without solving any extra boundary conditions? When
you can explain that in a few words, then what will be a general cubic polynomial that could
be used to get a still better result?

16.8 For the function F (x, y, y′) = x2 + y2 + y′2, explicitly carry through the manipulations
leading to Eq. (41).

16.9 Use the explicit variation in Eq. (8) and find the minimum of that function of ε.
Compare that minimum to the value found in Eq. (11). Ans: 1.64773

16.10 Do either of the functions, Eqs. (29) or (30), satisfy Laplace’s equation?

16.11 For the function F (x, y, y′) = x2 +y2 +y′2, repeat the calculation of δI only now keep
all the higher order terms in δy and δy′. Show that the solution Eq. (11) is a minimum.
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16.12 Use the techniques leading to Eq. (21) to solve the brachistochrone problem Eq. (13)
again. This time use x as the independent variable instead of y.

16.13 On a right circular cylinder, find the path that represents the shortest distance be-
tween two points. ds2 = dz2 +R2dθ2.

16.14 Put two circular loops of wire in a soap solution and draw them out,
keeping their planes parallel. If they are fairly close you will have a soap film
that goes from one ring to the other, and the minimum energy solution is the
one with the smallest area. What is the shape of this surface? Use cylindrical
coordinates to describe the surface. It is called a catenoid, and its equation is a
hyperbolic cosine.

16.15 There is one part of the derivation going from Eq. (33) to (36) that I omitted: the
special cases of ` = 1 and ` = N − 1. Go back and finish that detail, showing that you get
the same result even in this case.

16.16 Section 16.6 used the trapezoidal rule for numerical integration and the two-point cen-
tered difference for differentiation. What happens to the derivation if (a) you use Simpson’s
rule for integration or if (b) you use an asymmetric differentiation formula such as y′(0) ≈
[y(h)− y(0)]/h?

16.17 For the simple harmonic oscillator, L = mẋ2/2 − mω2x2/2. Use the time interval

0 < t < T so that S =
∫ T
0 Ldt, and find the equation of motion from δS/δx = 0. When the

independent variable x is changed to x + δx, keep the second order terms in computing δS
this time and also make an explicit choice of

δx(t) = ε sin(nπt/T )

For integer n = 1, 2 . . . this satisfies the boundary conditions that δx(0) = δx(T ) = 0.
Evaluate the change is S through second order in ε (that is, do it exactly). Find the
conditions on the interval T so that the solution to δS/δx = 0 is in fact a minimum. Then
find the conditions when it isn’t, and what is special about the T for which S[x] changes its
structure?

16.18 Eq. (37) describes a particle in a specified potential energy function U . Let U =
qV (x1, x2, x3, t) where V is the electric potential. Now how do you include magnetic effects?

Add another term to L of the form C~̇r . ~A(x1, x2, x3, t). Figure out what the Lagrange
equations are, making δS/δxk = 0. What value must C have in order that this matches
~F = m~a with ~B = ∇× ~A? What is ~E in terms of V and ~A?

16.19 For the solutions that spring from Eq. (45), which of the three results shown have the
largest and smallest values of

∫
fdx? Draw a graph of f(y′) and see where the characteristic

slope of Eq. (45) is with respect to the graph.
There are circumstances for which these kinked solutions, Eq. (46) do and do not occur; find
them and explain them.
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16.20 What are the Euler-Lagrange equations for I[y] =
∫ b
a dxF (x, y, y′, y′′)?

16.21 The equation for the focal length of a thin lens, Eq. (48), is not the traditional one
found in most texts. That is usually expressed in terms of the radii of curvature of the lens
surfaces. Show that this is the same.

16.22 The equation (25) is an approximate solution to the path for light above a hot road.
Is there a function n = f(y) representing the index of refraction above the road surface such
that this equation would be its exact solution?



Densities and Distributions

Back in section 12.1 I presented a careful and full definition of the word “function.”
This is useful even though you should already have a pretty good idea of what the word
means. If you haven’t read that section, now would be a good time. The reason to review
it is that this definition doesn’t handle all the cases that naturally occur. This will lead to
the idea of a “generalized function.”

There are (at least) two approaches to this subject. One that relates it to the ideas
of functionals as you saw them in the calculus of variations, and one that is more intuitive
and is good enough for most purposes. The latter appears in section 17.5, and if you want
to jump there first, I can’t stop you.

17.1 Density

What is density? If the answer is “mass per unit volume” then what does that mean? It
clearly doesn’t mean what it says, because you aren’t required* to use a cubic meter.

It’s a derivative. Pick a volume ∆V and find the mass in that volume to be ∆m. The
average volume-mass-density in that volume is ∆m/∆V . If the volume is the room that
you’re sitting in, the mass includes you and the air and everything else in the room. Just as
in defining the concept of velocity (instantaneous velocity), you have to take a limit. Here
the limit is

lim
∆V→0

∆m

∆V
=
dm

dV
(1)

Even this isn’t quite right, because the volume could as easily shrink to zero by approaching
a line, and that’s not what you want. It has to shrink to a point, but the standard notation
doesn’t let me say that without introducing more symbols than I want.

Of course there are other densities. If you want to talk about paper or sheet metal
you may find area-mass-density to be more useful, replacing the volume ∆V by an area ∆A.
Maybe even linear mass density if you are describing wires, so that the denominator is ∆`.
And why is the numerator a mass? Maybe you are describing volume-charge-density or even
population density (people per area). This last would appear in mathematical notation as
dN/dA.

This last example manifests a subtlety in all of these definitions. In the real world, you
can’t take the limit as ∆A→ 0. When you count the number of people in an area you can’t
very well let the area shrink to zero. When you describe mass, remember that the world
is made of atoms. If you let the volume shrink too much you’ll either be between or inside
the atoms. Maybe you will hit a nucleus; maybe not. This sort of problem means that you
have to stop short of the mathematical limit and let the volume shrink to some size that still
contains many atoms, but that is small enough so the quotient ∆m/∆V isn’t significantly
affected by further changing ∆V . Fortunately, this fine point seldom gets in the way, and if
it does, you’ll know it fast. I’ll ignore it.

* even by the panjandrums of the Système International d’Unités
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If you know the density — when the word is used unqualified it commonly means
volume-mass-density — you find mass by integration over the volume you have specified.

m =

∫
V
ρ dV (2)

You can even think of this as a new kind of function m(V ): input a specification for a volume
of space; output a mass. That’s really what density provides, a prescription to go from a
volume specification to the amount of mass within that volume.

For the moment, I’ll restrict the subject to linear mass density, and so that you need
only the coordinate along a straight line,

λ(x) =
dm

dx
(x), and m =

∫ b

a
λ(x) dx (3)

If λ represents a simple function such as Ax2 (0 < x < L), a bullwhip perhaps, then this
is elementary, and mtotal = AL3/3. I want to look at the reverse specification. Given an
interval, I will specify the amount of mass in that interval and work backwards. The first
example will be simple. The interval x1 ≤ x ≤ x2 is denoted [x1, x2]. The function m has
this interval for its argument.*

m
(
[x1, x2]

)
=



0 (x1 ≤ x2 ≤ 0)
Ax3

2/3 (x1 ≤ 0 ≤ x2 ≤ L)
AL3/3 (x1 ≤ 0 ≤ L ≤ x2)
A
(
x3

2 − x3
1

)
/3 (0 ≤ x1 ≤ x2 ≤ L)

A
(
L3 − x3

1

)
/3 (0 ≤ x1 ≤ L ≤ x2)

0 (L ≤ x1 ≤ x2)

(4)

The density Ax2 (0 < x < L) is of course a much simpler way to describe the same distri-
bution of mass. This distribution function, m

(
[x1, x2]

)
, comes from integrating the density

function λ(x) = Ax2 on the interval [x1, x2].
Another example is a variation on the same theme. It is slightly more involved, but

still not too bad.

m
(
[x1, x2]

)
=



0 (x1 ≤ x2 ≤ 0)
Ax3

2/3 (x1 ≤ 0 ≤ x2 < L/2)
Ax3

2/3 +m0 (x1 ≤ 0 < L/2 ≤ x2 ≤ L)
AL3/3 +m0 (x1 ≤ 0 < L ≤ x2)
A
(
x3

2 − x3
1

)
/3 (0 ≤ x1 ≤ x2 < L/2)

A
(
x3

2 − x3
1

)
/3 +m0 (0 ≤ x1 < L/2 ≤ x2 ≤ L)

A
(
L3 − x3

1

)
/3 +m0 (0 ≤ x1 ≤ L/2 < L ≤ x2)

A
(
x3

2 − x3
1

)
/3 (L/2 < x1 ≤ x2 ≤ L)

A
(
L3 − x3

1

)
/3 (L/2 < x1 ≤ L ≤ x2)

0 (L ≤ x1 ≤ x2)

(5)

* I’m abusing the notation here. In (2) m is a number. In (4) m is a function. You’re
used to this, and physicists do it all the time despite reproving glances from mathematicians.
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If you read through all these cases, you will see that the only thing that I’ve added to the
first example is a point mass m0 at the point L/2. What density function λ will produce
this distribution? Answer: No function will do this. That’s why the concept of a “generalized
function” appeared. I could state this distribution function in words by saying

“Take Eq. (4) and if [x1, x2] contains the point L/2 then add m0.”

That there’s no density function λ that will do this is inconvenient but not disastrous.
When the very idea of a density was defined in Eq. (1), it started with the distribution
function, the mass within the volume, and only arrived at the definition of a density by some
manipulations. The density is a type of derivative and not all functions are differentiable.
The function m

(
[x1, x2]

)
or m

(
V
)

is more fundamental than is the density function.

17.2 Functionals

F [φ] =

∫ ∞

−∞
dx f(x)φ(x)

defines a scalar-valued function of a function variable. Given any (reasonable) function φ as
input, it returns a scalar. That is a functional. This one is a linear functional because it
satisfies the equations

F [aφ] = aF [φ] and F [φ1 + φ2] = F [φ1] + F [φ2] (6)

This isn’t a new idea, it’s only a restatement of a familiar idea in another language. The
mass density can define a useful functional (linear density for now). Given dm/dx = λ(x)
what is the total mass? ∫ ∞

−∞
dxλ(x)1 = Mtotal

Where is the center of mass?

1

Mtotal

∫ ∞

−∞
dxλ(x)x = xcm

Restated in the language of functionals,

F [φ] =

∫ ∞

−∞
dxλ(x)φ(x) then Mtotal = F [1], xcm =

1

Mtotal
F [x]

If, instead of mass density, you are describing the distribution of grades in a large class
or the distribution of the speed of molecules in a gas, there are still other ways to use this
sort of functional. If dN/dg = f(g) is the grade density in a class (number of students per
grade interval), then with F [φ] =

∫
dg f(g)φ(g)

Nstudents = F [1], mean grade = ḡ =
1

Nstudents
F [g],

variance = σ2 =
1

Nstudents
F [(g − ḡ)2], skewness =

1

Nstudentsσ3
F [(g − ḡ)3] (7)

kurtosis excess =
1

Nstudentsσ4
F [(g − ḡ)4]− 3
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Unless you’ve studied some statistics, you will probably never have heard of skewness and
kurtosis excess. They are ways to describe the shape of the density function, and for a
Gaussian both these numbers are zero. If it’s skewed to one side the skewness is non-zero.
[Did I really say that?] The kurtosis excess compares the flatness of the density function to
that of a Gaussian. If it is positive the distribution has more values that are both near the
mean and much farther away from the mean than for a Gaussian.

The Maxwell-Boltzmann function describing the speeds of molecules in an ideal gas is

fMB(v) =
( m

2πkT

)3/2
4πv2e−mv2/kT (8)

This is not dN/dv, the number of molecules per speed interval, it is instead normalized as
(dN/dv)/Ntotal. It is the fraction of the molecules per speed interval. That saves carrying
along a factor specifying the total number of molecules in the gas. I could have done the same
thing in the preceding example of student grades, defining the functional F1 = F/Nstudents.
Then the equations (7) would have a simpler appearance, such as ḡ = F1[g]. For the present
case of molecular speeds, with F [φ] =

∫∞
0 dv fMB(v)φ(v),

F [1] = 1, F [v] = v̄ =

√
8kT

πm
, F [mv2/2] = K.E. =

3

2
kT (9)

Notice that the mean kinetic energy is not the kinetic energy that corresponds to the mean
speed.

Look back again to section 12.1 and you’ll see not only a definition of “function” but a
definition of “functional.” It looks different from what I’ve been using here, but look again
and you will see that when you view it in the proper light, that of chapter six, they are the
same. Equations (12.3)–(12.5) involved vectors, but remember that when you look at them
as elements of a vector space, functions are vectors too.

Functional Derivatives
In section 16.2, equations (16.6) through (16.10), you saw a development of the functional
derivative. What does that do in this case?

F [φ] =

∫
dx f(x)φ(x), so F [φ+ δφ]− F [φ] =

∫
dx f(x)δφ(x)

The functional derivative is the coefficient of δφ and dx, so it is

δF

δφ
= f (10)

That means that the functional derivative of m
(
[x1, x2]

)
in Eq. (4) is the linear mass density,

λ(x) = Ax2, (0 < x < L). Is there such a thing as a functional integral? Yes, but not here,
as it goes well beyond the scope of this chapter. Its development is central in quantum field
theory.
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17.3 Generalization
Given a function f , I can create a linear functional F using it as part of an integral. What
sort of linear functional arises from f ′? Integrate by parts to find out. Here I’m going to
have to assume that f or φ or both vanish at infinity, or what I want to do won’t work.

F [φ] =

∫ ∞

−∞
dx f(x)φ(x), then∫ ∞

−∞
dxf ′(x)φ(x) = f(x)φ(x)

∣∣∣∞
−∞
−
∫ ∞

−∞
dx f(x)φ′(x) = −F [φ′] (11)

In the same way, you can relate higher derivatives of f to the functional F . There’s another
restriction you need to make: For this functional −F [φ′] to make sense, the function φ has
to be differentiable. If you want higher derivatives of f , then φ needs to have still higher
derivatives.

If you know everything about F , what can you determine about f? If you assume that
all the functions you’re dealing with are smooth, having as many derivatives as you need,
then the answer is simple: everything. If I have a rule from which I get a number F [φ] for
every (smooth) φ, then I can take a special case for φ and use it to find f . Use a φ that
drops to zero very rapidly away from some given point; for example if n is large this function
drops off rapidly away from the point x0.

f

φn

φn(x) =

√
n

π
e−n(x−x0)

2

I’ve also arranged so that its integral of φn over all x is one.
If I want the value of f at x0 I can do an integral and take
a limit.

F [φn] =

∫ ∞

−∞
dx f(x)φn(x) =

∫ ∞

−∞
dx f(x)

√
n

π
e−n(x−x0)

2

As n increases to infinity, all that matters for f is its value at x0. The integral becomes

lim
n→∞

∫ ∞

−∞
dx f(x0)

√
n

π
e−n(x−x0)

2

= f(x0) (12)

This means that I can reconstruct the function f if I know everything about the functional
F . If I want the value of the derivative f ′(x0) instead, I simply use the function −φ′n and
take the same limit. This construction is another way to look at the functional derivative.
The equations (10) and (12) produce the same answer.

You say that this doesn’t sound very practical? That it’s an awfully difficult and
roundabout way to do something? Not really. It goes back to the ideas of section 17.1. To
define a density you have to know how much mass is contained in an arbitrarily specified
volume. That’s a functional. It didn’t look like a functional there, but it is. You just have
to rephrase it to see that it’s the same thing.

As before, do the linear mass density case and define F [φ] =
∫∞
−∞ dxλ(x)φ(x). Then

m
(
[x1, x2]

)
is that mass contained in the interval from x1 to x2 and you can rewrite this as
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a functional.

Let φ be the step function φ(x) =

{
1 (x1 ≤ x ≤ x2)
0 (otherwise)

}
then

∫ x2

x1

dxλ(x) = F [φ] = m
(
[x1, x2]

)
What happens if the function f is itself not differentible? I can still define the original

functional. Then I’ll see what implications I can draw from the functional itself. The first
and most important example of this is for f a step function.

f(x) = θ(x) =

{
1 (x ≥ 0)
0 (x < 0)

F [φ] =

∫ ∞

−∞
dx θ(x)φ(x) (13)

θ has a step at the origin, so of course it’s not differentiable there, but if it were possible
in some way to define its derivative, then when you look at its related functional, it should
give the answer −F [φ′], just as for any other function. What then is −F [φ′]?

−F [φ′] = −
∫ ∞

−∞
dx θ(x)φ′(x) = −

∫ ∞

0
dxφ′(x) = −φ(x)

∣∣∣∞
0

= φ(0) (14)

This defines a perfectly respectable linear functional. Input the function φ and output the
value of the function at zero. It easily satisfies Eq. (6), but there is no function f that
when integrated against φ will yield this result. Still, it is so useful to be able to do these
manipulations as if such a function exists that the notation of a “delta function” was invented.
This is where the idea of a generalized function enters.

Green’s functions
In the discussion of the Green’s function solution to a differential equation in section 4.5, I
started with the differential equation

mẍ+ kx = Fext(t)

and found a general solution in Eq. (4.30). This approach pictured the external force as a
series of small impulses and added the results from each.

x

t′

impulse

t

x(t) =

∫ ∞

−∞
dt′G(t− t′)F (t′) where G(t) =

{
1

mω0
sinω0t (t ≥ 0)

0 (t < 0)
(15)
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I wrote it a little differently there, but it’s the same. Can you verify that this is a solution
to the stated differential equation? Simply plug in, do a couple of derivatives and see what
happens. One derivative at a time:

dx

dt
=

∫ ∞

−∞
dt′ Ġ(t− t′)F (t′) where Ġ(t) =

{
1
m cosω0t (t ≥ 0)
0 (t < 0)

(16)

Now for the second derivative. Oops. I can’t differentiate Ġ. It has a step at t = 0.
This looks like something you saw in a few paragraphs back, where there was a step

in the function θ. I’m going to handle this difficulty now by something of a kludge. In the
next section you’ll see the notation that makes this manipulation easy and transparant. For
now I will subtract and add the discontinuity from Ġ by using the same step function θ.

Ġ(t) =

{
1
m

[
cosω0t− 1 + 1

]
(t ≥ 0)

0 (t < 0)

=

{
1
m

[
cosω0t− 1

]
(t ≥ 0)

0 (t < 0)

}
+

1

m
θ(t) = Ġ0(t) +

1

m
θ(t) (17)

The (temporary) notation here is that Ġ0 is the part of Ġ that doesn’t have the discontinuity
at t = 0. That part is differentiable. The expression for dx/dt now has two terms, one from
the Ġ0 and one from the θ. Do the first one:

d

dt

∫ ∞

−∞
dt′ Ġ0(t− t′)F (t′) =

∫ ∞

−∞
dt′

d

dt
Ġ0(t− t′)F (t′)

and
d

dt
Ġ0(t) =

{
1
m [−ω0 sinω0t] (t ≥ 0)
0 (t < 0)

The original differential equation involved mẍ+ kx. The Ġ0 part of this is

m

∫ ∞

−∞
dt′
{

1
m [−ω0 sinω0(t− t′)] (t ≥ t′)
0 (t < t′)

}
F (t′)

+ k

∫ ∞

−∞
dt′
{

1
mω0

sinω0(t− t′) (t ≥ t′)

0 (t < t′)

}
F (t′)

Use k = mω2
0, and this is zero.

Now go back to the extra term in θ. The kx terms doesn’t have it, so all that’s needed
is

mẍ+ kx = m
d

dt

∫ ∞

−∞
dt′

1

m
θ(t− t′)F (t′) =

d

dt

∫ t

−∞
dt′ F (t′) = F (t)

This verifies yet again that this Green’s function solution works.

17.4 Delta-function Notation
Recognizing that it would be convenient to be able to differentiate non-differentiable func-
tions, that it would make manipulations easier if you could talk about the density of a point
mass (m/0 =?), and that the impulsive force that appears in setting up Green’s functions
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for the harmonic oscillator isn’t a function, what do you do? If you’re Dirac, you invent a
notation that works.

Two functionals are equal to each other if they give the same result for all arguments.
Does that apply to the functions that go into defining them? If∫ ∞

−∞
dx f1(x)φ(x) =

∫ ∞

−∞
dx f2(x)φ(x)

for all test functions φ (smooth, infinitely differentiable, going to zero at infinity, whatever
constraints we find expedient), does it mean that f1 = f2? Wellll, no. Suppose that I change
the value of f1 at exactly one point, adding 1 there and calling the result f2. These functions
aren’t equal, but underneath an integral sign you can’t tell the difference. In terms of the
functionals they define, they are essentially equal: “equal in the sense of distributions.”

Extend this to the generalized functions
The equation (14) leads to specifying the functional

δ[φ] = φ(0) (18)

This delta-functional isn’t a help in doing manipulations, so define the notation∫ ∞

−∞
dx δ(x)φ(x) = δ[φ] = φ(0) (19)

This notation isn’t an integral in the sense of something like section 1.6, and δ(x) isn’t a
function, but the notation allows you effect manipulations just as if they were. Note: the
symbol δ here is not the same as the δ in the functional derivative. We’re just stuck with
using the same symbol for two different things. Blame history and look at problem 10.

You can treat the step function as differentiable, with θ′ = δ, and this notation leads
you smoothly to the right answer.

Let θx0(x) =

{
1 (x ≥ x0)
0 (x < x0)

= θ(x− x0) then

∫ ∞

−∞
dx θx0(x)φ(x) =

∫ ∞

x0

dxφ(x)

The derivative of this function is

d

dx
θx0(x) = δ(x− x0)

You show this by∫ ∞

−∞
dx

dθx0(x)

dx
φ(x) = −

∫ ∞

−∞
dx θx0(x)φ

′(x) = −
∫ ∞

x0

dxφ′(x) = φ(x0)

The idea of a generalized function is that you can manipulate it as if it were an ordinary
function provided that you put the end results of your manipulations under an integral.

The above manipulations for the harmonic oscillator, translated to this language be-
come

mG̈+ kG = δ(t) for G(t) =

{
1

mω0
sinω0t (t ≥ 0)

0 (t < 0)
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Then the solution for a forcing function F (t) is

x(t) =

∫ ∞

−∞
G(t− t′)F (t′) dt′

because

mẍ+ kx =

∫ ∞

−∞

(
mG̈+ kG

)
F (t′) dt′ =

∫ ∞

−∞
δ(t− t′)F (t′) dt′ = F (t)

This is a lot simpler. Is it legal? Yes, though it took some serious mathematicians (Schwartz,
Sobolev) some serious effort to develop the logical underpinnings for this subject. The result
of their work is: It’s o.k.

17.5 Alternate Approach
This delta-function method is so valuable that it’s useful to examine it from more than
one vantage. Picture a sequence of smooth functions that get narrower and taller as the
parameter n gets bigger. Examples are√

n

π
e−nx2

,
n

π

1

1 + n2x2
,

1

π

sinnx

x
,

n

π
sechnx (20)

Pick any one such sequence and call it δn(x). (A “delta sequence”) The factors in each case
are arranged so that ∫ ∞

−∞
dx δn(x) = 1

As n grows, each function closes in around x = 0 and becomes very large there. Because
these are perfecty smooth functions there’s no question about integrating them.∫ ∞

−∞
dx δn(x)φ(x) (21)

makes sense as long as φ doesn’t cause trouble. You will typically have to assume that the
φ behave nicely at infinity, going to zero fast enough, and this is satisfied in the physics
applications that we need. For large n any of these functions looks like a very narrow spike.
If you multiply one of these δns by a mass m, you have a linear mass density that is (for
large n) concentrated near to a point: λ(x) = mδn(x). Of course you can’t take the limit as
n → ∞ because this doesn’t have a limit. If you could, then that would be the density for
a point mass: mδ(x).

δn

φ

What happens to (21) as n → ∞? For large n any of these
delta-sequences approaches zero everywhere except at the origin.
Near the origin φ(x) is very close to φ(0), and the function δn is
non-zero in only the tiny region around zero. If the function φ is
simply continuous at the origin you have

lim
n→∞

∫ ∞

−∞
dx δn(x)φ(x) = φ(0) . lim

n→∞

∫ ∞

−∞
dx δn(x) = φ(0) (22)
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At this point I can introduce a notation:

“

∫ ∞

−∞
dx δ(x)φ(x)” MEANS lim

n→∞

∫ ∞

−∞
dx δn(x)φ(x) (23)

In this approach to distirbutions the collection of symbols on the left has for its definition
the collection of symbols on the right. Those in turn, such as

∫
, have definitions that go

back to the fundamentals of calculus. You cannot move the limit in this last integral under
the integral sign. You can’t interchange these limits because the limit of δn is not a function.

In this development you say that the delta function is a notation, not for a function,
but for a process (but then, so is the integral sign). That means that the underlying idea
always goes back to a familiar, standard manipulation of ordinary calculus. If you have an
equation involving such a function, say

θ′(x) = δ(x), then this means θ′n(x) = δn(x) and that

lim
n→∞

∫ ∞

−∞
dx θ′n(x)φ(x) = lim

n→∞

∫ ∞

−∞
dx δn(x)φ(x) = φ(0) (24)

How can I tell if this equation is true? Remember now that these are sequences of ordinary,
well-behaved functions, so I can do ordinary manipulations such as partial integration. The
functions θn are smooth and I will assume that they rise from zero to one as x goes from −∞
to +∞. As n becomes large, the interval over which this rise occurs will become narrower
and narrower. In the end these θn will approach the step function θ(x) of Eq. (13).∫ ∞

−∞
dx θ′n(x)φ(x) = θn(x)φ(x)

∣∣∣∣∞
−∞
−
∫ ∞

−∞
dx θn(x)φ′(x)

The functions φ go to zero at infinity — they’re “test functions” — and that kills the
boundary terms, leaving the last integral standing by itself. Take the limit as n→∞ on it.
You can take the limit inside the integral now, because the limit of θn is a perfectly good
function, even if it is discontinuous.

− lim
n

∫ ∞

−∞
dx θn(x)φ′(x) = −

∫ ∞

−∞
dx θ(x)φ′(x) = −

∫ ∞

0
dxφ′(x) = −φ(x)

∣∣∣∣∞
0

= φ(0)

This is precisely what the second integral in Eq. (24) is. This is the proof that θ′ = δ.
Any proof of an equation involving such generalized functions requires you to integrate the
equation against a test function and to determine if the resulting integral becomes an identity
as n → ∞. This implies that it now makes sense to differentiate a discontinuous function
— as long as you mean differentiation “in the sense of distributions.” That’s the jargon you
encounter here. An equation such as θ′ = δ makes sense only when it is under an integral
sign and is interpreted in the way that you just saw.

In these manipulations, where did I use the particular form of the delta sequence?
Never. A particular combination such as

θn(x) =
1

2

[
1 +

2

π
tan−1 nx

]
, and δn(x) =

n

π

1

1 + n2x2
(25)
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never appeared. Any of the other sequences would have done just as well, and all that I
needed was the properties of the sequence, not its particular representation. You can even
use a delta sequence that doesn’t look like any of the functions in Eq. (20).

δn(x) = 2

√
2n

π
einx2

(26)

This turns out to have all the properties that you need, though again, you don’t have to
invoke its explicit form.

What is δ(ax)? Integrate δn(ax) with a test function.

lim
n

∫ ∞

−∞
dx δn(ax)φ(x) = lim

n

∫ ∞

−∞

dy

a
δn(y)φ(y/a)

where y = ax. Actually, this isn’t quite right. If a > 0 it is fine, but if a is negative, then
when x→ −∞ you have y → +∞. You have to change the limits to put it in the standard
form. You can carry out that case for yourself and verify that the expression covering both
cases is

lim
n

∫ ∞

−∞
dx δn(ax)φ(x) = lim

n

∫ ∞

−∞

dy

|a|
δn(y)φ(y/a) =

1

|a|
φ(0)

Translate this into the language of delta functions and it is

δ(ax) =
1

|a|
δ(x) (27)

You can prove other relations in the same way. For example

δ(x2 − a2) =
1

2|a|
[
δ(x− a) + δ(x+ a)

]
or δ

(
f(x)

)
=
∑

k

1

|f ′(xk)|
δ(x− xk) (28)

In the latter equation, xk is a root of f , and you sum over all roots. Notice that it doesn’t
make any sense if you have a double root. Just try to see what δ(x2) would mean. The last
of these identities contains the others as special cases. Eq. (27) implies that δ is even.

17.6 Differential Equations
Where do you use these delta functions? Start with differential equations. I’ll pick one
that has the smallest number of technical questions associated with it. I want to solve the
equation

d2f

dx2
− k2f = F (x) (29)

subject to conditions that f(x) should approach zero for large magnitude x. I’ll assume that
the given function F has this property too.

But first: Let k and y be constants, then solve

d2g

dx2
− k2g = δ(x− y) (30)
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I want a solution that is well-behaved at infinity, staying finite there. This equality is “in
the sense of distributions” recall, and I’ll derive it a couple of different ways.

First way: Treat the δ as simply a spike at x = y. Everywhere else on the x-axis it is
zero. Solve the equation for two cases then, x < y and x > y. In both cases the form is the
same.

g′′ − k2g = 0, so g(x) = Aekx +Be−kx

For x < y, I want g(x) to go to zero far away, so that requires the coefficient of e−kx to be
zero. For x > 0, the reverse is true and only the e−kx can be present.

g(x) =

{
Aekx (x < y)
Be−kx (x > y)

Now I have to make g satisfy Eq. (30) at x = y.
Compute dg/dx. But wait. I can’t do this unless the function is at least continuous.

If it isn’t then I’d be differentiating a step function and I don’t want to do that (at least not
yet). That is

g(y−) = Aeky = g(y+) = Be−ky (31)

This is one equation in the two unknowns A and B. Now differentiate.

dg

dx
=

{
Akekx (x < y)
−Bke−kx (x > y)

(32)

This is in turn differentiable everywhere except at x = y. There it has a step

discontinuity in g′ = g′(y+)− g′(y−) = −Bke−ky − Akeky

This means that (32) is the sum of two things, one differentiable, and the other a step, a
multiple of θ.

dg

dx
= differentiable stuff +

(
−Bke−ky − Akeky

)
θ(x− y)

The differentiable stuff satisfies the differential equation g′′−k2g = 0. For the rest, Compute
d2g/dx2 (

−Bke−ky − Akeky
) d
dx
θ(x− y) =

(
−Bke−ky − Akeky

)
δ(x− y)

Put this together and remember the equation you’re solving, Eq. (30).

g′′ − k2g = 0 (from the differentiable stuff)

+
(
−Bke−ky − Akeky

)
δ(x− y) = δ(x− y)

Now there are two equations for A and B, this one and Eq. (31).

Aeky = Be−ky

−Bke−ky − Akeky = 1
solve these to get

A = −e−ky/2k

B = −eky/2k
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Finally, back to g.

g(x) =

{
−ek(x−y)/2k (x < y)
−e−k(x−y)/2k (x > y)

(33)

When you get a fairly simple form of solution such as this, you have to see if you could
have saved some work, perhaps replacing brute labor with insight? Of course. The original
differential equation (30) is symmetric around the point y. It’s plausible to look for a solution
that behaves the same way, using (x − y) as the variable instead of x. Either that or you
could do the special case y = 0 and then change variables at the end to move the delta
function over to y. See problem 11.

There is standard notation for this function; it is a Green’s function.

G(x, y) =

{
−ek(x−y)/2k (x < y)
−e−k(x−y)/2k (x > y)

}
= −e−k|x−y|/2k (34)

Now to solve the original differential equation, Eq. (29). Substitute into this equation
the function ∫ ∞

−∞
dy G(x, y)F (y)[

d2

dx2
− k2

] ∫ ∞

−∞
dy G(x, y)F (y) =

∫ ∞

−∞
dy

[
d2G(x, y)

dx2
− k2G(x, y)

]
F (y)

=

∫ ∞

−∞
dy δ(x− y)F (y) = F (x)

This is the whole point of delta functions. They make this sort of manipulation as easy as
dealing with an ordinary function. Easier, once you’re used to them.

For example, if F (x) = F0 between −x0 and +x0 and zero elsewhere, then the solution
for f is∫

dy G(x, y)F (y) = −
∫ x0

−x0

dy F0e
−k|x−y|/2k

= −F0

2k


∫ x0

−x0
dy e−k(x−y) (x > x0)∫ x

−x0
dy e−k(x−y) +

∫ x0

x dy e−k(y−x) (−x0 < x < x0)∫ x0

−x0
dy e−k(y−x) (x < −x0)

= −F0

k2

 e−kx sinh kx0 (x > x0)
[1− e−kx0 cosh kx] (−x0 < x < x0)
ekx sinh kx0 (x < −x0)

(35)

You can see that this resulting solution is an even function of x, necessarily so because the
original differential equation is even in x, the function F (x) is even in x, and the boundary
conditions are even in x.
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17.7 Using Fourier Transforms
Solve Eq. (30) another way. Fourier transform everything in sight.

d2g

dx2
− k2g = δ(x− y) →

∫ ∞

−∞
dx

[
d2g

dx2
− k2g

]
e−iqx =

∫ ∞

−∞
dx δ(x− y)e−iqx (36)

The right side is designed to be easy. For the left side, do some partial integrations. I’m
looking for a solution that goes to zero at infinity, so the boundary terms will vanish. See
Eq. (15.12). ∫ ∞

−∞
dx
[
− q2 − k2

]
g(x)e−iqx = e−iqy (37)

The left side involves only the Fourier transform of g. Call it g̃.[
− q2 − k2

]
g̃(q) = e−iqy, so g̃(q) = − e−iqy

q2 + k2

Now invert the transform.

g(x) =

∫ ∞

−∞

dq

2π
g̃(q)eiqx = −

∫ ∞

−∞

dq

2π

eiq(x−y)

q2 + k2

Do this by contour integration, where the integrand has singularities at q = ±ik.

− 1

2π

∫
C1

dq
eiq(x−y)

k2 + q2
C1

The poles are at ±ik, and the exponential dominates the behavior of the integrand at large
|q|, so there are two cases: x > y and x < y. Pick the first of these, then the integrand
vanishes rapidly as q → +i∞.

C2 C3 C4 C5

∫
C1

=

∫
C5

=
−2πi

2π
Res
q=ik

eiq(x−y)

k2 + q2

Compute the residue.

eiq(x−y)

k2 + q2
=

eiq(x−y)

(q − ik)(q + ik)
≈ eiq(x−y)

(q − ik)(2ik)

Multiply the coefficient of 1/(q − ik) is the residue, so

g(x) = −e
−k(x−y)

2k
(x > y) (38)

in agreement with Eq. (33). The x < y case is yours.
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17.8 More Dimensions
How do you handle problems in three dimensions? δ(~r ) = δ(x)δ(y)δ(z). For example I can
describe the charge density of a point charge, dq/dV as qδ(~r − ~r0). The integral of this is∫

qδ(~r − ~r0) d3r = q

as long as the position ~r0 is inside the volume of integration. For an example that uses this,
look at the potential of a point charge, satisfying Poisson’s equation.

∇2V = −ρ/ε0

What is the potential for a specified charge density? Start by finding the Green’s function.

∇2G = δ(~r ), or instead do: ∇2G− k2G = δ(~r ) (39)

The reason for starting with the latter equation is that you run into some problems with the
first form. It’s too singular. I’ll solve the second one and then take the limit as k → 0. The
Fourier transform method is simpler, so use that.∫

d3r
[
∇2G− k2G

]
e−i~q .~r = 1

When you integrate by parts (twice) along each of the three integration directions dx, dy,
and dz, you pull down a factor of −q2 = −q2x − q2y − q2z just as in one dimension.∫

d3r
[
− q2G− k2G

]
e−i~q .~r = 1 or G̃(~q ) =

−1

q2 + k2

where G̃ is, as before, the Fourier transform of G.
Now invert the transform. Each dimension picks up a factor of 1/2π.

G(~r ) = −
∫

d3q

(2π)3
ei~q

.~r

q2 + k2

This is a three dimensional integral, and the coordinate system to choose is spherical. q2

doesn’t depend on the direction of ~q, and the only place that this direction matters is in the
dot product in the exponent. The coordinates are q, θ, φ for the vector ~q, and since I can
pick my coordinate system any way I want, I will pick the coordinate axis along the direction
of the vector ~r. Remember that in this integral ~r is just some constant.

G = − 1

(2π)3

∫
q2 dq sin θ dθ dφ

eiqr cos θ

q2 + k2

The integral dφ becomes a factor 2π. Let u = cos θ, and that integral becomes easy. All
that is left is the dq integral.

G = − 1

(2π)2

∫ ∞

0

q2 dq

q2 + k2

1

iqr

[
eiqr − e−iqr

]
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More contour integrals: There are poles in the q-plane at q = ±ik. The q2 factors are
even. The q in the denominator would make the integrand odd except that the combination
of exponentials in brackets are also odd. The integrand as a whole is even. I will then extend
the limits to ±∞ and divide by 2.

G = − 1

8π2ir

∫ ∞

−∞

q dq

q2 + k2

[
eiqr − e−iqr

]
There are two terms; start with the first one. r > 0, so eiqr → 0 as q → +i∞. The contour
is along the real axis, so push it toward i∞ and pick up the residue at +ik.

− 1

8π2ir

∫
= − 1

8π2ir
2πi Res

q=ik

q

(q − ik)(q + ik)
eiqr = − 1

8π2ir
2πi

ik

2ik
e−kr (40)

For the second term, see problem 15. Combine it with the preceding result to get

G = − 1

4πr
e−kr (41)

This is the solution to Eq. (39), and if I now let k go to zero, it is G = −1/4πr.
Just as in one dimension, once I have the Green’s function, I can write down the

solution to the original equation.

∇2V = −ρ/ε0 =⇒ V = − 1

ε0

∫
d3r′G(~r, ~r ′)ρ(~r ′) =

1

4πε0

∫
d3r′

ρ(~r ′)

|~r − ~r ′|
(42)

State this equation in English, and it says that the potential of a single point charge
is q/4πε0r and that the total potential is the sum over the contributions of all the charges.
Of course this development also provides the Green’s function for the more complicated
equation (41).

Applications to Potentials
Let a charge density be qδ(~r ). This satisfies

∫
d3r ρ = q. The potential it generates is that

of a point charge at the origin. This just reproduces the Green’s function.

φ =
1

4πε0

∫
d3r′ q δ(~r ′)

1

|~r − ~r ′|
=

q

4πε0r
(43)

What if ρ(~r ) = −p ∂δ(~r )/∂z? [Why −p? Patience.] At least you can say that the
dimensions of the constant p are charge times length. Now use the Green’s function to
compute the potential it generates.

φ =
1

4πε0

∫
d3r′ (−p)∂δ(~r

′)

∂z′
1

|~r − ~r ′|
=

p

4πε0

∫
d3r′ δ(~r ′)

∂

∂z′
1

|~r − ~r ′|

=
p

4πε0

∂

∂z′
1

|~r − ~r ′|

∣∣∣∣
~r ′=0

(44)

This is awkward, so I’ll use a little trick. Make a change of variables in (44) ~u = ~r−~r ′, then

∂

∂z′
→ − ∂

∂uz
,

p

4πε0

∂

∂z′
1

|~r − ~r ′|

∣∣∣∣
~r ′=0

= − p

4πε0

∂

∂uz

1

u
(45)
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(See also problem 19.) Cutting through the notation, this last expression is just

φ =
−p
4πε0

∂

∂z

1

r
=
−p
4πε0

∂

∂z

1√
x2 + y2 + z2

=
p

4πε0

z(
x2 + y2 + z2

)3/2

=
p

4πε0

z

r3
=

p

4πε0

cos θ

r2
(46)

The expression −∂(1/r)/∂z is such a simple way to compute this, the potential of an
electric dipole, that it is worth trying to understand why it works. And in the process, why is
this an electric dipole? The charge density, the source of the potential is a derivative, and a
derivative is (the limit of) a difference quotient. This density is just that of two charges, and
they produce potentials just as in Eq. (43). There are two point charges, with delta-function
densities, one at the origin the other at −ẑ∆z.

ρ =
−p
∆z

[
δ(~r + ẑ∆z)− δ(~r )

]
gives potential

−p
4πε0∆z

[
1

|~r + ẑ∆z|
− 1

r

]
(47)

P

r1 = r

r2
q

−q

q r1

r2

P2

P1

(a) (b)

The picture of the potential that arises from this pair of charges is (a). A negative charge
(−q = −p/∆z) at −ẑ∆z and a corresponding positive charge +q at the origin. This picture
explains why this charge density, ρ(~r ) = −p ∂δ(~r )/∂z, represent an electric dipole. Specifi-
cally it represents a dipole whose vector representation points toward +ẑ, from the negative
charge to the positive one. It even explains why the result (46) has the sign that it does:
The potential φ is positive along the positive z-axis and negative below. That’s because a
point on the positive z-axis is closer to the positive charge than it is to the negative charge.

Now to understand why the potential of this dipole ends up with as simple a result
as (−p/4πε0)∂(1/r)/∂z: The potential at the point P in the figure (a) comes from the two
charges at the two distances r1 and r2. Construct figure (b) by moving the line r2 upward
so that it starts at the origin. Imagine a new charge configuration consisting of only one
charge, q = p/∆z at the origin. Now evaluate the potentials that this single charge produces
at two different points P1 and P2 that are a distance ∆z apart. Then subtract them.

φ(P2)− φ(P1) =
q

4πε0

[
1

r2
− 1

r1

]
In the notation of the preceeding eqations this is

φ(P2)− φ(P1) =
q

4πε0

[
1

|~r + ẑ∆z|
− 1

r

]
=

p

4πε0∆z

[
1

|~r + ẑ∆z|
− 1

r

]
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Except for a factor of (−1), this is Eq. (47), and it explains why the potential caused by an
ideal electric dipole at the origin can be found by taking the potential of a point charge and
differentiating it.

φpoint charge =
q

4πε0r
φdipole = −a ∂

∂z
φpoint charge

Here I let the electric dipole strength be qa.
Can you repeat this process? Yes. Instead of two opposite point charges near each

other, you can place two opposite point dipoles near each other.

φlinear quadrupole = −a ∂
∂z
φdipole (48)

This is the potential from the charge density ρ = +Q∂2δ(~r)/∂z2, where Q = qa2. [What
about ∂2/∂x∂y?]
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Problems

17.1 Calculate the mean, the variance, the skewness, and the kurtosis excess for a Gaussian:

f(g) = Ae−B(g−g0)
2

(−∞ < g <∞).

17.2 Calculate the mean, variance, skewness, and the kurtosis excess for a flat distribution,
f(g) = constant, (0 < g < gmax). Ans: Var = g2

m/12 kurt. exc. = −6/5

17.3 Derive the results stated in Eq. (9). Compare mv̄2/2 to K.E. Compare this to the
results of problem 2.48.

17.4 Show that you can rewrite Eq. (16) as an integral
∫ t
−∞ dt′ 1

m cosω0(t − t′)F (t′) and
differentiate this directly, showing yet again that (15) satisfies the differential equation.

17.5 What are the units of a delta function?

17.6 Show that
δ
(
f(x)

)
= δ(x− x0)/|f ′(x0)|

where x0 is the root of f . Assume just one root for now, and the extension to many roots
will turn this into a sum as in Eq. (28).

17.7 Show that

(a)xδ′(x) = −δ(x) (b)xδ(x) = 0

(c) δ′(−x) = −δ′(x) (d) f(x)δ(x− a) = f(a)δ(x− a)

17.8 Verify that the functions in Eq. (20) satisfy the requirements for a delta sequence. Are
they normalized to have an integral of one? Sketch each. Sketch Eq. (26). It’s complex, so
sketch both parts. How can a delta sequence be complex? Verify that the imaginary part of
this function doesn’t contribute.

17.9 What is the analog of Eq. (25) if δn is a sequence of Gaussians:
√
n/π e−nx2

?
Ans: in the form [1 + erf]/2

17.10 Interpret the functional derivative of the functional in Eq. (18): δ δ[φ]
/
δφ. Despite

appearances, this actually makes sense. Ans: δ(x)

17.11 Repeat the derivation of Eq. (33) but with less labor, selecting the form of the function
g to simplify the work. In the discussion following this equation, reread the comments on
this subject.

17.12 Verify the derivation of Eq. (35). Also examine this solution for the cases that x0 is
very large and that it is very small.

17.13 Fill in the steps in section 17.7 leading to the Green’s function for g′′ − k2g = δ.
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17.14 Derive the analog of Eq. (38) for the case x < y.

17.15 Calculate the contribution of the second exponential factor leading to Eq. (40).

17.16 Starting with the formulation in Eq. (23), what is the result of δ′ and of δ′′ on a test
function? Draw sketches of a typical δn, δ′n, and δ′′n.

17.17 If ρ(~r ) = qa2 ∂2δ(~r )/∂z2 compute the potential and sketch the charge density. You
should express your answer in spherical cooridinates as well as rectangular, perhaps com-
menting on the nature of the results and relating it to functions you have encountered before.
What is a picture of this charge density? You can do this calculation in either rectangular
or spherical coordinates. Ans: ∝ P2(cos θ)/r3

17.18 What is a picture of the charge density ρ(~r ) = qa2 ∂2δ(~r )/∂x∂y?
(Planar quadrupole) What is the potential for this case?

17.19 In Eq. (45) I was not at all explicit about which variables are kept constant in each
partial derivative. Sort this out for both ∂/∂z′ and for ∂/∂uz.

17.20 Use the results of the problem 16, showing graphs of δn and its derivatives. Look
again at the statements leading up to Eq. (31), that g is continuous, and ask what would
happen if it is not. Think of the right hand side of Eq. (30) as a δn too in this case, and
draw a graph of the left side of the same equation if gn is assumed to change very fast,
approaching a discontinuous function as n → ∞. Demonstrate by looking at the graphs of
the left and right side of the equation that this can’t be a solution and so that g must be
continuous as claimed.

17.21 Calculate the mean, variance, skewness, and the kurtosis excess for the density f(g) =
A[δ(g) + δ(g − g0) + δ(g − xg0)]. See how these results vary with the parameter x.
Ans: skewness = 2−3/2(1 + x)(x− 2)(2x− 1)/

(
1− x+ x2

)
kurt. excess = −3 + 3/4

(
1 + x4 + (1− x)4

)
/
(
1− x+ x2

)2
17.22 Calculate the potential of a linear quadrupole as in Eq. (48). Also, what is the
potential of the planar array mentioned there? You should be able to express the first of
these in terms of familiar objects.
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cycloid, 388, 406
.
data compression, 277
daughter, 88
∇, 178, 185, 212, 215, 385, 386

components 216
identities 217

∇2, 220, 250
∇i, 222
δ(x), 416
δij , 121, 144, 166, 229
delta function, 414, 418
delta sequence, 417
delta-functional, 416
density, 409
derivative, 9, 135, 332, 343
derivative, numerical, 263–265
determinant, 78–83, 145–154, 163

of composition 151
diagonal, 151
diagonalize, 187
diamonds, 202
dielectric tensor, 290, 301
difference equation, 274
differential, 171–176, 184, 386
differential equation, 26, 53, 414

Greens’ function 421
inhomogeneous 419
constant coefficient 65, 274
eigenvector 154
Fourier 95, 101
Green’s function 75
indicial equation 73
inhomogeneous 68
linear, homogeneous 65
matrix 159
numerical solution 270–274
ordinary 65–83
partial 232–250, 281–283
separation of variables 77
series solution 71
simultaneous 80, 154
singular point 71
trigonometry 74, 87
vector space 117

differential operator, 212
differentiation, 345, 373, 384
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diffraction, 36, 47, 60
dimension, 116, 135, 143
dimensional analysis, 39, 354
Dirac, 415
direct basis, 304, 312, 320
disaster, 272
dispersion, 196, 202, 282, 286
dissipation, 282, 283, 286
distribution, 416
divergence, 208–223, 233, 321
divergence theorem, 326
divergence:

components, 210
cylindrical coordinates 213, 217
integral form 210

dog-catcher, 50
domain, 16, 135, 290
Doppler effect, 47
drumhead, 113, 120, 179, 198, 199
dry friction, 65, 89
dumbbell, 139, 164
dx, 171
.
eigenvalue, 96, 152, 161, 279
eigenvector, 152, 159, 161, 166, 279
electric circuit, 77
electric dipole, 46, 200, 230
electric field, 41, 42, 135, 177, 225,

226, 245, 251, 256, 317, 390
electron mass, 226
electrostatic potential, 245
electrostatics, 40, 182, 250, 391
ellipse, 337
ellipsoid, 209
EMF, 333
endpoint variation, 397
energy density, 226, 228, 301
entire function, 362
εijk, 165
equipotential, 177, 188
erf, 6, 19, 22, 284
error function, 6, 19, 45
essential singularity, 347, 363
Euclidean fit, 277, 287
Euler, 384, 393

constant 20
formula 53, 54, 59, 355
method 270, 271, 281, 287

Euler-Lagrange, 386, 399

extrapolation, 284
.
Faraday, 333
Fermat, 389, 402
Florida, 177, 236
fluid:

equilibrium, 227
expansion 208, 210
flow 207, 208
flow rate 204, 205, 227
rotating 209

focal length, 405
focus, 383, 404
focus of lens, 48
focus of mirror, 49
Fourier series, 26, 92, 93–104, 116,

121, 126, 161, 234–250, 368
bases 95
basis 122
best fit 186
does it work? 99
fundamental theorem 96
square wave 94

Fourier sine, cosine, 376
Fourier transform, 368–369, 376, 421,

423
frames, 116
frequency, 372
Frobenius series, 26, 72–74, 87
function, 166, 309, 310, 319, 349

df 171, 172
addition 112
composition 319
definition of 115, 290
elementary 6, 7, 24
linear 135
operator 132

functional, 291–305, 384, 411–416
functional derivative, 386, 393, 396
functional:

derivative, 412
integral 412
3-linear 302
bilinear 293, 294, 298, 300, 301
multilinear 292
n-linear 293
representation 291, 299, 304

fundamental theorem of calculus, 11
.
Gamma function, 6–7, 20, 32
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Gauss, 275, 361
Gauss elimination, 149, 168
Gauss reduction, 146
Gauss’s Theorem, 217, 326, 391
Gaussian, 32, 34, 370, 373, 411, 427
Gaussian integration, 284
Gaussian:

integrals, 5–6, 19, 32
integration 268–269, 285
quadrature 269

generalized function, 414, 418
generating function, 91
geodesic, 382, 386
geometric optics, 194, 196
geometric series, 24, 30, 35
Gibbs phenomenon, 94, 104
glycerine, 400
Google, 160
grade density, 411
gradient, 176–178, 184, 216, 227,

312, 313, 325, 328, 334, 386
covariant components 312
cylindrical coordinates 184
spherical coordinates 185

Gram-Schmidt, 122, 126, 130
graphs, 16–18
grating, 60
gravitational energy, 228
gravitational:

energy, 228
field 184, 199, 218, 226
potential 177, 200, 220, 245

Green’s function, 75–76, 88, 90, 374,
414, 423

.
half-life, 88
Hamiltonian, 388, 398
harmonic oscillator, 53, 65–66, 71,

236, 251
Green’s function 414
critical 87, 158
damped 66, 89
energy 68
forced 68, 69, 100
Green’s function 75, 88
Greens’ function 374
resonance 101

harmonic resonance, 102
Hawaii, 382
heads, 7

heat flow, 232–245
heat flow vector, 233
heat wave, 237
heat, minimum, 198, 201
heated disk, 175
Helmholtz Decomposition, 334
Helmholtz-Hodge, 336
hemisemidemiquaver, 372
Hermite, 127, 166, 284
Hermitian, 160, 334
Hero, 20
Hessian, 186, 402
Hilbert Space, 125
history, blame, 416
Hulk, 50
Huygens, 36
hyperbolic functions, 2–3, 55, 88,

234, 240, 371
inverse 2

.
ideal gas, 412
Idempotent, 160
impact parameter, 193
impulse, 75, 76
independence, 115, 276
index notation, 222, 229, 230, 295,

304
index of refraction, 48, 195, 202, 324
indicial equation, 73
inertia tensor, 161
inertia:

moment of, 12, 139, 165, 181
tensor 134, 138–141, 289, 293,

301, 319
infallible, 38
infinite series, 59, 92
infinite-dimensional, 123
infinitesimal, 171, 172, 310
inflation, 44
instability, 261, 274, 282
integral, 9–15

contour 346
fractional 380
numerical 265–269
principal value 284
Riemann 9
Stieljes 12
surface 205, 210, 214
test 27, 242
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intensity, 36–37, 38, 103, 196
interest rate, 44
interpolation, 259–286
inverse transform, 370
.
Jacobi, 167, 315
.
kinetic energy, 45, 199, 412

density 179
kinks, 399
Klein bottle, 328
kludge, 415
Kramer’s rule, 146, 168
Kronecker delta, 121, 144
kurtosis, 411, 427
.
L-R circuit, 78
Lagrange, 384, 393
Lagrange multiplier, 188–191, 201,

278, 281
Lagrange multipliers, 396
Lagrangian, 396
Laguerre, 72, 284
Lanczos, 269
Laplace, 113, 244, 246, 335, 391, 406
Laplacian, 220, 250, 258
Laurent series, 346, 350, 363, 364
Lax-Friedrichs, 283, 286
Lax-Wendroff, 283, 286
least square, 185, 275, 277, 285
least upper bound, 119
Lebesgue, 12
Legendre, 46, 72, 83–85, 92, 126, 164,

200, 226, 258, 269, 286
Leibnitz, 173
length of curve, 322, 383
lens, 404
limit cycle, 262
line integral, 325, 330, 346
linear charge density, 42, 251
linear:

difference equation, 274, 286
equations 20, 78
function 289
functional 291, 292
independence 115
transformation 135

linearity, 133, 134, 319
Lobatto integration, 286

logarithm, 2, 24, 57, 78, 359
longitude, latitude, 180
Lorentz force, 333
.
m(V ), 410
magnetic field, 184, 198, 227, 308,

317
tensor 166, 301

magnetic flux, 333
magnetic monopole, 340
manifold, 309, 310, 316
mass density, 181, 218, 226
matrix, 120, 136–159, 276, 296

correlation 278
positive definite 187
as operator 150
column 118, 121, 137, 150, 164,

298, 301
diagonal 151
diagonalize? 158
identity 143
inverse transpose 307
multiplication 137, 143
scalar product 120

Maxwell’s equations, 113, 331, 334,
340

Maxwell-Boltzmann, 412
means, 50
mechanics, 395
messy and complicated, 70
metric tensor, 294, 305, 307, 314, 316
microwave, 245
midpoint integration, 11, 266
mirage, 390
Morse Theory, 404
Möbius strip, 328
.
nth mean, 50
natural boundary, 366
New York, 121
Newton, 387, 395

gravity 218–222, 226, 228
method 261

Nilpotent, 160, 167
Noether’s theorem, 398
noise, 280, 285
norm, 118–123, 127, 186
normal modes, 81, 119
.
Oops, 414



434 Index

operator, 132, 135–159
components 136, 156
differential 96, 142
exponential 47, 200
inverse 144
rotation 132, 138, 144
translation 166
vector 217

optical path, 324, 389
optics, 389
order, 347
orientation, 146
Orthogonal, 160, 334
orthogonal coordinate, 180
orthogonal coordinates, 180, 214, 310
orthogonality, 93, 97, 186, 236, 252
orthogonalization, 122
orthonormal, 121
oscillation, 66, 81, 83, 248

coupled 80, 89, 118, 154
damped 67
forced 71
temperature 236, 255

.
panjandrum, 409
paraboloid, 187
parallel axis theorem, 140
parallelepiped, 163, 204, 320
parallelogram, 144, 147, 163
parameters, 39
parametric differentiation, 4, 6, 20
Parseval’s identity, 98, 103, 109, 371
∂i, 222, 229
partial integration, 15, 23, 96, 335,

385, 397, 412
∂S, ∂V , 326
partition function, 191
Pascal’s triangle, 47
Pauli, 165
PDE, numerical, 281
Peano, 111
pendulum, 117
periodic, 53, 246
periodic boundary condition, 249,

368, 376
perpendicular axis theorem, 164
Perron-Frobenius, 160
pinking shears, 358
pitfall, 262

Plateau, 400
Poisson, 220, 423
polar coordinates, 15, 61, 174, 199,

311, 312, 346, 396
polarizability, 135
polarization, 135, 196
polarization identity, 127
pole, 347, 351, 361

order 347, 348
polynomial, 111, 361

characteristic 166
Chebyshev 130
Hermite 127, 166, 284
Laguerre 284
Legendre 46, 84, 85, 91, 126,

164, 200, 228, 230, 258, 269, 428
population density, 409
Postal Service, 120, 202
potential, 46, 220, 222, 228, 245–250,

391, 424
potential energy density, 199
power, 232, 242
power mean, 50
power series, 344, 384
power spectrum, 104
pre-Snell law, 202
pressure tensor, 293
prestissimo, 372
principal components, 279, 287
principal value, 284
probability, 7
product formula, 345
Pythagorean norm, 121
.
quadratic equation, 49, 61
quadrupole, 46, 184, 199, 200, 230
quasi-equilibrium, 71
.
radian, 1
radioactivity, 88
rainbow, 194–196, 202
raising and lowering, 307
random variable, 280
range, 135, 290
ratio test, 27
rational number, 124
reality, 242, 259
reciprocal basis, 303, 307, 310, 312,

320
reciprocal vector, 315
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rectifier, 107
regular point, 71
regular singular point, 71
relation, 290
relativity, 45, 316
residue, 350, 375
residue theorem, 350
resistor, 198, 201
resonance, 101
Reynolds’ transport theorem, 333,

340
Riemann Integral, 9, 345
Riemann Surface, 356, 357, 358, 364
Riemann-Stieljes integral, 12, 165
rigid body, 133, 138, 152, 289
roots of unity, 56
rotation, 132, 135, 137, 144, 209, 214,

299
components 138
composition 143

roundoff error, 274, 285
ruler, 382
Runge-Kutta, 270, 287
Runge-Kutta-Fehlberg, 271
.
saddle, 187
saddle point, 185, 186, 201
scalar product, 94, 101, 118–123,

126, 127, 161, 239, 247, 291, 303,
312

scattering, 193–196
scattering angle, 193, 201
Schwartz, 417
Schwarzenegger, 178
secant method, 263
Self-adjoint, 160
semiperimeter, 20
separated solution, 238
separation of variables, 77, 233–250
series, 24–35

of series 29
absolute convergence 29
common 24
comparison test 27, 28
convergence 26, 44
differential equation 71, 90
double 250, 270
examples 24
exponential 165
faster convergence 46

Frobenius 72–74, 346
geometric 165
hyperbolic sine 240
integral test 27
Laurent 346
power 25, 211, 259
ratio test 27
rearrange 29
secant 30, 44
telescoping 46, 107
two variables 30, 46

sheet, 357, 359
dσ/dΩ, 193–196, 201
similarity transformation, 156
simple closed curve, 350
simply-connected, 330, 331
Simpson’s rule, 267, 407
simultaneous equations, 78, 81
sine integral, 105, 109
sine transform, 376
singular point, 71
singularity, 347, 350, 360
sketching, 16
skewness, 411, 427
Snell, 389
snowplow, 89
soap bubbles, 400
Sobolev, 130, 417
solenoid, 183, 231
solid angle, 191, 193
space, 309
specific heat, 170, 232
spectral density, 377
speed of light, 384
Spiderman, 50√

2, 124
square-integrable, 113, 115
stainless steel, 254
Stallone, 178
step function, 414, 416
sterradian, 192
Stirling’s formula, 32, 46, 190
stock market, 92
Stokes’ Theorem, 217, 328, 332
straight line, 386
strain, 209
stress, 293
stress-strain, 290
string, 128
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Sturm-Liouville, 256
subspace, 334
sum of cosines, 62
Sumerians, 1
summation by parts, 15
summation convention, 157, 165, 222,

304
sun, 228
superposition, 243
surface integral, 205, 207, 329, 332,

333
closed 210
examples 205

Symmetric, 160, 301, 334
.

tails, 7
Taylor series, 25, 346, 349, 363
telescoping series, 46, 107
temperature, 191
temperature gradient, 389
temperature:

distribution, 237, 241
expansion 382
of slab 234
oscillation 236
profile 235

tensor, 132, 209, 289
component 295
contravariant components 305
field 309
inertia 134, 138–141, 152, 164,

289, 293, 301, 319
metric 294, 314, 316
rank 293, 294, 302, 305
stress 293, 310
totally antisymmetric 302
transpose 301

test function, 416, 418
Texas A&M, 112
thermal expansion, 382
θ, 414, 415
thin lens, 404
time average, 103
time of travel, 323
torque, 133, 152
tough integral, 42
trace, 120, 149, 169

transformation, 132
area 145
basis 298, 314
composition 150
determinant 145, 320
electromagnetic field 317, 318,

321
linear 135
Lorentz 316–318
matrix 315
orthogonal 307
similarity 132, 156, 157, 167

transport theorem, 333
transpose, 301, 307
trapezoidal integration, 266, 393
triangle area, 16, 20
triangle inequality, 118, 123
trigonometric identities, 54
trigonometry, 1
triple scalar product, 230
.
unconventional notation, 293
uncountable sum, 128
Unitary, 160
.
variance, 276, 280, 281, 285, 411, 427
variational approximation, 392
vector space, 111–123, 186, 291, 308,

333, 412
axioms 112
basis 116
dimension 116
examples 112, 119, 127
not 114, 117
scalar product 118
subspace 115
theorems 128

vector:
calculus, 308, 322
derivative 207
eigenvector 279
field 257, 308, 309
gradient 176, 177, 188
heat flow 242
identities 229, 391
operators 217
potential 331
unit 183, 199, 200

velocity, 310
visualization, 197
volume element, 180
volume of a sphere, 182, 199
.
wave equation, 200, 232, 257, 281
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Weierstrass, 343
Weierstrass-Erdmann, 400
Weiner-Khinchine theorem, 377
weird behavior, 402
wet friction, 66
wheel-balancing, 152
wild oscillation, 273
winding number, 356, 359
wine cellar, 237
work, 324
work-energy theorem, 325
.
ζ(2), 28, 106
zeta function, 7, 26, 44
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